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Abstract 
 

 

Design optimization of a class of plane trusses 
called the N-Shaped Truss (NST) is addressed. 
The parametric model of NST presented is 
intended for real-world application, avoiding 
simplifications of  the design details that 
compromise the applicability. The model, which 
includes twenty-seven discrete variables 
concerning topology, configuration and sizing of 
the truss, presents a challenging optimization 
problem. Aspects of such challenge include large 
search space dimensionality, absence of a closed-
form objective function and constraints, multi-
modal objective function and costly CPU time 
per objective function evaluation. Three 
implementations of general-purpose genetic 
algorithms (GA) are tested for this problem, 
along with a version of taboo search called 
reactive taboo search (RTS). The RTS exhibited 
better performance than the tested versions of 
GA. Performance study of the algorithms 
provides some good insight to some weaknesses 
in GA and RTS as well as future prospective 
combination of them to gain better performance. 

 

1 INTRODUCTION 

Truss structure optimization is a problem that is attractive 
due to its direct applicability in design of structures. 
Optimization of trusses can be classified into three main 
categories i) sizing, ii) configuration and iii) topology. 
This classification is slightly different from that of 
continuum structures, given in (Chapman et. al., 1993) In 
the sizing optimization, cross-sectional areas of members 
in the truss are design variables and the coordinates of the 
nodes and connectivity are held constant (Goldberg 
1986). The sizing problem is made even more interesting 
and practical through restricting the choice of truss 
members to a discrete set of available standard cross-
sections (Rajeev and Krishnamoorthy, 1992). In 

configuration optimization, the member cross-sections 
and connectivity (i.e. topology) remain constant, but the 
nodal position locations are the design variables. In 
topology optimization, the connectivity is the objective of 
the optimization (Bendose and Kikuchi 1988) and (Jakiela 
et. al., 2000). Combining the categories has also been 
performed. Gil and Andreu (2001) combined the 
configuration and sizing problems. Deb and Gulati (2001) 
combined topology and sizing through real coded genetic 
algorithms. A fully connected ground structure is taken as 
a start, then during optimization, members having close to 
zero cross-sectional areas are then deleted. 

Optimization methods applied included gradient-based 
methods such as the work of (Taylor and Rossow 1976) 
and (Kirsch 1979), simulated annealing (Moh and Chiang 
2000) and genetic algorithms. Analytical methods have 
generally been limited by approximations due to the 
complexity of the real-world problem, which is nonlinear 
and often has no closed form objective function and 
constrains.  

To the best of the authors’ knowledge, most previous 
work was directed to developing optimization models for 
general trusses rather on a “high-level,” without going 
deep into the design details of the truss. In this paper, a 
particular class of plane trusses (N-Shaped) is considered. 
While restricted to that class of trusses, the parametric 
model formulated goes deep into the design details and 
combines all truss optimization categories of sizing, 
configuration and topology. The optimization problem 
has a large search space which makes direct exhaustive 
search methods totally impractical. In addition, structural 
optimization problems are known to have many local 
optima, which encourages the use of heuristic global 
optimizers. Three implementations of genetic algorithms 
(GA) are tested as well as reactive taboo search (RTS) 
which also seems to be an attractive global optimizer 
(Battiti and Tecchiolli 1994). 

The paper starts with a review of truss optimization then 
proceeds to describe the parametric model of the N-
shaped truss. Following the description of the parametric 
model, the implemented GA and RTS are presented, then 
an actual real-life truss is used as a bench-mark problem 
to compare the performance of the optimizers. Results 
and discussion are then presented. 



 

2 PARAMETRIC MODEL OF NST 

2.1 TERMINOLOGY 

Some of the terminology used in practice for the design of 
trusses is to be used in this paper. The following is a 
quick summery of such terminology: 

•  An N-Shaped Truss (NST): is a plane truss (Fig.1) that 
has a certain general shape resembling the letter “N.” 

•  Upper Chord: are all the inclined members on the top 
part of the truss (Fig. 2). All upper chord members of 
an N- Shaped Truss form one straight line. 

