

DESIGN OPTIMIZATION OF N-SHAPED ROOF TRUSSES

Karim Hamza

Ph.D. Pre-Candidate
University of Michigan

Ann Arbor, MI 48109-2102
khamza@engin.umich.edu

Haitham Mahmoud

Ph.D. Pre-Candidate
University of Michigan

Ann Arbor, MI 48109-2102
ham@engin.umich.edu

Kazuhiro Saitou

Assistant Professor
University of Michigan

Ann Arbor, MI 48109-2102
kazu@engin.umich.edu

Abstract

Design optimization of a class of plane trusses
called the N-Shaped Truss (NST) is addressed.
The parametric model of NST presented is
intended for real-world application, avoiding
simplifications of the design details that
compromise the applicability. The model, which
includes twenty-seven discrete variables
concerning topology, configuration and sizing of
the truss, presents a challenging optimization
problem. Aspects of such challenge include large
search space dimensionality, absence of a closed-
form objective function and constraints, multi-
modal objective function and costly CPU time
per objective function evaluation. Three
implementations of general-purpose genetic
algorithms (GA) are tested for this problem,
along with a version of taboo search called
reactive taboo search (RTS). The RTS exhibited
better performance than the tested versions of
GA. Performance study of the algorithms
provides some good insight to some weaknesses
in GA and RTS as well as future prospective
combination of them to gain better performance.

1 INTRODUCTION

Truss structure optimization is a problem that is attractive
due to its direct applicability in design of structures.
Optimization of trusses can be classified into three main
categories i) sizing, ii) configuration and iii) topology.
This classification is slightly different from that of
continuum structures, given in (Chapman et. al., 1993) In
the sizing optimization, cross-sectional areas of members
in the truss are design variables and the coordinates of the
nodes and connectivity are held constant (Goldberg
1986). The sizing problem is made even more interesting
and practical through restricting the choice of truss
members to a discrete set of available standard cross-
sections (Rajeev and Krishnamoorthy, 1992). In

configuration optimization, the member cross-sections
and connectivity (i.e. topology) remain constant, but the
nodal position locations are the design variables. In
topology optimization, the connectivity is the objective of
the optimization (Bendose and Kikuchi 1988) and (Jakiela
et. al., 2000). Combining the categories has also been
performed. Gil and Andreu (2001) combined the
configuration and sizing problems. Deb and Gulati (2001)
combined topology and sizing through real coded genetic
algorithms. A fully connected ground structure is taken as
a start, then during optimization, members having close to
zero cross-sectional areas are then deleted.

Optimization methods applied included gradient-based
methods such as the work of (Taylor and Rossow 1976)
and (Kirsch 1979), simulated annealing (Moh and Chiang
2000) and genetic algorithms. Analytical methods have
generally been limited by approximations due to the
complexity of the real-world problem, which is nonlinear
and often has no closed form objective function and
constrains.

To the best of the authors’ knowledge, most previous
work was directed to developing optimization models for
general trusses rather on a “high-level,” without going
deep into the design details of the truss. In this paper, a
particular class of plane trusses (N-Shaped) is considered.
While restricted to that class of trusses, the parametric
model formulated goes deep into the design details and
combines all truss optimization categories of sizing,
configuration and topology. The optimization problem
has a large search space which makes direct exhaustive
search methods totally impractical. In addition, structural
optimization problems are known to have many local
optima, which encourages the use of heuristic global
optimizers. Three implementations of genetic algorithms
(GA) are tested as well as reactive taboo search (RTS)
which also seems to be an attractive global optimizer
(Battiti and Tecchiolli 1994).

The paper starts with a review of truss optimization then
proceeds to describe the parametric model of the N-
shaped truss. Following the description of the parametric
model, the implemented GA and RTS are presented, then
an actual real-life truss is used as a bench-mark problem
to compare the performance of the optimizers. Results
and discussion are then presented.

2 PARAMETRIC MODEL OF NST

2.1 TERMINOLOGY

Some of the terminology used in practice for the design of
trusses is to be used in this paper. The following is a
quick summery of such terminology:

• An N-Shaped Truss (NST): is a plane truss (Fig.1) that
has a certain general shape resembling the letter “N.”

• Upper Chord: are all the inclined members on the top
part of the truss (Fig. 2). All upper chord members of
an N- Shaped Truss form one straight line.

