
Collaborating with a Genetic Programming System to Generate
Modular Robotic Code

Jeremy Kubica�

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15232
jkubica@ri.cmu.edu

Eleanor Rie�el

FXPAL
3400 Hillview Ave Bldg 4

Palo Alto CA 94304
rie�el@fxpal.com
(650) 813-7077

Abstract

While the choice of a set of primitives can
strongly e�ect the performance of genetic
programming, the design of such a set re-
mains more of an art than a science. We
look at a joint approach that combines both
hand-coding and genetic programming to de-
�ne and re�ne primitives in the context of
a creating distribute control code for modu-
lar robots. We give some rules of thumb for
designing and re�ning sets of primitives, il-
lustrating the rules with lessons we learned
in the course of solving several problems in
control code for modular robots.

1 INTRODUCTION

It is well-known, from various \no free lunch" the-
orems, that no single approach can e�ectively solve
all problems (Wolpert, 1996; Wolpert and Mecready,
1997). Thus it is necessary to tailor techniques to the
problem at hand. For genetic programming this tailor-
ing can be done in three primary ways: choosing the
primitives, choosing the �tness functions, and choosing
parameters for the algorithm such as the percentage of
use of various operators. Here we look at the problem
of e�ectively choosing primitives.

We describe techniques for and experiences with the
joint use of genetic programming and hand-coding to
design and re�ne sets of primitives for a variety of mod-
ular robotics problems. The creation of decentralized
control software for modular robots is a diÆcult prob-
lem due to both the decentralized nature of the soft-
ware and the fact that the connectivity relations be-
tween the modules constantly change. Yet, in spite of

�* Supported by FXPAL

these diÆculties, or perhaps because of them, modular
robotics provides an ideal domain in which to exper-
iment with automated software generation methods;
there are many robotic tasks that are easily speci�ed
but for which it is highly non-obvious what distributed
software would create the desired behavior.

Ideally, for the problem of robotic control, a set of

primitives could be derived directly from a description
of the hardware capabilities. While a description of
such capabilities is an excellent place to start, �nd-
ing a solution given only the most basic actions can
be prohibitively time consuming. Another approach is
to tailor the primitives to the task, which may require
signi�cant development time. In fact, the development
time required for the primitives can approach that of
actually solving the problem. We take an intermediate
approach. Except for primitives that encode informa-
tion speci�c to the problem (as opposed to its solu-
tion), we try to provide primitives that would appear
to be useful in a wide range of problems and are still
reasonably low-level. We use insights gained from both
human and machine attempts to solve the problems to
design e�ective sets of primitives.

2 MODULAR ROBOTIC

HARDWARE AND SIMULATOR

2.1 TELECUBE MODULES

Modular self-recon�gurable robots are systems consist-
ing of a collection of simple and identical robotic mod-
ules that can form connections to and move relative
to each other (Yim, 1994; Murata et. al., 1994; Rus
and Vona, 2000). These modules function together to
produce an overall behavior of the robot, analogous
to the way cells in a body function together. The fact
that both the connectivity and relative positions of the
modules can change allows the overall robot to recon-
�gure and take on di�erent shapes. Modular robotic

Figure 1: One telecube module.

systems provide possible bene�ts in terms of
exibility,
adaptability, and robustness.

2.2 MODULE CAPABILITIES

2.2.1 Physical Capabilities

The robot modules we consider are the TeleCube mod-
ules currently being developed at Xerox PARC and
shown in Figure 1 (Suh et. al., 2002). They are sim-
ilar in design to modules being designed and build at
Dartmouth (Rus and Vona, 2000), which can expand
in two dimensions. The modules are cube shaped with
an extendable arm on all six faces. The arms are as-
sumed to extend independently up to half of the body
length, giving the robot modules an overall 2:1 expan-
sion ratio. For simplicity, we restrict the arms to fully
extended or fully retracted states. The expansion and
contraction of these arms provide the modules with
their only form of motion. Latches on the plates at
the end of each arm allow two aligned modules to con-
nect to each other. The arm motion together with
the latching and unlatching capability means that the
connectivity topology of a modular robot can change
greatly over time. As shown in (Vassilvitskii et. al.,
2002), this motion is suÆcient to enable arbitrary re-
con�guration within a large class of shapes.

