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Abstract

This paper proposes an advanced method of
object detection using a data crawler. Start-
ing from a preliminary ‘object identification’,
the data crawler scrutinizes the object’s sur-
roundings, and places flags where its interest
has been aroused. Next, the binary map de-
fined by these flags is analyzed statistically
to quantify the context in which the object
appears. The crawler’s overall output indi-
cates whether the object is a required tar-
get or a false alarm. The crawler’s navi-
gator program, its flag-placement program
and its target detection program, are all con-
trolled by a tree-based Genetic Programming
(GP) method with fixed architecture Auto-
matically Defined Functions (ADFs).

1 Introduction

The perennial problem with machine vision is to dis-
til features which characterize an object from a huge
amount of available information, i.e. the specification
of an intelligent data reduction mechanism. This data
reduction must be discovered because it cannot be de-
termined a priori.

Moreover, if an object is viewed too closely, there is not
enough contextual information upon which to make an
identification. Conversely, if an object is too far away,
information overload makes identification equally diffi-
cult. To deal with this surfeit of information, a way of
selecting a sub-set of data, which is representative of
an object, needs to be derived which allows the object
to be identified.

In the context of GP, (Tackett, 1993, Poli, 1996, Daida
et al., 1996, Howard and Roberts, 1999) settled for

very practical schemes which manipulated statistics
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computed from pixel data, and (Andre, 1994, Johnson
et al., 1994, Teller and Veloso, 1996, Harris and Bux-
ton, 1996) pursued other evolvable object detection
themes. (Roberts and Howard, 2000) also exploited
the evolutionary paradigm to obtain the orientation of
poorly defined objects such as vehicles in IR imagery.
(Benson, 2000) exploited the software reuse paradigm
(Koza, 1994) by embedding tree GP inside an evolv-
able Finite State Machine, a scheme that parallels
the Automatically Defined Functions (ADFS) idea.
(Roberts et al., 2001) successfully exploited problem
modularities and regularities for a difficult object de-
tection task with the subtree encapsulation idea.

This paper draws on the ADF idea to arrive at a
mechanism of exploring the surrounding context and a
more informed object detection (Howard et al., 2002).
As post-processor to the (Roberts and Howard, 1999)
scheme, it aims to intelligently lower that scheme’s
false alarm rate. The (Roberts and Howard, 1999)
scheme processes infrared line-scan (IRLS) imagery ac-
quired by low-flying aircraft to detect land vehicles.
The scheme produces many false alarms because its
aim is to detect any region which represents some part
of a vehicle. Users of this scheme know that objects
may be obscured by other objects accidentally or de-
liberately, and so a high false alarm rate is acceptable.
However, the scheme cannot combine clues together
to eliminate obvious misidentifications, e.g. a vehicle
cannot be parked on a roof top. So the proposition
is that obvious false alarms may be eliminated by ex-
ploring the context of misidentifications.

2 Overview and inspiration

It is clearly impossible to identify the vehicle object
when the image is viewed from too close, for example,
as shown for the vehicle detection problem in Figure 1.

Animal vision probably attempts to identify a number



Figure 1: Two different views: close-up and from afar.

of very specific image clues that resemble some close-
up detail of an object. The brain can then interpret
these clues to ‘imagine’ the object from afar. In other
words, object recognition involves constructing a men-
tal model of an object, and superimposing this model
onto the evidence perceived from the real-world. The
scheme proposed in this paper is based on this idea of
using both views, near and far, and of using a small
number of image clues to connect these views to detect
the object. The central problem then becomes how to
identify the required image clues?

Evolution with GP tackles this difficult issue. Start-
ing from the location of an object identification by the
(Roberts and Howard, 1999) detector, a ‘data crawler’
inspects the image surroundings to discover a few use-
ful clues. It marks a 2D binary map to flag the location
of discovered ‘clues’, and constructs statistics based on
their distribution. These statistics are also combined
by GP to arrive at a decision concerning the originat-
ing pixel: whether to confirm or reject that the pixel
belongs to a target object.

The evolutionary process is driven by the global objec-
tive of reducing misses and false alarms. It is imple-
mented using GP with fixed architecture ADFs (Koza,
1994). The GP system decides the following. How
should this image crawler be guided in its search for
the clues? How far should it travel and turn? What
should excite it sufficiently to cause it to flag the exis-
tence of an image clue?

3 Structure and representation

Each individual data crawler in the population is a
GP tree structure, equipped with two result-producing
branches and two ADF branches:

e First Result Branch (FRB)

e Turn Decision Branch (TDB)

Table 1: Function sets. GL represents glue functions.

