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Abstract

This paper proposes the application of
evolutionary computation, a stochastic search
technique that parallels the evolution of living
organisms, to parameter adjustment for voice
conversion, and reports on several experimental
results applicable to the fitting of prosodic
coefficients. Here, because of the difficulty
involved in providing a clear fitness function for
evaluating evolutionary computation, we adopt a
system of interactive evolution in which genetic
manipulation is repeated while evaluation is
performed subjectively based on human feelings.
It was found that the use of evolutionary
computation achieves voice conversion closer to
the target in question than parameter adjustment
based on designer experience or trial and error,
and that degradation in sound quality is relatively
small giving no impression of a processed voice.

1 INTRODUCTION

With the coming of the multimedia era, the market for
multimedia information devices centered about personal
computers is experiencing rapid growth. Likewise, the
market for multimedia application software is taking off
giving rise to an environment in which users can
manipulate images and sound with ease. In particular,
speech synthesis technology is expected to generate a
large market for a wide rage of applications from the
reading of E-mail and text data on the World Wide Web
to the speaking of road traffic reports provided by
navigation devices. Nevertheless, mechanically
synthesized speech by a rule-based speech synthesis
system or similar suffers from a variety of problems.
These include an impression of discontinuity between
phoneme fragments, degraded sound quality due to
repeated signal processing, and limitations in sound-
source/articulation segregation models. In other words,
the synthesis of natural speech is extremely difficult.

Current technology tends to produce mechanical or
unintelligible speech, and problems such as these are
simply delaying the spread of speech synthesis products.

Research has also begun on the application of voice
processing to narration when editing multimedia content
as in a spoken presentation. The need for voice
conversion (processing) arises from the fact that most
people have difficulty speaking with an expressive and
clear voice. However, only qualitative know-how has so
far been obtained in the development of voice-processing
technology for converting original speech to clear
narration. Parameter setting is currently performed on a
trial and error basis making adjustments difficult.

Against the above background, this research aims to
establish technology for converting original human
speech or speech mechanically synthesized from text to
clear speech rich in prosodic stress. As the first step to
this end, we have proposed the application of
evolutionary computation to parameter adjustment for the
sake of voice conversion using original speech recorded
by a microphone as input data, and have reported on
several experimental results applicable to the fitting of
prosodic coefficients [Sato 1997]. In this paper, we show
that parameter adjustment using evolutionary
computation can be effective not only for voice
conversion using original speech as input but also for
improving the clarity of speech mechanically synthesized
from text. We also investigate why parameter adjustment
using evolutionary computation is more effective than
that based on trial and error by an experienced designer.

2 VOICE ELEMENTS AND VOICE
CONVERSION

This section summarizes the feature quantities needed for
voice conversion and describes voice conversion by
prosodic control.

2.1 VOICE ELEMENTS

In human speech production, the vocal cords serve as the
sound generator. The vocal cords, which are a highly
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flexible type of muscle located deep in the throat, are
made to vibrate by breath expelled from the lungs,
thereby causing acoustic vibrations in the air (sound
waves). The waveform of this acoustic signal is
approximately triangular or saw-tooth in form and
consists of harmonic components that are integer
multiples of the fundamental frequency of the sound
wave. This acoustic signal that has a broad range of
harmonic components of a constant interval propagates
through the vocal tract from the vocal cords to the lips
and acquires resonances that depend on the shape of the
vocal tract. This transformations results in the production
of phonemes such as /a/ or /i/, which are finally emitted
from the lips as speech. That is to say, the human voice
characteristics are determined by three factors: sound
generation, propagation in the vocal tract, and emission.
The vocal cords control the pitch of the voice and the
shape of the vocal tract controls prosody. If we define
voice quality in terms of properties such as timbre, we
can consider voice quality to be determined by both the
state of the vocal cords and the state of the vocal tract
[Klatt 1990]. That is to say, we can consider pitch
structure, amplitude structure, temporal structure and
spectral structure as the feature quantities for the control
of voice quality.

