
Hyper-heuristics: learning to combine simple heuristics in bin-packing
problems

Peter Ross
School of Computing

Napier University
Edinburgh EH10 5DT
peter@dcs.napier.ac.uk

Sonia Schulenburg
School of Computing

Napier University
Edinburgh EH10 5DT

s.schulenburg@napier.ac.uk

Javier G. Marı́n-Blázquez
Division of Informatics,

The University of Edinburgh
Edinburgh EH1 1HN, UK

javierg@dai.ed.ac.uk

Emma Hart
School of Computing

Napier University
Edinburgh EH10 5DT

emmah@dcs.napier.ac.uk

Abstract

Evolutionary algorithms (EAs) often appear to be
a ‘black box’, neither offering worst-case bounds
nor any guarantee of optimality when used to
solve individual problems. They can also take
much longer than non-evolutionary methods. We
try to address these concerns by using an EA, in
particular the learning classi£er system XCS, to
learn a solution process rather than to solve in-
dividual problems. The process chooses one of
various simple non-evolutionary heuristics to ap-
ply to each state of a problem, gradually trans-
forming the problem from its initial state to a
solved state. We test this on a large set of one-
dimensional bin packing problems. For some of
the problems, none of the heuristics used can £nd
an optimal answer; however, the evolved solution
process can £nd an optimal solution in over 78%
of cases.

1 INTRODUCTION

Heuristic algorithms are very widely used to tackle practi-
cal problems in operations research, because so many are
NP-hard [12] and exhaustive search is often computation-
ally intractable. Evolutionary algorithms (EAs) can be ex-
cellent for searching very large spaces, at least when there
is some reason to suppose that there are ‘building blocks’
to be found. A ‘building block’ is a fragment, in the cho-
sen representation, such that chromosomes which contain
it tend to have higher £tness than those which don’t. EAs
bring building blocks together by chance recombination,
and building blocks which are not present in the population
at all may still be generated by mutation.

However, the use of EAs are often justi£ed simply by re-
sults. If you knew what building blocks looked like in ad-
vance, you would not need an EA to bring them together.

Nor, usually, are there performance guarantees: in epistatic
problems it can happen that the best solutions cannot sim-
ply be fabricated from good-looking building blocks. Be-
cause of this, EAs often have a problem of acceptability –
they look like a ‘black box’ algorithm that you run until it
delivers a solution, but you often do not know whether that
solution is even close to optimal, and while it is running
you have no easy way to forecast properties of the outcome.
The delivered solution may also be fragile, in the sense that
there is little continuity between problem speci£cation and
EA solution: if you change the problem only slightly, the
solution found by re-running the EA changes drastically. It
is not surprising therefore that in many practical applica-
tions, people may prefer to use a simple heuristic that is
comprehensible and perhaps also offers worst-case perfor-
mance guarantees.

This paper represents a step towards a new way of using
EAs that may solve some problems of acceptability for
real-world use. The basic idea is as follows: instead of
using an EA to discover a solution to a speci£c problem,
we use an EA to try to fabricate a solution process applica-
ble to many problem instances and built from simple, well-
understood heuristics. Such a solution process might con-
sist of using a certain heuristic initially, but after a while
the nature of the remainder of the task may be such that a
different heuristic becomes more appropriate.

For example, in [21] an early version of this idea was used
to tackle large exam timetabling problems by choosing two
heuristics and associated parameters, together with a test
for when to switch from using the £rst to using the sec-
ond. This was motivated by the unsurprising observation
that different academic institutions have very different con-
straints. One institution might have some very large exams,
limited exam seating and many smaller exams, so that the
important task early on is to pack those large exams to-
gether as far as possible in order to plenty of space to deal
with placing the many smaller exams. Another institution
might have no very large exams, but instead the exams can
be clustered such that there are very few inter-cluster con-



straints, and exam clusters can therefore be viewed as rela-
tively independent sub-problems, for which you might nat-
urally choose some other heuristic that placed little empha-
sis on packing large exams.