2.2.2 Sensors, Communication, and Memory

Each module is assumed to have simple sensing and
communication abilities that resemble those that will
be given to the TeleCube modules currently being built
at Xerox PARC. Modules can send limited bandwidth
messages to their immediate neighbors. Each mod-
ule is also assumed to be able to sense contact at the
end of each arm, sense how far each of their arms is
extended, determine whether they are connected to a
neighboring module, and detect nearby, adjacent mod-

ules. Each module has a small memory capacity, which
is initialized to all zeros. We also give the modules sim-
ple computational abilities such as the capability to

determine the opposite of a given direction, the ability
to generate a random direction, and to calculate and
store the value of each of its position coordinates.

2.3 TELECUBE SIMULATOR

The experiments reported here were run by connecting
FXPAL's genetic programming system to a simulator,
written by J. Kubica and S. Vassilvitskii, for the Tele-
Cube modular robots. The module control code is
represented in a LISP-like parse tree that is evaluated
once per time step for each module.

3 PROBLEM CONTEXTS

For all of the problems described here we are interested
in a completely decentralized solution in which the de-
sired global behavior of the robot emerges from control
code that is run locally on each of the modules that
make up the robot. Decentralized control software is
a challenging domain to begin with, and the fact that
the connectivity relations between the modules con-
stantly change makes modular robotic problems even
harder. The collaboration between hand-coding and
automatic generation of solutions is described below
in the context of three speci�c modular robotic con-
trol problems to which we have applied this technique:
the tunnel problem, the �ltering membrane problem,
and the sorting membrane problem.

The tunnel problem consists of a long thin world, 40
x 10 x 2 arm lengths, that is enclosed on all sides by
walls. During each of the trials an object is placed
randomly \in" one of the long walls. This means that
a module adjacent to this location along the wall can
sense the object, but will not be blocked by it or stuck
behind it while moving along the wall. The goal of the
modules is to �nd the object and all move as close to
it as possible. Thus, we de�ne our �tness function as
the sum of each module's distance to the object at the
end of a run. The modules start out as a 3 x 3 x 1 grid
con�guration in one corner of the world.

The membrane problems consist of a membrane, a
three-dimensional lattice of modules, and a foreign
object which, depending on its attributes, should or
should not be accepted into the membrane and ma-
nipulated by it. In the case of a �ltering membrane,
the object is either accepted or rejected. Accepted ob-
jects are passed through the membrane and out the
bottom, whereas rejected objects remain on top. A
sorting membrane accepts all objects, but sorts them

along some axis. We looked at the case of a binary
sorting membrane, which moves an object towards one
of two opposite ends depending on its value. For both

membrane problems we use �tness functions that mea-
sure the distance of the object from where it ought
to end up and a penalty for the membrane breaking
apart. Since the modules are unable to directly grasp
or pull the objects, all solutions to the membrane prob-

lem require the use of gravity, by having modules move
out from under the objects and allowing them to fall
through the membrane. For more details on the mem-
brane problems, including some pictures, see (Kubica
and Rie�el, 2002).

4 RELATED WORK

A number of researchers have looked at enabling a ge-
netic programming system to add primitives on its own
in the course of its runs. Approaches include ADFs
(Koza, 1994), libraries (Angeline and Pollack, 1994),
subroutines (Rosca and Ballard, 1996), and subtree
encapsulation (Roberts et al., 2001). While such tech-
niques might help with some of the problems we de-
scribe here, we are particularly interested in how to
add primitives that the system would be unlikely to
�nd for itself. Furthermore, there are many situa-
tions, perhaps the majority, in which one is most in-
terested in solving the problem at hand in any way
possible, rather than being concerned about the ex-
tent to which the solution was automatically attained.
We hope that what we write here can help others to
have more productive collaborations with a genetic
programming system in order to more e�ectively solve
practical problems of interest.

