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Abstract 
 
 
The discovery of evolutionary laws of financial 
market is always built on the basis of financial 
data. Any financial market must be controlled by 
some basic laws, including macroscopic level, 
submicroscopic level and microscopic level laws. 
How to discover its necessity-laws from financial 
data is the most important task of financial 
market analysis and prediction. Based on the 
evolutionary computation, this paper proposes a 
multi-level and multi-scale evolutionary 
modeling system which models the 
macro-behavior of the stock market by ordinary 
differential equations while models  the micro- 
behavior of the stock market by natural fractals. 
This system can be used to model and predict the 
financial data(some time series), such as the 
stock market data of Dow-Jones index  and 
IBM stock price, and always get good results.   

1   INTRODUCTION 
The financial data or data get from some real-world 
systems such as stock market usually are very complex, 
but any complex system is bound to be controlled by 
some basic laws, including macroscopic level laws, 
submicroscopic level laws and microscopic level laws.  
Consider the following financial data as the time 
series:  

 )1(        )(,),(),( 10 mtxtxtx L   

where ti= t0 + i? t, ? t is the time stepsize. As for the 
time series, besides the traditional method of time series 
analysis [1], evolutionary algorithm is usually used to 
cope with these data[2][3][4]. 

Suppose that the financial data are controlled by 
macroscopic, sub-macroscopic and microscopic rules. 
We take the multi-level, multi-scale models for 
analyzing and predicting the financial data. In this paper,  
we use the ordinary differential equation (ODE) model 

to describe the macroscopic behavior of the stock 
market, while we use the natural fractal models (a kind 
of natural discrete wavelets) to describe its microscopic 
behavior. In this way, we build a mu lti-level and 
multi-scale evolutionary modeling system for financial 
data. This system provides a strong tool for the analysis 
and prediction of complex time series. The observed 
data of the Dow-Jones index and IBM stock price are 
used as the test data for this system.  

The rest of the paper is arranged as follows: in section 2, 
we introduce the macroscopic ODE model; in section 3, 
we introduce the microscopic natural fractal model; 
numerical experiments are given in section 4; and in the 
end, section 5 is some conclusions. 

2   MACROSCOPIC ODE MODEL 
The complex time series are usually characteristics of 
multi-level and multi-scale. Assume that it has two 
levels: macro and micro. In order to describe it in 
macroscopic level, the researchers take many kinds of 
methods to pre-handle the time series.  

2.1   DECOMPOSITION OF ORIGINAL DATA 

In order to find out macroscopic laws from complex 
data, the first step is to decompose the original data x(ti), 
i=0,1,2,...,m as in (1) into two parts: the smooth part 
and the coarse part (non-smooth part). We assume that 
the evolutionary process of the smooth part is controlled 
by macroscopic factors, and the evolutionary process of 
the coarse part is controlled by microscopic factors. The 
smooth part will be modeled by ordinary differential 
equations (ODE), while the coarse part be modeled by 
natural fractals (a kind of multi-scale discrete wavelets). 

For the time series (1), we decompose it into two parts:  

   ,,1,0)(~)()( mitxtxtx iii L=+=      (2) 

where the smooth part )( itx  is defined as: 
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and the coarse part: 

 ,,1,0),()()(~ mitxtxtx iii L=−=  (4) 

Notice: (3) and (4) is related to the value of the smooth 
parameter l which is often proportional to m, when 
l is bigger, the time series )}({ itx is more smooth. 

2.2 MACROSCOPIC HIGHER-ORDER ODE 

MODEL   

In this subsection, we will mainly introduce how to 
model and predict the smooth data { }m

iitx 0)( = . Since 
the smooth data describe the macro behavior of 
dynamic system and determine the macroscopic 
tendency of the system, it is the essential part of 
observed data. Because it is the smooth part of observed 
data, we assume that )(tx  is sufficiently smooth, that 
is, assume that ∈)(tx Cn[t0,T],  1=n=4. 

The modeling problem of the dynamic system )(tx  is 
to find an initial value problem of the nth–order 
ordinary differential equation: 
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such that the mean square error between the values of 
its solution x*(t) at ti, i = 0,1,...,m and the series 

)}({ itx  as small as possible.  
Denote 
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That is to say, to find f in function space F, such that 
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This problem is solved by evolutionary modeling 
algorithm described in [7]. The main idea of the 
algorithm is to embed a genetic algorithm in genetic 
programming used to discover and optimize the 
structure of a model, while GA is used to optimize its 
parameters. 