An obvious objection to the general idea of hyper-heuristic
methods is that, if you combine the use of several heuristics
when solving a problem, you will probably lose any worst-
case performance guarantee that an individual heuristic
had. But against this, there is a simple way to judge the
ef£cacy of a composite algorithm against the use of any
single heuristic – you might be able to seed the initial EA
population with a few chromosomes that represented the
process of using only a single heuristic from start to £nish.
If such chromosomes do not survive, it is because compos-
ite algorithms outperformed them.

In what follows, we describe an example of using hyper-
heuristic methods to tackle one-dimensional bin-packing
problems. A modern learning classi£er system, XCS [22],
is used to learn a set of rules which associate characteristics
of the current state of a problem with speci£c heuristics.
The set of rules is used to solve problems as follows: given
the initial problem characteristics P, a heuristic H is chosen
and it packs a bin, thus gradually altering the characteris-
tics of the problem that remains to be solved. At each step
a rule appropriate to the current problem state P′ is chosen,
and the process repeats until all items have been packed.

Using any Michigan-style classi£er system means, of
course, that we cannot do what we suggested above and
inject pure heuristics into the initial population in order to
compare them against composite ones. In a Michigan-style
system, the whole population represents one composite al-
gorithm. Nevertheless, XCS represents a simple way to try
to fabricate a composite algorithm and the interest lies in
seeing how well it can work. In particular, if the system
is trained using a few problems, does it then generalise by
also performing well on lots of unseen problems? If so
(and, to spoil the story, the answer given below is ‘yes’),
then this is a useful step towards the concept of using EAs
to generate strong solution processes rather than merely us-
ing them to £nd good individual solutions.

The approach is tested using a large set of benchmark one-
dimensional bin-packing problems and a small set of eight
heuristics. No single one of the heuristics used is capa-
ble of £nding the optimal solution of more than a very few
of the problems; however, the evolved rule-set was able to
produce an optimal solution for over 78% of them, and in
the rest it produced a solution very close to optimal.

2 ONE-D BIN-PACKING

In the one-dimensional Bin Packing problem (BPP1), there
is an unlimited supply of bins, each with capacity c (a posi-

tive number). A set of n items is to be packed into the bins,
the size of item i is si > 0, and items must not over-£ll any
bin:

∑
i∈bin(k)

si ≤ c

The task is to minimise the total number of bins used. De-
spite its simplicity, this is an NP-hard problem. If M is the
minimal number of bins needed, then clearly:

M ≥ d(
n

∑
i=1

si)/ce

and for any algorithm that does not start new bins unnec-
essarily, M ≤ bins used < 2M (because if it used 2M or
more bins there would be two bins whose combined con-
tents were no more than c, and they could be combined into
one).

Many results are known about speci£c algorithms. For ex-
ample, a commonly-used algorithm is First-Fit-Decreasing
(FFD): items are taken in order of size, largest £rst, and
put in the £rst bin where they will £t (a new bin is opened
if necessary, and effectively all bins stay open). It is
known [15] that this uses no more than 11M/9+4 bins. A
good survey of such results can be found in [6]. A good in-
troduction to bin-packing algorithms can be found in [18],
which also introduced a widely-used heuristic algorithm,
the Martello-Toth Reduction Procedure (MRTP). This sim-
ply tries to repeatedly reduce the problem to a simpler one,
by £nding a combination of 1-3 items that provably does
better than anything else (not just any combination of 1-3
items) at £lling a bin, and if so packing them. This may
eventually halt with some items still unpacked; the remain-
der are packed using a ‘largest £rst, best £t’ algorithm.

Various authors have applied EAs to bin-packing, notably
Falkenauer’s grouping GA [9, 11, 10]; see also [16, 19]
for different approaches. For example, Reeves [19] used a
GA to £nd the order in which to feed items to a sequen-
tial heuristic such as First-Fit, with reasonable success on
a subset of the problems we use in this paper. Falkenauer
also produced two classes of benchmark problems. In one
of these, the so called triplet problems, every bin contains
three items; they were generated by £rst constructing a so-
lution which £lled every bin exactly, and then randomly
shrinking items a little so that the total shrinkage was less
than the bin capacity (thus the same number of bins is nec-
essary).

