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Abstract

Learning Classifier Systems traditionally use a
binary representation with wildcards added to
allow for generalizations over the problem
encoding. However, the simple scheme can be
limiting in complex domains. In this paper we
present results from the use of neural network-
based representation schemes within the
accuracy-based XCS. Here each rule’s condition
and action are represented by a small neural
network, evolved through the actions of the
genetic algorithm. After describing the changes
required to the standard production system
functionality, optimal performance is presented
using multi-layered perceptrons to represent the
individual rules. Results from the use of fuzzy
logic through radial basis fuction networks are
then presented. In particular, the new
representation scheme is shown to produce
systems where outputs are a function of the
inputs.

1 INTRODUCTION

Since their inception Learning Classifier Systems (LCS)
(Holland 1986) have been compared to neural networks,
both conceptually (e.g. Farmer 1989) and functionally
(e.g. Davis 1989, Dorigo & Bersini 1994, Smith & Cribbs
1994). In this paper we present a way to incorporate the
neural paradigm into the accuracy-based XCS (Wilson
1995). LCS traditionally incorporate a binary rule
representation, augmented with ‘wildcard’ symbols to
allow for generalizations. This can become limiting in
more complex domains (e.g. see (Schuurmans &
Schaeffer 1989) for early discussions). Recently, a
number of investigations have made use of other rule
representations, including real numbers (Wilson 2000),
messy GAs (Lanzi 1999a), logical S-expressions (Lanzi
1999b), and those where the output is a function of the
input, including numerical S-expressions (Ahluwalia &
Bull 1999) and fuzzy logic (e.g. Valenzuela-Rendon
1991).

We present a neural network-based scheme where each
rule’s condition and action are represented by a neural
network. The weights of each neural rule being
concatenated together and evolved under the actions of
the genetic algorithm (GA)(Holland 1975). The approach
is closely related to the use of evolutionary computing
techniques in general to produce neural networks (see
(Yao 1999) for an overview). In contrast to most of that
work, an LCS-based approach is coevolutionary, the aim
being to develop a number of (small) cooperative neural
networks to solve the given task, as opposed to the
evolution of one (large) network. That is, a
decompositional approach to the evolution of neural
networks is proposed. Moriarty and Miikulainen’s SANE
(1997) is most similar to the work described here,
however SANE coevolves individual neurons to form a
large network rather than small networks of neurons as
rules.

2 X-NCS: A NEURAL LCS

2.1 XCS

In XCS rule-fitness for the GA is not based on rule
predictions but on the accuracy of the predictions. The
intention being to form efficient generalizations and a
complete and accurate mapping of the search space
(rather than simply focusing on the higher payoff niches
in the environment).

On each time step match sets [M] are created. A system
prediction is then formed for each action proposed by the
rules in [M] according to a fitness-weighted average of
the predictions of the rules. The system action is then
selected, typically either deterministically (exploit) or
randomly (explore). An action set [A] is then formed, the
appropriate system output given and a reward may or not
be received. If [M] is empty covering is used.

Reinforcement in XCS consists of updating three
parameters, Error (E), Prediction (p), and fitness (F) for
each appropriate rule. Each is updated every time it
belongs to [A-1] or [A] if it is a single step problem.

XCS uses a niche-GA (Booker 1985); the GA acts in
action sets [A]. Two rules are selected based on fitness. In
this paper we use a fixed size rule-base N; varying N as in
(Wilson 1995) is not incorporated here. Rule replacement



is based on the estimated size of each match set a rule
participates in with the aim of balancing resources across
niches. The GA is triggered (see also (Booker 1989))
within a given match set if the number of time steps since
its last invocation in that set passes a fixed threshold,
based on the average time-stamp of the rules. Typically
this parameter is set to 25.

The reader is referred to (Butz & Wilson 2001) for full
details of XCS. Wherever possible parameter  values are
in line with those used in (Wilson 1995) to facilitate
comparisons with XCS using a ternary alphabet. In
practice all parameter values lay within those used in
(Wilson 1995) apart from two areas: population size and
mutation rate which, as they relate to the higher number
of  real number genes in the genotype, are higher; and in
function approximation, the relative value of the error
parameter is a percentage value rather than being fixed.
Further, we don’t incorporate subsumption or maintain a
rule for each action in a given [M].

