
 Genetic Algorithms and Fine-Grained Topologies for Optimization

Xiaotong Wang

NuTech Solutions, Inc.,
28 Green Street,

Newbury, MA, 01951

Lawrence Davis

NuTech Solutions, Inc.,
28 Green Street,

Newbury, MA, 01951

Chunsheng Fu

NuTech Solutions, Inc.,
28 Green Street,

Newbury, MA, 01951

Abstract
In this paper we show how the performance of
two meta-heuristic algorithms and two simple
search routines varies as these algorithms are
applied singly, in pairwise combinations, and in
larger, finer-grained combinations. The area of
application is f6 and f17, two well-known
optimization benchmark problems. Our
conclusion is that when these algorithms are
combined in complex ways, their performance is
much better than when they are used alone or in
pairs, and so there is strong evidence that the
current approach to optimization followed by
many current practitioners with, for instance, an
evolutionary algorithm succeeded by a hill-
climber, could be improved on if more complex
algorithm topologies were used.

1 MOTIVATION
This paper is designed to suggest that the approach
currently used by many persons doing real-world
optimization and doing optimization of test functions can
be improved if those persons consider using combinations
of optimization algorithms, rather than individual
algorithms, or individual algorithms followed by a round
of hill-climbing.

The conclusions of this paper will not be surprising to
many readers, as they have been touched on before by
other writers [e.g. Powell, Skolnick, and Tong 1991] each
of whom has suggested that combinations of many
algorithms can be noticeably more effective in
optimization than those algorithms are in isolation or in
pairs. The novelty in our paper stems from two sources.
First, we will show that fine-grained algorithm topologies,
in our parlance, do much better than simpler ones in
optimizing. Second, we will show that for f6 and f17 (the
test problems on which the results in this paper were
generated) what arises from the best topologies is a type
of algorithm topology different in type from those that
many of us are use when we carry out optimization.

2 THE INITIAL PROBLEM
For our experiments, we used the test function f6, first
suggested as an evolutionary computation benchmark by
David Schaffer [1989]. This problem was used in
extensive testing of evolutionary algorithms by Schaffer
and his collaborators, and it was the problem that carried
the weight of the expositional burden in the extended
tutorial in [Davis, 1990]. It is a two-dimensional, damped
sine wave that has been shown to be difficult for some
types of hill-climbers and for simulated annealers. A
cross-section of the f6 function is shown in Figure 1. The
function is to be maximized, and so the optimal point is
located at the center of the curve. The full function is
generated by rotating the curve about its center point, so
that it appears as a series of concentric ripples in a pond,
with the highest ripple located at the very center of the
pond. If one is searching for the optimal point without
prior knowledge of the shape of the curve, it can be very
difficult to locate. The function is extremely hilly, and
since the ripple containing the optimal point is the
smallest ripple in the pond, an extremely small part of the
whole search space is occupied by the hill containing the
optimal point.

The f6 function is formally stated as follows:

A solution to the f6 problem consists of two real-valued
numbers x and y, each in the range between –100 and
+100. The evaluation of such a solution is the value that
the f6 functions returns when those numbers are plugged
in as x and y.

3 ALGORITHMS USED
We used four algorithms in the experiments reported here:

• A random search (RS) algorithm that generates x, y
pairs with uniform probability from the variable
range of –100 to +100. The random search algorithm
preserves the best solution it has found so far, and

222

222

))(001.00.1(
5.0)(sin

5.0
yx

yx
++

−+
−

Figure 1. cross-section of f6

halts when it has carried out a predetermined number
of evaluations.

• An opportunistic hill-climber (HC) that begins from a
random position in the solution space. It maintains a
current solution <x, y> and generates new solutions
from a uniform distribution around the current x and
y values. If the new solution is equal to or better than
the current solution, then the new solution becomes
the current solution. The hill-climber we use stops
when it has carried out a predetermined number of
evaluations.

• A simulated annealer (SA) that begins from a random
position in the search space. The starting temperature
is 2.0, and the cooling factor is 0.80. Our simulated
annealer, given a number of evaluations n to work
with, carries out n/20 of those evaluations at each
temperature during optimization, and proceeds until it
has carried out n evaluations.