As ever, speci£c knowledge about problems can help
greatly. Suppose you know in advance that each bin con-
tains exactly three items. Take items in order, largest £rst,
and for each item search for two others that come very close
to £lling the bin. A backtracking algorithm that consid-
ers such ‘£ller pairs’, taking pairs in which the two mem-
bers at most nearly equal in size £rst and permitting only



limited backtracking, solves many of the Falkenauer triplet
problems very quickly. See [13] for some questions about
whether these problems are hard or not.

The reader may wonder if the simple strategy of search-
ing for a combination of items which come as close as
possible to £lling a bin, thereby reducing the problem to
a simpler one in which there seems to be more available
slack, is a good one. But consider a problem in which bins
have capacity 20 and there are six items: 12, 11, 11, 7, 7,
6. One bin can be completely £lled (7 + 7 + 6) but then
three more bins are needed since the three largest items are
each larger than half a bin. If bins are under-£lled, then a
three-bin solution is possible, for example 12 + 7, 11 + 7,
11 + 6. We hope this will help to convince the reader that
even one-dimensional bin-packing problems have their in-
terest. And they are worth studying because bin-packing
is a constituent task of many other optimisation problems;
exam timetabling is just one such example.

3 ABOUT XCS

Learning classi£er systems of the Michigan type evolve a
set of condition-action rules, by measuring the performance
of individual rules and then periodically using crossover
and mutation to breed new rules from old. An early account
can be found in [14], a more modern account and recent
work is in [17].

In early learning classi£er systems, rules occasionally did
an action that earned external reward, and this contributed
to the rule’s £tness and to the £tness of those that enabled it
to £re. Earned rewards were spread by the so-called ‘bucket
brigade algorithm’ (effectively a trickle-down economy)
or ‘pro£t-sharing plan’ (essentially a communal reward-
sharing) or other such algorithm. However, in those early
systems, a rule’s £tness was a measure of the reward it
might earn (when considering what rule to £re) and also
a measure of the reward it had earned (when selecting rules
for breeding). This caused various problems, notably that
rules which £red very rarely but were crucial when they
did would tend to be squeezed out of the population by the
evolutionary competition long before they could demon-
strate their true value. XCS [22] largely £xed this by in-
stead valuing a rule for the accuracy rather than the size of
its prediction of reward.

For this reason – because, in our application, there might
be heuristics which were rarely used but crucial – we chose
to use XCS rather than, say, Goldberg’s SCS.

4 BIN-PACKING BENCHMARK
PROBLEMS

We used problems from two sources. The £rst collection
is available from Beasley’s OR-Library [1], which contains
problems of two kinds that were generated and largely stud-
ied by Falkenauer [10]. The £rst kind, 80 problems named
uN_M, involve bins of capacity 150. N items are generated
with sizes chosen randomly from the interval 20-100. For
N in the set (120,250,500,1000) there are twenty prob-
lems, thus M ranges from 00 to 19. The second kind, 80
problems named tN_M, are the triplet problems mentioned
earlier. The bins have capacity 1000. The number of items
N is one of 60, 120, 249, 501 (all divisible by three), and
as before there are twenty problems per value of N. Item
sizes range from 250 to 499 but are not random; the prob-
lem generation process was described earlier.

The second class of problems we study in this paper comes
from the Operational Research Library [2] at the Technis-
che Universität Darmstadt. We used their ‘bpp1-1’ set and
their very hard ‘bpp1-3’ set in this paper. In the bpp1-1 set
problems are named NxCyWz_a where x is 1 (50 items), 2
(100 items), 3 (200 items) or 4 (500 items); y is 1 (capac-
ity 100), 2 (capacity 120) or 3 (capacity 150); z is 1 (sizes
in 1. . .100), 2 (sizes in 20. . .100) or 4 (sizes in 30. . .100);
and a is a letter in A. . . T indexing the twenty problems per
parameter set. (Martello and Toth [18] also used a set with
sizes drawn from 50. . .100, but these are far too easy.) Of
these 720 problems, the optimal solution is known in 704
cases and in the other sixteen, the optimal solution is known
to lie in some interval of size 2 or 3. In the hard bpp1-3
set there are just ten problems, each with 200 items and
bin capacity 100,000; item sizes are drawn from the range
20,000. . .35,000. The optimal solution is known in only
three cases, in the other seven the optimal solution lies in
an interval of size 2 or 3. These results were obtained with
an exact procedure called BISON [20] that employs a com-
bination of tabu search and modi£ed branch-and-bound.

