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Abstract

Function approximation is the problem of
�nding a function that best explains the
relationship between independent variables
and a dependent variable. We propose a
genetic hybrid for the critical heat ux func-
tion approximation which critically a�ects
the performance of nuclear plants. The
problem is represented for genetic algorithm
in a way that exploits the relationships be-
tween parameters. The experimental result
signi�cantly improved the existing function
at KAERI (Korea Atomic Energy Research
Institute). The framework is not just for the
tested problem; it is believed to be applicable
to other function approximation problems.

1 Introduction

GivenN data pairs fXi; yig; i = 1; 2; :::; N , where each

Xi is an n-dimensional vector of independent variables
(Xi =< xi1 ; xi2 ; : : : ; xin >) and yi is a dependent vari-
able, the function approximation problem (FAP) is
�nding a function that best explains the N pairs of
Xi and yi. Assume that the samples are derived from
an underlying system of the following form:

yi = f(Xi) +4i = f(xi1 ; xi2 ; : : : ; xin) +4i:

A popular measure for the error with respect to a can-
didate function f̂ is the LSE (Least Squares Error)
which is de�ned as follows:

LSE(f̂) =
1

N

NX

i=1

(yi � f̂(Xi))
2:

In a linear parametric model, we can �nd an optimal
function by traditional regression analysis. When it

is nonlinear, we cannot guarantee to �nd an optimal
function in most cases. There have been a number of
attempts to do function approximation with trainable
dynamic systems using neural nets and fuzzy systems
[8][30].

Derivative-based algorithm is a popular approach in
a parametric model. However, every derivative-based
algorithm converges to the nearest local minimum as-
sociated with the initial solution. Thus selecting a
good starting point is critical for a derivative-based
algorithm. A naive solution for this problem is the
multi-start approach which applies a local optimiza-
tion algorithm, such as a derivative-based algorithm,
on a number of random starting points and returns the
best result out of them. Another way is the Large-Step
Markov Chain (LSMC) method which repeats a chain
of \perturbation + local optimization" starting at an
initial point. LSMC was popular in the 1990's, par-
ticularly for the traveling salesman problem [13][20].
Another is the hybrid genetic algorithmswhich showed
notable successes on combinatorial optimization prob-
lems [5][6][21][23]. They generate diverse initial solu-
tions by genetic operators and provide them as inputs
for local optimization algorithms.

A hybrid of an adaptive regression splines algorithm
and a genetic algorithm was used to solve some FAPs

[25][26]. In the regression splines algorithm, the terms
in a regression equation take the form of splines of the
descriptors. If the numbers of descriptors and func-
tional forms are small, the space of possible �tting
equations can be explored exhaustively. However, if
the numbers are large, this is not possible. In the hy-
brid, the search for function models was replaced by
a genetic search. It showed better performance with
shorter computation times. Another GA approach
for designing a universal function approximator with
a combination of trigonometric and polynomial basis
functions was also proposed [1]. The result was re-
ported to be better than that of a statistical regression



based on polynomials, trigonometrics or cubic splines.
It also outperformed a neural-network-based solution.

In this paper, we present a hybrid genetic algorithm for
the critical-heat-ux (CHF) function approximation.
It is a problem that critically a�ects the performance
of nuclear plants. We use the nonlinear Levenberg-
Marquardt algorithm for local optimization and com-
bine it with a genetic search. In a genetic algorithm,
it is known that the encoding of solutions signi�cantly
a�ects the performance [5]. We devise a parameter-
reordering algorithm for genetic encoding to exploit
the geographical relationships of parameters in the ge-
netic search process.

This paper is organized as follows. In section 2, we
explain the basics of Levenberg-Marquardt algorithm
and critical heat ux, and present the objective. In
section 3, we describe our approach for the critical-
heat-ux function approximation. In section 4, we
provide our experimental results and compare them
against existing ones. Finally, conclusions are given in
section 5.

