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Abstract

The discovery of evolutionary laws of financial
market is always built on the basis of financial
data. Any financial market must be controlled by
some basic laws, including macroscopic level,
submicroscopic level and microscopic level laws.
How to discover its necessity-laws from financial
data is the most important task of financial
market analysis and prediction. Based on the
evolutionary computation, this paper proposes a
multi-level and  multi-scale  evolutionary
modeling  system  which models the
macro-behavior of the stock market by ordinary
differential equations while models the micro-
behavior of the stock market by natural fractals.
This system can be used to model and predict the
financial data(some time series), such as the
stock market data of Dow-Jones index and
IBM stock price, and always get good resullts.

1 INTRODUCTION

The financial data or data get from some real-world
systems such as stock market usually are very complex,
but any complex system is bound to be controlled by
some basic laws, including macroscopic level laws,
submicroscopic level laws and microscopic level laws.
Consider the following financial data as the time
series:

X(to), X(t), -+, X(ty) (D
where tj= ty + i?t, ?t is the time stepsize. As for the
time series, besides the traditional method of time series
analysislll, evolutionary algorithm is wually used to
cope with these datd2131i4l,

Suppose that the financial data are controlled by
macroscopic, sub-macroscopic and microscopic rules.
We take the multi-level, multi-scale models for
analyzing and predicting the financial data. In this paper,
we use the ordinary differential equation (ODE) model
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to describe the macroscopic behavior of the stock
market, while we use the natural fractal models (a kind
of natural discrete wavelets) to describe its microscopic
behavior. In this way, we build a multi-level and
multi-scale evolutionary modeling system for financial
data. This system provides a strong tool for the analysis
and prediction of complex time series. The observed
data of the Dow-Jones index and IBM stock price are
used as the test data for this system.

Therest of the paper is arranged as follows: in section 2,
we introduce the macroscopic ODE model; in section 3,
we introduce the microscopic natural fractal model;
numerical experiments are given in section 4; and in the
end, section 5 issome conclusions.

2 MACROSCOPIC ODE MODEL

The complex time series are usually characteristics of
multi-level and multi-scale. Assume that it has two
levels: macro and micro. In order to describe it in
macroscopic level, the researchers take many kinds of
methods to pre-handle the time series.

21 DECOMPOSITION OF ORIGINAL DATA

In order to find out macroscopic laws from complex
data, thefirst step isto decompose the original data x(t;),
i=0,1,2,....m as in (1) into two parts: the smooth part
and the coarse part (non-smooth part). We assume that
the evolutionary process of the smooth part is controlled
by macroscopic factors, and the evolutionary process of
the coarse part is controlled by microscopic factors. The
smooth part will be modeled by ordinary differential
eguations (ODE), while the coarse part be modeled by
natural fractals (a kind of multi-scal e discrete wavelets).

For the time series (1), we decompose it into two parts:
X(t) = X(t;) + X(t;)) i=01---,m (2

where the smooth part X(t,) is defined as:
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and the coarse part:
X(t)=x(t)- x(t,),i=021,---,m (4

Notice: (3) and (4) isrelated to the value of the smooth
parameter | which is often proportional to m, when
| isbigger, the time series {X(t;)} is more smooth.

22 MACROSCOPIC HIGHER-ORDER ODE
MODEL

In this subsection, we will mainly introduce how to
model and predict the smooth data {%(t;)}", . Since
the smooth data describe the macro behawor of
dynamic system and determine the macroscopic
tendency of the system, it is the essential part of
observed data. Because it is the smooth part of observed
data, we assume that X (t) is sufficiently smooth, that
is, assumethat X(t) | G[to,T], En=4.

The modeling problem of the dynamic system X ®) is
to find an initial value problem of the nth-order
ordinary differential equation:

"t X(n) (t) = f (t! X(t)! th)! Xa(t), T X(n- & (t))

I, L

TX(I)(t)|t:Q] = X(I)l I :0,1,"',n' 1 (5)

such that the mean square error between the values of

its solution x(t) a t, i = 01,...,m and the series

{X(t,)} assmall aspossible.

Denote

* 1 m % _ 2
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That isto say, to find f in function space F, such that
X - 7
min X - ¥ ™

This problem is solved by evolutionary modeling
algorithm described in [7]. The main idea of the
algorithm is to embed a genetic algorithm in genetic
programming used to discover and optimize the
structure of a model, while GA is used to optimize its
parameters.

