
Abstract

Learning Classifier Systems use reinforcement
learning, evolutionary computing and/or heuris-
tics to develop adaptive systems. This paper
extends the ZCS Learning Classifier System to
improve its internal modelling capabilities. Ini-
tially, results are presented which show
performance in a traditional reinforcement learn-
ing task incorporating lookahead within the rule
structure. Then a mechanism for effective learn-
ing without external reward is examined which
enables the simple learning system to build a full
map of the task. That is, ZCS is shown to learn
under a latent learning scenario using the looka-
head scheme. Its ability to form maps in
reinforcement learning tasks is then considered.

1 INTRODUCTION

Traditional Learning Classifier Systems (LCS) [Holland
1976] use genetic algorithms (GA) [Holland 1975] and the
bucket brigade algorithm [Holland 1986] to produce an
interacting ecology of rules for a given task. Holland et al.
[1986] proposed a number of mechanisms by which LCS
could potentially realise many complex inductive proc-
esses. However, the basic architecture was difficult to use
and understand. Wilson [1994] presented ZCS which
"keeps much of Holland’s original framework but simpli-
fies it to increase understandability and performance"
[ibid.]. Bull and Hurst [2002] have recently shown that,
despite its relative simplicity, ZCS is able to perform opti-
mally through its use of fitness sharing. That is, ZCS was
shown to perform as well, with appropriate parameters, as
the more complex XCS [Wilson 1995] on a number of
tasks. The significant difference between the two systems
being XCS’s ability to build a complete, maximally general
map of the given problem.

In this paper the basic ZCS architecture is extended to
include mechanisms by which cognitive capabilities, along

the lines of those envisaged by Holland et al. [1986], can
emerge; the use of predictive modelling within ZCS is con-
sidered through an alteration to the rule structure. Using a
maze task loosely based on that of early animal behaviour
experiments, it is found that ZCS can learn effectively
when reward is dependent upon the ability to accurately
predict the next environment state/sensory input. This ZCS
with lookahead is then extended to work under latent learn-
ing. That is, an approach is presented which allows ZCS to
build a full map of its task without external reinforcement.
This result is then suggested as significant for traditional
payoff-based LCS when the aforementioned difference to
XCS is considered.

The paper is arranged as follows: the next section briefly
describes ZCS. Section 3 considers the use of lookahead in
general and presents results from its use within ZCS. In
Section 4 the use of latent learning with the predictive form
of ZCS is presented. Finally, all findings are discussed.

2 ZCS

ZCS is a "Zeroth-level" Michigan-style Classifier System
without internal memory, where the rule-base consists of a
number (N) of condition/action rules in which the condition
is a string of characters from the usual ternary alphabet
{0,1,#} and the action is represented by a binary string.
Associated with each rule is a fitness scalar which acts as
an indication of the perceived utility of that rule within the
system. This fitness of each rule is initialised to a predeter-
mined value termed S0.

Reinforcement in ZCS consists of redistributing fitness
between subsequent "action sets", or the matched rules
from the previous time step which asserted the chosen out-
put or "action". A fixed fraction (β) of the fitness of each
member of the action set ([A]) at each time-step is placed
in a "common bucket". A record is kept of the previous
action set [A]-1 and if this is not empty then the members
of this action set each receive an equal share of the contents
of the current bucket, once this has been reduced by a pre-
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determined discount factor (γ). If a reward is received from
the environment then a fixed fraction (β) of this value is
distributed evenly amongst the members of [A]. Finally, a
tax (τ) is imposed on all matched rules that do not belong
to [A] on each time-step in order to encourage exploitation
of the stronger classifiers. Wilson notes that this is a change
to the traditional LCS bucket-brigade algorithm [Holland
1986] since there is no concept of a rule ’bid’, generalisa-
tion is not considered explicitly, sets of rules are updated
and the pay-back is reduced by 1-γ on each step (see [Bull
& O’Hara 2001] for related discussions).

ZCS employs two discovery mechanisms, a panmictic GA
and a covering operator. On each time-step there is a prob-
ability p of GA invocation. When called, the GA uses
roulette wheel selection to determine two parent rules
based on fitness. Two offspring are produced via mutation
(probability µ, probability of inserting a wildcard p#) and
crossover (single point with probability χ). The parents
then donate half of their fitnesses to their offspring who
replace existing members of the rule-base. The deleted
rules are chosen using roulette wheel selection based on the
reciprocal of rule fitness. If on some time-step, no rules
match or all matched rules have a combined fitness of less
than φ times the rule-base average, then a covering operator
is invoked.