The evolutionary modeling algorithm for higher-order 
ordinary differential equation can be simply described 
as follows: 

PROCEDURE 1 

begin 

  Initialize population P(0) = {p1(0), p2(0),…, pN(0)}; 
(produce N parse trees randomly ) 

  t : = 0; 

  Evaluate the fitness of pi(t ), i = 1, 2, …, N;  

  while not terminate do 

  begin 

Pc(t ) := crossover {P(t )}; 

Pm(t ) := mutation {Pc(t )}; 

Evaluate Pm(t ); 

P(t + 1) := selection {Pm(t ), P(t )}; 

t : = t + 1; 

end 

Output solution of qmitxp ibest += ,,1,0 ),(: * L ; 

end 

For the details of the process of modeling, please refer 
to [7]. 

3  MICROSCOPIC FRACTAL MODEL  
For the coarse part m

iitx 0)}(~{ = of the time series (1): 

mitxtxtx iii ,,1,0   ),()()(~ L=−= ,  

we are going to build a multi-scale micro natural fractal 
model. 

3.1 CONSTRUCTION OF NATURAL WAVELETS   
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In order to search an l–scale basic natural wavelet of 
series (4), we divide the series m

itx 0)}(~{  into l groups 
(from row to column to form the following matrix (see 
Table 1), each column as a group, including l groups), 
where xi denotes )(~

itx . 
 

Table 1 
 
             1        2   ...   S+1  ...   l   

        1     x0       x1   ...   xS    ...  xl-1 

        2     xl       xl+1  ...   xl+S   ...  x2l-1 

        M                       

        k     x(k-1) l     x(k-1) l+1 ...   x(k-1)l+S    

                                               

average   
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where  
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When S = l -1 , *
ik = k, then  (m+1)/  l = k . 

Through the points lixt l
ii  , ,2,1 ), ,( 1 L=−  in the x

－t plane, we can get a polygonal line as follows: 
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Evidently, the function x 
l
 (t ) has a local compact 

support [t0, tl-1], we call it l–scale basic natural 
wavelet. 

In order to test whether x 
l
 (t ) is a basic natural wavelet 

of time series (4), we introduce the variance ratio: 
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Assume that El has an F-distribution with (l-1, m-l+1) 
degrees of freedom. For different confidence level a  
and (l-1, m-l+1) degrees of freedom, we can get Fa(l-1, 
m-l+1) from a F-distribution table. 

If El=Fa(l-1, m-l+1), then the time series (4) exists 
l–scale basic natural wavelet )(tx l in confidence level a .  
If El < Fa  (l-1, m-l+1), then the series (4) does not exist 
l–scale basic natural wavelet in confidence level a . 

3.2 MICROSCOPIC NATURAL FRACTAL 

MODEL 

In order to build the mathematical model for the coarse 
part )(~ tx of the time series (4), we construct a 
multi-scale natural fractal model with scale l=2, 3, ..., L. 
The process can be described as follows: 

PROCEDURE 2 

begin 

   initialize xx ~:= ; where  m
iitxx 0)}(~{~
==  

   0:* =x ; where qm
iitxx +
== 0

** )}({  

   for  l =2, L,  do 

using { }m
iitx 0)( =  calculate { }l

l
lll xxxx  , , , 21 L= ; 

    if  El =Fa(l-1, m-l+1)  then 

        
) (mod  ,)(   ;*:* 1 lijxixwherexxx l

j
ll ≡=+= +  

end for 
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: ε
; 

    for  i = 0, m + q   do 

 ;)(*:)(* ε+= ixix   

end for 

end 

Remark 1: The output { }m
iitx 0)(*~
=  is the fitting part 

of { }m
iitx 0)(~
=  and { }q

miitx 1)(*~
+=  is the prediction 

part of )(~ tx . ε is the average fitting error, and it has 
been eliminated as the correction (random error). 

Remark 2: The first part of the procedure is to test 
successively whether the time series exists basic 
natural wavelet with scale l which is less than L, 
usually L=(m+1)/3, for some special problems, where 
m is relatively small, L can be magnified to L=(m+1)/2. 
if it exists, then prolong it periodically to whole 
interval [t0, tm+q] and add to the time series   

qmix +
0)}(*{ .  

Remark 3: The second part of the procedure is to 
evaluate the random error of )}(~{ itx , and then correct 
it when fitting and prediction. 