All results in this paper are the average of ten runs.

2.2 NEURAL RULE REPRESENTATION

Each traditional condition-action rule is replaced by a
single, fully connected neural network. All rules have the
same number of nodes in their hidden layers (simplest
case (Bull 2001)) and one more output node than there
are possible actions. All weights are randomly initialized
in the range { –1.0, 1.0 }, concatenated together in an
arbitrary order and thereafter determined solely by the
GA here.

The production system cycles through the same input-
match-action-update cycle as the LCS, XCS in this case.
However, since all rules explicitly ‘see’ all inputs, unlike
the traditional scheme whereby defined loci can exclude
certain rules from certain match-sets, the extra output
node is added. This is used to signify membership of a
given match-set. After the presentation of an input, each
neural network rule produces a value on each of its output
nodes in the appropriate manner, e.g. feedforward. If the
extra ‘not match-set member’ node has the highest output
value, the rule does not form part of the resulting match-
set. In all other cases the rule forms part of the match-set,
proposing the action corresponding to the output node
with the highest activation. This matching procedure is
repeated for all rules on each cycle.

Rule discovery operates in the same way as usual for
XCS with real numbers (Wilson 2000). Hence the
mutation operator is altered to adjust gene values using a
normal distribution; small changes in weights are more
likely than large changes upon satisfaction of the
mutation probability (µ). The cover operator is altered
such that when the match-set is empty, random neural
networks are created until one gives its highest activation
on an action node for the given input.

Results from using multi-layered perceptrons (MLPs) are
now presented in well-known single-step and multi-step
tasks. All nodes used a sigmoid transfer function.

3 A SINGLE-STEP TASK: 6-BIT
MULTIPLEXER

We have tested the new rule representation on the two
tasks used in (Wilson 1995), the first of which is a 6-bit
version of the well-known, single-step multiplexer task.
These boolean functions are defined for binary strings of
length l = k + 2k under which the first k bits index into the
2k remaining bits, returning the indexed bit.

In order to make analysis easier for each neural net an
equivalent classifier was produced and recorded, though
it must be emphasized that it played no part in the XCS
processing, and was produced to measure the generality
or specificity of the particular neural rule.

Figure 1: Performance of accuracy-based neural classifier
system on the 6-bit multiplexer (l=6).

Figure 1 shows the results of using X-NCS on the single-
step problem, averaged over ten runs, with all parameters
as presented in (Wilson 1995) apart from the population
size and mutation. That is, N=800, µ=0.08, β=0.2, φ=0.5,
α=0.1, χ=0.8,  θ=10, δ=0.1, p1=10.0, F1=10.0, ε1=0.0.
As in (ibid.), payoff is given in 100 increments from
300/0 for each classification. Rules contain five nodes in
their hidden layer.

From Figure 1 it can be seen that using the neural
representation requires around 5000 exploit problems to
solve the task, roughly equivalent to the binary
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representation (Wilson 1995). However, that an overhead
may be incurred for a more complex representation may
perhaps expected for such simple tasks. Analysis of the
resulting rule-bases shows that, as well as the usual rules
which match multiple inputs and propose a single action
at a given payoff prediction level, multiple action rules
emerge. That is, for a given prediction level, accurate
rules are evolved which suggest different actions
depending on the input.

4 A MULTI-STEP TASK: WOODS 2

Wilson (1995) presented the multi-step, and hence
delayed reward, maze task Woods 2 to test XCS. Woods
2 is a toroidal grid environment containing two types of
food (encoded 110 and 111), two types of rock (encoded
010 and 011) in regularly spaced 3 by 3 cells, and free
space (000) (see (ibid.) for full details).

The learner is positioned randomly in one of the blank
cells and can move into any one of the surrounding eight
cells on each discrete time step, unless occupied by a
rock. If it moves into a food cell the system receives a
reward from the environment (1000) and the task is reset,
i.e. food is replaced and the learner randomly relocated.
On each time-step the learning system receives a sensory
message, which describes the eight surrounding cells,
ordered with the cell directly north and proceeding
clockwise around it.