2 Preliminaries

2.1 Levenberg-Marquardt algorithm

In linear systems, the steepest-descent algorithm,
which moves in the steepest downhill direction deter-
mined by the gradient, is the basis for most derivative-
based algorithms. Newton's method improves the
steepest-descent algorithm by more e�ciently deter-
mining the movement direction using a Hessian ma-
trix, a matrix of the second partial derivatives. A ma-
jor disadvantage of Newton's method is that calculat-
ing the inverse of the Hessian matrix is computation-
ally expensive and may introduce numerical problems
due to round-o� errors. If the Hessian matrix is not

positive de�nite, Newton's method may also move to a
local maximum (saddle point) instead of a local mini-
mum. Levenberg [18] and Marquardt [19] added a pos-
itive de�nite matrix to the Hessian matrix to make the
Hessian positive de�nite. In this way, one can avoid
being directed to a saddle point. This approach is
generally called the Levenberg-Marquardt algorithm.
For nonlinear systems, the starting point is the Gauss-
Newton method which uses a Taylor series expansion
to obtain a linear model that approximates the orig-
inal nonlinear model. Then the least-square methods
can be applied. Of course, the Levenberg-Marquardt
algorithm can also be applied to this model; it is called
the nonlinear Levenberg-Marquardt algorithm.

2.2 Critical Heat Flux

When a heated surface is wet with cooling liquid and
most of the heat transferred is absorbed by the la-
tent heat of vaporization, a large heat transfer can be
achieved with a small temperature di�erence between
the surface and liquid. However, the region of highly
e�ective boiling heat transfer has a limiting boundary,
and the limiting condition is called the critical heat

ux condition.

The CHF condition is characterized by a sharp reduc-
tion of the local heat transfer coe�cient which results
from the replacement of liquid by vapor adjacent to
the heat transfer surface. An occurrence of CHF is
accompanied by an inordinate increase in the surface
temperature for a surface-heat-ux-controlled system,
and an inordinate decrease in the heat transfer rate for
a surface-temperature-controlled system [27].

This can be explained with Newton's law of cooling as
follows:

q = h(Tw � Tf )

where q, h, Tw, and Tf represent the heat ux, heat
transfer coe�cient, wall temperature, and uid tem-
perature, respectively. If h decreases signi�cantly due
to the occurrence of the CHF condition, Tw will in-
crease for �xed q and Tf while q will decrease for �xed
Tw and Tf .

The understanding of CHF phenomenon and accurate
prediction of the CHF condition are important for safe
and economic design of many heat transfer units in-
cluding nuclear reactors, fossil-fuel boilers, fusion reac-
tors, electronic chips, etc. Therefore, the phenomenon
has been investigated extensively over the world since
Nukiyama [24] �rst characterized it.

If CHF occurs in an atomic reactor, it lowers the ther-
mal e�ciency and hence causes a serious loss, which
endangers the safety. Therefore, it is an important
task to predict the occurrence of CHF under a cer-
tain condition. To �nd the CHF function, statistical
techniques have been widely studied [2][10]; neural net-
works [22][31] and genetic programming [17] have also
been tried.

2.3 The Objective

There can be a number of measures to evaluate the
performance of an approximate function: the sum of
the squared errors, the sum of the absolute errors, the
maximum overshoot, etc. In our problem, we use LRE
(Least Ratio Error) following the convention of the



B

A Select a function model

Tune the parameter values

Sample Data Final function

Figure 1: The process of function approximation

CHF studies [7][28]:

LRE(f̂) =
�( y

f̂(X)
)

E( y

f̂(X)
)
:

To clarify the meaning of the measure, we rewrite it
as follows:

LRE(f̂) = �(
y

E( y

f̂(X)
)� f̂(X)

):

The �nal function that we evaluate is E( y

f̂(X)
)� f̂(X)

since the new function has the following useful prop-
erty:

E(
y

E( y

f̂(X)
)� f̂(X)

) = 1:

2.4 The Dataset

Each data set consists of eight independent variables
x1; : : : ; x8 and one dependent variable CHF. We were
given 1607 sets of observed data from KAERI. The
best known function with respect to LRE that KAERI
has from years of tuning is as follows [14][15]:

CHF = �0:019278x1� 0:17253
x2

1000
� 0:1396tanh(0:05461(x3 + x4)� 1:97)

� 0:38082x5 � 0:054003x6

� f
1:8987x2

1000
+

0:047388x1x2

1000
� 0:10821x1

� 0:67613(
x2

1000
)2gx7x8

+ 0:134698x7 + 1:25103: (1)

Since the actual meaning of the variables are beyond
the focus of a methodological study, we renamed the
original variables x1; : : : ; x8.