2.2 MODIFICATION OF VOICE QUALITY
THROUGH PROSODIC ADJUSTMENT

Research on the features of the voices of professional
announcers has clarified to some extent the qualitative
tendencies that are related to highly-intelligible speech. It
is known, for example, that raising the overall pitch
slightly and increasing the acoustic power of consonants
slightly increases intelligibility [Kitahara 1992]. It
remains unclear, however, to what specific values those
parameters should be set. Moreover, it is generally
difficult to control dynamic spectral characteristics in real
time. In other words, it is difficult to even consider
adjusting all of the control parameters to begin with.
Therefore, sought to achieve voice conversion by limiting
the data to be controlled to pitch data, amplitude data, and
temporal structure prosodic data.
The pitch conversion method is shown in Fig. 1. Pitch is
raised by cutting out a part of the waveform within one
pitch unit. Pitch is lowered by inserting silence into a
pitch unit. Modification of the temporal structure is
accomplished as illustrated in Fig. 2. The continuation
length is accomplished by using the TDHS [Malah 1979]
enhancement method to extend or contract the sound
length without changing the pitch. Amplitude is modified
on a logarithmic power scale according to the formula

Where Wi is the current value and β is the modification
coefficient.
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Figure 1: Extension and curtailment of pitch period. 
Pitch is raised by cutting out a part of the waveform 
within one pitch unit. Pitch is lowered by inserting 
silence into a pitch unit..
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Figure 2: Extension and curtailment of temporal 
structure.  The continuation length is accomplished by 
using the TDHS enhancement method to extend or 
contract the sound length without changing the pitch.
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3  PROSODIC COEFFICIENT FITTING
BY EVOLUTIONARY COMPUTATION

3.1 CONFIGURATION OF THE VOICE
MODIFICATION SYSTEM

The configuration of the voice modification system is
illustrated in Fig. 3. The system comprises a voice
processing part and prosody control coefficient learning
part. The voice modification unit changes voice quality,
targeting terms that express emotional feelings, such as
“clear,” and “cute.” The modification of prosodic
information is done by the prosodic control unit. To
prevent degradation of voice quality, the processing is
done at the waveform level as described above rather than
at the parameter level, as is done in the usual analysis-
synthesis systems. The modification coefficient learning
unit is provided with qualitative objectives, such as terms
of emotion, and the modification coefficients used for
prosodic modification targeting those objectives are
acquired automatically by learning. As the learning
algorithm, this unit employs evolutionary computation,
which is generally known as an effective method for
solving problems that involve optimization of a large
number of combinations.

3.2 OVERVIEW OF INTERACTIVE EVOLUTION
OF PROSODIC CONTROL

The first step in this procedure is to define chromosomes,
i.e., to substitute the search problem for one of
determining an optimum chromosome. As shown in Fig.
4, we define a chromosome as a one-dimensional real-
number array corresponding to a voice-conversion target
(an emotive term) and consisting of three prosody
modification coefficients. Specifically, denoting the pitch
modification factor as α, the amplitude modification
factor as β, and the continuation time factor as γ, we
define a chromosome as the array [α, β, γ]. The next step
is to generate individuals.

Here, we generate 20, and for half of these, that is, 10
individuals, chromosomes are defined so that their
prosody modification coefficients change randomly for
each voice-conversion target. For the remaining 10,
chromosomes are defined so that their coefficients change
randomly only within the vicinity of prosody-
modification-coefficient values determined from
experience on a trial and error basis. In the following step,
evaluation, selection, and genetic manipulation are
repeated until satisfactory voice quality for conversion is
attained. Several methods of evaluation can be considered
here, such as granting points based on human subjectivity
or preparing a target speech waveform beforehand and
evaluating the mean square difference between this target
waveform and the output speech waveform from voice-
conversion equipment. In the case of evolutionary
computation, a designer will generally define a clear
evaluation function beforehand for use in automatic
recursion of change from one generation to another. It is
difficult to imagine, however, a working format in which
an end user himself sets up a clear evaluation function,
and in recognition of this difficulty, we adopt a system of
interactive evolution [Sims 1991, Takagi 2001] in which
people evaluate results subjectively (based on feelings)
for each generation.