•  Lower Chord: are all the horizontal members on the 
lower part of the truss (Fig. 2). All lower chord 
members of an N- Shaped Truss form one horizontal 
straight line. 

•  Vertical Members: are (as the name suggests), the 
vertical members in the truss (Fig. 2). 

•  Diagonal Members: are those internal inclined members 
(Fig. 2). 

•  Truss Projection: is the distance the truss protrudes after 
the centerline of the carrying column (Fig. 2). 

•  Bays: Are the spans between the trusses in the top view 
(Fig. 2). 

•  End Bay: is a last bay in a building. 

•  Purlins: are light members positioned across the bays 
and are carried on top of the upper chord (Figs. 2-3). 
Purlins, in turn carry the roof cladding. 

•  Roof braces: are X-shaped sets of members (Fig. 2) that 
are present in some bays in order to increase the overall 
structure stiffness. 

•  Longitudinal Braces: are sets of members across the 
bays that are included to increase the overall rigidity of 
the structure (Figs. 2-3). 

 

 

 

 

 

 

 

Figure 1: Photo of Actual N-Shaped Truss 

2.2 DESIGN VARIABLES 

Twenty seven variables that a designer can modify are 
used as design variables in this parametric model. The 
design variables are categorized into i) variables 
concerned with topology and configuration and ii) 
variables concerned with sizing of the truss members. The 
design variables are given as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Typical N-Shaped Truss 

 

 

 

 

 

 

Figure 3: Longitudinal Braces 

 

Topology and Configuration Variables: 

X1: is an integer number that defines the selected roof 
layout plan (from up to 5 user-defined choices), this 
variable subsequently sets the number of main bays, bays’ 
lengths and end-bays’ lengths. 

X2: is the length of the vertical member directly on top of 
the support. Normally, this variable is continuous, but it is 
discretized in this model to avoid the necessity of using 
mixed integer/continuous optimizers. However, 
discretization doesn’t impose much deviation from 
practicality, since the fabrication often favors “rounded-
off” and similar dimensions. 

X3: is the number of purlins on top of the truss. This 
normally dictates the general truss topology, since every 
purlin must have a vertical member in the truss 
underneath it. The space between two purlins (or their two 
verticals) will be referred to as a truss “cell”. 

X4: is the number of sub-divided truss cells near the 
support. Subdividing the cells near the support (the 
portion which has low truss depth as opposed to the 
middle part of the truss), generally improves the angle of 
the diagonal members which in turns gives better 
distribution of the axial forces in the members. 



 

X5: is the number of truss cells which have reinforced 
diagonal members. Normally, the diagonals closer to the 
support are subjected to higher axial loads, therefore it is 
often efficient to choose a different cross section for the 
first one or few diagonal members. 

X6: is the number of merged cells near the middle of the 
truss. The purpose of merging cells at the portion of 
bigger truss depth is also to improve the angle of the 
diagonals to give better stress distribution. 

X7: is the number of verticals that are nearer to the 
column and are taking a different cross-section than the 
rest of the verticals. 

The model also allows for two different configurations of 
longitudinal braces to be used, thus the longitudinal 
braces passing near the mid-span (with higher depth) may 
be different from those passing above the support. 

X8: is the total number of longitudinal braces lines across 
the roof. 

X9: is half the number of longitudinal braces lines close 
to the support (Type-1). 

X10: is the number of nodes (equal to number of cells 
minus one) on Type-1 Longitudinal Braces. 

X11: is the number of nodes on Type-2 Longitudinal 
Braces. 

Member Sizing Variables: 

X12 to X27 are integer variables defining the selected 
standard cross-section from the available database for 16 
groups of truss members. The truss member groups are: 
purlins, main truss upper chord, lower chord, 3 groups of 
verticals, 4 groups of diagonals, longitudinal braces 2 
groups of chords, 2 groups of verticals and 2 groups of 
diagonals. 

It should be noted that the truss members grouping 
employed in this parametric model keeps the number of 
design variables fixed, but the number of truss members is 
variable. Also, all variables being integer allows for pure-
integer GA and RTS to be used in optimization, without 
the loss of practicality of the model. 

