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Abstract 
 
 

Traditional solution methods such as search and 
sort for optimising complex real life engineering 
problems can be very expensive in terms of 
computational time. The considerable execution 
time tends to inhibit elaborate exploration of the 
design space and often results to sub-optimal 
solutions. This paper reports on an engineering 
optimisation approach designed to bridge the gap 
between traditional solution methods in the 
industry and state-of-the-art techniques from the 
research community. A modelling and 
optimisation technique has been developed using 
Design of Experiment (DoE) and meta-
modelling approach to approximate expensive 
finite element (FE) runs. An evolutionary 
computational technique (NSGAII) is used for 
solving the optimisation problem. This solution 
technique was applied for multi-objective 
optimisation of a rod rolling design problem. The 
results showed NSGAII converge to the Pareto 
optimal front. The multiple optimal solutions 
help the designer in delivering a variety of 
optimal designs.  

1 INTRODUCTION 
Finite element analysis (FEA) and genetic algorithm (GA) 
often used as an integrated optimisation process paradigm 
is an increasingly important component of engineering 
research and product development.  Finite element solver 
is used as the fitness function within GA in order to 
exploit GA’s global searching capability and the 
modelling strength of the FE solvers. Since GA requires a 
large number of function evaluations, it follows that large 
number FE runs are also required. This can be 
computationally expensive for solving complex 
engineering problems.  
In rod rolling design optimisation problems, conventional 
methods such as search and sort are often used to solve 
complex optimisation problems. This approach relies on 
the use of the analyst’s qualitative knowledge to explore 

the design space (Roy, 1997; Oduguwa and Roy, 2001). 
Expensive FE analyses are often invoked repeatedly 
during the process making multi-objective optimisation 
and concept exploration time consuming. This search 
method can inhibit elaborate exploration of the design 
space and often results to sub-optimal solutions. The use 
of evolutionary multi-objective optimisation techniques 
for improving the search for this class of real life 
engineering problems is proposed in this paper. Even 
though this approach can be an improvement from the 
conventional method, literature reveals that integrating FE 
and GA incurs quite an expensive computational cost.  
Cerrolaza and Annicchiarico, (1999) solved a bi-
dimensional shape optimisation problem using GA and 
FEA as the fitness function. In the test results presented in 
their paper, the optimisation process stopped after 5000 
FE evaluations and took about 150 minutes. If the same 
number of evaluations were used in rod rolling 
optimisation problem (such as the case presented in this 
paper, where one FE run last about 17 minutes) the 
process would be completed after 52 days. Clearly this 
time scale is not acceptable for engineering applications. 
Statistical meta-modelling approach is proposed to 
address expensive FE runs in the context of multi-
objective optimisation for rod rolling problems. Statistical 
techniques are becoming widely used in engineering 
design to construct approximations of meta-models- ‘a 
model of a model’ of these analysis codes; these serve as 
surrogate models of the analysis codes (Myers and 
Montgomery, 1995; Kleijnen and Sargent, 2000). An 
evolutionary multi-objective optimisation technique is 
also proposed as above, for improving the search for this 
class of real life engineering problem.  
This paper reports on the application of design of 
experiment (DoE) to create meta-models for FE models 
and evolutionary computational techniques (NSGAII) for 
the multi-objective optimisation of a rod rolling design 
problem. 
The remainder of the paper is organised as follows. 
Section 2 states the formal definition on multi-objective 
optimisation. Section 3 reviews the literature on 
approaches to address the computational cost of FE runs 
and also the recent multi-objective techniques. Section 4 



presents the rod rolling design problem. Section 5 covers 
the meta-modelling approach consisting of 6 main steps. 
Section 6 and 7 presents the application of the meta-
modelling approach to the rod rolling design problem.  
Section 8 contains future research activities and finally, 
section 9 concludes. 