3 The Suggested GA

3.1 Our Approach

An ideal structure for an FAP is given in Figure 1.
Given a sample data set, it repeats the process \i)
select a function model, ii) tune the parameter values."

solution
Final Stopping 

Condition

population
Prepare initial

reordering
Encoding by

Local optimization

Selection

Crossover

Mutation

Local optimization

Replacement
Yes

Given a model

No

Figure 2: The structure of the RHGA

We may use a two-level genetic algorithm that �nds
both the function model and the coe�cients by two
genetic algorithms. In the scheme, the upper level GA
provides function models and the other GA tunes the
coe�cients of each function model. This is an example
of non-parametric optimization. The search space may
be much wider than the GA can e�ectively solve in a
practical time budget since both the function models
and the sets of coe�cients have unlimited numbers of
eligible candidates. To cut the search space, we start
with the best function model at KAERI mentioned in
Section 2.4, and attempt to modify it by an analytical
method. That is, the GA in this paper is used just for
tuning the coe�cients. We name this GA a Reordered
Hybrid GA (RHGA).

The RHGA was applied to �nd coe�cients in part B
of Figure 1. Part A is tuned by an analytical method.
The structure of the RHGA is shown in Figure 2.
Given the function model (1) of Section 2.4, the co-
e�cient distribution for training is as follows:

CHF = a1x1 + a2
x2

1000
+ a3tanh(a4(x3 + x4) + a5)

+ a6x5 + a7x6

� f
a8x2

1000
+
a9x1x2

1000
+ a10x1

+ a11(
x2

1000
)2gx7x8

+ a12x7 + a13: (2)

The problem is to �nd the best set of coe�cients a1
through a13 with respect to the objective LRE in Sec-
tion 2.3. In the following subsections, we describe each
part of the RHGA in detail.

3.1.1 Problem Representation by Reordering

In the problem, the coe�cients are all real numbers.
Each solution is a set of 13 coe�cient values. In a



GA, a solution is represented by a chromosome; here,
a chromosome is a real array of 13 elements. Al-
though binary representation has been popular in the
GA community, real representation also has a long his-
tory dating back to the early 1960's [3][29]. Each ele-
ment of the array is called a gene and we restrict the
range of each gene to [-50, 50].

3.1.2 Operations: Selection, Crossover,

Mutation

Two parent chromosomes are selected with probabili-
ties that are proportional to their �tness values. The
�tness values are normalized in such a way that the
best chromosome is chosen with a probability four
times higher than that of the worst chromosome. This
is a general practice in the GA community [11]. The
normalized �tness value of a chromosome in the pop-
ulation is computed as follows:

Fk = Qw �Qk + (Qw �Qb)=3,
Qk = �( y

f̂k(X)
)=E( y

f̂k(X)
)

where
Fk : �tness of chromosome k
f̂k : the function corresponding to chromosome k
b; w : the indices of the best and the worst

chromosomes in the population

A crossover operator creates a new o�spring chromo-
some by combining parts of the two parent chromo-
somes. RHGA uses 3-point crossover that works as
follows. It randomly selects three cut points in the
same positions on both parent chromosomes. The cut
points divide each chromosome into four disjoint parts.
It makes an o�spring by alternately copying the parts
from the two parents. RHGA then perturbs the solu-
tion with the followingmutation operator. It generates
a random number for each gene of the o�spring. If the
random number for the gene is smaller than a preset
probability P1, it is replaced with an arbitrary number
in the range [-50,50].