2.3 CONSTRAINTS 

Constraint evaluation is the main costly event in terms of 
CPU time. It involves generating a finite element (FE) 
mesh of the truss, solving the FE model for different load 
cases then performing safety check on truss members. 
The safety constraints involve: 

•  Load Cases include Dead load, Live Load and Wind 
Load. Load Case Combinations are Dead Load + Live 
Load (DL), Dead Load + Wind Load (DW) and Dead 
Load + Live Load + Wind Load (DLW) 

•  Mild steel members subjected to tension must not 
exceed allowed under any of the load case 
combinations. 

•  Members subjected to compression must not exceed 
allowed compressive stress under any of the load case 
combinations. Allowed compressive stress depends on 
member slenderness. 

•  Bending stresses in Purlins must be safe under all load 
cases and also capable of carrying a specified 
concentrated load in its mid-span. 

•  Depth of the beam cross-section chosen for Purlins 
should not be less than a certain portion of its length. 

•  Deflection under live load is not to exceed a certain 
amount. 

•  Slenderness of all members subjected to compression is 
not to exceed a certain value. 

•  Slenderness of any member is not to exceed a certain 
value. 

•  Purlin spacing should be within a certain range. 

•  Diagonal members angle from horizontal should be 
within a certain range. 

Constraints are enforced through adaptive penalty (Chen 
2001). To ensure that the search converges to a feasible 
design, additional cost is added to the objective function 
to make the cost of any infeasible design more than that 
of the current best feasible design. The penalty cost also 
depends upon the amount of violation. Typically, the 
penalty cost is high at the beginning of the search and is 
then gradually lowered as better feasible designs are 
found. A crucial matter for efficient employment of 
adaptive penalty is to have a feasible initial design. 

2.4 OBJECTIVE FUNCTION 

In many applied cases, truss optimization is a multi-
objective process regarding issues such as weight, cost, 
stiffness and natural frequencies. However, the particular 
class of trusses considered finds its main domain of 
application in industrial and commercial clear-span 
buildings. For such applications, there is usually the 
single objective of minimizing the overall cost. In many 
practical cases, the overall cost is directly associated with 
the total steel weight. Thus for the current study, the 
objective is to minimize the overall weight. Such weight 
includes the main truss members, longitudinal bracing 
members, purlins and estimates of all connection plates 
(by empirical formulas in terms of other truss 
parameters). 

The objective function (OF) combines the truss total 
weight plus a penalty term to prevent constraints 
violation. There are two cases for the objective function: 

•  No constraints are violated 

In this case: t  OF W=  

•  One or some of the constraints are violated 

In this case: PenPenbt ),max(  OF ICWW ××=  

 



 

Where: 

tW  : is the total weight of the considered structure 

: is the total weight of the best feasible structure 
encountered so far during the optimization 

PenC : is a penalty constant 

: is the number of truss members that violate the 
safety constraints 

A key implemented feature is the adaptive penalty which 
aims at preventing “over-penalizing” the infeasible 
designs while making sure that no infeasible design has a 
better OF value than the best feasible encountered design. 

3 GENETIC ALGORITHM 

3.1 GENERAL PURPOSE GA 

The general purpose genetic algorithm (GA1) tested in 
this paper implements variable storage as integer 
variables, 4 crossover operators, 12 mutation operators, 
fitness scaling, population distribution, roulette wheel 
selection along with elitist selection. 

Integer Storage: For efficiency of storage, variables are 
stored directly as integers rather than binary strings 
(Goldberg 1989) and are translated to their equivalent 
binary strings when need during crossover and mutation. 

Crossover Operators: 

•  Binary string crossover. 

•  Inner Crossover (adopted from real coded GA). The 
new variable values are computed as: 

 

 

 

•  Outer Crossover (adopted from real coded GA). The 
new variable value is computed as: 

 

 

•  Uniform crossover (Liang-Jie et al., 1995). In which the 
variables are unchanged, but exchanged between the 
parents with a 50% probability of exchange. 

Mutation Operators: 

•  Binary bit flipping. 

•  Binary bit shift left. 