• Lower Chord: are all the horizontal members on the
lower part of the truss (Fig. 2). All lower chord
members of an N- Shaped Truss form one horizontal
straight line.

• Vertical Members: are (as the name suggests), the
vertical members in the truss (Fig. 2).

• Diagonal Members: are those internal inclined members
(Fig. 2).

• Truss Projection: is the distance the truss protrudes after
the centerline of the carrying column (Fig. 2).

• Bays: Are the spans between the trusses in the top view
(Fig. 2).

• End Bay: is a last bay in a building.

• Purlins: are light members positioned across the bays
and are carried on top of the upper chord (Figs. 2-3).
Purlins, in turn carry the roof cladding.

• Roof braces: are X-shaped sets of members (Fig. 2) that
are present in some bays in order to increase the overall
structure stiffness.

• Longitudinal Braces: are sets of members across the
bays that are included to increase the overall rigidity of
the structure (Figs. 2-3).

Figure 1: Photo of Actual N-Shaped Truss

2.2 DESIGN VARIABLES

Twenty seven variables that a designer can modify are
used as design variables in this parametric model. The
design variables are categorized into i) variables
concerned with topology and configuration and ii)
variables concerned with sizing of the truss members. The
design variables are given as:

Figure 2: Typical N-Shaped Truss

Figure 3: Longitudinal Braces

Topology and Configuration Variables:

X1: is an integer number that defines the selected roof
layout plan (from up to 5 user-defined choices), this
variable subsequently sets the number of main bays, bays’
lengths and end-bays’ lengths.

X2: is the length of the vertical member directly on top of
the support. Normally, this variable is continuous, but it is
discretized in this model to avoid the necessity of using
mixed integer/continuous optimizers. However,
discretization doesn’t impose much deviation from
practicality, since the fabrication often favors “rounded-
off” and similar dimensions.

X3: is the number of purlins on top of the truss. This
normally dictates the general truss topology, since every
purlin must have a vertical member in the truss
underneath it. The space between two purlins (or their two
verticals) will be referred to as a truss “cell”.

X4: is the number of sub-divided truss cells near the
support. Subdividing the cells near the support (the
portion which has low truss depth as opposed to the
middle part of the truss), generally improves the angle of
the diagonal members which in turns gives better
distribution of the axial forces in the members.

X5: is the number of truss cells which have reinforced
diagonal members. Normally, the diagonals closer to the
support are subjected to higher axial loads, therefore it is
often efficient to choose a different cross section for the
first one or few diagonal members.

X6: is the number of merged cells near the middle of the
truss. The purpose of merging cells at the portion of
bigger truss depth is also to improve the angle of the
diagonals to give better stress distribution.

X7: is the number of verticals that are nearer to the
column and are taking a different cross-section than the
rest of the verticals.

The model also allows for two different configurations of
longitudinal braces to be used, thus the longitudinal
braces passing near the mid-span (with higher depth) may
be different from those passing above the support.

X8: is the total number of longitudinal braces lines across
the roof.

X9: is half the number of longitudinal braces lines close
to the support (Type-1).

X10: is the number of nodes (equal to number of cells
minus one) on Type-1 Longitudinal Braces.

X11: is the number of nodes on Type-2 Longitudinal
Braces.

Member Sizing Variables:

X12 to X27 are integer variables defining the selected
standard cross-section from the available database for 16
groups of truss members. The truss member groups are:
purlins, main truss upper chord, lower chord, 3 groups of
verticals, 4 groups of diagonals, longitudinal braces 2
groups of chords, 2 groups of verticals and 2 groups of
diagonals.

It should be noted that the truss members grouping
employed in this parametric model keeps the number of
design variables fixed, but the number of truss members is
variable. Also, all variables being integer allows for pure-
integer GA and RTS to be used in optimization, without
the loss of practicality of the model.

2.3 CONSTRAINTS

Constraint evaluation is the main costly event in terms of
CPU time. It involves generating a finite element (FE)
mesh of the truss, solving the FE model for different load
cases then performing safety check on truss members.
The safety constraints involve:

• Load Cases include Dead load, Live Load and Wind
Load. Load Case Combinations are Dead Load + Live
Load (DL), Dead Load + Wind Load (DW) and Dead
Load + Live Load + Wind Load (DLW)

• Mild steel members subjected to tension must not
exceed allowed under any of the load case
combinations.

• Members subjected to compression must not exceed
allowed compressive stress under any of the load case
combinations. Allowed compressive stress depends on
member slenderness.