3.3 THE MULTI-LEVEL AND MULTI-SCALE 

EVOLUTIONARY MODELING S YSTEM 

Using the macroscopic modeling PROCEDURE 1 of 
nth-order ordinary differential equation (5), and the 
microscopic modeling PROCEDURE 2 of natural 
fractal, we can build a multi-level and multi-scale 
evolutionary modeling  system for fitting and 
prediction of complicated time series. Firstly, call 
PROCEDURE 1 to build the ODE (5), and use 
Runge-Kutta method to solve it to get the fitting and 
prediction values of the smooth part 

qmitx i += ,,1,0 ),(* L , then call PROCEDURE 2 
to get the fitting and prediction values of the coarse part: 

qmitx += ,,1,0),(~ * L . Adding up these data, we 
can get the needed fitting and prediction values:  

qmitxtxtx iii +==+ ,,1,0 ),()(~)( *** L  

This procedure can be described as follows: 

PROCEDURE 3 

begin 

Decompose data x [0, m] into ],0[ mx  and ],0[~ mx ; 

Call PROCEDURE 1 to get ],0[* qmx + ; 

Call PROCEDURE 2 to get ],0[~* qmx + ; 

for  i =0, m  do 

   );(~)( :)( *** ixixtx i +=  

   e(i ) : = x(i ) -x*(ti ); 

endfor 

for  i = m+1, m+q  do 

   );(~)( :)( *** ixixtx i +=  

endfor 

output  x*(ti), i  = 0,1,..., m+q; 



output  e(i), i = 0,1,..., m; 

end 

Remark 1: The first step of the procedure is to 
decompose the original time series into two parts: the 
smooth part and the coarse(non-smooth) part. 

Remark 2: The second step of the procedure is to call 
PROCEDURE 1 to deal with the smooth data )}({ tx  
and get an ODE model of and the values of its solution: 

)(,),(),( *
1

*
0

*
qmtxtxtx +L , where the first m+1 

values are the fitting values of )(tx , and the later q 
values are the prediction values of )(tx . 

Remark 3: The third step of the procedure is to call 
PROCEDURE 2 to deal with the coarse data )(~ tx  
and get a multi-scale natural fractal model and its 
solution: )(~,),(~),(~ *

1
*

0
*

qmtxtxtx +L , where the 
first m+1 values are the fitting values of )(~ tx , and 
the later q values are the prediction values of )(~ tx  at 
tm+1 , tm+2 ,..., tm+q . 

Remark 4: The fourth step of the procedure is to 
combine the fitting values of the smooth part with 
those of the coarse part of x(t) to get the time series 
{ }m

itx 0)(* and the fitting error { }mie 0)( . The fifth 
step of the procedure is to combine the prediction 
values of the smooth part with those of the coarse part 
of x(t) to get the prediction values of x(t) at the time 
tm+1 , tm+2 , ..., tm+q , where the prediction length q can be 
decided by the users. 

4  NUMERICAL EXPERIMENTS 
In this section, we mainly study the applications of 
multi-level and multi-scale evolutionary modeling 
system to the financial data.  

Firstly we use the smooth data of BUMP problem as the 
test data of the smooth model.  

4.1   MODELING OF S MOOTH SCIENTIFIC 

DATA 

In 1994, Keane [8] proposed the BUMP problem in  
optimum structural design as follows: 

The solutions of the BUMP problem are  unknown. 
According to this problem, Liu proposed a challenge 
problem in his doctoral dissertation [9] as follows: 

)( lim XfMax nn ∞→
   s.t.  0 ≤ xi≤ 10, 1 ≤ i≤ n,   

   where 75.0
1

>=∏
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n

i
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n
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Table2. Solution table of BUMP problem 

 

n nf  n nf  n nf  

1  18 0.79717388 35 0.82743885 

2 0.36497975 19 0.79800887 36 0.82783593 

3 0.51578550 20 0.80361910 37 0.82915387 

4 0.62228103 21 0.80464587 38 0.82896840 

5 0.63444869 22 0.80833226 39 0.83047389 

6 0.69386488 23 0.81003656 40 0.82983459 

7 0.70495107 24 0.81182640 41 0.83148885

8 0.72762616 25 0.81399253 42 0.83226201 

9 0.74126604 26 0.81446495 43 0.83226624 

10 0.7473103 27 0.81694692 44 0.83323002 

11 0.76105561 28 0.81648731 45 0.83285734 

12 0.76256413 29 0.81918437 46 0.83397823 

13 0.77333853 30 0.82188436 47 0.83443462 

14 0.77726156 31 0.82210164 48 0.83455114 

15 0.78244496 32 0.82442369 49 0.8318462 

16 0.78787044 33 0.82390233 50 0.83526201 

17 0.79150564 34 0.82635733   

 

Liu got  the  best  solutions of  the  BUMP 

problem for n = 2,3,...,50 as showed in Table 2, where fn 

= Max fn (x  ). The best solutions are depicted in Fig. 1. 