The problem of automatic code generation for mod-
ular robots has also seen interest recently. Kubica
et. al. (Kubica et. al., 2001) hand-coded control
programs for internal object manipulation with robots
made of TeleCube modules. Bennett et. al. (Bennett
et. al., 2001) used genetic programming to generate
distributed control programs for modular robots con-
sisting of sliding-style modules (Bennett and Rie�el,
2000; Pamecha et al., 1996). It is important to note
however that this sliding-style module design enables
movement with primitive operations directly suggested
by the hardware. In particular, movement in that set-
ting, unlike for the TeleCube modules, does not require
explicit connection and disconnection actions. Thus
movement in their case avoids some of the diÆculties
we faced when attempting to generate e�ective soft-
ware for robots made from Telecube style modules.

5 DEVELOPING EFFECTIVE SETS

OF PRIMITIVES

5.1 BASIC PRIMITIVES

Each of the basic capabilities of the modules can be
captured by a primitive operation.

� Physical actions: (ExtendArm direction),
(RetractArm direction), (Connect

direction), (Disconnect direction)

� Communication: (SendMessage direction type

value), (GetMessage direction type)

� Sensors: (HasNeighbor direction),
(ReadSensorNeighborDist direction),
(ReadSensorObjectDist direction)

� Memory: (ReadReg index), (SetReg index

value)

� Other: (OppDirdirection direction),
(RandDir), and (GetX), (GetY), (GetZ).

In addition to these module speci�c primitive, we al-
low the module control programs to use the following
basic programming primitives: (Add), (Sub), (If),
(ProgN) (LT), (And), and (Not), and the numeric
constants 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0.

The primitives described above all mirror basic hard-
ware capabilities of Telecube modules. For more de-
tails on these primitives, see (Kubica and Rie�el,
2002). However these primitives do not form an opti-
mal set of primitives for either a human or a genetic
programming system to construct e�ective software for
the tasks we described above. We look at how genetic
programming experiments and hand-coding attempts
together enabled the development of e�ective sets of
primitives.

5.2 INITIAL CHOICE OF PRIMITIVES

Ask the system only to discover a solution, not aspects

of the problem

One important consideration when choosing primitives
is to give the system full information about the prob-
lem. Even researchers more concerned with automati-
cally generating code than solving problems per se and
who are resistent to giving the system any hints as to
how to solve the problem, should feel comfortable giv-
ing the system enough information so that it does not
have to guess the problem as well as the solution.

0 5 10 15 20 25 30 35 40 45 50
60

80

100

120

140

160

180

200

220

240

260

Generation

A
ve

. F
itn

es
s

With ReadSensorShouldPass
Without ReadSensorShouldPass

Figure 2: Average solution performance on �ltering
membrane problem with and without ReadSensor-
ShouldPass primitive.

In the �ltering membrane problem, the modules must
determine whether or not to accept an object. In
our case the criterion for the �lter to accept an ob-
ject was that the value returned by (ReadObjectVal

direction) be above 0.5. In order to solve the prob-
lem in our initial runs the GP system had to create a
subtree testing for the acceptance criterion.

As we tried to gauge how the system was doing, we
realized that we were using the existence of such a
subtree to determine how close the GP system was to
a solution. We soon realized that one should not re-
quire an automatic code generation technique to guess
the problem as well as the solution, even if it can.
Thus we added a primitive that encapsulates the �lter-
ing criterion: the Boolean (ReadSensorShouldPass

direction) primitive

(LT(Add(0.4 0.1))(ReadObjectVal direction)).

Figure 2 shows the performance of two GP runs,
one with the ReadSensorShouldPass primitive and
one without it. While the system could solve
the problem without the (ReadSensorShouldPass

direction) primitive, its addition certainly helped.
Further, for the evolution of the membrane control
there is no reason to withhold this type of informa-
tion about the problem statement itself. Note that
this situation is di�erent from one in which one might
be trying to learn a good criterion, say for identifying
defective parts or a distinguishing characteristic of a
set of objects.

Avoid large needle-in-the-haystack searches

The tasks we describe above all require movement, as

Figure 3: Module in white moves towards right.

do most modular robotic tasks including recon�gura-
tion, locomotion, and internal manipulation. But none
of the �tness functions we used give any reward to
programs that have put together part, but not all, of
a sequence that would result in movement. Since no
reward is given, the genetic programming system has
nothing to guide it towards movement.