In all, therefore, we use 890 benchmark problems.

5 COMBINING HEURISTICS WITH XCS

The £rst subsection describes the heuristics we decided to
use, and why. The next subsection describes the representa-
tion used within XCS. Then we describe how XCS is used
to discover a good set of rules.

5.1 The set of heuristics

We £rst evaluated a variety of heuristics to see how they
performed on our benchmark collection. Of the fourteen
that we tried, some were taken directly form the literature,



others were variants created by us. Some of these algo-
rithms were always dominated by others; among those that
sometimes obtained the best of the fourteen results on a
problem, some were always £rst equal rather than being
uniquely the best of the set. We do not have space here to
describe the full set, but we chose to use four whose perfor-
mance seemed collectively to be representative of the best.
These were:

• FFD, described in Section 2 above. This was the best
of the fourteen heuristics in over 81% of the bpp1-
1 problems, but was never the winner in the bpp1-3
problems.

• Next-Fit-Decreasing (NFD): an item is placed in the
current bin if possible, or else a new bin is opened and
becomes the current bin and the item is put in there.
This is usually very poor.

• Djang and Finch’s algorithm (DJD), see [7]. This puts
items into a bin, taking items largest-£rst, until that
bin is at least one third full. It then tries to £nd one,
or two, or three items that completely £ll the bin. If
there is no such combination it tries again, but looking
instead for a combination that £lls the bin to within 1
of its capacity. If that fails, it tires to £nd such a com-
bination that £lls the bin to within 2 of its capacity;
and so on. This of course gets excellent results on, for
example, Falkenauer’s problems; it was the best per-
former on just over 79% of those problems but was
never the winner on the hard bpp1-3 problems.

• DJT (Djang and Finch, more tuples): a modi£ed form
of DJD considering combinations of up to £ve items
rather than three items. In the Falkenauer problems,
DJT performs exactly like DJD, as we would expect;
in the bpp1-1 problems it is a little better than DJD.

In addition we also used these algorithms each coupled
with a ‘£ller’ process that tried to £nd any item at all to
pack in any open bins rather than moving on to a new bin.
This might, for example, make a difference in DJD if a bin
could be better £lled by using more than three items once
the bin was one-third full. Thus, in all we used eight heuris-
tics. The action of the £ller process is described later.

5.2 Representing problem state for XCS

As explained above, the idea is to £nd a good set of rules
each of which associates a heuristic with some description
of the current state of the problem. To execute the rules, the
initial state is used to select a heuristic and that heuristic is
used to pack a bin. The rules are then consulted again to
£nd a heuristic appropriate to the altered problem state, and
the process repeats until all items have been packed.

The problem state is reduced to the following simple de-
scription. The number of items remaining to be packed are
examined, and the percentage R of items in each of four
ranges is calculated. These ranges are shown in Table 1.
These are, in a sense, natural choices since at most one

Table 1: Item size ranges
Huge: items over 1/2 of bin capacity
Large: items from 1/3 up to 1/2 of bin capacity

Medium: items from 1/4 up to 1/3 of bin capacity
Small: items up to 1/4 of bin capacity

huge item will £t in a bin, at most two large items will £t
a bin, and so on. The percentage of items that lie within
any one of these ranges is encoded using two bits as shown
in Table 2. Thus, there are two bits for each of the four

Table 2: Representing the proportion of items in a given
range

Bits Proportion of items
0 0 0 – 10%
0 1 10 – 20%
1 0 20 – 50%
1 1 50 –100%

ranges. Finally, it seemed important to also represent how
far the process had got in packing items. For example, if
there are very few items left to pack, there will probably be
no huge items left. Thus, three bits are used to encode the
percentage of the original number of items that still remain
to be packed; Table 3 gives the details.