• Bending stresses in Purlins must be safe under all load
cases and also capable of carrying a specified
concentrated load in its mid-span.

• Depth of the beam cross-section chosen for Purlins
should not be less than a certain portion of its length.

• Deflection under live load is not to exceed a certain
amount.

• Slenderness of all members subjected to compression is
not to exceed a certain value.

• Slenderness of any member is not to exceed a certain
value.

• Purlin spacing should be within a certain range.

• Diagonal members angle from horizontal should be
within a certain range.

Constraints are enforced through adaptive penalty (Chen
2001). To ensure that the search converges to a feasible
design, additional cost is added to the objective function
to make the cost of any infeasible design more than that
of the current best feasible design. The penalty cost also
depends upon the amount of violation. Typically, the
penalty cost is high at the beginning of the search and is
then gradually lowered as better feasible designs are
found. A crucial matter for efficient employment of
adaptive penalty is to have a feasible initial design.

2.4 OBJECTIVE FUNCTION

In many applied cases, truss optimization is a multi-
objective process regarding issues such as weight, cost,
stiffness and natural frequencies. However, the particular
class of trusses considered finds its main domain of
application in industrial and commercial clear-span
buildings. For such applications, there is usually the
single objective of minimizing the overall cost. In many
practical cases, the overall cost is directly associated with
the total steel weight. Thus for the current study, the
objective is to minimize the overall weight. Such weight
includes the main truss members, longitudinal bracing
members, purlins and estimates of all connection plates
(by empirical formulas in terms of other truss
parameters).

The objective function (OF) combines the truss total
weight plus a penalty term to prevent constraints
violation. There are two cases for the objective function:

• No constraints are violated

In this case: t OF W=

• One or some of the constraints are violated

In this case: PenPenbt),max(OF ICWW ××=

Where:

tW : is the total weight of the considered structure

: is the total weight of the best feasible structure
encountered so far during the optimization

PenC : is a penalty constant

: is the number of truss members that violate the
safety constraints

A key implemented feature is the adaptive penalty which
aims at preventing “over-penalizing” the infeasible
designs while making sure that no infeasible design has a
better OF value than the best feasible encountered design.

3 GENETIC ALGORITHM

3.1 GENERAL PURPOSE GA

The general purpose genetic algorithm (GA1) tested in
this paper implements variable storage as integer
variables, 4 crossover operators, 12 mutation operators,
fitness scaling, population distribution, roulette wheel
selection along with elitist selection.

Integer Storage: For efficiency of storage, variables are
stored directly as integers rather than binary strings
(Goldberg 1989) and are translated to their equivalent
binary strings when need during crossover and mutation.

Crossover Operators:

• Binary string crossover.

• Inner Crossover (adopted from real coded GA). The
new variable values are computed as:

• Outer Crossover (adopted from real coded GA). The
new variable value is computed as:

• Uniform crossover (Liang-Jie et al., 1995). In which the
variables are unchanged, but exchanged between the
parents with a 50% probability of exchange.

Mutation Operators:

• Binary bit flipping.

• Binary bit shift left.

• Binary bit shift right.

• Binary bit inversion.

• Shifting value to nearest boundary.

• New random number generation.

Another similar set of mutation operators is also used that
only act if the member fitness is below average.

An overall probability for crossover and mutation is
specified for a search. For each mutation or crossover
operation of mating members, selection of which operator
to use is performed randomly according to an assigned
probability of use for each operator.

Fitness Scaling: linear fitness scaling is implemented to
give a fair survival chance for strong population
members.

Speciation: members further away from population
average get a fitness bonus to encourage diversification.

Roulette Wheel Selection: is used for selecting members
of old population for mating and producing new members
of next population.

Elitist Selection: one copy of best member in a
population passes unchanged to the next population to
ensure that any optimized value is no worse than the best
previously attained. And the rest of the new population is
filled by the traditional selection, crossover and mutation.

Seeding: one feasible point is included in the initial
population and rest of the population is chosen randomly.
Due to the nature of the problem, a purely random initial
population may end up with a population of all-infeasible
designs. Such an initial population will cause failure of
the adaptive penalty strategy, as it requires knowing the
OF value of some feasible design.

3.2 GA WITH CACHING

The second implementation of GA tested in this paper
(GA2) is the same as GA1, but all evaluations of objective
function are stored. Thus, when performing population
members OF evaluation, only un-explored regions of the
search space will require the FE solution of the truss.