2 MULTI-OBJECTIVE OPTIMISATION 
Most real world problems are characterised by several 
non-commensurable, conflicting objectives. Multi-
objective optimisation seeks to minimise the n 
components f(x) = (f1(x),…, fn(x)), of a possibly non-linear 
vector function f of a decision variable x in the search 
space. Each of these objectives has a different optimal 
solution. There is no unique, (Utopian) solution to a 
multi-objective problem but a set of non-dominated 
solutions referred to as Pareto-optimal set. A solution to 
this class of problem is Pareto-optimal if from a point in 
the design space, the value of any other solution cannot be 
improved without deteriorating at least one of the others. 
The objective for a complex multi-objective optimisation 
problem is to find different solutions close and well 
distributed on the true Pareto-optimal front. The 
conditions for a solution to become dominated with 
respect to another solution are described as follows.   
For a problem having more than one objective function 
(say, fj, where j = 1,…., M and M > 1), A solution x(1) is 
said to dominate solution x(2) if the following conditions 
are satisfied: 
a) The solution fj(x(1)) is no worse than fj(x(2))  for all j = 

1, 2,…., M objectives.  
b) The solution x(1) is strictly better than x(2) in at least 

one objective. 

3 LITERATURE REVIEW 
In this section, related research in optimisation for solving 
real life problems is reviewed, with focus on the solution 
approaches to address the expensive computational cost 
of large FE runs. Recent solution techniques on multi-
objective optimisation are also reviewed. 

3.1 FEA AND GA COMPUTATIONAL COST 
There are several approaches proposed to address 
computational cost of large FE runs. Deb and Gulati, 
(2001) in their work on design of truss-structures, 
introduced the concept of basic and non-basic node to 
emphasise creation of user-satisfactory trusses and reduce 
computational time by avoiding expensive FEA for 
unsatisfactory trusses. Quagliarella and Vicini, (2001) 
proposed a hierarchical approach for the fitness 
evaluation. This involves using several solvers with 
different levels accuracy, in order to use the more 
computationally expensive models only when needed. 
These approaches can be regarded as “good house 
keeping measures” that improves on the computational 

expense of large FE runs, however they fall short of 
alleviating the problem in the context that makes them 
applicable to complex real life problems. A second 
classification is the solution approximation approach. 
This occurs when numerical solution of the FE solver is 
approximated, using different techniques. Chen and Lin 
(2000) in optimisation of design space topology used 
artificial neural network as an approximation to replace 
the structural analyses of the FE. Although this gives 
quick results, the approach still requires substantial data 
to train and validate the neural network Chen, (2001) 
applied design of experiment to approximate FE analysis 
and created a response surface for single objective 
optimisation of impact structure and crashworthiness 
problem. The author used classical full factorial 
experimental designs. This is considered expensive. Sacks 
et al, (1989) argued that since deterministic computer 
experiment lacks random error, classical experimental 
designs are not suitable for sampling them. This implies 
that computer experiments can be run with less sample 
points. Greiner et. al. (2001) also reported, using least 
square approximation for FE runs in optimising frame 
structures. Approximate models even though are not as 
accuracy as the actual numerical solutions, can give a 
reasonable representation of the design landscape, and 
speed up the search procedure. They can achieve 
significant savings in computational cost and can be used 
for solving complex real-life optimisation problems.            

3.2 MULTI-OBJECTIVE METHODS 
The challenge facing most solution methods is to ensure 
convergence of well-dispersed solutions close to the true 
optimal front. Some of the most recent evolutionary 
search algorithms for multi-objective optimisations are 
reviewed as follows.       

3.2.1 Strength Pareto Evolutionary Algorithm 
(SPEA) 

SPEA is an elitist evolutionary algorithm (Zitzler and 
Thiele, 1998). The algorithm maintains an external 
population for storing elite solutions from beginning of 
the initial population. At each generation, the external and 
current population is combined and fitness assigned. All 
non-dominated solutions are assigned fitness equal to the 
number of solutions they dominate and dominated 
solutions are assigned fitness worse than the worst 
solution of any non-dominated solution. Clustering 
technique is used to maintain diversity.  

3.2.2 Pareto-Archived Evolutionary Strategy 
(PAES) 

PAES is a multi-objective evolutionary algorithm 
(Knowles, Watson, et al., 2000) based on evolutionary 
strategy. Deb et al (2000) described PAES with one 
parent and one child. Both are compared, and if the child 
dominates the parent, it becomes the new parent and the 
iteration continues.  If the parent dominates the child, the 



child is discarded and a new child created by mutation. 
However if either of them dominates each other the 
choice is made by comparing them with the archived best 
solutions found so far. If the child dominates any member 
of the archive, it becomes the new parent and the 
dominated solution eliminated from the archive. If the 
child does not dominate any member of the archive, both 
parent and child are compared for their proximity, with 
archive solutions. If the child resides in the least crowded 
region in the parameter space among the archived 
member it becomes the parent and a copy added to the 
archive. 