Table 3: Percentage of Items Left

Bits % left to pack
0 0 0 0 – 12.5
0 0 1 12.5 – 25
0 1 0 25 – 37.5
0 1 1 37.5 – 50
1 0 0 50 – 62.5
1 0 1 62.5 – 75
1 1 0 75 – 87.5
1 1 1 87.5 – 100

The action is an integer indicating the decision of which
strategy to use at the current environmental condition, as
shown in Table 4. As mentioned earlier, the second four
actions use a £ller process too, which tries to £ll any open
bins as much as possible. If the £lling action successfully
inserts at least one item, the £lling step £nishes. If no in-
sertion was possible, then the associated heuristic (for ex-
ample, FFD in ‘Filler+FFD’) is used. This guarantees a



change in the problem state. It is important to remember
that the trained XCS chooses deterministically, so that it is
important for the problem state (if not the state description)
to change each time, to prevent endless looping.

Table 4: The action representation
Action Meaning, Use

000 FFD
001 NFD
010 DJD
011 DJT
100 Filler + FFD
101 Filler + NFD
110 Filler + DJD
111 Filler + DJT

The alert reader might wonder whether the above problem
state description in some way made heuristic selection an
easy task. However, when we evaluated each of our 14
original heuristics we found many cases where two prob-
lems had the same initial state description but different al-
gorithms were the winners of the 14-way contest. For each
of the 14 algorithms we tried using a perceptron to see
whether it was possible to classify problems into those on
which a given algorithm was a winner and those on which
it was not a winner. In every case, it was not possible, and
therefore the learning task faced by XCS was not a trivial
one.

6 THE EXPERIMENTS

We used Martin Butz’ version of XCS [3, 4, 5] available
free over the web from the IlliGAL site.

We used a single step environment, in which a reward is
available at every step, and we de£ned a step as packing
one bin (FFD was modi£ed to pack no more than one bin
before returning). The reward earned is proportional to how
well £lled that packed bin is. For example if the bin is
packed to 94% of capacity, then the reward earned is 0.94.
(Following the suggestion of Falkenauer and Delchambre
[8], an alternative worth trying in future would be to use
the square of this instead). Remember that ‘packing’ here
means continuing to the point where the heuristic would
switch bins, rather than optimally packing. Full reward
is paid for packing the £nal bin. Otherwise, an algorithm
which, say, placed the £nal item of size 1 in a £nal bin in
order to complete the packing would earn only 0.01. The
£ller is rewarded slightly differently; it is rewarded in pro-
portion to how much it reduces the empty space in the open
bins.

The XCS parameters used were exactly as used in [22],

with a 50/50 explore/exploit ratio.

For training, we divided each set of bin-packing problems
into a training and a test set. In each case the training
set contained 75% of the problems; every fourth problem
was placed in the test set. Since the problems come in
groups of twenty for each set of parameters, the different
sorts of problem were well represented in both training and
test sets. We also combined all problems into one large set
of 890 problems and divided that into a training and a test
set in the same way. In the results below, we only report
on what happened with this combined collection, in which
the training set has 667 problems and the test set has 223
problems. Other results are omitted for space reasons; the
combined set provides a good test of whether the system
can learn from a very varied collection of problems.

The experiments proceeded as follows. We set a limit of L
explore/exploit cycles for XCS, where the values we tried
were L = 100,500,1000,5000,10000,25000. During the
learning phase, XCS £rst randomly chooses a problem to
work on from the training set. One step (whether explore
or exploit) corresponds to £lling one bin. In an explore step
the action is chosen randomly, in an exploit step it is cho-
sen according to the maximum prediction appropriate to
the current problem state description. This is repeated until
all the items in the current problem have been packed. A
new random problem is then chosen. Clearly, a large prob-
lem such as one of the u1000_M will consume a great many
cycles. We recorded the best result obtained on each prob-
lem during this training phase. Remember, however, that
training continues, so the rule set may change after such a
best result was found. In particular, the £nal rule set at the
end of all training might not be able to reproduce the best
result on every problem. Nevertheless, it is reasonable to
record the best result found during (rather than at the end
of) training on each problem, because these are still repro-
ducible results, by re-running the training with the same
seed, and easily so.

At the end of training, the £nal rule set is used on every
problem in the training set to assess how well this rule set
works. It is also applied to every problem in the test set.