By nature, OF caching is inherent in RTS and is one of
the strong points in favor of it. Therefore history storage
is implemented into GA in order to even up the advantage
RTS has and allow for a better comparison.

3.3 GA WITH NORMALLY DISTRIBUTED
INITIAL POPULATION

RTS benefits from a good starting point, so an interesting
study would be to have a biased initial population. Thus,
the third implementation of GA (GA3) is the same as GA2,
but has its all members of the initial population normally
distributed about the initial feasible design.

4 REACTIVE TABOO SEARCH

4.1 GENERAL SCHEME

Reactive taboo search is a heuristic global optimization
technique that has less stochastic content than genetic
algorithm. In fact, save for a small portion of the
algorithm, it is almost completely deterministic. The basic
idea in taboo search (Glover 1986, 1989, 1990) is to make
use of previously evaluated points within the search space

ChildVal1 = Round (α ParentVal1 + (1 – α) ParentVal2)

ChildVal2 = Round ((1 – α) ParentVal1 + α ParentVal2)

Where α is a randomly generated number between 0 and 1

ChildVal = Round (StrongerParentVal

+ α (StrongerParentVal - Weaker ParentVal))

bW

PenI

to direct the future sampling and prevent entrapment at a
local minimum by applying taboo conditions. Reactive
taboo search (Battiti and Tecchiolli 1994) proposes a
scheme for adaptively varying the way the taboo
conditions are applied based on the objective function
history, thus the search “reacts” to the objective function
behavior. Pseudo-code of RTS is given as:

1 Begin at a starting point

2 Examine Non-Tabooed Neighboring Points
and move to the best of them

3 If new point has been not been visited before

4 Goto 2

5 Else If cycling is not “excessive”

6 Put a taboo condition upon point

7 Goto 2

8 Else perform “quick escape” and Goto 2

The single starting point in the search space is set as the
“current point”. RTS then evaluates the entire
neighborhood of the current point and moves to the best
point in it which then becomes the new current point. An
important feature in RTS, is that all the previously
evaluated points are stored in the memory, this leads to
lots of savings in computational time when evaluating the
neighborhood of the new point. Memorizing all evaluated
points is costly in terms of required storage resources
since the total memory required for the algorithm grows
linearly as more points are being evaluated, however,
such memorizing saves a lot of computational time if the
OF is costly in terms of CPU evaluation time.

At the start of the search RTS, simply behaves like a
steepest descent search until it hits a local minimum.
Whereas steepest descent stops upon reaching a local
minimum, RTS continues to search the neighborhood of
the current point and move to best point within it even if it
is worse than the current point. To prevent infinite cycling
back and forth around a local minimum, TS imposes a
taboo condition upon the last visited point, that is, “a
previously visited point cannot be visited again until a
certain number of iterations is completed”, and such
number of iterations is typically referred to as the “taboo
list length”.

In RTS, the taboo list length is adaptively changed
according to the search behavior within a minimum and a
maximum value. If the search still gets stuck in a large
basin of attraction of the objective function, which the
maximum taboo list length is not enough to overcome, a
“quick escape” is performed.

The search is typically stopped after performing a
specified number of moves or objective function
evaluations. The best point encountered is returned.

4.2 NEIGHBORHOOD EVALUATION

RTS performs a complete neighborhood evaluation.
Unlike the version of RTS proposed by Battiti and
Tecchiolli (1994) where all variables were either zero or
one, the implemented version in this paper uses integer
values for the variables. The neighborhood is defined as
the set of points that have all their variables equal to those
of the current point except for one variable, which is
different by a value of ±1. Thus, the number of points in
the neighborhood is twice the number of variables (or less
for points touching the upper and lower limits of the
variable ranges).

4.3 RTS REACTION TO SEARCH BEHAVIOR

At each move (iteration), RTS places a taboo condition on
the previous point, the taboo condition lasts a number of
iterations equal to the current taboo list length. RTS also
keeps track of when was each point visited, and the
number of visits. If a point is visited twice, the taboo list
length is increased. Thus, near a local minimum, the taboo
list length keeps increasing until it is enough to explore
regions further away. If a number of iterations pass
without any cycles occurring (visiting the same point
several times), the taboo list length is decreased.