Even at its simplest level, movement of a single Tele-
Cube module is a complex process, involving bonding
with and unbonding from neighbors, expanding and
contract arms, and checking that the move is possible.
To get an impression the complexity of a single move-
ment, it is only necessary at look at the movement
subtree involved in disconnecting from the perpendic-
ular neighbors:

(ProgN (ProgN (Disconnect 0.0) (RetractArm

0.0)) (ProgN (Disconnect 0.2) (RetractArm

0.2)) (ProgN (Disconnect 0.4) (RetractArm

0.4)) (ProgN (Disconnect 0.6) (RetractArm

0.6)))

The code above disconnects from the correct neigh-
bors in the case the module is moving along the �X
axis. Just to choose Disconnect and Retract arm
from just the four physical primitives has probablility
less than 10�3. Choosing the appropriate constants for
the Disconnect and Retract functions from the seven
numeric constants also has probability less than 10�5.
And choosing the �ve ProbN primitives has probabil-
ity less than 10�5. So the probability of �nding the
correct components is less than 10�13.

Up to now we have only considered a subtree of the
sort that would correctly disconnect a module. In ad-
dition, one would need appropriate if statements to
determine the correct direction, the appropriate arm
expansions and contractions to accomplish the move-
ment, and a similar subtree to handle reconnection
with any new neighbors. Thus, the simple move il-
lustrated in Figure 3, given only the basic primitives
described above, would require at least 12 di�erent
primitives and well over 50 nodes. More code would
be required to enable moves in all six directions, not
just one, and the graceful handling of movement fail-
ures would require considerably more code. Thus the
likelihood that such a program would be created given

no guidance is impractically small.

With the basic primitives, and a simple �tness func-

tion with no gradient towards movement from none,
the GP system would be searching blindly. Thus it is
extrodinarily unlikely that the GP system would suc-
ceed even in evolving movement. In fact the problem
is harder still since only useful and used motion would
be rewarded. By asking genetic programming to evolve

movement, we are asking it to search for a needle, or
rather a few needles, in a very large haystack.

A number of solutions are possible. One solution
would be to change the �tness function so that it re-
wards partial programs out of which movement could
be constructed. Another possibility is to simply evolve
movement �rst and then use that solution as a prim-
itive when evolving solutions to more complex tasks.
Note that this approach still requires determining a
�tness function that rewards partial solutions. It is
highly non-trivial to see how to design a principled re-
ward system. Figuring out principled approaches to
this problem, and other similar problems, is an open
research issue that ought to be of great interest to any-
one trying to automatically solve problems. An un-
principled way of solving this problem is to hand-code

a solution and then reward programs based on simi-
larity with this solution. One might as well use the
hand-coded solution as a primitive in the �rst place,
which is what we do.

Achieving simple motion, for instance the motion illus-
trated in Figure 3, only requires reasoning at the local
level and is thus easier for a human to do than solu-
tions to tasks that require global behavior to emerge
from the local actions. Following basic operations used
by Kubica, et. al. (Kubica et. al., 2001), we created
a movement primitive that enables modules to move a
distance of one arm length in any of the six directions.
The movement is accomplished by simultaneously con-
tracting the front arm and expanding the back arm
to e�ectively \slide along the arms." The movement
primitive also checks whether movement is possible,
reverses any steps taken prior to a failed check, and
returns whether or not the movement has succeeded.

This example also serves to illustrate another principle
useful for e�ective collaboration with a GP system in
solving a problem.

Hand-design parts that are easy for a human to write

but hard for a GP system to discover.

5.3 REFINING THE PRIMITIVES

Delete or replace unused primitives

If the system is solving a problem without certain
primitives consider removing or replacing them. Use
this information to update your intuition if possible.

Encapsulating such primitives is a particularly attrac-
tive choice in a number of situations.

Encapsulate hard-to-use primitives

If the system is not using a primitive, or a set of prim-

itives, e�ectively, consider giving the system higher
level primitives that it may be able to use more easily.
The best time to encapsulate actions into primitives is
when a certain subtree is needed.

The clearest case for removing a primitive is when a
higher level primitive replaces it. For example, the
implied TeleCube primitive (Disconnect direction)
is automatically handled by such primitives as (Move
direction) and (RetractArm direction). Further,
maintaining global connectivity is vital for power rout-
ing and facilitates alignment of connecting modules
and inter-module communication. Thus, we wish to
maintain a high level of connectivity at all times and
additional uses of disconnection may not only be un-
necessary, but also detrimental. Thus, it can be said
that the disconnect primitive was replaced by incorpo-

rating it into higher-level primitives.