The default parameters presented for ZCS, and unless oth-
erwise stated for this paper, are: N = 400, S0=20, β = 0.2, γ
= 0.71, τ = 0.1, χ = 0.5, µ = 0.002, p = 0.25, φ = 0.5,
p#=0.33.

3 LOOKAHEAD

Holland [1990] presented a general framework for incorpo-
rating future state predictions into LCS, termed lookahead
(after [Samuel 1959]). Lookahead allows a learning entity
to construct an internal model of its environment, " ... a
matter of implementing the rule ’IF the environment is in
state S AND action A is taken THEN (the system expects)
state S2 will occur’" [Holland 1990]. Under Holland’s
scheme tags, which (potentially) facilitate rule coupling
under normal operation [Holland 1986], would be used
rather than an explicit representation of the expected envi-
ronmental state. A "virtual" bucket brigade algorithm
would then pass payoff back through "cones" of likely
future outcomes to influence the action selection process
on any given step. Stolzmann [1998] has presented a heu-
ristic-driven LCS, ACS, which uses the explicit next-state
rule structure noted above to build anticipatory models of
an environment. The accuracy of the rules’ predictions are
factored into their utility. Later work added a GA which
used this measure for rule fitness resulting in improved per-
formance [e.g. Butz et al. 2000]. LCS which use rule-
linkage over succeeding timesteps [e.g. Tomlinson & Bull

1998] also implicitly build predictions of future states; the
condition of a linked rule must represent the next environ-
mental state after the action of its predecessor is taken.

3.1 THE APPROACH

In this paper, as in [Riolo 1991][Stolzmann 1998][Gerard
& Sigaud 2001] and suggested in [Wilson 1995], an
explicit representation of the expected next environmental
state is used. That is, rules are of the general form:

<condition> : <action> : <anticipation>

Generalizations (#’s) are allowed in the condition and
anticipation strings. Where #’s occur at the same loci in
both, the corresponding environmental input symbol
"passes through" such that it occurs in the anticipated
description for that input. Similarly, defined loci in the con-
dition appear when a # occurs in the corresponding locus of
the anticipation. Each rule also maintains the usual fitness
parameter as in ZCS.

One further mechanism is incorporated: the first N random
rules of the rule-base have their anticipation created using
cover (with #’s included as usual) in the first [A] of which
they become a member. This goes some way to make " ...
good use of the large flow of (non-performance) informa-
tion supplied by the environment." [Holland 1990] and can
be seen to create a supervised learning task during initiali-
zation (this is particularly significant in Section 5). Rules
created under the cover operator also receive this treat-
ment. In this way the GA explores the generalization space
of the anticipations created by the simple heuristic (as
opposed to [Stolzmann 1998]).

All other system functionality is as described in Section 2,
except that members of a given [A] only receive bucket
payments if they correctly predicted the next state. Hence,
in effect, incorrect predictors are taxed at the learning rate.
Predictions are not tested for external reward receiving
rules.

3.2 THE TASK

The aim of this paper is to show that ZCS can be extended
to exploit lookahead and latent learning to build a more
comprehensive internal model of the task. The general
motivation for such work with machine learning algo-
rithms comes, in part, from experiments undertaken with
rats by Tolman [e.g. see Mackintosh 1974], Seward [1949]
and others. It was shown that rats appear able to construct
internal models of simple mazes of the general form shown
in Figure 1 so that, when later placed at the start (lowest
cell), they would find the food via the shortest route. This
will be returned to in Section 4, a goal-directed only ver-
sion being examined here.

In this section the task is seen as the well-known animat



problem [Wilson 1987]. As such, ZCS is used to develop
the controller of a simulated robot/animat which must
traverse the maze in search of food. It is positioned ran-
domly in one of the blank cells and can move into any one
of the surrounding eight cells on each discrete time step,
unless occupied by a tree. If the animat moves into the food
cell the system receives a reward from the environment
(1000), and the task is reset, i.e. food is replaced and the
animat randomly relocated.

On each time step the animat receives a sensory message
which describes the eight surrounding cells. The message
is encoded as a 16-bit binary string with two bits represent-
ing each cardinal direction. A blank cell is represented by
00, food (F) by 11 and trees (T) by 10 (01 has no meaning).
The message is ordered with the cell directly above the ani-
mat represented by the first bit-pair, and then proceeding
clockwise around the animat.

The trial is repeated 10,000 times and a record is kept of a
moving average (over the previous 50 trials) of how many

steps it takes for the animat to move into a food cell on each
trial. Optimal performance is 3.5 steps to food. All results
presented are the average of ten runs.