Typically, a maximum taboo list length is specified. It is
generally not beneficial to have the maximum taboo list
length greater than the number of points in the
neighborhood, because it can lead to a situation when all
the points in the neighborhood are tabooed. When such a
situation arises, the taboo conditions are relaxed, and the
new current point is chosen as the last visited point in the
neighborhood.

Sometimes if a large basin of attraction exists in the
objective function, there could be a situation when taboo
conditions are not enough to overcome the domain of the
local minimum and that is when the “quick escape” is
performed.

4.4 QUICK ESCAPE MECHANISM

RTS keeps a record of the average cycle length. When it
approaches the maximum taboo list length, this indicates
that tabooing is not enough to overcome the current basin
of attraction, and quick escape is necessary. Quick escape
is performed by randomly changing the values of some of
the variables of the current point. It is simply just like re-
starting the search at new starting point that is not entirely
random.

5 APPLICATION

5.1 TRUSS DATA

Data of a real N-shaped truss is used as a starting point for
the optimization algorithms. The truss data is given in
Table 1.

A photo of the actual truss during erection procedure is
given in Fig. 1. This design (topology, configuration and
sizing) is used as the starting point for optimization.
Topology and configuration are shown in Fig. 4. Truss
member cross-sections are given in Table 2.

5.2 GA PARAMETERS

Among the several available tuning options for the
implemented GA, the following settings are chosen:

• Population Size: 100, 150, 200 and 250

• Number of Generations: (Unlimited), search stops when
maximum number of objective function evaluations is
reached.

• Max. number of OF evaluations: (Tested Several)

• Overall crossover probability: 0.9

• Equal probability for different crossover operators

• Overall mutation probability: 0.25

• Equal probability for different operators

• Fitness scaling constant: 1.6

Choice of the search parameters was based on practical
published values and the available computational
resources. Further tuning is possible.

5.3 RTS PARAMETERS

RTS has less tuning parameters than GA. The following
settings are chosen:

• Number of moves: (Unlimited), search stops when
maximum number of objective function evaluations is
reached.

• Max. number of OF evaluations: (Tested Several)

5.4 RESULTS

Each of the design variables concerned with truss member
sizing has 48 possible choice options, variables
concerning configuration and topology range between 3
to 20 options. The total search space (all possible
combinations of variables) is 1.58814×1037. Practicality
limits for reasonable CPU time made it preferable to limit
the comparison of optimization algorithms to 10,000 OF
evaluations. Some reasonably good results are obtained
even though 10,000 OF evaluations comprise only
6.3×10-34 of the total search space.

Topology and configuration of the initial design, an
intermediate design during optimization and final best
obtained design are shown in Fig. 4. A listing of the
chosen cross-sections for truss member groups and
overall design weight is given in Table 2. The
intermediate design is shown as a demonstration of
topology change as well as sizing.

Figure 4: Truss Topology and Configuration

a) Initial Design, Weight = 9903.2 kg

b) Intermediate Design, Weight = 6328.8 kg

c) Best Obtained Design, Weight = 5655.3 kg

Table 2 Chosen Truss Member Groups Cross-sections

Designs
Variable

Initial Intermediate Final Best

X12 C.F. C140x4 C.F. C140x3 C.F. C140x3
X13 2xLPN 70x7 2xLPN 70x7 2xUPN 65
X14 2xLPN 70x7 2xLPN 70x7 2xIPN 80
X15 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3
X16 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3
X17 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3
X18 2xLPN 50x5 2xLPN 50x5 2xIPN 80
X19 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4
X20 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4
X21 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4
X22 2xLPN 70x7 2xLPN 70x7 2xLPN 50x5
X23 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3
X24 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3
X25 2xLPN 60x6 2xLPN 60x6 2xLPN 50x5
X26 2xLPN 50x5 2xLPN 50x5 2xLPN 30x3
X27 2xLPN 50x5 2xLPN 50x5 2xLPN 30x3

Truss
Weight 9903.2 kg 6328.8 kg 5655.3 kg

Table 1 Truss Data

Number of Main Bays 2

Building Clear Span 21.0 m

Material Young’s Modulus 207 GPa

Allowed Stress 140 MPa

Max. Slenderness (Compression
Members)

180

Max. Slenderness (All Members) 300

Max. Deflection under live load 1/300 of Span

Live Load 50 kg/m2

Wind Pressure 50 kg/m2

Dead Load Weight +

20 kg/m2

Available Database Contains L-sections (LPN), C-
sections (UPN & C.F.) and I-sections (IPN & IPE)

Since RTS has very little stochastic content compared
with GA, only one optimization run is used as a
representative of RTS. Twenty runs are performed for
each of GA1, GA2 and GA3 using four different
population sizes (five runs for each population size). The
results of optimization performance are summarized in
Table 3 and plotted in Figures 5 – 6.