Figure 2: Performance of the accuracy-based neural
classifier system in Woods 2.

Here, as in (Wilson 1995), the trial is repeated 8000
times, half explore and half exploit, and a record is kept
of the moving average (over the previous 50 exploit

trials) of how many steps it takes the system to move into
a food cell on each trial.

Figure 2 shows results from using X-NCS in Woods 2
with all parameters as presented in (Wilson 1995) except,
more rules and more mutation are used. That is, N=1600,
µ=0.08, β=0.2, γ=0.71, φ=0.5, α=0.1, χ=0.8, θ=25, δ=0.1,
p1=10.0, F1=10.0, ε1=0.0. Rules again contained five
hidden nodes. It can be seen that it takes the system
around 2,000 explore problems, again roughly equivalent
to the traditional encoding, to reach optimal performance
(1.7 steps to food).

Analysis of the resulting rule-bases shows that neural
rules emerge which have no error and produce different
actions depending upon the input. Unlike in the
multiplexer problem, we find that for some payoff levels
these multi-action rules are more numerous than the
equivalent single action rules. We presume that, if left to
run for longer, the system would converge on a single
neural rule for each payoff level; maximal generalizations
would be produced in both the condition and action
space.

As noted above, XCS usually forms generalizations for
each action at each level of payoff. Within traditional
reinforcement learning (Sutton & Barto 1998) a neural
network is often used to produce generalizations for each
possible action, where the networks are trained using
gradient descent techniques. Under the scheme proposed
here, X-NCS forms generalizations at a level between
these two extremes using the GA to produce the neural
networks. An advantage of this scheme over the other two
is its ability to work with continuous action spaces. An
application which exploits this last aspect of the
representation scheme in a single-stepped task is now
presented.

5 FUNCTION APPROXIMATION

It is well-known that multi-layered perceptrons with an
appropriate single hidden layer and a non-linear
activation function are universal classifiers (e.g. Hornick
et al. 1989). Until recently LCS had not been used to
solve tasks of the form y = f(x) since their traditional
representation scheme does not lend itself to such classes
of problem. Fuzzy Logic LCS (see (Bonarini 2000) for an
overview) represent, in principle, a production system-
like scheme which can be used for such tasks but this
remains unexplored. Ahluwalia and Bull (1999) presented
a simple form of LCS which used numerical S-
expressions for feature extraction in classification tasks.
Here each rule’s condition was a binary string indicating
whether or not a rule matched for a given feature and the
actions were S-expressions which performed a function
on the input feature value. Most recently, Wilson (2001)
has presented a form of XCS, termed XCSF, which uses
piecewise-linear approximation for such tasks; using only
explore trials all matching rules update their parameters,
where such trials are run consecutively as a training
period.
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We have tested the neural rule representation for tasks of
the form y = f(x), where both x and y are real numbers
between 0.0 and 1.0. The implementation estimated two
functions, x-squared and a six variable root-mean-square.
However, unlike the above mentioned work, the system
requires very few changes to the design of the standard
XCS system.

5.1 MODIFICATIONS TO X-NCS FOR
FUNCTION APPROXIMATION

5.1.1 Processing of Real Numbers

The real number inputs were scaled between 0.4 and 0.8
to accommodate the lack of discrimination of the upper
and lower end of the sigmoid function, as is usual in the
use of MLPs. Output layer nodes are now linear.

5.1.2 Changes to Error Threshold Processing and
System Error

In standard XCS, the error threshold ε0 is a fixed fraction
of the payment range. However with function
approximation across a continuous (action) range, a fixed
value may result in very inaccurate classifiers at the
bottom end of the input range. It was therefore decided
that ε0 should be variable to enable the accuracy, and
hence fitness, of the classifiers across the range to be
equivalent. The variable value was chosen as the
percentage of the target value at any particular point. The
percentage chosen was 1% so, for example under x-
squared, if the input was 0.3 the target output value (f(x))
would be 0.09. Here the required accuracy ε0 would be
0.0009 and so classifiers that predicted within the range
0.0891 to 0.0909 would be given an accuracy of 1.0. In
the same way, when the performance of the system is
measured, the system error was calculated by taking the
absolute difference between the target value and the
prediction of the selected classifier, and dividing this by
the target value, i.e. the system error is the percentage
error between the target and the prediction value.