A second example of the removal of primitives is in
the more complex problem of module communication.
Since control is local, it would seem that communica-
tion between the modules would be required in order
for the robot to achieve a task of any complexity. Mes-
sages would enable modules to share information and
coordinate actions. However, communication may not
be as necessary for modular robotic tasks as humans
tend to think. Bennett and Rie�el comment in their
conclusions that none of the solutions to any of the �ve
tasks they studied (Bennett and Rie�el, 2000) used the
communication capabilities provided. Similarly, while
the solution given in (Bennett et. al., 2001) contains
two (SendMessage) commands, since it contains no
(ReadMessage) commands, one can deduce that the
communication capabilities were not used.

The lack of use of the communication primitives in
solutions to various problems suggest that a wider
class of problems can be solved without communica-
tion than most humans would generally think. How-
ever, it also suggests that the provided communica-
tion primitives may be hard for a genetic program-
ming system to use. E�ective communication requires
the generation of a quantity that would be useful to
communicate, the sending of that quantity, the receipt
of that quantity, and the use of that quantity by the
receiver. In most cases, until all of these steps are in

place and correct there is no bene�t. So for a genetic
programming system, with a simple �tness function in
which there are no explicit rewards for partial com-

munication, the generation of e�ective communication
is reduced to a large needle-in-the-haystack problem
similar to the movement problem we described above.
Unfortunately, in this case it is less clear what to do
by hand since what sort of communication would be

useful is less clear.

One problem with the message primitives described
above is that it is diÆcult to send out information to
all neighbors or send direction dependent information,
such as \move away." One interesting extension to the
communications capabilities described above is the ad-
dition of gradients. Gradients are messages that are
broadcast to all surrounding neighbors. These neigh-
bors in turn rebroadcast them to their neighbors, with
the strength of the gradient decayed with each broad-
cast.

Previous work with gradient messages in hand-coded
solutions was shown e�ective in (Bojinov et. al., 2000;
Kubica et. al., 2001) and in (Shen et. al., 2000; Shen
et. al. 2000) where the gradients were called scents
and hormones respectively. Of particularly interest is

the use of gradients for internal manipulation of ob-
jects. The use of scents applied to the problem of
internal object manipulation in (Kubica et. al., 2001)
limited the scents to positive and negative, where mod-
ules were inclined to move towards the positive scent
and away from the negative scent. This implies further
specializing the messaging primitives to:

� (SendPositiveGradient) Emits a positive gra-
dient

� (SendNegativeGradient) Emits a negative gra-
dient

� (HandleGradient) Tries to follow the gradients,
move towards positive gradient and away from
negative gradient. Returns true if a gradient was
detected and the module was able to move to fol-
low it.

These communication primitives illustrate how human
experience and intuition can be encoded in general
primitives. These primitives have the potential to
greatly reduce the space of programs that might be
searched in order to �nd a solution. For example, the
positive and negative gradients above do not require
the use of constants, simplifying the coordination and
handling of messages.

The tunnel world problem was designed as a test of
the communication primitives. It is relatively easy for

0 50 100 150
500

1500

2500

3500

4500

Generation

A
ve

. F
itn

es
s

No Comm.
Messages
+ Gradient

Figure 4: Average solution performance on the tunnel
problem for runs with di�erent sets of communication
primitives.

the modules to move randomly around the world in
a group and for a single module to stop moving if it
detects an object. The problem gets increasingly non-
trivial when all of the modules are required to move as
close as possible to the object. This implies the need
for at least implicit communication between the mod-
ules. Speci�cally, when a module detects the object it
must be able to say \move towards me" or something
similar.

To determine the e�ectiveness of various communi-
cation primitives, the problem was run 24 times in
each of three conditions: 1) no communication prim-
itives, 2) only the messaging primitives, and 3) only
the positive gradient primitives (SendPositive and
HandleGradients). The average cost for these trials
during each generation of the GP runs was recorded
and is shown in Figure 4. Once again, the intuitive dif-
ference is re
ected in the success of the runs that were
able to use the positive gradients. The solutions that
can contain positive gradients perform the best after
the 150 generations, while the solutions that could not
have any message passing commands in them perform
noticably worse.