The evolutionary modeling dgorithm for higher-order
ordinary differential equation can be simply described
asfollows:

PROCEDURE 1
begin

Initialize population P(0) = {p1(0), p2(0),..
(produce N parse trees randomly )

t:=0;

Evaluate the fitness of pi(t),i =1,2, .., N;
while not terminate do
begin
Pc(t) := crossover { P(t )};
Pm(t) := mutation { P(t)};
Evaluate Pp(t);
P(t + 1) := selection { Py(t ), P(t )};
t:=t+ 1,
end
Output solution of Ppog :i*(ti ),i =01---,m+qQ;
end

For the details of the process of modeling, please refer
to[7].

3 MICROSCOPIC FRACTAL MODEL
For the coarse part { X(t; )} [, of thetime series (1):
)?(t|) = X(ti) - )_((t| )1 I = Or]-""!m

we are going to build a multi-scale micro natural fractal
model.

3.1 CONSTRUCTION OF NATURAL WAVELETS

<= &%)
Denote X = 2) %m +1) (8)

In order to search an kscale basic natural wavelet of
series (4), we divide the series { X (t; )} o' into | groups
(from row to column to form the following matrix (see
Table 1), each column as a group, including | groups),
where xi denotes X (t;)

Tablel

1 2 S+l |

1 Xo X . X e Xa

2 X X+l o Xus .. Xad

k Xk)! X(k-1) 1w X(1)+s

average )_(1I )_(2I Ylsﬂ )_(lI
- 0/,

=gA X(jyi+i1x ki (9)

=1
where



. ik i3 S+1
k=i . (10)
k-1 i>S+1
WhenS=1-1, K, =k, then (m+1)/1=k.
Through the points (t,,,%; ),i =1,2,---,] inthe x

t plane, we can get a polygonal line as follows:

_}_ (t- )X~ (- )X

I q+1-ti

X(t) = if t£tEt,and OLi£l-2 (1)
-:-0 otherwise
T

Evidently, the function x' (t ) has a local compact
support [to, t.1], we cal it l-scale basic natural
wavelet.

In order to test whether x'(t ) is a basic natural wavelet
of time series (4), we introduce the variance ratio:

a k ( - X) /(l l) (12)

E =
(X(J'-l)|+i-1 - Yil)z/(m' | +1)

o]

I
a

i=1 j

1

Assume that E; has an Fdistribution with (I-1, m-1+1)
degrees of freedom. For different confidence level a
and (I-1, m +1) degrees of freedom, we can get Fy(I-1,
m-+1) from a F-distribution table.

If E=Fi(-1, m-1+1), then the time series (4) exists
|—scale basic natural wavelet x'(t) in confidence level a.
If El < F5(I-1, ml+1), then the series (4) does not exist
|—scale basic natural wavelet in confidence level a.

32 MICROSCOPIC NATURAL
MODEL

FRACTAL

In order to build the mathematical model for the coarse
part X(t) of the time series (4), we construct a
multi-scale natural fractal model with scale =2, 3, ..., L

The process can be described as follows:

PROCEDURE 2

begin
initialize X:= X; where X ={X(t, )},
X*:=0;where X ={X (t)}I
for |1=2,L, do

using {X(t,)}", calculate X ={K',)_(£,~-,X'};

if E=Fa(-1, m+1) then
x*:=x*+x';where X' (i) = 1+1’ ° i(modl)
end for
o= ém x (i) - x* (i)

izo m+1 ;

for i=0,m+q do
X* (i) :=x*(i) +e;
end for

end

Remark 1: The output {X * (t, )}, is the fitting part
of {x(t)}", and {X* (t,)}",., is the prediction
part of X (t) .e isthe average fitting error, and it has
been eliminated as the correction (random error).

Remark 2: The first part of the procedure is to test
successively whether the time series exists basic
natural wavelet with scale | which is less than L,
usually L=(m+1)/3, for some special problems, where
m isrelatively small, L can be magnified to L=(m+1)/2.
if it exists, then prolong it periodically to whole
interval [to, tmg] and add to the time series

{x*(@i)}g"

Remark 3: The second part of he procedure is to
evaluate the random error of {X(t;)} , and then correct
it when fitting and prediction.