5.1.3 Match Set and Action Set Processing

The rule prediction value is taken from one output node
of the individual’s neural network. The selection of the
match set is similar to before (Section 2), the only
difference being that the ‘not match-set member’ output
node merely has to have a positive value, rather than a
value less than the primary output node, as above. The
aim being to reduce the complexity of the task faced by
individual rules.

In exploration all members of the match set are updated
and rule discovery invoked if appropriate as per standard
XCS. In XCS under exploitation, all classifiers which
advocate the same action are put into the same set [A].
The chosen action set is the one which has the highest
fitness weighted prediction. For function approximation
we are looking for the rule whose prediction is most
accurate, i.e. has the least error, and hence taking the

classifier with the highest fitness weighted prediction
would be inappropriate. Instead, the counterpart of
prediction for such tasks is chosen, i.e. rule error, and so
we choose the rule with the lowest value of error divided
by fitness.

It was also found that for these function approximation
tasks a biased uniform crossover operator (75%) appeared
to give slightly better results than the single point
crossover operator used above. This aspect of the system
remains open to future investigation.

5.1.4 Rule Updating

The prediction value for each rule is taken as the value of
the output of the neural network, i.e. the prediction value
of the classifier can change at each iteration. By contrast,
the error value of a rule is determined as per standard
XCS.  Accuracy is determined in the standard XCS way
except, as mentioned above, the accuracy criterion is
taken as a percentage of the current target value. Fitness
is again calculated in the standard XCS way.

Thus the output value for a particular rule will change for
each different input value. For example, for problem n
with input value 0.3 -> prediction 0.0891, but problem
n+1 with input 0.4 -> prediction 0.160. However the error
value for each accurate classifier, although it varies as the
predictions can deviate from their respective targets, is a
small value that oscillates according to ε0.

5.2 RESULTS FOR Y=X2

In this task training consists of (alternating) 50,000
explore trials and 50,000 exploit trials each presenting a
random input in the range [0.0, 1.0] scaled as mentioned
above.

Figure 3: X-NCS on the x-squared function.
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Figure 3 shows the performance of the accuracy-based
neural classifier system on the x-squared function,
averaged over ten runs, with a runnning average over the
previous fifty exploit trials. The parameters used were:
N=1000, β=0.2, φ=0.5, µ=0.03, α=0.1, χ=0.8, θ=10,
δ=0.1, p1=10.0, F1=10.0, ε1=0.01. Rules contained five
hidden layer nodes. For the last 500 problems X-NCS is
run in test mode and hence under the exploit scheme;
after training with randomly generated examples the
performance of the resulting system was tested using a
number of unseen randomly generated examples.

From Figure 3 it can be seen that using the neural
representation requires around 40,000 explore problems
to solve the task, i.e. for the accuracy of the
approximations to fall within 1% of the real f(x).

Analysis of the resulting systems shows that better
performance is achieved when one neural network
emerges to cover the whole problem space, rather than
through the co-operative sets seen above. The reasons for
this appear two-fold: MLPs attempt to form global
models by approximating between known data points;
and the niche-based scheme of XCS encourages
maximally general rules through increased chances to
reproduce. This aspect of X-NCS will be returned to.

5.3 RESULTS FOR ROOT-MEAN-SQUARE

We have also examined the performance of the system on
functions which contain more than one variable. Wilson
(2001) presented a general, multi-dimensional function of
the form y = [(x12 + … + xn2) / n] ½. We have used this
“root mean squared” function with n=6, where training
was identical to that of the x-squared task above.

Figure 4: X-NCS on the 6 variable rms function.

The parameters used were: N=1000, β=0.2, φ=0.5,
µ=0.09, α=0.1, χ=0.8, θ=10, δ=0.1, p1=10.0, F1=10.0,
ε1=0.01.

From Figure 4 it can be seen that using the neural
representation requires around 50,000 explore problems
to solve the task to an accuracy of 1%. As with the x-
squared function, the most accurate solutions came from
those in which one classifier covered the whole input
range.