Consider deleting unused primitives

A case can be made for keeping primitives that imme-
diately appear to have no bene�t. The argument goes
that if they are not needed, GP will evolve solutions
that do not use them. Despite this argument, it is
important to place some restrictions on the number of
primitives. As the number of primitives increases, the
search space of possible programs increases. Thus one
should consider deleting unused primitives, as well as

replacing or encapsulating them.

In addition to using hand-coding and genetic program-

ming to develop primitives, the combination of tech-
niques lead to cases where primitives were found to
be ine�ective and thus could be removed. For ex-
ample, in the �ltering membrane problem described
above, the primitives (HasNeighbor direction)

and (ReadSensorNeighborDist direction) were

not used in early successful solutions. In addition,
early attempts to hand-code the solution did not re-
veal any apparent bene�t to them. Thus, they were
removed for later runs. A viable solution was found
without these primitives.

Consider adding primitives

It may become apparent after some runs that certain
primitives might be necessary or helpful. In particu-
lar, revisit the points of previous section. In our case,
it was at this point that we realized a movement prim-
itive was necessary, even though that could have been
clear at the start. Also, some of the gradient primi-
tives could be viewed in this way, since it is arguable
that they replace rather than encapsulate the initial
message primitives.

5.4 PRIMITIVES FOR RELATED

PROBLEMS

Consider using results, or partial results, from similar

problems as primitives.

Solutions, or piece of solutions, found by genetic pro-
gramming to similar problems, including easier ver-
sions of problems or related subproblems, can provide
useful and robust primitives for more complex prob-
lems.

A sorting membrane needs to be able to pass objects
through its structure just as a �ltering membrane does.
The solution found for the �ltering membrane prob-

lem contains a quick and eÆcient way to pass objects
through a structure of modules. By examining the
solution provided by genetic programming, we can re-
move unnecessary sub-trees to obtain:

(If (ReadSensorObjectShouldPass 0.0) (If (If

(ProgN (Move 1.0) (RetractArm 0.8)) (ProgN

(ProgN (Move 1.0) (RetractArm 0.8)) (Move

1.0)) (RetractArm 0.1)) Move 1.0) (Move

0.4)) NormalizeDensity)

Although this program does not provide for 100% suc-
cess on all problems (Kubica and Rie�el, 2002), the
result is a relatively eÆcient �ltering program. At the
highest level of the primitive is an If clause dependent
on the ReadSensorShouldPass primitive. By simply

replacing (ReadSensorObjectShouldPass 0.0) with
(ReadSensorIsObject 0.0) we were able to provide
later membrane problems with a robust (Drop) prim-

itive.

6 FUTURE WORK

Ideally, a system for automatically generating modu-
lar robotic code would only need a description of the
capabilities of the modules and the desired behavior
for the system to �nd a solution. Unfortunately, we
are currently far from such a system. In particular,
current evolutionary approachs are not suÆciently ad-
vanced to be able to solve many complex problems on
their own.

One diÆculty facing such systems is that they are of-
ten not capable of deriving an e�ective set of prim-
itives from the information they are given. Deter-
mining �tness functions is also a nontrivial problem,
particularly how to reward useful pieces that are not
measured by a �tness function coming directly from
a problem statement. The problem of modular robot
control, particular that of generating e�ective commu-
nication for modular robotic systems, provides a good
area in which to explore approaches to this problem.

A �rst step towards a more automated system is to
identify situation in which current systems need help.
A better understanding of how a human and a system
can collaborate to e�ectively solve a problem, can lead
not only to guidelines that can help humans solve prob-
lems more eÆciently with the help of machines, but
could lead to insights that could ultimately enable the
automation of some of the processes currently requir-
ing human input. Our hope is that our e�ort here not
only contributes to this direction, but will also encour-
age others to do more work along these lines. These
problems are diÆcult, but not so hard that progress

cannot be made.

References

P.J. Angeline, J.B. Pollack (1994). Coevolving High-

level Representations. Arti�cial Life III, Addison-
Wesley, pp. 55-71.