The results in Table 2 and Fig. 5 are for the number of
new objective function evaluations, thus caching in GA2
and GA3 resulted in improvement of the performance over
the traditional GA1. Furthermore having the initial
population normally distributed about the starting point in
GA3 improves the consistency of the search (as seen in
the standard deviation of the 20 runs) and results in a
quicker descent of the objective function at the start of
search. GA3 however has little or no advantage over GA2
towards the end of the search.

Further examination of Figs 5 – 6 and Table 2 shows an
appreciably better performance of RTS over GA. To
analyze possible reasons for RTS being better suited for
the examined optimization problem than the implemented
forms of GA.

6 DISCUSSION

GA relies on having several points that are distributed
over the search space (population) to achieve
diversification. According to the schemata theory
(Goldberg 1989), selection along with crossover provides
intensification by attracting the population points to zones
of higher fitness. Eventually the whole population gets
attracted to the global optimum. In general, the
intensification properties of GA are not as good as those
of local optimizers (Erbatur and Hasancebi 2001).
Mutation is generally used to increase diversification,
especially when the whole population gets too closely
attracted to a certain region.

The main weakness GA suffers when the problem has
large dimensionality is that a moderate population size
(100 to 200 members) becomes insufficient to achieve
enough diversification over the search space and
insufficient schemata pool, which also confounds the
intensification. Increasing the population size beyond
certain limits is on the other hand very costly in terms of
the number of objective function evaluations.

Figure 6: Optimization Progress – Best of GA Runs

Figure 5 Optimization Progress – Average of GA Runs

Table 3 Optimization Results

Objective Function Value
Avg. of 20 Runs Best of 20 Runs

Standard
Deviation

of
OF

Eval. RTS
GA1 GA2 GA3 GA1 GA2 GA3 GA1 GA2 GA3

500 7781 9518 9487 9034 8197 7703 7534 587 574 474
1000 6687 9346 9209 8825 7599 7656 7534 666 725 443
1500 6491 9216 8973 8775 7599 7656 7534 673 687 432
2000 6430 9088 8929 8759 7599 7656 7534 697 691 432
2500 6430 8987 8929 8706 7599 7656 7534 690 691 452
3000 6430 8866 8840 8658 7599 7656 7259 619 673 545
4000 6430 8754 8616 8538 7270 7236 7259 665 734 555
5000 6430 8664 8591 8463 7270 7236 7259 594 731 569
6000 6430 8513 8293 8427 7270 7236 7259 604 640 602
7000 6430 8436 8226 8358 7270 7194 7259 571 633 594
8000 5704 8396 8115 8255 7174 7034 7259 581 639 554
9000 5655 8263 7998 8150 7174 7034 7259 496 534 523
10000 5655 8213 7935 7969 7174 7034 7259 479 547 479

Another problem that GA encounters is due to the
complexity of the constraints which makes GA unable to
converge without seeding with an initial feasible point.
Seeding itself decreases the GA efficiency.

RTS has separate mechanisms for intensification and
diversification. For intensification, RTS relies on a local
optimizer that nails down the local optimum. Thus,
finding the local optimum is fast, efficient and has less
sensitivity to large dimensionality than GA. This accounts
for the fast descent of the OF value encountered at the
beginning of the RTS search in Figs. 5 – 6. Upon reaching
a local optimum, RTS switches to diversification by
imposing taboo conditions to prevent moving to already
explored points. If the taboo conditions are not enough to
escape a large basin of attraction, RTS performs its quick
escape move and “hopes” it will be enough to escape the
current basin of attraction. It can be seen in Figs. 5 – 6 as
well as Table 3 that after the good start, RST remained
incapable of finding any better designs for a long period.

Given N number of objective function evaluations, the
memory requirement is constant for the traditional GA
(GA1), but of order N for RTS, GA2 and GA3 because of
caching. Caching also incurrs additional computational
effort of order less than N2 but such computational effort
has little overall effect when the OF is costly to evaluate.