•  Binary bit shift right. 

•  Binary bit inversion. 

•  Shifting value to nearest boundary. 

•  New random number generation. 

Another similar set of mutation operators is also used that 
only act if the member fitness is below average. 

An overall probability for crossover and mutation is 
specified for a search. For each mutation or crossover 
operation of mating members, selection of which operator 
to use is performed randomly according to an assigned 
probability of use for each operator. 

Fitness Scaling: linear fitness scaling is implemented to 
give a fair survival chance for strong population 
members. 

Speciation: members further away from population 
average get a fitness bonus to encourage diversification. 

Roulette Wheel Selection: is used for selecting members 
of old population for mating and producing new members 
of next population. 

Elitist Selection: one copy of best member in a 
population passes unchanged to the next population to 
ensure that any optimized value is no worse than the best 
previously attained. And the rest of the new population is 
filled by the traditional selection, crossover and mutation. 

Seeding: one feasible point is included in the initial 
population and rest of the population is chosen randomly. 
Due to the nature of the problem, a purely random initial 
population may end up with a population of all-infeasible 
designs. Such an initial population will cause failure of 
the adaptive penalty strategy, as it requires knowing the 
OF value of some feasible design. 

3.2 GA WITH CACHING 

The second implementation of GA tested in this paper 
(GA2) is the same as GA1, but all evaluations of objective 
function are stored. Thus, when performing population 
members OF evaluation, only un-explored regions of the 
search space will require the FE solution of the truss. 

By nature, OF caching is inherent in RTS and is one of 
the strong points in favor of it. Therefore history storage 
is implemented into GA in order to even up the advantage 
RTS has and allow for a better comparison. 

3.3 GA WITH NORMALLY DISTRIBUTED 
INITIAL POPULATION 

RTS benefits from a good starting point, so an interesting 
study would be to have a biased initial population. Thus, 
the third implementation of GA (GA3) is the same as GA2, 
but has its all members of the initial population normally 
distributed about the initial feasible design. 

4 REACTIVE TABOO SEARCH 

4.1 GENERAL SCHEME 

Reactive taboo search is a heuristic global optimization 
technique that has less stochastic content than genetic 
algorithm. In fact, save for a small portion of the 
algorithm, it is almost completely deterministic. The basic 
idea in taboo search (Glover 1986, 1989, 1990) is to make 
use of previously evaluated points within the search space 

ChildVal1 = Round (α ParentVal1 + (1 – α) ParentVal2) 

ChildVal2 = Round ( (1 – α) ParentVal1 + α ParentVal2) 

Where α is a randomly generated number between 0 and 1 

ChildVal = Round (StrongerParentVal  

+ α (StrongerParentVal - Weaker ParentVal) ) 

bW  

PenI  



 

to direct the future sampling and prevent entrapment at a 
local minimum by applying taboo conditions. Reactive 
taboo search (Battiti and Tecchiolli 1994) proposes a 
scheme for adaptively varying the way the taboo 
conditions are applied based on the objective function 
history, thus the search “reacts” to the objective function 
behavior. Pseudo-code of RTS is given as: 

1 Begin at a starting point 

2 Examine Non-Tabooed Neighboring Points 
and move to the best of them 

3 If new point has been not been visited before 

4  Goto 2 

5 Else If cycling is not “excessive” 

6  Put a taboo condition upon point 

7  Goto 2 

8 Else perform “quick escape” and Goto 2 

 

The single starting point in the search space is set as the 
“current point”. RTS then evaluates the entire 
neighborhood of the current point and moves to the best 
point in it which then becomes the new current point. An 
important feature in RTS, is that all the previously 
evaluated points are stored in the memory, this leads to 
lots of savings in computational time when evaluating the 
neighborhood of the new point. Memorizing all evaluated 
points is costly in terms of required storage resources 
since the total memory required for the algorithm grows 
linearly as more points are being evaluated, however, 
such memorizing saves a lot of computational time if the 
OF is costly in terms of CPU evaluation time. 