3.1.3 Local Optimization

Local optimization is performed on each o�spring af-
ter crossover and mutation. Generally a GA is in-
e�cient in �ne-tuning around local optima. A lo-
cal optimization algorithm helps a GA �ne-tune and
improves its convergence. RHGA uses the nonlinear
Levenberg-Marquardt algorithm for local optimiza-
tion. The Levenberg-Marquardt algorithm takes a set
of initial coe�cients as input, and outputs a locally
optimized set of coe�cients. The GA provides di-
verse initial solutions by crossover and mutation for
the Levenberg-Marquardt algorithm.

3.1.4 Replacement Operation and Stopping

Criterion

RHGA uses the replacement operator used in [5]. The
o�spring �rst attempts to replace the parent more sim-
ilar to itself, measured by the sum of the distances
between all coe�cient pairs. If it fails, it attempts
to replace the other parent (replacement is done only
when the o�spring is better than one of the parents).
If the o�spring is worse than both parents, it replaces
the most inferior member of the population. It stops
after a given number of generations.

3.2 Reordering and the Modi�cation of

Function Models

3.2.1 Coe�cient Reordering

A schema is a pattern inside chromosomes. Given a
set of alphabets S, a schema is de�ned to be an n-tuple
s1s2 : : : sn where si 2 S [ f�g. In a schema, the sym-
bol \�" speci�es the don't-care positions and the other
symbols are speci�c symbols which specify the pattern.
The de�ning length of a schema is de�ned to be the
length from the leftmost speci�c symbol to the right-
most speci�c symbol. We call a schema with k speci�c

symbols a kth-order schema. Some schemas survive
and some do not by a crossover operator. The sur-
vival of high-quality schemas is important since GAs
can be explained as a growing process from low-order
schemata to high-order schemata [12]. In a single-
point crossover, schemas with short de�ning lengths
have higher probabilities to survive over generations.
If we use multipoint crossovers, a schema is not dis-
rupted when an even number of crossover points fall
between the two speci�c symbols of every pair of ad-
jacent speci�c symbols. The survival probability of a
schema is not only a�ected by its de�ning length and
we have to consider the distribution of speci�c sym-
bols [6]. For example, consider two 6-order schemas
H1 and H2 with the same de�ning length of 20. Spe-
ci�c symbols are evenly distributed in H1 but they are
highly clustered in H2. When two-point crossover is
used, the survival probability ofH1 is 45/325, and that
of H2 is 120/325. H2 has a much higher probability of
survival.

H1 : ***#***#***#***#***#***#***
H2 : ***###***************###***

This example shows the importance of genes' geo-
graphical distribution in the chromosomal representa-
tion of a GA. If two genes have a strong relationship,
it is advantageous to locate them closely [4][5]; in this
problem, we suggest a reordering algorithm that uses



Calculate Corr(ci; cj)(i; j = 1; 2; : : : ; L);
Find the pair (cm; cn)(m 6= n) having the highest

correlation;
S = cmcn;
U = fc1; c2; : : : ; cLg � fcm; cng;
while ( U 6= ; )
f

Find cl having the highest value Fl(cl; S);
Find cr having the highest value Fr(S; cr);
if ( Fl(cl; S) > Fr(S; cr) ) f

S = cl � S; //concatenation
U = U � fclg;

g else f
S = S � cr; //concatenation
U = U � fcrg;

g
g

Figure 3: Reordering algorithm

the correlations between all the pairs of coe�cients.
Figure 3 shows the coe�cient-reordering algorithm.
In the algorithm, functions Fl and Fr compute the
correlation between a coe�cient c and a string, S, of
coe�cients as follows:

Fl(c; S) = �� Corr(c; c1) + (1� �)� Corr(c; c2)
Fr(S; c) = ��Corr(ck ; c)+(1��)�Corr(ck�1 ; c);

where
S = c1c2 : : : ck

Corr(a; b) =
E[(a��a)(b��b)]

�a�b
� : a weight.