Branch
FRB
TDB

Functions

GIL2, GL3, MDB

+, - % / (x/0= 1)7
min(A, B), max(A, B),

if (A < B) then C else D
+, - % / (x/0= 1)7
min(A, B), max(A, B),

if (A < B) then C else D,
WRITEMEM, READMEM
+, - % / (x/0= 1)7
min(A, B), max(A, B),

if (A < B) then C else D

MDB

SRB

e Mark Decision Branch (MDB)

e Sccond Result Branch (SRB)

FRB is allowed to call TDB and MDDB many times but
otherwise the branches are unrelated. SRB works on
the 2D memory devised by FRB as will be explained
shortly. Each branch determines a specific property of
the crawler, and each has its own set of terminals and
functions. Moreover, some have access to task specific
working memories:

e FLAG memory
e WORKING memory

e MOVE memory

Each individual maintains these memories to save in-
formation about its past experience. Data crawler de-
cisions, e.g. whether or not to mark the image with
a flag, require a memory of past events which allows
the data crawler to consult and integrate previous in-
formation prior to a decision.

FRB, working with the TDB and MDB, guides the
data crawler to explore the image in the near field, and
to deposit a number of ‘flags’ or image clues. Once this
process is completed, the discriminant SRB looks from
afar at this binary 2D map of ‘flags’ and ‘no flags’. The
SRB then decides whether the original starting point
was correctly indicated as a true target, or whether it
was a false alarm. Tables 1 and 2 give the function
and terminal sets for each GP branch.

3.1 First Result Branch (FRB)

The data crawler has similarity with the Santa Fe trail
ant in (Koza, 1992), e.g. the glue functions GL2 and



Table 2: Terminal sets (see text).
N

Branch | Terminals 1
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G L3 and the M or ‘move terminal’ to move the crawler
one pixel in the direction of its travel. However, the L
(left) and R (right) terminals used to turn the Santa
Fe trail ant are replaced by TDB which first turns and
then moves the crawler.

The FRB is executed until the data crawler has moved
a predetermined number of times, i.e. 9 % w times,
where w is the width of a vehicle. This width is auto-
matically scaled by aircraft altitude so that w at 600ft
is half w at 300ft (Roberts and Howard, 1999). FRB
is iteratively evaluated until the crawler executes the
predetermined number of moves. In future research
the number of moves will not be predetermined but

will also be allowed to evolve.

The number of image clues that could be flagged was
limited to 50. When this limit was exceeded, the FRB
aborted and returned the clues found so far.

3.2 Turn Decision Branch (TDB)

TDB first decides on a direction of travel and then
moves the crawler in this direction. Terminals u§;, %]
are averages and standard deviations obtained from
the pixel values in an eleven pixel square window cen-
tred on the crawler. Labels C, N, FE,S,W stand for
centre, north, east, south and west locations as shown
in Figure 2. The window size is automatically scaled
according to altitude.

TDB is always evaluated four times, once for each per-
mutation of the order of the terminals at directions N,
E, S, and W, and this produces four outputs. In the
current implementation, the chosen data crawler direc-
tion is given by the permutation returning the largest
output and follows certain rules.

The MOVE memory is updated after every data
crawler move, i.e. when the FRB invokes M or TDDB.
This memory records the local turns of the crawler:

centric pixel rings centred on a vehicle with diameters:
0.5, 1.0, 1.5 and 2.0 vehicle widths.

forward, right, back, left (F, R, B, L) rather than the
absolute directions N, E; S, and W. Pixel statistics are
also recorded and so the MOVE memory consists of:

1. last 10 directions, e.g. F,R,B,B,F.F.B.L.R,L is
stored as [1,2,3,3,1,1,3,4,2,4];

2. last 10 p$y;

3. last 10 0$y;

At the start of travel, the direction memory locations
are initialized to 0 and all ten values in each statistic
memory location are set to the initial ;§; and o%].

3.3 Mark Decision Branch (MDB)

MDB determines whether a flag should be left at the
current pixel position in the trail to indicate the pres-
ence of an ‘image clue’. If the MDB returns a positive
number it deposits a flag. This decision is based on
pixel data and trail data. MDD acts as an ‘IF’ state-
ment in the FRB. Placing a flag executes a THEN
subtree, otherwise an ELSE subtree is executed. The
executed portion is returned to FRB.

Terminals pig:sx and og;sr in Table 2 are averages and
standard deviations that are calculated over a small
disk centred on the current pixel. The disk diameter is
half the width of a car and corresponds to the smallest
disk on the right of Figure 2. This disk is scaled by
aircraft altitude, and it is distorted into an ellipse when
the image is at perspective due to aircraft roll.