6 X-NFCS: A NEURO-FUZZY LCS

Radial basis function neural networks (RBFs) (e.g.
Poggio & Girosi 1990), in contrast to MLPs, construct
local function approximations using Gaussian functions
processed in the hidden layer of the network. It was noted
above (Sections 3 and 4) that in the discrete action tasks
the MLP-based neural system formed traditional LCS
coevolutionary solutions, whereas with continuous
actions a single rule/network emerged. Hence the use of
RBFs in X-NCS seems more likely to exploit the
system’s coevolutionary nature. There is another potential
benefit to the use of RBFs.

The similarity between RBF networks and fuzzy rule-
based systems is discussed in (Jang & Sun 1995). Fuzzy
rule sets consist of membership functions over
appropriate universes of discourse for input and output
variables and rules which define input-output relations.
The Gaussian functions of an RBF can be seen as fuzzy
membership functions and the hidden layer nodes the
fuzzy rules. In general, the benefits from combining
neural computing with fuzzy logic are potentially large
(see (Tsoukalas & Uhrig 1997) for an introduction). In
this context it also avoids the possible need to alter the
reinforcement process (see (Bonarini 2000) for
discussions).

GAs have been used to evolve RBFs as they have MLPs.
The most similar approach to that proposed here is
Whitehead and Choate’s (1995) scheme whereby the
individual members of the population are the basis
functions of a single network and heuristics tackle the
competitor/cooperator problem.

Genomes are again strings of real numbers: the positions
of the basis function centres, widths and weights of fully
connected networks are concatenated in an arbitrary order
to form the encoding. Output nodes (two) are again
linear. Carse et al. (e.g. 2001) have proposed a crossover
operator for fuzzy sets which alleviates the permutations
(Radcliffe 1990) problem that can arise under the
evolution of neural networks. That is, different genotypes
can give the same phenotype and hence crossover may
disrupt useful structures. The fuzzy logic crossover
operator works in the input space rather than by postion
on the genome. As with the MLPs, and perhaps due to the
niche GA of XCS, the permutations aspect of the
concatenated weights encoding does not appear to have
been significant in the tasks explored here. All other
system functionality is the same as in Section 5 – a
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positive response on the extra node means a rule doesn’t
join a given [M] and percentage error is used.

Figure 5: X-NFCS on the x-squared function.

Figure 6: X-NFCS on the 6 variable rms function.

Figure 5 shows the performance of the accuracy-based
neuro-fuzzy classifier system on the x-squared function,
averaged over ten runs, with a runnning average over the
previous fifty exploit trials. All parameters are as in
section 5.2. It can be seen that the function is learnt to 1%
accuracy around 30,000 explore problems. That is, a
greatly reduced training period is required using the
neuro-fuzzy system (compare with Figure 3). Analysis of
the resulting systems shows that coevolutionary solutions
appear, i.e. different rules emerge to handle different
regions of the input space, together covering the total
problem space.

Figure 6 shows the performance of X-NFCS on the six
variable rms function. All parameters are as in section
5.3, but it was found necessary to use ellipsoid radial
basis functions. Here, each input node maintains a radius
for its Gaussian for each input node. It can be seen that
accurate performance is obtained after 40,000 explore
trials. Analysis again shows that a number of rules are
used in the evolved systems and that the decompositional
approach led to a reduced training period (compare with
Figure 4).

Results (not shown) from the discrete action tasks of
sections 3 and 4 also show optimal performance using
RBFs, with learning times similar to the MLP-based
system.

7 CONCLUSIONS

In this paper we have presented results from using a
neural rule representation scheme within an accuracy-
based learning classifier system. The effective
combination of evolutionary computing and neural
computing has long been an aim of machine learning (e.g.
Belew et al 1989). It is our aim to exploit the
coevolutionary and accuracy processes of XCS to realize
such systems. Hopefully, this will also ease the use of
LCS in more complex problem domains.

We are currently examining the use of the system for
more complex tasks, with discrete or continuous action
spaces, both single-step and multi-step. For the latter we
are also exploring the use of recurrent connections with
the neuro and neuro-fuzzy systems for non-Markov
domains (after (Bull & O’Hara 2001)).
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