In computing the correlation between a coe�cient and
a string S, it only considers the two leftmost or right-
most coe�cients in the string S. The reasonable range
for � is [0.5, 1]. If �=1, only the leftmost or rightmost
coe�cient is considered. The main purpose of the re-
ordering is to reduce the probability that a crossover
operator separates coe�cients with high correlations.
The reordering helps the pairs of coe�cients having
high correlations to stay close in chromosomes.

3.2.2 Modi�cation of Function Models

Although we do not intend non-parametric optimiza-
tion, we attempt to modify the function model (2) of
page 3. We examine whether each term of the function
properly explains the data with the solution obtained
by RHGA. We modify the function model according to
that examination. Formally, we transform the function
with respect to a coe�cient xk as follows:

The function model KAERI RHGA

E(y=f̂(X)) 1.0026714 0.9982438

�(y=f̂(X)) 0.1072649 0.0996506

LRE 0.1069791 0.0998259

Table 1: Quality of KAERI and RHGA model

y = G(x1; x2; : : : ; xn)
() G1(xk) = G2(y; x1; : : : ; xk�1; xk+1; : : : ; xn):

We plot the relationship between G2(y, x1, : : :, xk�1,
xk+1, : : :, xn ) and xk, and also plot another relation-
ship between G1(xk) and xk . If those two relationships
are visibly di�erent from each other, it is considered
a signal to modify the function model with respect to
the variable xk . Not all variables are capable of being
examined in this way; the variables x3; x4; x5; x6 and
x8 are those so capable.

We attempted to modify the function model in this
way and by adding some linear terms. We have ob-
served that G1 and G2 are inconsistent with respect
to x4, x5, and x6. We modi�ed the terms relevant to
them as follows:

CHF = a1x1 + a2
x2

1000
+ a3tanh(a4x3 + a5log(x4) + a6)

+ a7x5 + a8x
a9
5 + a10x6 + a11x

a12
6

� f
a13x2

1000
+
a14x1x2

1000
+ a15x1 +

+ a16(
x2

1000
)2gx7x8

+ a17x7 + a18 + a19
x8

100
: (3)

4 Experimental Results

For robust comparison between the KAERI model and
the RHGA model we follow the 10-fold cross-validation
approach [9][16]. We randomly split the entire dataset
D into 10 mutually exclusive subsets D1; D2; : : : ; D10

of approximately equal size. The RHGA is trained and
tested 10 times; the kth experiment was trained with
D nDk and tested with Dk.

The cross-validation estimate of the average and the
standard deviations of the observed CHF value over
the predicted value are shown in Table 1. In the table,
LRE, described in section 2.3, is the most popular
measure for errors in the CHF approximation in the
nuclear engineering community. The RHGA approach
outperformed the KAERI function by about 7%.



# of Generations LRE std-dev trials

RHGA without reordering 7980.20 0.1006804 0.0005521 50

RHGA with reordering 5105.69 0.1001852 0.0002063 50

Table 2: The E�ect of Reordering

Table 2 shows the e�ect of reordering. In the table, \#
of Generations" represents the average generation in
which the best solution has appeared. The reordering
improved the solution quality in visibly less time.

5 Conclusions

In this paper, we proposed a genetic algorithm for
the CHF function approximation problem that com-
bines the genetic search with a nonlinear Levenberg-
Marquardt algorithm. The Levenberg-Marquardt al-
gorithm helps the GA to �ne-tune, and the GA
helps the Levenberg-Marquardt algorithm to overcome
its narrow scope. We also proposed a coe�cient-
reordering algorithm to exploit the geographical rela-
tionships of genes in the genetic encoding, which also
turned out to contribute to the performance improve-
ment. We should note that the function models were
not decided by a search method (e.g., a genetic algo-
rithm) but by analytic modi�cation. It may be worth
giving more freedom to the forms of function mod-
els under a fully non-parametric optimization model.
There is a trade-o�. We are sure that giving full free-
dom is not the right approach unless the computing
power is strengthened by exponential orders of mag-
nitude. Our current result is 7% better than the best
known solution.
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