1.383 -1.366 0.907

1.172 1.365 0.918

0.992 1.074 1.015

Figure 4: Example of the chromosomes.  It is defined
by an array, [pitch modification factor α, amplitude
modification factor β, continuation time factor γ].
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Figure 3: Block diagram of proposed voice quality conversion system.  The system comprises 
a voice processing part and prosody control coefficient learning part.
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3.3 GENETIC MANIPULATION

3.3.1 Selection Rule

Culling and selection are based on a fitness value, as
shown in Fig. 5. First, the individuals are sorted by their
fitness values. In the example shown in Fig. 5, 20
individuals are sorted in order of high fitness value with
respect to the objective of high intelligibility. The
population is then culled. Here, The half of the individuals
with the lowest fitness values is culled. The proportion of
the population culled does not have to be 50%; another
approach is to cull all individuals whose fitness values are
below a certain standard value. Next, the population is
replenished by replacing the culled individuals with a new
generation of individuals picked by roulette selection
[Goldberg 1989] in this example. To produce the new
generation, first two chromosomes are selected as the
parents. Offspring are generated from the parents by the
crossover and mutation process described below. Here, the
probability of selecting the two parent chromosomes is
proportional to the fitness values. Furthermore, duplication
in the selection is permitted. All individuals are parent
candidates, including the culled individuals. In other
words, taking M as the number of individuals to be culled,
we randomly select only M pairs of individuals from the
current generation of N individuals (I1 to IN), permitting
duplication in the selection. The crossover and mutation
genetic manipulation operations are performed on those
pairs to provide M pairs of individuals for replenishing the
population. Here, the probability P(Ii) of an individual Ii

being selected as a parent for creating the next generation
of individuals is determined by the following equation.
The term f(Ii) in this equation expresses the degree of
adaptability of Ii.

Although the method used here is to assign a fitness value
to each individual and cull the individuals that have low
values, it is also possible to select the individuals to be
culled by a tournament system. In that case, we do not
have access to the fitness values, so we considered
random selection of the parent individuals.

3.3.2 Crossover and Mutation

Figure 6 presents an example of crossover. In the
crossover operation, any one column is chosen and the
values in that column are swapped in the two parent
individuals. In Fig. 6, the modification coefficients for
continuation length are exchanged between the two
parents. The crossover genetic manipulation has the effect
of propagating bit strings (chromosome structural
components) that are linked to high fitness values to
another individual. If these structural components, which

are referred to as building blocks [Goldberg 1989], are
successfully assembled in an accurate manner, then an
effective search is accomplished.

N/2

N/2

Figure 5: Selection rule.
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Figure 6: Example of crossover.  In the crossover
operation, any one column is chosen and the
values in that column are swapped in the two
parent individuals. 
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Figure 7 shows an example of mutation whereby a
prosody modification coefficient is arbitrarily selected
and randomly changed. In this example, the operation
selects the modification coefficient related to pitch and its
value mutates from 1.172 to 0.847. Here, we use mutation
as represented by Eq. (3) to raise the probability that
target mutants are in the vicinity of parents and to
improve local searching. In the equation, Ci represents a
modification coefficient for generation i, I is a unit matrix,
k is a constant, and N is a normal distribution function
with a mean vector of 0 and a covariance of kI and is
common to all elements.

This mutation operation has the effects of escaping from
local solutions and creating diversity. In addition,
crossover and mutation combined raise the fitness value,
that is, the vicinity of the modification coefficient can be
efficiently searched near the voice-conversion target.
Moreover, as multiple individuals are performing parallel
searches from different initial values, initial-value
dependency is low and positive effects from parallel
processing can be expected.

In the experiments described below, we used a crossover
rate of 0.5 and a mutation rate of 0.3.

4 EVALUATION EXPERIMENTS

4.1 EXPERIMENT WITH ORIGINAL SPEECH AS
INPUT DATA

4.1.1  Voice Stimuli

The original voice sample, S0, was the sentence, “Let me
tell you about this company.” spoken by a female in
Japanese. Five modified samples, SA1 through SA5, that
correspond to the five emotive terms, “intelligible,”
“childish,” “joyful,” “calm,” and “angry,” were produced
by applying prosody modification coefficients obtained
by the evolutionary computation learning scheme
described above. In addition, five modified samples, SB1
through SB5, that correspond to the same five emotive
terms, “intelligible,” “childish,” “joyful,” “calm,” and
“angry,” were produced by applying prosody
modification coefficients obtained by trial and error based
on the experience of a designer.

4.1.2  Experimental Method

The subjects of the experiments were 10 randomly
selected males and females between the ages of 20 and 30
who were unaware of the purpose of the experiment.
Voice sample pairs S0 together with SAi (i = 1 to 5) and
S0 together with SBi (i = 1 to 5) were presented to the test
subjects through speakers. The subjects were instructed to
judge for each sample pair whether voice modification
corresponding to the five emotive terms specified above
had been done by selecting one of three responses: “Close
to the target expressed by the emotive term,” “Can't say,”
and “Very unlike the target.” To allow quantitative
comparison, we evaluated the degree of attainment (how
close the modification came to the target) and the degree
of good or bad impression of the sample pairs on a nine-
point scale for the childish emotive classification.
Subjects were allowed to hear each sample pair multiple
times.