F.H. Bennett III, B. Dolin, E.G. Rie�el (2001). Pro-

grammable Smart Membranes: Using Genetic Pro-

gramming to Evolve Scalable Distributed Controllers

for a Novel Self-Recon�gurable Modular Robotic Appli-

cation. Genetic Programming: proceedings of EuroGP
2001, Springer LNCS 2038, pp. 234-245.

F.H. Bennett III, E.G. Rie�el (2000). Design of De-

centralized Controllers for Self-Recon�gurable Modu-

lar Robots Using Genetic Programming. Proceedings
of the 2nd NASA/DoD Workshop on Evolvable Hard-
ware, pp. 43-52.

H. Bojinov, A. Casal, T. Hogg (2000). Emer-

gent Structures in Modular Self-Recon�gurable Robots.
2000 IEEE International Conference On Robotics and
Automation, pp. 1734-1741.

J.R. Koza (1994). Genetic Programming II: Automatic

Discovery of Reusable Programs. MIT Press

J. Kubica, A. Casal, T. Hogg (2001). Agent-based

Control for Object Manipulation with Modular Self-

recon�gurable Robots. The 2001 International Joint
Conference of Arti�cial Intelligence, pp. 1344-1352

J. Kubica, E.G. Rie�el (2002). Creating a Smarter

Membrane: Automatic Code Generation for Modular

Self-Recon�gurable Robots. To Appear in 2002 IEEE
International Conference On Robotics and Automa-
tion.

S. Murata, H. Kurokawa, S. Kokaji (1994). Self-

Assembling Machine. Proceedings of the 1994 IEEE
International Conference On Robotics and Automa-
tion, pp. 441-448

A. Pamecha, D. Stein, C.-J. Chiang, G.S. Chirikjian
(1996). Design and Implementation of Metamorphic

Robots. Proceedings 1996 ASME Design Engineering
Tehcnical Conference and Computers and Engineering
Conference, pp. 1 - 10. ASME Press.

S.D. Roberts, D. Howard, J.R. Koza (2001). Evolv-

ing Modules in Genetic Programming Subtree Encap-

sulation. Genetic Programming: Proceedings of Eu-
roGP2001, Springer LNCS 2038, pp. 160 - 175.

J.P. Rosca, D.H. Ballard (1996). Discovery of subrou-

tines in genetic programming. Advances in Genetic
Programming 2. MIT Press.

D. Rus, M. Vona (1999). Self-Recon�guration Plan-

ning with Compressible Unit Modules. Proceedings of
the 1999 IEEE International Conference On Robotics
and Automation, pp. 2513-2520.

D. Rus, M. Vona (2000). A Physical Implementation

of the Self-Recon�guring Crystaline Robot. Proceed-
ings of the 2000 IEEE International Conference On
Robotics and Automation, vol. 2, pp. 1726 -1733.

W.M. Shen, B. Salemi, P. Will (2000). Hormones for

Self-Recon�gurable Robots. Proceedings of 6th Inter-
national Conference on Intelligent Autonomous Sys-
tems, pp. 918-925. IOS Press.

W.M. Shen, B. Salemi, Y. Lu, P. Will (2000).
Hormone-Based Control for Self-Recon�gurable

Robots. 2000 International Conference on Au-
tonomous Agents. Barcelona, Spain.

J.W. Suh, S.B. Homans, M. Yim (2002). Telecubes:

Mechanical Design of a Module for Self-Recon�gurable

Robotics. To appear in the 2002 IEEE International
Conference On Robotics and Automation.

S. Vassilvitskii, J. Kubica, E. Rie�el, J. Suh, M. Yim

(2002). On the General Recon�guration Problem for

Expanding Cube Style Modular Robots. To appear in
2002 IEEE International Conference On Robotics and
Automation.

D. Wolpert, W. Macready (1995). No free lunch theo-

rems for search. Technical Report SFI-TR-05-010.

D. Wolpert, W. Macready (1997). No free lunch the-

orems for optimization. IEEE Transactions on Evolu-
tionary Computation, 1(1) pp. 67 - 82.

M. Yim (1994). Locomotion with a Unit Modular-

Recon�gurable Robot. Stanford PhD Thesis, 1994.