We want to discover higher-order ODEs to model the 
time  series  f2, f3  , f4  ,..., f50.  Denote  f i= f (ti), 
where ti = t0 + i? t , t0 =2, and ? t = 0.01. 
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Fig. 1: Best results of f2 to f50 

Using the method described in section 2, we discoverd 
the following model by computer automatically: 

15.08058 2t   

0.36497978 (2)   
)    ( 15.658156- )(d  22
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Where the modeling error is 0.00095677, this means 
the model fits the solutions of BUMP problems  very 
well. We use it to predict the solution of the challenge 
problem by using Runge-Kutta method with ? t =0.01 
in 1000000 steps, the results f(100), f(200),..., f(1000 
000) are shown in Table 3. The results of f100, 
f200, ..., f1000000 of the BUMP problem[9] got by 
Liu on a massively parallel computer are compared in 
Table 3. 

 
Table 3: the Comparison of fn and f(n) 

 

n fn f(n) 

100 

200 

300 

400 

500 

0.8448539 

0.8468442 

0.8486441 

0.8511074 

0.8504975 

0.8445141 

0.84503153 

0.84503450 

0.84503451 

0.84503451 

1500 

10000 

20000 

100000 

1000000 

0.8449622 

0.8456407 

0.8455883 

0.8448940 

0.8445861 

0.84503451 

0.84503451 

0.84503451 

0.84503451 

0.84503451 
 

These results show that the smooth model got by the 
new modeling system gives a good long-range 
prediction. 

4.2 MODELING OF THE DATA OF DOW-JONES  

INDEX 

The observed data shown in Fig.2 are taken from [10] 
giving the daily Dow-Jones index over 132 days in 
2000. We take the observed data of the first 126 days as 
historical data (training data) to build models which are 
used to predict the Dow-Jones index of the last 6 days. 

Parameter settings of the modeling experiments are 
m=126, l=4 for smoothing, m=126, q=6, t0=0,? t = 0.01 
(one day), N=100, n=2 (the second-order ODE) for 
macroscopic ODE model, and m=126, q=6, L=53,a = 
0.1 for microscopic natural fractal model. We get a 
second-order ODE model as follows: 

)356812.1115*sin(cos

)sin(/875732.3672
009766.17228

2

2

t
dt
dx

dt
xd +−=

 

The results are shown in Fig.2. 

 
Fig. 2: the fitting and prediction curves for Dow-Jones 

index 

4. 3   MODELING OF IBM S TOCK PRICE 

DATA 

The observed data shown in Fig.3 are taken from [10] 
giving the daily stock price of IBM Company from May 
17,1961 to November 2,1962. We take the observed 
data of the first 359 days as the training data to build 
models which are used to predict the stock price of the 
last 10 days.  

Parameter settings of the modeling experiments are 
m=54, l=10 for smoothing, m=359, q=10, t0=0, 
? t=0.01(one day), N=100, n=2 (the second-order ODE) 
for macroscopic ODE model, and m=359, q=10, 
L=120,a =0.1 for microscopic natural fractal model. We 
get a second-order ODE model as follows:  

x
xdt

xd 2
2

2

cos
cos

537.55.1507 −−=  

The results are shown in Fig.3. 
 

 
 

Fig.3: the fitting and prediction curves for IBM stock 

price 

5  CONCLUSION 
Compared with most available modeling methods, the 
multi-level and multi-scale evolutionary modeling 
system has the following advantages:  

Firstly, the entire process is automatic and requires little 
information in the way of the real-world system or 



expertise. 

Secondly, it allows one to model the macro-behavior of 
the system by ordinary differential equations and to 
model the micro-behavior of the system by multi-scale 
natural fractals simultaneously. 

Finally, the models discovered by computers from 
the complicated financial data can fit the original 
data quite well, and the structures of the ODE models 
are unimaginably to humans. 
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