3.2.3 Elitist Non-Dominated Sorting Genetic 
Algorithm (NSGAII)   

NSGAII(Deb, Agrawal et al., 2000) is a fast elitist 
solution algorithm that uses explicit–preservation strategy 
to maintain diversity among solutions in the non-
dominated front. In the elitist strategy, the population is 
sorted into different non-domination levels and each 
solution assigned a fitness equal to its non-domination 
level (where 1 is the best level). Binary tournament 
selection, crossover and mutation operators are used to 
create offspring population. Other features of the 
algorithm include crowding distance assignment 
procedure (for estimating the distance between two points 
in the solution space) and the crowded tournament 
selection operator (guides the selection process towards a 
uniformly dispersed Pareto-optimal front). The algorithm 
has been shown to demonstrate better performance than 
most of other contemporary algorithms (Deb, Agrawal et 
al., 2000). NSGAII can generate some non-Pareto-optimal 
solutions if the first non-dominated set is larger than the 
population (Deb, 2001). This problem was experienced in 
the current study. It is referred to as “generational elitist 
problem”.            

3.2.4 Generalised Regression GA (GRGA) 
GRGA is one of the most recent multi-objective GA 
developed by Tiwari et. al (2001) to handle complex 
multi-objective optimisation problems having high 
degrees of inseparable function interaction. An interaction 
occurs when the effect a variable has on the objective 
function depends on the values of other variables in the 
function. The author suggests in his paper that 
“inseparable function interaction in objective functions 
may augment one or more of the following features that 
obstruct convergence to the true (or global) Pareto-
optimal front”, multi-modality, deception, collateral noise 
and isolated optimum. GRGA works by attaching a non-
linear multi-variable regression analysis module to other 
optimisation algorithm. The author used NSGAII in their 
paper, but other optimisation algorithm can be used. The 
algorithm use regression coefficient to guide the search 
towards the Pareto front and determine termination 
conditions for the algorithm. One of the main advantages 
of this algorithm is that it can be used with different 
multi-objective solution algorithm. GRGA demonstrates 

better performance than NSGAII in solving the 
inseparable function interaction problem present in most 
complex multi-objective optimisation problems.  See 
(Tiwari, Roy et al., 2001) for more details.   

4 ROD ROLLING DESIGN PROBLEM 
The Rod rolling process considered is a continuous 
manufacturing process whereby a square billet (dimension 
ranging from 100mm to 150mm) referred to as the stock 
is deformed into a rod size ranging between 5mm to 
12mm. The rolling operation is a high speed, high 
production process in which a pair of rolls rotates at the 
same peripheral speed in opposite directions. The stock is 
continuously deformed by passing it through a series of 
high rolling mill stands.  During the rolling process, the 
stock undergoes changes in the mechanical and thermal 
characteristics and after final cooling the metallurgical 
properties. Design of the rolling system involves 
consideration of the mechanical, thermal and thermo-
mechanical behaviour of the process (Sun, Yun , et al., 
1998), and the optimisation of roll pass design (Farrugia, 
2000). Modelling of the rolling process is used to predict 
mill parameters (roll separating force, torque) and 
deformation characteristics such as the lateral spread and 
the evolution of metallurgical properties. These 
predictions were obtained using design variables related 
to the rolls and stock such as geometrical and material 
characteristics: temperature, friction etc.  
Ovality in rod rolling is a geometrical property defined as 
the percentage difference between the stock height and 
the width. Ovality is considered important because it 
helps in forming the rod during rolling process, however 
it is not desirable in the end product.  In this study a 
different definition of ovality is adopted. Ovality is 
defined as the difference between the maximum and 
minimum radial distance of the rod profile. This 
definition is chosen to mimic its application in the plant. 
In this work, ovality and the load required for rod 
deformation is modelled using a meta-modelling 
technique, and the minimisation of both responses is 
treated as a multi-objective problem.  The problem is 
considered multi-objective in nature because ovality tends 
to vary inversely with load. In practice a minimum rod 
ovality condition requires high contact of the stock with 
the roll, which results in high loads.   