It is seen in this study that RTS has better capabilities for
intensification as well as exploiting a good starting point
while GA has better diversification. Future research
aspects may include combining both to get even better.
One such possibility would be to use RTS, but perform
large OF attraction basin detection, once the quick escape
mechanism becomes inefficient, the search may be
switched to a population-based search until a new basin of
attraction is found, then switch back to RTS.

7 CONCLUSIONS

Design optimization of a real-world class of plane trusses
is considered. A parametric model of the truss is
developed, which takes into account most of the practical
aspects for design applicability. Optimization of the
model is pretty challenging since it involves sizing,
configuration and topology, large dimensionality and
costly objective function. Three implementations of
general purpose GA as well as RTS are tested to see if
they can come up with better designs than an actual
erected design. Through a number of objective function
evaluations that is only a very small fraction of the total
search space, both GA and RTS succeeded in coming up
with better designs. Although RTS performed better,
observation reveals that RTS has better intensification,
while GA has better diversification. This motivates future
work for combining aspects of GA and RTS.

Acknowledgments

This work is an extension of a course project of ME558
Discrete Design Optimization, offered in Fall 2001 at the

University of Michigan, Ann Arbor. MECO, Modern
Egyptian Contracting provided the data of the previously
erected truss, used as starting point in this paper.

References

R. Battiti and G. Tecchiolli (1994), “The Reactive Tabu
Search,” ORSA Journal on Computing, V 6, pp. 126-140.

M.P. Bendose and N. Kikuchi (1988), “Generating Optimal
Topologies in Structural Design using a Homogenization
Method,” Computer Methods in Applied Mechanics and
Engineering, V 71, pp. 197-224.

C. Chapman, K. Saitou and M. Jakiela (1993), “Genetic
Algorithms as an Approach to Configuration and Topology
Design,” Advances in Design Automation, V 65, pp. 485-498.

S. Y. Chen (2001), “An approach for impact structure
optimization using the robust genetic algorithm,” Finite
Elements in Analysis and Design, V 37, pp. 431-446.

K. Deb and S. Gulati (2001), “Design of truss-structures for
minimum weight using genetic algorithms,” Finite Elements
in Analysis and Design, V 37, pp. 447-465.

F. Erbatur and O. Hasancebi (2001), “Layout optimization using
GAs and SA,” Optimal Structural Design Workshop,
GECCO-2001, pp. 102-107.

L. Gil and A. Andreu (2001), “Shape and cross-section
optimization of a truss structure,” Computers and Structures,
V 79, pp. 681-689.

F. Glover (1986), “Future Paths for Intege Programming and
Links to Artificial Intelligence,” Computers and Operations
Research, V 13, No. 5, pp. 533-549.

F. Glover (1989), “Tabu Search – Part I,” ORSA Journal on
Computing, V 1, pp. 190-206.

F. Glover (1990), “Tabu Search – Part II,” ORSA Journal on
Computing, V 1, pp. 4-32.

D. Goldberg and M. Samtani (1986), “Engineering Optimization
via Genetic Algorithms,” Proceeding of the 9th Conf. on
Electronic Computations, ASCE, Birmingham, pp. 471-482.

D. Goldberg (1989), “Genetic Algorithms in Search,
Optimization and Machine Learning,” Addison-Wesley.

M. Jakiela, C. Chapman, J. Duda, A. Adewuya, and K. Saitou
(2000), “Continuum structural topology design with genetic
algorithms,” Computer Methods in Applied Mechanics and
Engineering, V 186, No. 2, p 339—356.

U. Kirsch (1979), “Optimal Design of Trusses by Approximate
Compatibility,” Computers and Structures, V 12, pp. 93-98.

Z. Liang-Jie, M. Zhi-Hong and L. Yan-Da (1995),
“Mathematical analysis of crossover operator in genetic
algorithms and its improved strategy,” Proceedings of the
IEEE Conference on Evolutionary Computation, V 1, pp.
412-417.

J. Moh and D. Chiang (2000), “Improved Simulated Annealing
Search for Structural optimization,” AIAA Journal, V 38, pp.
1965-1973.

S. Rajeev and C.S. Krishnamoorthy (1992), “Discrete
Optimization of Structures using Genetic Algorithms,”
Journal of Structural Engineering, V 118, No. 5, pp. 1233-
1250.

J.E. Taylor and M.P. Rossow (1976), “An Optimal Structural
Design using Optimality Criteria,” Advances in Engineering
Science, 13th Annaul Meeting, Hampton, VA, pp. 521-530.