3.3 THE MULTI-LEVEL AND MULTI-SCALE
EVOLUTIONARY MODELINGSYSTEM

Using the macroscopic modeling PROCEDURE 1 of
nth-order ordinary differential equation (5), and the
microscopic modeling PROCEDURE 2 of natural
fractal, we can build a multi-level and multi-scale
evolutionary modeling system for fitting and
prediction of complicated time series. Firstly, call
PROCEDURE 1 to build the ODE (5), and use
Runge-Kutta method to solve it to get the fitting and
predlctlon valua of the  smooth part

X (t),i=01--,m+q, then cal PROCEDURE 2
to get thefitting and prediction values of the coarse part:
X (t),i =0,1,---,m+q. Adding up these data, we
can get the needed fitting and prediction values:

X () +X(t) =x(t),i=0L--,m+q
This procedure can be described as follows:
PROCEDURE 3
begin
Decompose datax [0, m] into X[ 0, M|
Call PROCEDURE 1toget X [0,m+(];
Call PROCEDURE 2to get X [0,m+(q];
for i=0,m do
X (t):=X (i) + X (i);
ei ) r=x( ) x*(ti );

endfor
for i=m+l, m+q do

X ()= X (1) + X (i)
endfor

output x*(tj),i =0,1,..., mtq;



output e(i),i =0,1,...,m

end

Remark 1. The first step of the procedure is to
decompose the original time series into two parts: the
smooth part and the coarse(non-smooth) part.

Remark 2: The second step of the procedure is to call
PROCEDURE 1 to deal with the smooth data { X(t)}
et an ODE model of and the values of its solution:
F t,), X (), +q) » Where the first m+1
val ues are the f|tt| ng vaIues ofX(t) and the later g
values are the prediction val ues of X(t)

Remark 3: The third step of the procedure is to _call
PROCEDURE 2 to deal with the coarse data X(t)
and get a_multi-scale natural fractal model and its
solution: X (o), X (t,), -, X (1., q) > Where the
first m+1 values are the f|tt|ng valu% of XQ)

the later q values are the prediction values of X(t) at
tm+]_, tm+2 yerny tI’T'H'q'

Remark 4: The fourth step of the procedure is to
combine the fitting values of the smooth part with
those of the coarse part of x(t) to get the time series
{x* (t)}7 and the fitting error {e(i)}7 . The fifth
step of the procedure is to combine the prediction
values of the smooth part with those of the coarse part
of x(t) to get the prediction values of x(t) at the time
tme1, tre2, ..., tmeq, Where the prediction length g can be
decided by the users.

4 NUMERICAL EXPERIMENTS

In this section, we mainly study the applications of
multi-level and multi-scale evolutionary modeling
system to the financial data.

Firstly we use the smooth data of BUMP problem as the
test data of the smooth model.

n
é cos (X|) 20(:052(xI
i=1 i=1

Jiiﬁz

subject to0 <xj <10,i =1,2;--,n

Maximize f (x)

Ox|>—0 75and ax|<—751
i=1 i=1

41 MODELING OF SMOOTH SCIENTIFIC
DATA

In 1994, Keane [8] proposed the BUMP problem in
optimum structural design asfollows:

The solutions of the BUMP problem are unknown.
According to this problem, Liu proposed a challenge
problem in his doctoral dissertation [9] asfollows:

limMax f (X) st 0E£xE10,1£ifn,

n® ¥

Q n
where Qx >=0.75 ad § x <=7.5n
i=1 i=1

Table2. Solution table of BUMP problem

5
—h

n f n f

n n n

18| 0.79717388 0.82743885

0.36497975 | 19| 0.79800887 0.82783593

0.51578550 | 20| 0.80361910 0.82915387

0.62228103 0.80464587 0.82896840

0.63444869 0.80833226 0.83047389

0.82983459

21
2

0.69386488 | 23| 0.81003656
24

0.70495107 0.81182640 0.83148884

0.72762616| 25| 0.81399253 0.83226201

Ol |IN|o|la|~|[W|IN]|F

0.74126604| 26| 0.81446495 0.83226624

RIB|8|R|8]|8|8|9]|8|8

10| 0.7473103 | 27| 0.81694692 0.83323002

11 (0.76105561 0.81648731 0.83285734

12| 0.76256413 0.81918437 0.83397823

13| 0.77333853 0.82188436 0.83443462

&|%|& (&

0.83455114

15 (0.78244496 0.82442369| 49 0.8318462

16| 0.78787044 0.82390233| 50| 0.83526201

28
29
30
14| 0.77726156| 31| 0.82210164
32
33
A

17| 0.79150564 0.82635733

BUMP
problem for n = 2,3,...,50 as showed in Table 2, where f,
= Max f, (x ). The best solutions are depicted in Fig. 1.