3.3 RESULTS

Figure 2(a) shows the performance of standard ZCS in
Woods 10 with the same parameters as those in Section 2,
except β=0.45. Optimal performance can be seen during
the last 2000 trials where the GA was disabled and a deter-
ministic action selection scheme used such that the action
with the highest total fitness in [M] was always chosen
(after [Bull & Hurst 2002]). Figure 2(b) shows the perform-
ance of ZCS using similar parameters but with the
lookahead rule structure and scheme described above
(γ=0.4, ρ=0.45). It can be seen that performance is equiva-

lent and hence that ZCS is able to produce accurate next-
state predictions. However, ZCS does not form a full state-
action-anticipation map under reinforcement learning. The
next section presents a mechanism by which such a map
can be constructed under latent learning.

Figure 1: The Woods 10 environment.
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4 ZCSL: USING LATENT LEARNING
WITH LOOKAHEAD

As noted above, one motivation for exploring the use of
learning without external reinforcement comes from early
experiments in animal behaviour. Typically, rats were
allowed to run around a maze of the shape shown in Figure
1 where the food cell would be empty but a different colour
to the rest of the maze. The rats would then be fed in the
marked location. Finally, the rats were placed at the start
location and their ability to take the shortest path, i.e. go
left at the T-junction in Figure 1, recorded. It was found
that rats could do this with around 90% efficiency. Those
which were not given the prior experience without food
were only 50% efficient, as expected.

Riolo [1991] extended a version of Holland’s LCS to con-
sider such learning without external reinforcement, using
the same general rule form as that above and tags. The
bucket brigade was then altered to consider the accuracy of
rule’s predictions of future states. Although Riolo did not
incorporate rule discovery, he showed his CFCS2 could
learn and exploit internal models to solve a version of the
maze task described above. Both ACS [Stolzmann & Butz
2000] and the related YACS[Gerard & Sigaud 2001] have
also been shown able to develop internal models under
latent learning using heuristics.

4.1 THE APPROACH

The internal model building task can be cast as a single-
step task. In the simplest case, using lookahead under latent
learning and the above rule structure, a single-step learning
task is created whereby reward is given only if a rule pre-
dicts the expected outcome of taking its action under the
condition matched. This is the approach used in ZCSL.

At the beginning of a trial, the animat is placed randomly
in the maze. A matchset is formed and an action chosen at
random. All rules which propose the chosen action form
[A] and pay β of their fitness into the bucket as usual. All
rules in [A] then construct their anticipated sensory input
for the next state, i.e. pass-through is considered, and the
action is taken. Each rule in [A] which correctly predicts
the next state is rewarded with payoff 1000 divided by the
number of correct rules in [A]; fitness sharing is used. Note
that taxing the other members of the matchset is no longer
appropriate as a full map of actions is required. This proc-
ess is repeated for ten steps and then the animat is randomly
replaced in the maze. It is important to note that although
the animat can sense the food, it is not able to move onto
that cell (but predictions are tested as if it had). All other
operations are as before.

4.2 RESULTS

Figure 3 shows the behaviour of this form of ZCS in the

Woods 10 maze. The parameters used were the same as
those given in Section 2, except N=800, and the GA is
again turned off for the last 2000 trials.

     Figure 3: Showing the performance of ZCSL in the
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Figure 3(a) shows the fraction of rules of a given action set
which correctly predicted the next environmental state. It
can be seen that by around 5000 trials 80% (i.e. the major-
ity) of the rules in each action set were accurate predictors.
Figure 3(b) shows the number of actions represented in
each matchset has risen to eight around the same time.
Hence after 5000 trials (50,000 cycles) ZCSL has con-
structed a full and accurate map of the maze, assuming the
most numerous anticipated next state of a given [A] is used.
Note that ZCSL includes state-action pairs which lead to no
change in stimulus without the explicit consideration of
such circumstances. The original ACS did not develop
rules for such cases, but was later modified [Stolzmann
2000] (see also YACS).

Therefore, the resulting LCS systems could be used to
reproduce the rat experiments through any number of plan-
ning techniques, such as breadth-first search: from a given
input the most numerous anticipation of each [A] can be
considered to represent the next environmental input, and
so on, until the goal state is seen. If this is done from the
start location, firing the appropriate sequence of rules
would give 100% efficiency at the task. That is, the ZCSL
controllers have the ability to reproduce the general behav-
iour of the rats using a very simple LCS architecture. The
following four rules show an example solution found in
this way starting from the bottom cell (GA fitnesses not
shown):

#0##1#101#1#1010 : N     : #000101000#01#00
0000101000101000 : NW : 1#1#0#001010000#
####10100#0#101# : NW : #0###0#0#0#0#010
#1#01#00#010#0#0 : N     : ##10#0#0##10#010

It can be noted that both generalization and pass-through
are contained in the solutions although no explicit pressure
for either exists within the simple system.