The FLAG memory is updated following the call to
MDB. This memory consists of:

1. last 10 MDB results, e.g. [-1,-1,1,1,1,1,-1,1,-1,-1];



2. last 10 pgisk;

3. last 10 og;sk;

Here —1 stands for ‘no flag’, and 1 stands for ‘flag set’.
Initially, all values in the vector of results are set to
—1 and in the other two memory vectors are set to the
initial pgise and og;sp respectively.

WRITEMEM and READMEM write to and read from
the indexed WORKING memory, which consists of
three locations or slots. All three locations are ini-
tialized to 0.0 before the crawl. Note that succes-
sive calls to MDB from FRB will not move the data
crawler. The result of the repeated calls, however, can
differ from one another because the memory states can
change between calls. Note also that the data crawler
may revisit a pixel and change its decision about flag
placement.

3.4 Second Result Branch (SRB)

SRB returns a real numbered value that can be either
positive (target is present) or negative (no target is
present). The SRB is ounly executed after the FRB
has completed.

The FRB uses a 2D square map to store the deposited
flags. The map is initialized to 0 values and flag loca-
tions are indicated by 1 values. The suspicious pixel
which is the starting point of the crawl, is at the centre
of this map. If the map stores fewer than a threshold
number of flags, Ty = 4, then the suspicious pixel is
labelled ‘negative’ (no target present), and the SRB is
not invoked. If the map stores at least T flags, then
the SRB processes statistical measures based on the
distribution of the flags.

The ten flag based terminals in Table 2 require com-
putation of the centre of mass of the flags. They are
arbitrarily based on statistical measures over the vec-
tor of distances between the centre of mass and each
flag. All ten statistics are positive in value:

1. the number of flags;

2. the distance from the centre of mass to the fur-
thest flag;

3. the longest distance between any two flags;
4. the average distance between any two flags;

5. the standard deviation in distance between any
two flags;

6. the average distance between the centre of mass
and each flag;

Table 3: GP parameters.

Parameter Setting
size 2 for steady-state GP

size 4 for steady-state GP

kill tournament
breed tournament

regeneration 90% x-over, 0% clone,
10% truncation mutation

population 500

max generations 50

1000 nodes

max branch size

7. the standard deviation in distance between the
centre of mass and each flag;

8. the degree of asymmetry of the distance distribu-
tion (skewness);

9. the relative shape of the distribution compared
with a normal distribution (kurtosis);

10. the co-variance after the vector is sorted into
ascending order and halved to form two sub-
distributions.

Textural statistics over a wide area are input to SRB so
that the branch can form its own image segmentation.
In this way, the SRB can give different detections for
the same flag distribution appearing in different textu-
ral contexts. For example, a horse in a rural area may
receive the same flag distribution as a vehicle in an ur-
ban area, but the SRB could discriminate the horse as
a false alarm, whilst detecting the vehicle, due to the
differences in rural and urban textures (Roberts and
Howard, 1999). These textural statistics are based on
a co-occurrence matrix and are taken over an area of
5 car-lengths square.

4 GP implementation

The GP run parameters are given in Table 3.
Crossover was branch typed, meaning that it could
only exchange genetic material between like branches,
e.g. an FRB only with another FRB. Each branch
was assigned a probability to participate in crossover.
The FRB had a probability of 40% and the other three
branches had a probability of 20%. Truncation muta-
tion selects any node (and the associated subtree) and
replaces it with a terminal from the relevant terminal
set.

The suspicious points detected by the (Roberts and
Howard, 1999) scheme constituted the fitness cases.
These points were known to be ‘true positives’ (TP)
or ‘false positives’ (FP), i.e. false alarms. The fitness



Figure 3: Trail terminating at the right of a vehicle.

measure was computed once all fitness cases had been
processed:

oTP
BEF P + nVehicles

fitness =

The parameters « and ( balance the importance of
TP relative to FP. These parameters were optimized
to minimize FP whilst retaining near-maximal TP.

5 Experimental Results

The scheme was implemented to process previously
detected vehicles and false alarms in airborne recon-
naissance IRLS imagery (Roberts and Howard, 1999).
The vehicles appear in many sizes and orientations, in
many perspectives and thermal states, next to various
objects (such as buildings) which cast thermal shad-
ows onto the vehicles, and in many environments and
weather conditions. Hence, the vehicle detection task
in these operational images is extremely challenging.