At the start of the search RTS, simply behaves like a 
steepest descent search until it hits a local minimum. 
Whereas steepest descent stops upon reaching a local 
minimum, RTS continues to search the neighborhood of 
the current point and move to best point within it even if it 
is worse than the current point. To prevent infinite cycling 
back and forth around a local minimum, TS imposes a 
taboo condition upon the last visited point, that is, “a 
previously visited point cannot be visited again until a 
certain number of iterations is completed”, and such 
number of iterations is typically referred to as the “taboo 
list length”. 

In RTS, the taboo list length is adaptively changed 
according to the search behavior within a minimum and a 
maximum value. If the search still gets stuck in a large 
basin of attraction of the objective function, which the 
maximum taboo list length is not enough to overcome, a 
“quick escape” is performed. 

The search is typically stopped after performing a 
specified number of moves or objective function 
evaluations. The best point encountered is returned. 

4.2 NEIGHBORHOOD EVALUATION 

RTS performs a complete neighborhood evaluation. 
Unlike the version of RTS proposed by Battiti and 
Tecchiolli (1994) where all variables were either zero or 
one, the implemented version in this paper uses integer 
values for the variables. The neighborhood is defined as 
the set of points that have all their variables equal to those 
of the current point except for one variable, which is 
different by a value of ±1. Thus, the number of points in 
the neighborhood is twice the number of variables (or less 
for points touching the upper and lower limits of the 
variable ranges). 

4.3 RTS REACTION TO SEARCH BEHAVIOR 

At each move (iteration), RTS places a taboo condition on 
the previous point, the taboo condition lasts a number of 
iterations equal to the current taboo list length. RTS also 
keeps track of when was each point visited, and the 
number of visits. If a point is visited twice, the taboo list 
length is increased. Thus, near a local minimum, the taboo 
list length keeps increasing until it is enough to explore 
regions further away. If a number of iterations pass 
without any cycles occurring (visiting the same point 
several times), the taboo list length is decreased. 

Typically, a maximum taboo list length is specified. It is 
generally not beneficial to have the maximum taboo list 
length greater than the number of points in the 
neighborhood, because it can lead to a situation when all 
the points in the neighborhood are tabooed. When such a 
situation arises, the taboo conditions are relaxed, and the 
new current point is chosen as the last visited point in the 
neighborhood. 

Sometimes if a large basin of attraction exists in the 
objective function, there could be a situation when taboo 
conditions are not enough to overcome the domain of the 
local minimum and that is when the “quick escape” is 
performed. 

4.4 QUICK ESCAPE MECHANISM 

RTS keeps a record of the average cycle length. When it 
approaches the maximum taboo list length, this indicates 
that tabooing is not enough to overcome the current basin 
of attraction, and quick escape is necessary. Quick escape 
is performed by randomly changing the values of some of 
the variables of the current point. It is simply just like re-
starting the search at new starting point that is not entirely 
random. 

5 APPLICATION 

5.1 TRUSS DATA 

Data of a real N-shaped truss is used as a starting point for 
the optimization algorithms. The truss data is given in 
Table 1. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A photo of the actual truss during erection procedure is 
given in Fig. 1. This design (topology, configuration and 
sizing) is used as the starting point for optimization. 
Topology and configuration are shown in Fig. 4. Truss 
member cross-sections are given in Table 2. 

5.2 GA PARAMETERS 

Among the several available tuning options for the 
implemented GA, the following settings are chosen: 

•  Population Size: 100, 150, 200 and 250 

•  Number of Generations: (Unlimited), search stops when 
maximum number of objective function evaluations is 
reached. 

•  Max. number of OF evaluations: (Tested Several) 

•  Overall crossover probability: 0.9 

•  Equal probability for different crossover operators 

•  Overall mutation probability: 0.25 

•  Equal probability for different operators 

•  Fitness scaling constant: 1.6 

Choice of the search parameters was based on practical 
published values and the available computational 
resources. Further tuning is possible. 

5.3 RTS PARAMETERS 

RTS has less tuning parameters than GA. The following 
settings are chosen: 

•  Number of moves: (Unlimited), search stops when 
maximum number of objective function evaluations is 
reached. 