• A genetic algorithm (GA) that begins with a
randomly-generated set of solutions from the solution
space. The genetic algorithm, given a number of
evaluations n to work with, uses 10% of those as its
population size, and proceeds until it has carried out
n evaluations. The genetic algorithm is steady-state,
allows no duplicates, represents solutions as lists of
real values, and deletes the worst member of the
population after a new solution is inserted.

4 INDIVIDUAL ALGORITHM
PERFORMANCE

Many optimization systems, both commercial and
academic, use a single algorithm or heuristic when
optimizing. In cases when it is known that one will find
the global optimum in the time available—when doing
linear programming, for example, on a small problem—
there is no need to consider alternatives, as long as one
has sufficient computer resources with which to optimize.
It is cases in which one is searching for good answers
with limited computer resources that concern us here.

What we will show below is that using any of our four
algorithms in isolation to solve f6 and f17, or even using
one followed by another for post-processing, is a strategy
that is inferior to using fine-grained combinations of these
algorithms.

Algorithm Mean Maximum
evaluation

Minimum
evaluation

HC 0.991236 1 0.986304

GA 0.990170 1 0.972698

SA 0.960624 1 0.933464

RS 0.959234 1 0.903464

Table 1. Single algorithm performance

Algorithm Mean algorithm Mean

GAàHC 0.990848 HCàGA 0.990689

GAàSA 0.987373 HCàSA 0.990459

GAàRS 0.986847 HCàRS 0.990658

SAàHC 0.990585 RSàHC 0.990434

SAàGA 0.988114 RSàGA 0.988383

SAàRS 0.960609 RSàSA 0.962413

Table 2. Mean score of pairwise combination of
algorithms

As Table 1 shows, our four algorithms vary widely in
performance as they solve f6. Table 1 shows the mean,
best, and worst scores for each of our algorithms after
3000 evaluations, as each algorithm solves f6 from a
random start. The results in the table describe 500 runs of
each algorithm, with a different random seed for each run.
Table 1 shows us that, when using the same step size, the
best single algorithm of these four for solving f6 is the
hill-climber.

0.9895

0.99

0.9905

0.991

0.9915

0.992

0 2 4 6 8 10

weight ratio of HC/GA

m
ea

n
 o

f b
es

t e
va

lu
at

io
n

s
fo

u
n

d

Figure 2. impact of weight ratios for F6

0.985
0.986
0.987
0.988
0.989
0.99

0.991
0.992
0.993

0 0.05 0.1 0.15 0.2

step size

m
ea

n
 o

f
b

es
t

ev
al

u
at

io
n

s
fo

u
n

d

GA
HC

Figure 3. impact of step size for single GA and HC on f6

Let us now consider what the best pairwise combination
of algorithms is. Table 2 shows the average of the best
solution found for 500 runs each of each of the different
seeding possibilities between our four algorithms. In each
single run, one of the algorithms was run for 1500
evaluations and its best solution found was used as the
seed for the second algorithm. Table 2 shows us that the
best combination consists of a genetic algorithm seeding
the hill-climber. The table also shows us that the
performance of this combination is inferior to the
performance of the hill-climber used alone. We do not
show the maximum evaluation in this table since it is
generally 1. The mean is the most significant value, while
the minimum is less significant, so, we present the mean

as the best representation of related algorithm pair
performance.
It is possible that a different ratio of evaluations between
these two algorithms would yield better solutions.
However, this is not the case. Figure 2 shows the mean of
10 runs for each of the weight ratios between the hill-
climber and the genetic algorithm, carried out at intervals
of .2 and with 3000 evaluations per run. When
evaluations are allotted to the genetic algorithm,
performance is degraded. As the ratio rises to 3 or higher,
the hill-climber is effectively carrying out search on its
own, and the results are not significantly different for
higher ratios.

0.05 0.04 0.03 0.02 0.01

0.05 0.04 0.03 0.02 0.01

Figure 4. Step size distribution for a 5 GAàHC chain

Figure 5. impact of number of algorithms and their configuration

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5m
ea

n
of

 b
es

t e
va

lu
at

io
ns

 fo
un

d

1 GA->HC chain

2 GA->HC chain

3 GA->HC chain

4 GA->HC chain

5 GA->HC chain

Parallel Serial Hybrid1 Hybrid2 Hybrid3

Algorithm chain

5 THE IMPACT OF STEP SIZE
For the single-algorithm case and the two-algorithm case,
the best algorithm is the hill-climber—especially
interesting, when we remember that f6 is an algorithm that
looks like it should frustrate hill-climbers. Why is it that
the hill-climber does so well on a problem with a large
number of hills? The answer is that the maximum step size
used by the hill-climber in these experiments is .05, which
allows the algorithm to jump from peak to peak in the
search space. We set the step size at .05 for the three
algorithms that use step size, having found empirically that
it gave the best collective performance. Perhaps settings
tailored for each algorithm will give better individual
performance.