7 RESULTS

For the problems we used, details of optimal results are
available from [2] and from [1], see Section 4. In the six-
teen problems where only a range is known within which
the optimal number must lie, we use the upper bound.

The results were as follows:

• during training, XCS found the optimal result for
78.1% of all problems, and for all the others the best
result was only one or two bins worse than optimal.



This is encouraging, because for some heuristic al-
gorithms the performance on certain problems can be
considerably worse than optimal.

• after £nding a £nal rule set, this was tested. On the
training set it found the optimal result on 77.7% of
problems. On the test problems, not used during train-
ing, it found the optimal result for 74.6% of problems
(166 of 223) and again, results were close to optimal
on all the rest.

Are these results good? The classi£er system was able to
achieve the optimal result in 78.1% of all the benchmark
problems, whereas the best single performer of the heuris-
tics considered (namely, our own DJT, introduced in this
paper for the £rst time) achieved only 73%. Even though
these two results might seem close, it is worth noting that
DJT solved none of the very hard bpp1-3 problems while
the XCS-generated rule set solved seven out of the ten. It
is also noteworthy that, when XCS was trained only on
a training set composed of seven of the ten hard bpp1-3
problems, it solved six of those seven, and also one of the
three unseen problems. In both cases no other heuristic
used alone was able to solve any of these problems.

The worst heuristic is NFD; alone, it was never a winner
among the original 14 heuristics we considered. We did
include it in the set of heuristics that the classi£er system
could invoke, and interestingly it was indeed sometimes in-
voked as part of a sequence that led to an optimal result,
although this happened rarely.

8 CONCLUSIONS AND FUTURE WORK

This paper represents a step towards developing the con-
cept of hyper-heuristics: using EAs to £nd powerful com-
binations of more familiar heuristics.

From the experiments shown it is also interesting to note
that:

• XCS was able to create and develop feasible hyper-
heuristics that performed well on a large collection
of benchmark data sets found in literature, and better
than any individual heuristic.

• The system always performed better than the worst of
the algorithms involved, and in fact produced results
that were either optimal (in the large majority of cases)
or else were close to optimal.

• The system is able to generalise well. Results of
the exploit steps during training are very close to re-
sults using a trained classi£er on new test cases. This
means that particular details learned (a structure of

some kind) during the adaptive phase (when the classi-
£er rules are being modi£ed according to experience,
etc.) can be reproduced with completely new data (un-
seen problems taken from the test sets). For example,
for one of Falkenauer’s problems DJD (and our DJT)
produced a new best, and optimal, result (this had al-
ready been reported in [7] where DJD was described).
Even if this problem is excluded from the training set,
the learned rule set can still solve it optimally.

In the work reported here we used a single-step environ-
ment (reward available after each step). It might be thought
that a multi-step environment, with reward proportional to
solution quality paid only at the end of a problem or at least
after a number of steps were performed. However, learning
is likely to be much slower, and we do not even know the
number of steps needed to reach a solution in advance. In
some problems, such as the u1000_M, we have 1000 items
to pack and the number of steps to reach a solution and earn
any reward could be very large.

We recognise that the reward mechanism perhaps over-
values the £lling of bins, and intend to investigate alter-
native reward schemes.

Other possible ways to use the multi-step environment
could be to allow a chosen rule to continue to perform its
action until one of the following happens:

• the problem state has changed so that the rule which
chose the action is no longer applicable; or,

• a certain sizeable percentage of items have been
placed, eg 20%. This would limit the chain of actions
to be at most 5 steps long.

Perhaps also including some extra information about the
status of the open bins might be useful. For example, if
many open bins contained very little free space and there
were many small items still to pack, it might be useful to
be able to invoke a heuristic which tried to £ll and £nally
close those bins.

Although we have focussed on bin-packing problems in
this paper, similar hyper-heuristic ideas could be applied
to many other kinds of problem, in which heuristics can be
used step by step to transform the problem state from an ini-
tial to a £nal one. This raises interesting research questions
about how sensitive the approach might be to the choice of
heuristics and to the problem state description used.

Acknowledgments

This work has been supported by UK EPSRC research
grant number GR/N36660.



References

[1] http://www.ms.ic.ac.uk/info.html.