4.1.3  Experimental Results

The results of the judgments of all subjects for voice
sample pairs S0 - SAi (i = 1 to 5) and S0 - SBi (i = 1 to 5)
are presented in Fig. 8 as a histogram for the responses
“Close to the target” and “Very unlike the target”. From
those results, we can see that although the trial and error
approach to obtaining the modification coefficients was
successful for the “childish”, “intelligible”, and “joyful”
classifications, the modification results were judged to be
rather unlike the target for the “calm” and “angry”
classifications. In contrast to those results, the samples
produced using the modification coefficients obtained by
the evolutionary computation approach were all judged to
be close to the target on the average.

Figure 7: Example of mutation.  In this example,
the modification parameter for pitch is chosen and
the value is varied in the range from 1.172 to 0.847.
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Next, we consider the results of the evaluation of target
attainment and good/bad impression. The values averaged
for all subjects are presented in Fig. 9. Relative to an
attainment rate of +1.0 for the prosody modification
coefficient combination obtained by a designer according
to experience, the attainment rate for the evolutionary
approach was 1.6, or an improvement of 0.6. For the
impression evaluation, the scores were -0.8 for the human
design approach and +0.6 for the evolutionary
computation approach, or an improvement of 1.6. We
believe that the reason for these results is that there was a
strong tendency to raise the pitch in the adjustment by the
designer to achieve the “childish voice” modification,
resulting in a mechanical quality that produced an
unnatural impression. The evolutionary computation
approach, on the other hand, resulted in a modification
that matched the objective without noticeable degradation
in sound quality, and thus did not give the impression of
processed voice.

4.2 EXPERIMENT WITH SYNTHESIZED
SPEECH AS INPUT DATA

4.2.1  Voice Stimuli

The voice stimuli used in this experiment were as follows.
Voice sample S1 consisted of the words “voice
conversion using evolutionary computation of prosodic
control” mechanically synthesized from text using
Macintosh provided software (Macin Talk3). Voice
samples SC1 to SC3 were obtained by performing voice
conversion on the above sample for the three emotive
terms of “childish,” “intelligible,” and “masculine”
applying prosody modification coefficients obtained by
the learning system using evolutionary computation as
described above.

4.2.2  Experimental Method

As in the experiment using original speech, the subjects
were 10 randomly selected males and females between
the ages of 20 and 30 knowing nothing about the purpose
of the experiment. Voice sample pairs S1 and SCi (I= 1-3)
were presented through a speaker to these 10 subjects
who were asked to judge whether voice conversion had
succeeded in representing the above three emotive terms.
This judgement was made in a three-level manner by
selecting one of the following three responses: “close to
the target expressed by the emotive term,” “can’t say,”
and “very unlike the target.” Furthermore, for the sake of
obtaining a quantitative comparison with respect to the
emotive term “intelligible,” we also had the subjects
perform a nine-level evaluation for both degree of
attainment in voice conversion and good/bad impression
for this voice sample pair. Subjects were allowed to hear
each sample pair several times.

4.2.3  Experimental Results

The judgments of all subjects for voice sample pairs S1
and SCi (i = 1-3) are summarized in Fig. 10 in the form of
a histogram for the responses “close to the target” and
“very unlike the target.” These results demonstrate that
voice conversion is effective for all emotive terms on
average.

Figure 11 shows the results of judging degree of
attainment and reporting good/bad impression averaged
for all subjects. We see that degree of attainment
improved by +1.2 from a value of +0.0 before conversion
by determining an optimum combination of prosody
modification coefficients using evolutionary computation.
We also see that good/bad impression improved by +0.8
changing from +0.6 to +1.4.

proposed method

Figure 8: The results of the judgments of all 
subjects for voice sample pairs. The results are 
presented as a histogram for the responses "Close 
to the target" and "Very unlike the target".
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5 DISCUSSION