•  Max. number of OF evaluations: (Tested Several) 

5.4 RESULTS 

Each of the design variables concerned with truss member 
sizing has 48 possible choice options, variables 
concerning configuration and topology range between 3 
to 20 options. The total search space (all possible 
combinations of variables) is 1.58814×1037. Practicality 
limits for reasonable CPU time made it preferable to limit 
the comparison of optimization algorithms to 10,000 OF 
evaluations. Some reasonably good results are obtained 
even though 10,000 OF evaluations comprise only 
6.3×10-34 of the total search space. 

Topology and configuration of the initial design, an 
intermediate design during optimization and final best 
obtained design are shown in Fig. 4. A listing of the 
chosen cross-sections for truss member groups and 
overall design weight is given in Table 2. The 
intermediate design is shown as a demonstration of 
topology change as well as sizing. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Truss Topology and Configuration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Initial Design, Weight = 9903.2 kg 

b) Intermediate Design, Weight = 6328.8 kg 

c) Best Obtained Design, Weight = 5655.3 kg 

Table 2 Chosen Truss Member Groups Cross-sections 

Designs 
Variable 

Initial Intermediate Final Best 

X12 C.F. C140x4 C.F. C140x3 C.F. C140x3 
X13 2xLPN 70x7 2xLPN 70x7 2xUPN 65 
X14 2xLPN 70x7 2xLPN 70x7 2xIPN 80 
X15 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3 
X16 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3 
X17 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3 
X18 2xLPN 50x5 2xLPN 50x5 2xIPN 80 
X19 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4 
X20 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4 
X21 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4 
X22 2xLPN 70x7 2xLPN 70x7 2xLPN 50x5 
X23 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3 
X24 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3 
X25 2xLPN 60x6 2xLPN 60x6 2xLPN 50x5 
X26 2xLPN 50x5 2xLPN 50x5 2xLPN 30x3 
X27 2xLPN 50x5 2xLPN 50x5 2xLPN 30x3 

Truss 
Weight 9903.2 kg 6328.8 kg 5655.3 kg 

 

Table 1 Truss Data 

Number of Main Bays 2 

Building Clear Span 21.0 m 

Material Young’s Modulus 207 GPa 

Allowed Stress 140 MPa 

Max. Slenderness (Compression 
Members) 

180 

Max. Slenderness (All Members) 300 

Max. Deflection under live load 1/300 of Span 

Live Load 50 kg/m2 

Wind Pressure 50 kg/m2 

Dead Load Weight + 

20 kg/m2 

Available Database Contains L-sections (LPN), C-
sections (UPN & C.F.) and I-sections (IPN & IPE) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since RTS has very little stochastic content compared 
with GA, only one optimization run is used as a 
representative of RTS. Twenty runs are performed for 
each of GA1, GA2 and GA3 using four different 
population sizes (five runs for each population size). The 
results of optimization performance are summarized in 
Table 3 and plotted in Figures 5 – 6. 

The results in Table 2 and Fig. 5 are for the number of 
new objective function evaluations, thus caching in GA2 
and GA3 resulted in improvement of the performance over 
the traditional GA1. Furthermore having the initial 
population normally distributed about the starting point in 
GA3 improves the consistency of the search (as seen in 
the standard deviation of the 20 runs) and results in a 
quicker descent of the objective function at the start of 
search. GA3 however has little or no advantage over GA2 
towards the end of the search. 

Further examination of Figs 5 – 6 and Table 2 shows an 
appreciably better performance of RTS over GA. To 
analyze possible reasons for RTS being better suited for 
the examined optimization problem than the implemented 
forms of GA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 DISCUSSION 

GA relies on having several points that are distributed 
over the search space (population) to achieve 
diversification. According to the schemata theory 
(Goldberg 1989), selection along with crossover provides 
intensification by attracting the population points to zones 
of higher fitness. Eventually the whole population gets 
attracted to the global optimum. In general, the 
intensification properties of GA are not as good as those 
of local optimizers (Erbatur and Hasancebi 2001). 
Mutation is generally used to increase diversification, 
especially when the whole population gets too closely 
attracted to a certain region. 