Liu got the best solutions of the

We want to discover higher-order ODES to model the
time series f,, f3 , f4 ..., fso, Denote fi=f (t),
wheret =ty +i?t, tp =2, and ?t = 0.01.

O e
70 rf
65 ,‘

Best Result
O 0O 0O 000 O OO0 OO0 O o
o
=)
™~

2 10 18 26 34 42 50

Dimension of BUMP problem

Fig. 1: Best results of f, to fgg

Using the method described in section 2, we discoverd
the following model by computer automatically:

&£ (t)/dt? =-15658156 dif(t)/dt (t + dft)/dt )
f (2) =0.36497978
dif(t)/dt | = =15.08068



Where the modeling error is 0.00095677, this means
the model fits the solutions of BUMP problems very
well. We use it to predict the solution of the challenge
problem by using Runge-Kutta method with ?t =0.01
in 1000000 steps, the results f(100), f(200),..., f(1000
000) are shown in Table 3. The results of 100,
f200, ..., 1000000 of the BUMP problem[9] got by
Liu on a massively parallel computer are compared in
Table 3.

Table 3: the Comparison of f,, and f(n)

n fn f(n)
100 0.8448539 0.8445141
200 0.8468442 0.84503153
300 0.8486441 0.84503450
400 0.8511074 0.84503451
500 0.8504975 0.84503451
1500 0.8449622 0.84503451
10000 0.8456407 0.84503451
20000 0.8455883 0.84503451
100000 0.8448940 0.84503451
1000000 0.8445861 0.84503451

These results show that the smooth model got by the
new modeling system gives a good long-range
prediction.

4.2 MODELING OF THE DATA OF DOW-JONES
INDEX

The observed data shown in Fig.2 are taken from [10]
giving the daily Dow-Jones index over 132 days in
2000. We take the observed data of the first 126 days as
historical data (training data) to build models which are
used to predict the Dow-Jones index of the last 6 days.

Parameter settings of the modeling experiments are
m=126, |=4 for smoothing, m=126, g=6, t,=0,?t = 0.01
(one day), N=100, n=2 (the second-order ODE) for
macroscopic ODE model, and m=126, q=6, L=53,a=
0.1 for microscopic natural fractal model. We get a
second-order ODE model as follows:

3672.875732 / < n(%)

2
X 17208 009766 +—
dt? sin(cost*1115.356812)

Theresultsare shownin Fig.2.
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Fig. 2: the fitting and prediction curves for Dow-Jones
index

4. 3
DATA

MODELING OF IBM STOCK PRICE

The observed data shown in Fig.3 are taken from [10]
giving the daily stock price of IBM Company from May
17,1961 to November 2,1962. We take the observed
data of the first 359 days as the training data to build
models which are used to predict the stock price of the
last 10 days.

Parameter settings of the modeling experiments are
m=54, =10 for smoothing, m=359, g=10, tp=0,
?1t=0.01(one day), N=100, n=2 (the second-order ODE)
for macroscopic ODE model, and m=359, =10,
L=120,a=0.1 for microscopic natural fractal model. We
get a second-order ODE model as follows:

d’x _ - 1507.55.537

a2 COS X
The results are shown in Fig.3.

- cos? X
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Fig.3: the fitting and prediction curves for IBM stock
price

5 CONCLUSON

Compared with most available modeling methods, the
multi-level and multi-scale evolutionary modeling
system has the following advantages:

Firstly, the entire processis automatic and requires little
information in the way of the realworld system or



expertise.

Secondly, it allows one to model the macro-behavior of
the system by ordinary differential equations and to
model the micro-behavior of the system by multi-scale
natural fractalssimultaneously.

Finally, the models discovered by computers from

the complicated financial data can fit the original

data quite well, and the structures of the ODE models
are unimaginably to humans.
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