The above experiments have shown that voice conversion
using evolutionary computation can get closer to a target
than parameter adjustment based on a designer’s
experience or trail and error. They have also shown that
degradation in sound quality is relatively small and that
listeners are not given a strong impression of a processed
voice in the case of evolutionary computation. We here
examine the question as to why evolutionary computation
is superior. First, we consider the problem of accuracy in
prosody modification coefficients. In the past, coefficients
have been adjusted manually using real numbers of two
or three significant digits such as 1.5 and 2.14. Such
manual adjustment, however, becomes difficult if the
search space becomes exceedingly large. On the other
hand, it has been observed that a slight modification to a
prosody modification coefficient can have a significant
effect on voice conversion. For example, while raising
pitch is an effective way of making a voice “childish,”
increasing the pitch modification factor gradually while
keeping the amplitude modification factor and
continuation time factor constant can suddenly produce
an unnatural voice like that of a “spaceman.” This can
occur even by making a slight modification to the fourth
or fifth decimal place. In other words, there are times
when the accuracy demanded of prosody modification
coefficients will exceed the range of manual adjustment.

Second, we consider the fact that each type of prosody
information, that is, pitch, amplitude, and time
continuation, is not independent but related to the other
types. When manually adjusting coefficients, it is
common to determine optimum coefficients one at a time,
such as by first adjusting the pitch modification factor
while keeping the amplitude modification factor and
continuation time factor constant, and then adjusting the
amplitude modification factor.

However, as pitch, amplitude, and time continuation are
not independent of each other but exhibit correlation, it
has been observed that changing the amplitude
modification factor after setting an optimum value for the
pitch modification factor will consequently change the
optimum solution for pitch. This suggests that the
modification coefficients for pitch, amplitude, and
continuation time must be searched for in parallel.

Figure 10: The results of the judgments of all 
subjects for voice sample pairs. The results are 
presented as a histogram for the responses "Close 
to the target" and "Very unlike the target".
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Figure 11: The results of the evaluation of target attainment and 
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Third, we consider the problem of multimodality
accompanied by time fluctuation. For example, it often
happens that a subject may not necessarily find an
optimum solution from a voice that has already been
subjected to several types of conversion. It has also been
observed that optimum solutions may vary slightly
according to the time that experiments are held and the
physical condition of subjects at that time. In other words,
we can view the problem as being one of determining a
practical semi-optimum solution in as short a time as
possible from a search space having multimodality and
temporal fluctuation in the difficulty of prediction.

On the basis of the above discussion, we can see that the
problems of voice conversion are indeed complex. For
one, a practical semi-optimum solution must be
determined in as short a time as possible from a search
space having multimodality and temporal fluctuation in
the difficulty of prediction. For another, high accuracy is
demanded of modification coefficients and several types
of modification coefficients must be searched for in
parallel. In these experiments, we have shown that
evolutionary computation is promising as an effective
means of voice conversion compared to the complex real-
world problems associated with finding an explicit
algorithm and a solution based on trail and error by a
designer. As a specific example, Fig. 12 shows the
relationship between number of generations and fitness
with respect to a “childish voice.” Ancestral individual
information is shown from “a” to “t”. Here, individuals
having prosody modification coefficients determined by
experience are placed in the vicinity of a local optimum
solution, and it takes only three generations to converge
to a practical solution by performing genetic manipulation
between these individuals and other individuals whose
prosody modification coefficients are randomly set.
Please see the example of voice conversion provided at
http://webclub.kcom.ne.jp/ma/y-sato/demo/demo1.html
for reference.

In future work, we will attempt to improve the accuracy
of voice conversion by modifying spectral data as well,
and must examine the application of evolutionary
computation to parameter adjustment with the aim of
synthesizing truly natural voices from arbitrary text. In
this experiment, people evaluate results subjectively
(based on feelings) and assign a fitness value to each
individuals, it is also possible to select the individuals to
be culled by a tournament system. It is also important to
compare with other Evolutionary Computation method
[Bäck 1997].

6  CONCLUSIONS

We have proposed the application of evolutionary
computation to the adjustment of prosody modification
coefficients for voice conversion, and have conducted
voice-conversion experiments on both original speech
recorded by a microphone and speech mechanically
synthesized from text to evaluate the effectiveness of the

proposed method. The results of these experiments
revealed that adjustment of prosody modification
coefficients by evolutionary computation performs voice
conversion more efficiently than manual adjustment, and
that degradation in sound quality is relatively small with
no impression of a processed voice in the case of
evolutionary computation. Future research must work on
improving the accuracy of voice conversion by modifying
spectral data as well, and must examine the application of
evolutionary computation to parameter adjustment with
the aim of synthesizing truly natural voices from arbitrary
text.
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