The main weakness GA suffers when the problem has 
large dimensionality is that a moderate population size 
(100 to 200 members) becomes insufficient to achieve 
enough diversification over the search space and 
insufficient schemata pool, which also confounds the 
intensification. Increasing the population size beyond 
certain limits is on the other hand very costly in terms of 
the number of objective function evaluations. 

Figure 6: Optimization Progress – Best of GA Runs 

Figure 5 Optimization Progress – Average of GA Runs 

Table 3 Optimization Results 

Objective Function Value 
Avg. of 20 Runs Best of 20 Runs 

Standard 
Deviation 

# of 
OF 

Eval. RTS 
GA1 GA2 GA3 GA1 GA2 GA3 GA1 GA2 GA3 

500 7781 9518 9487 9034 8197 7703 7534 587 574 474 
1000 6687 9346 9209 8825 7599 7656 7534 666 725 443 
1500 6491 9216 8973 8775 7599 7656 7534 673 687 432 
2000 6430 9088 8929 8759 7599 7656 7534 697 691 432 
2500 6430 8987 8929 8706 7599 7656 7534 690 691 452 
3000 6430 8866 8840 8658 7599 7656 7259 619 673 545 
4000 6430 8754 8616 8538 7270 7236 7259 665 734 555 
5000 6430 8664 8591 8463 7270 7236 7259 594 731 569 
6000 6430 8513 8293 8427 7270 7236 7259 604 640 602 
7000 6430 8436 8226 8358 7270 7194 7259 571 633 594 
8000 5704 8396 8115 8255 7174 7034 7259 581 639 554 
9000 5655 8263 7998 8150 7174 7034 7259 496 534 523 
10000 5655 8213 7935 7969 7174 7034 7259 479 547 479 
 



 

Another problem that GA encounters is due to the 
complexity of the constraints which makes GA unable to 
converge without seeding with an initial feasible point. 
Seeding itself decreases the GA efficiency. 

RTS has separate mechanisms for intensification and 
diversification. For intensification, RTS relies on a local 
optimizer that nails down the local optimum. Thus, 
finding the local optimum is fast, efficient and has less 
sensitivity to large dimensionality than GA. This accounts 
for the fast descent of the OF value encountered at the 
beginning of the RTS search in Figs. 5 – 6. Upon reaching 
a local optimum, RTS switches to diversification by 
imposing taboo conditions to prevent moving to already 
explored points. If the taboo conditions are not enough to 
escape a large basin of attraction, RTS performs its quick 
escape move and “hopes” it will be enough to escape the 
current basin of attraction. It can be seen in Figs. 5 – 6 as 
well as Table 3 that after the good start, RST remained 
incapable of finding any better designs for a long period. 

Given N number of objective function evaluations, the 
memory requirement is constant for the traditional GA 
(GA1), but of order N for RTS, GA2 and GA3 because of 
caching. Caching also incurrs additional computational 
effort of order less than N2 but such computational effort 
has little overall effect when the OF is costly to evaluate. 

It is seen in this study that RTS has better capabilities for 
intensification as well as exploiting a good starting point 
while GA has better diversification. Future research 
aspects may include combining both to get even better. 
One such possibility would be to use RTS, but perform 
large OF attraction basin detection, once the quick escape 
mechanism becomes inefficient, the search may be 
switched to a population-based search until a new basin of 
attraction is found, then switch back to RTS. 

7 CONCLUSIONS 

Design optimization of a real-world class of plane trusses 
is considered. A parametric model of the truss is 
developed, which takes into account most of the practical 
aspects for design applicability. Optimization of the 
model is pretty challenging since it involves sizing, 
configuration and topology, large dimensionality and 
costly objective function. Three implementations of 
general purpose GA as well as RTS are tested to see if 
they can come up with better designs than an actual 
erected design. Through a number of objective function 
evaluations that is only a very small fraction of the total 
search space, both GA and RTS succeeded in coming up 
with better designs. Although RTS performed better, 
observation reveals that RTS has better intensification, 
while GA has better diversification. This motivates future 
work for combining aspects of GA and RTS. 
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