Figure 3 shows the effects of varying step size for the
genetic algorithm and for hill-climber, considering their
performance alone. The optimal step size for the hill-
climber, considered in isolation, is actually about .02,
whereas for the genetic algorithm the optimal value has
less impact on performance, but lies at about .07. We see
from Figure 2 that when the step size is set at .02, the hill-
climber does even better than in the experiments described
above, showing mean performance above .992 at that
setting.

6 MORE COMPLICATED ALGORITHM
TOPOLOGIES

In the remainder of this paper, we shall consider more
complicated algorithm topologies. We use the term
“algorithm topology” to refer to a set of algorithms linked
to form a directed, acyclic graph whose links represent
seeding relationships. These algorithms may be of the
same type or of different types, and individual members of
the topology may have parameter settings that vary from
other algorithms of the same type in the topology. For
example, Figure 4 shows a topology consisting of five hill-
climbers (represented by an icon containing a hill-climbing
figure) and five genetic algorithms (represented by an icon
containing a male-female couple). This topology has
seeding relationships that proceed from genetic algorithm
to hill-climber to genetic algorithm, and so forth. The
different hill-climbers and genetic algorithms have
different settings for the step size parameter. The first
algorithm to run in the topology will be the leftmost
genetic algorithm, which has a step size of .05. Its best
solution will seed the leftmost hill-climber, which also has
a step size of .05. The hill-climber’s best solution seeds
the second genetic algorithm, which has a step size of .04,
and so forth. The effect of running this topology will be
that we will alternate between an evolutionary approach
and a hill-climbing approach, always using the best
solution found as a seed for the next algorithm. As we
proceed through the run, the step size of the mutation
operator will decrease in size until, on the final run of the
genetic algorithm and the hill-climber, the step size is .01.

Figure 5 shows the results of running a number of different
algorithm topologies on f6. In order to explain the results,
we need first to explain what these algorithm topologies
were.

Our experiments used algorithm topologies constructed
from basic topology units. We used five different types of
topology units in these experiments, and each was a
variation on a basic GAàHC chain. In our notation, “1
GAàHC chain” refers to a single GAàHC pair, with the
genetic algorithm seeding the hill-climber. The notation “2
GAàHC chain” describes two pairs of algorithms, each
pair consisting of a genetic algorithm seeding a hill-
climber. If this pair is run in serial fashion (Figure 6b), the
output of the hill-climber in the first pair will seed the
initial genetic algorithm of the second pair. If it is run in
parallel (Figure 6a), then both pairs of algorithms will run
without communicating, and the best solution found by
either one will be returned as the solution found by the
topology. To illustrate this, please refer again to Figure 4,
which shows a 5 GAàHC chain run in serial fashion. As
shown in Figure 4, we interpolated the step size for all
algorithms in the topologies in the current set of
experiments from .05 to .01.

In addition to experimenting with parallel and serial
topologies of the GAàHC chains, we also experimented
with higher-level configurations of the basic serial
topologies. Figures 6c, 6d, and 6e show three types of
hybrid topologies whose performance is reported in Figure
5.

Each of these three hybrids is a serial topology based upon
the same components. Hybrid1, as shown in Figure 6c, is a
serial topology with two similar component blocks, each of
which, in this example, is a 3 GAàHC chain running
serially. (Note that the output of each hill-climber in the
first block seeds the genetic algorithm that begins the
second block.) Hybrid2, as shown in Figure 6d, is a serial
topology with three similar component blocks, connected
serially. Hybrid3, as shown in Figure 6e, is a topology
containing four similar component blocks, connected
serially.

It should be noted that in our experiments, each of these
topologies was given the same number of evaluations to
use in solving the problem. The number of evaluations in
these experiments is 3,000. In the case of a 1 GA à HC
chain, performance with 3,000 evaluations was shown in
Table 2. In the current set of experiments, the genetic
algorithm runs for 1500 evaluations and seeds the hill-
climber, which also runs for 1500 evaluations, and returns
its best solution. Thus, for this configuration, we have 2
algorithms sharing the 3000 evaluations equally.