This section presents examples of the trails produced
by a data crawler evolved with @ = 2.6 and § = 1.0.
The trails are drawn on sub-images cropped from IRLS
imagery with approximate dimensions of 3000 x 10, 000
pixels. The end of each trail is indicated with two dots,
except when the trail is iterative.

Figures 3 and 4 show that the crawler can make a sim-
ilar trail on different vehicles. Each trail starts on the
vehicle’s roof because this was the starting point as
detected by the (Roberts and Howard, 1999) scheme.
Interestingly however, each trail terminates at the ve-
hicle’s side, even though the vehicles are oriented dif-
ferently.

Generally, when the crawler is applied to the same ve-

Figure 4: Trail terminating at the left of a vehicle.

Figure 5: Spiral trail on a vehicle.

hicle, but with different starting points, it can take
different routes but still detect the vehicle. Figure 5
displays a case where the crawler homed in on a vehi-
cle’s wind-screen.

The power of the data crawler is illustrated in Fig-
ures 6 and 7, where false alarms are rejected due to
contextual information. In other words, the ‘false pos-
itives’ as detected by the (Roberts and Howard, 1999)
scheme are correctly converted to ‘true negatives’. In
Figure 6, the starting point could resemble some fea-
ture of a vehicle, but crawling onto an open roof dis-
missed this hypothesis. Similarly, a more complicated
trail in Figure 7 rejects a grass verge by crawling onto
an open carriageway. The grass verge was probably
initially detected as a false alarm because it has the
width of a car. This sub-image clearly shows the jit-
ter in the IRLS imagery which hinders the detection
task. Experiments reduced the false alarm rate typi-



Figure 6: A potential vehicle feature on a roof is cor-

rectly rejected.
| I

Figure 7: Trail commencing on a grass verge between
carriageways. Note the two cars on the right.

cally by 30%.

Other false alarms are rejected not by wandering trails,
but instead by tight trails which stay close to the start-
ing point, as shown in Figures 8 to 10. In these cases,
the starting point is within the confines of an object
which is too small to be a target, and thus there is
no need to explore the object’s surroundings. Note
that the ends of these trails are not shown because the
trails are iterative, with the crawler retracing its steps
or performing a cyclic motion.

Systematic flag formations to characterize object de-
tections are not visibly evident in the crawler’s trails.
For example, the false alarms are not characterized by
a typical flag distribution pattern. This is probably
because the flag placement, and indeed the trail itself,

Figure 8: Iterative trail on an obstructed section of
roof.

Figure 9: Tterative trail on a garden plot.

Figure 10: Cyclic trail in a rural driveway near a tree
and out-buildings.



depends on the particular ‘image clues’ in an object’s
vicinity.

However, some typical flag distribution patterns are
evident. There is a tendency for the crawler to place
flags with a near-equal distribution along the trail, and
to prefer placements on turning points. More strik-
ingly, the last few steps in each trail are often flagged.
The crawler governs the length of its trail by itera-
tively retracing its final steps to effectively time-out
the FRB. Hence, these final steps are often repeatedly
flagged.

Recall that at least Tr = 4 flags had to be set for the
SRB to be executed, and that fewer flags gave a default
negative detection (Section 3.4). Experiments found
that the number of individuals that place at least Tr
flags increased during each evolution run. This sug-
gests that individuals could not use the number of flags
alone to detect the vehicles, by simply invoking SRB
to output a positive value. This also suggests that
SRB was employed to manipulate the flag distribution
statistics in a more sophisticated way.

For example, each step in the iterative trails in Fig-
ures 8 and 9 are flagged, thus yielding short distances
for the flag distribution statistics. The SRB could then
interpret these statistics as an indicator to reject these
false alarms.

6 Conclusions

This paper describes a data crawler to improve tar-
get detection by exploring the context in which candi-
date targets appear. The crawler initially processes
close-up views to “sense” an object’s surroundings
and to flag where it becomes aroused. The distribu-
tion of these flags then represents a distant view of
the object, where contextual information has neces-
sarily been greatly reduced. The crawler then indi-
cates whether the object is a required target or a false
alarm. All aspects of the crawler’s design are evolved
using GP with fixed architecture ADFs.

The data crawler improved the performance of a pre-
liminary target detection scheme, by typically reduc-
ing the false alarm rate by 30% whilst retaining most
of the actual targets.

The present scheme is computationally demanding,
due to the calculation of pixel statistics every time
the crawler moves. Computation speed may be im-
proved by allowing the crawler to jump, and indeed
this may be more in-keeping with the way that a scene
is scanned in animal vision. Other advancements could
explore iterations between the SRB and FRB to rein-

force detection decisions, and “colonies” of crawlers
could participate via pheromone trails.
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