[2] http://www.bwl.tu-darmstadt.de/bwl3/
forsch/projekte/binpp/.

[3] Martin V. Butz. An Implementation of the XCS clas-
si£er system in C. Technical Report 99021, The Illi-
nois Genetic Algorithms Laboratory, 1999.

[4] Martin V. Butz. XCSJava 1.0: An Implementation
of the XCS classi£er system in Java. Technical Re-
port 2000027, Illinois Genetic Algorithms Labora-
tory, 2000.

[5] Martin V. Butz and Stewart W. Wilson. An Algorith-
mic Description of XCS. Technical Report 2000017,
Illinois Genetic Algorithms Laboratory, 2000.

[6] E.G Coffman, M.R. Garey, and D.S. Johnson. Ap-
proximation algorithms for bin packing: a survey. In
D. Hochbaum, editor, Approximation algorithms for
NP-hard problems, pages 46–93. PWS Publishing,
Boston, 1996.

[7] Philipp A. Djang and Paul R. Finch. Solving One Di-
mensional Bin Packing Problems. Journal of Heuris-
tics, 1998.

[8] E. Falkenauer and A. Delchambre. A genetic algo-
rithm for bin packing and line balancing. In Proc. of
the IEEE 1992 International Conference on Robotics
and Automation, pages 1186–1192, 1992.

[9] Emanuel Falkenauer. A new representation and op-
erators for genetic algorithms applied to grouping
problems. Evolutionary Computation, 2(2):123–144,
1994.

[10] Emanuel Falkenauer. A hybrid grouping genetic
algorithm for bin packing. Journal of Heuris-
tics, 2:5–30, 1996. http://citeseer.nj.nec.com/
falkenauer96hybrid.html.

[11] Emanuele Falkenauer. A Hybrid Grouping Genetic
Algorithm for Bin Packing. Working Paper IDSIA-
06-99, CRIF Industrial Management and Automation,
CP 106 - P4, 50 av. F.D.Roosevelt, B-1050 Brussels,
Belgium, 1994.

[12] Michael R. Garey and David S. Johnson. Comput-
ers and Intractability: a Guide to the Theory of NP-
Completeness. Freeman, 1979.

[13] I. P. Gent. Heuristic Solution of Open Bin Packing
Problems. Journal of Heuristics, 3(4):299–304, 1998.

[14] David E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, Reading, MA., 1989.

[15] D.S. Johnson. Near-optimal bin-packing algorithms.
PhD thesis, MIT Department of Mathematics, Cam-
bridge, Mass., 1973.

[16] Sami Khuri, Martin Schutz, and Jörg Heitkötter. Evo-
lutionary heuristics for the bin packing problem. In
D. W. Pearson, N. C. Steele, , and R. F. Albrecht, ed-
itors, Arti£cial Neural Nets and Genetic Algorithms:
Proceedings of the International Conference in Ales,
France, 1995, 1995.

[17] Pier Luca Lanzi, Wolfgang Stolzmann, and Stew-
art W. Wilson, editors. Learning Classi£er Systems:
From Foundations to Applications, volume 1813 of
Lecture Notes in Arti£cial Intelligence. Springer-
Verlag, Berlin, 2000.

[18] Silvano Martello and Paolo Toth. Knapsack Prob-
lems. Algorithms and Computer Implementations.
John Wiley & Sons, 1990.

[19] C. Reeves. Hybrid genetic algorithms for bin-acking
and related problems. Annals of Operations Research,
(63):371–396, 1996.

[20] Armin Scholl and Robert Klein. Bison: A fast hybrid
procedure for exactly solving the one-dimensional bin
packing problem. Computers and Operations Re-
search, 1997.

[21] Hugo Terashima-Marı́n, Peter Ross, and Manuel
Valenzuela-Rendón. Evolution of constraint satis-
faction strategies in examination timetabling. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors,
GECCO-99: Proceedings of the Genetic and Evo-
lutionary Computation Conference, pages 635–642.
Morgan Kaufmann, 1999. early hyper-heuristic.

[22] Stewart W. Wilson. Classi£er Systems Based on Ac-
curacy. Evolutionary Computation, 3(2):149–175,
1995.