It is worth noting that for the 5 GAàHC chain run under
the hybrid3 regime, we have 10 algorithms in each
component times four components = 40 algorithms
running. Since they share the same number of evaluations
as the 1 GAàHC chain running serially, in this case each
algorithm will have only 75 evaluations.

Parallel

Topology

Serial

Topology

Hybrid1

Topology

Hybrid2
Topology

Hybrid3

Topology

6(c)

6(a) 6(b)

6(d)

6(e)

Figure 6. Topologies studied in Figure 5 using 3 GAà HC chains

Figure 7 A best topology for f17

The purpose of our experiments was to determine whether
fine-grained topologies consisting of genetic algorithms
and hill-climbers could do better than genetic algorithms
and hill-climbers alone and, if so, just how fine the grain
should be to get the best performance. Figure 6 shows the
results. We see that the worst results were obtained by the
parallel topologies, which consisted of independent
GAàHC runs. The next-best results were obtained by the
serial topology, which linked up those runs so that each
GAàHC pair was seeded by the output of the prior pair.
The next-best results were obtained by the hybrid1
topology, which duplicated the topology serial and seeded
the second block of serial runs with the output of each hill-
climber in the first block. The next-best was the hybrid2
topology, which used two serial blocks in serial. Finally,
the hybrid3 topology used three serial blocks in serial, and
did better than all other higher-level topologies.

It should be noted that each basic configuration—whether
one, two, three, four, or five GAàHC pairs—did better
under finer-grained topologies. It should also be noted that
the best number of GAàHC pairs in the basic unit was 3.
When four or five GAàHC pairs were used, results were
not as good.

7 RESULTS FOR F17
In order to broaden the applicability of our results, we
carried out similar studies for f17, a 30-dimensional,
complicated mathematical optimization function described
in (Baeck 1998). The results were similar. Using single
algorithms, with parameters tuned to solve the problem, or
using two algorithms in a seeding relation, optimal
solutions could not be found by the best topologies in
10,000,000 evaluations. The convergence speed was so
slow that we estimated it would take about
100,000,000,000 evaluations to get the optimal solutions.
When we used the topology shown in Figure 7, with
multiple iterations in which each run through the topology
was seeded by the best result from the prior topology’s run,
the optimal solution was found, on average, in about
1,750,000 evaluations.

8 CONCLUSIONS
We have two principal conclusions from the results
presented here. First, when the number of evaluations
allowed is the same, the performance of simple topologies
of our four types of optimization algorithms is vastly
inferior to fine-grained, serial topologies of those
algorithms. Second, we have shown that modifying the
parameter values of those topologies across the
optimization process leads to better results than holding
them constant. We have shown that these conclusions
obtain for the classical f6 function with two real-valued
inputs, and for the much more difficult f17 function with
30 real-valued inputs.

Given that most current practice in evolutionary
computation involves the use of simple topologies, we

hope that these results will suggest refinements to our
current practice that will allow us to find better solutions in
the same amount of time.

Note and Acknowledgement

We used HEURO (a system built by NuTech Solutions,
Inc.) to display our topologies and gather data on our
experimental runs. HEURO is a tool that makes it easy to
create, edit, display, and evaluate the performance of
algorithm topologies.

The authors would also like to thank Thomas Baeck for
sharing his implementation of f17 with us.

References

T. Baeck and B. Naujoks (1998). Innovative
methodologies in evolution strategies. INGENET Project
Report D 2.2, Center for Applied Systems Analysis
(CASA), Informatik Centrum Dortmund.

L. Davis (1990). Handbook of Genetic Algorithms,
International Thompson Computer Press.

J. David Schaffer, Richard A. Caruana, Larry J. Eshelman,
and Rajarshi Das (1989). A Study of Control Parameters
Affecting Online Performance of Genetic Algorithms for
Function Optimization. In J. D. Schaffer, editor,
Proceedings of the Third International Conference on
Genetic Algorithms, pages 51--60. Fitness Morgan
Kauffman.

D. Powell, M. Skolnick, and S. Tong (1990). EnGENEous:
A Unified Approach to Design Optimization. Applications
of Artificial Intelligence in Engineering V (edited by J.S.
Gero), Computational Mechanics Publications.