 Figure 4: Maze 6.
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ZCSL has also been applied to the more challenging Maze
6 [Lanzi 1997] environment (Figure 4). The parameters
used were the same as those above, except N=10,000.
Again, the animat could not move onto the food cell. Figure
5(a) shows the fraction of rules of a given action set which
correctly predicted the next environmental state. It can be
seen that by around 5000 trials the majority of each action
set (>75%) were accurate predictors. Figure 5(b) shows the
number of actions represented in each matchset has again
risen to eight around the same time. Hence, after 5000 trials
ZCSL has constructed a full and accurate map of Maze 6.

5 DISCUSSION: XCS

As noted in the introduction, XCS attempts to build a full,
non-overlapping, maximally general map of the problem
space which can have advantages over traditional payoff-
based LCS, such as ZCS, if a posteri explanatory power is
required, as in data mining for example.

There seems no reason why the above modified ZCS sys-
tem of Section 4 cannot also produce such predictive maps,
particularly for single step tasks. That is, if the anticipation
is altered from being an expected environmental state to a
numerical payoff value, a similar map can be formed. I.e.
rules are of the general form:

<condition> : <action> : <anticipated payoff>

This version has been explored using the well-known mul-
tiplexer task. These Boolean functions are defined for
binary strings of length l = k + 2k under which the first k
bits index into the remaining 2k bits, returning the value of
the indexed bit. A correct classification results in a payoff
of 1000, otherwise 0.

All system functionality is as described in Section 4 except
that the appropriate value (1000 or 0) is written on as the
anticipation for a randomly created rule. Mutation causes a
change in the value to another valid payoff level (1000 to
0, or vice versa here). A trial is two evaluations here.

Figure 6 shows the percentage of correct predictions in a
given [A] and number of actions in [M] for the thirty seven
bit multiplexer, using the same parameters as for Woods 10
except N=5000, β=0.8 and p#=0.8. It can be seen that, on
average, correct predictors occur with highest numerosity
and that both actions are present in each matchset after
around 700,000 trials (1,400,000 evaluations). The evolved
rules for the first two data lines from an example solution
were as follows (GA fitnesses not shown):

000000############################### : 0 : 1000
000000############################0## : 1 : 0
000001###########################0### : 0 : 0
000001############################### : 1 : 1000
00001#0############################## : 0 : 1000

00001#0##0###########0############0## : 1 : 0
00001#1########0##################### : 0 : 0
00001#1############################## : 1 : 1000

It can again be noted that solutions are very general
although no explicit pressure for this exists within the sim-
ple system. Results show that, the longer the system is left
to run, the more general rules become.

Butz et al. [2001] have recently examined the behaviour of
XCS on a number of multiplexer problems, also solving the
thirty seven bit version. They note that a stronger
distinction between rule accuracies was required in
comparison to the smaller multiplexer tasks and a larger p#.
ZCSL also appears to need a strong pressure toward
accurate predictors through an increase in the learning rate
since this is also essentially the tax rate for erroneous rules.
A large p# also proved important. Butz et al. did not
manage to solve the equivalent seventy bit task and initial
attempts with ZCSL have also proven unsuccessful. This
remains open to future investigation.

Hence this system uses a simple heuristic to promote
accuracy in payoff predictions whilst the GA with fitness
sharing apportions resources and encourages
generalization. In contrast, XCS uses a four-step fitness
update to promote accuracy in payoff predictions, an
explicit replacement strategy to apportion (balance)
resources and a triggered niche GA to encourage
generalization. Whether the simple approach described
here scales as well as XCS to tasks with more classes and
prediction levels, noisy data, or can be used in multi-step
tasks represents future work. The use of some of XCS’s
other features (subsumption, action set filling, etc.) may
help.

6 CONCLUSIONS

In this paper ZCS has been extended to incorporate looka-
head and latent learning. Using a simple maze task, based
on those used in early animal behaviour experiments, it has
been shown that ZCS can build partial internal models
under traditional goal-directed learning. The construction
of a full internal environment model under latent learning
with lookahead was then cast as a single-step reinforce-
ment task and ZCSL was shown able to form accurate maps
under fitness sharing. Future work will examine the inclu-
sion of other mechanisms, such as an explicit unchanging
component [e.g. Stolzmann 2000], to improve perform-
ance. Other schemes to encourage maximal generality
within solutions will also be explored.

The use of the mechanisms within a more complex frame-
work to exploit internal models during learning under
reinforcement, after Sutton’s Dyna [e.g. Sutton 1990] (see



also [Donnart & Meyer 1996][Stolzmann et al. 200]), is
also under investigation.
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