5 META-MODELLING 
A meta-model is defined as a model of an underlying 
simulation model (Kleijnen, 1975; Friedman, 1996). It is 
an approximation of the simulation program’s 
input/output transformation referred to as a response 
surface. A typical meta-model approach is the design of 
experiment (DoE) using regression analysis, also known 
as analysis of variance (ANOVA). DoE involves making 
several designs at once and investigating the joint effects 
of these changes on a response variable. Meta-models 
offer the following benefits: (1) Insight into the 



relationship between output responses y, and the input 
design variables, x. (2) Fast analysis tools for optimisation 
and design space exploration since the surrogate models 
are used in lieu of the expensive computer, and (3) the 
integration of discipline dependent analysis codes.  
The basic meta-model framework adopted in this research 
is shown in figure 1. A brief discussion of some of the 
main steps is given below.  
 

 
 

Figure 1: Meta-model approach 
 

Step 1: Problem formulation 
This is the first stage of the simulation effort where the 
problem is defined. The aim at this stage is to understand 
the nature of the problem, and to define the experimental 
region (Zeigler, 1976). This is achieved by identifying the 

candidate parameters and the boundaries that characterise 
the design space. Existing knowledge is required to 
identify all the possible parameters involved in the 
problem space. The output of this stage is a list of inputs 
and responses with their respective range. 

Step 2: Definition of Objective 
Defining the objective indicates the question to be 
answered by the simulation study. The options available 
in this methodology are screening and optimisation. 
Screening is based on the ‘principle of parsimony’ or 
Occam’s razor(Banks, 1998). The aim is to derive a short 
list of the most important factors from a large number of 
potentially important factors. In optimisation, the meta-
model can be used to determine the set of problem entity 
input values that optimises a specific objective function.   

Step 3: Specification of model matrix 
Model matrix implies the type of DoE design (for 
example 2k-p). The choice of design type is dependent on 
the objective and the number of factors. This decision is 
simplified by using existing designs.  

Step 4: Fitting meta-model 
The simulation run (is define as a single path with fixed 
values for all its inputs and parameters) is performed to 
obtain the input and output. This data set is used to 
estimate the parameter values of the meta-model using 
least squares. Typically a regression meta-model belongs 
to one of the following three classes:  
Main effects model: (a first-order polynomial): 
Y = β0 + β1x1 + β2x2 +….+ βkxk 
Main effects + interaction effects (a first-order 
polynomial augmented with two factor interactions) 
Y = β0 + β1x1 + β2x2 +…. βkxk + β12x1 x2+ …. + 
      βk-1,kxk-1 xk 
Quadratic model with quantitative factors (a   second-
order polynomial, which includes purely quadratic 
effects) 
Y = β0 + β1x1 + β2x2 + ….+ βkxk + β12x1 x2+ ….+  
      βk-1,kxk-1 xk + β11x1

2 + β22x2
2 + ….+  βkkxk

2 

Step 5: Validation 
The data set is validated by carrying out the statistical 
tests using the Analysis of Variance (ANOVA) table. This 
tests the hypothesis that each parameter significantly 
influences the response.  

Step 6: Post-processing 
Post-processing implies the interpretation and display of 
the results. The following are options available for 
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displaying the results: Main effect plot, interaction plot, 
and half normal probability plot (Daniel plot). 

6 APPLICATION OF META-
MODELLING APPROACH FOR THE 
ROD ROLLING DESIGN PROBLEM 

6.1 EXPERIMENTAL METHOD 

The example described in this paper deals with the multi-
objective optimisation (load and load) of oval to round 
pass. The factors affecting ovality in the rod rolling 
process can be categorised as; (a) geometrical parameters 
such as height, width, roll gap, roll radius. (b) Related 
metallurgical parameters such as strain values, stress 
components and bulk temperature, (c) process parameters 
such as friction, roll speed etc. The independent variables 
especially relevant to the present ovality simulation are 
height (he), width (w), roll gap (rg), arc radius, roll radius, 
rolling speed and the bulk temperature. It is important to 
understand the overall effects and interactions of these 
parameters on ovality. Roll designers can use this 
knowledge to design the optimum required ovality that 
satisfies the conflicting objectives of the process plant 
(e.g. minimum load) and the product specification (e.g. 
minimum ovality).   
Existing knowledge was used to define region of interest, 
5 variables were identified and their operating range 
specified. A two level fractional factorial DoE augmented 
with centre points (to test for curvature) was applied to 
the design problem. The meta-modelling approach was 
applied as described below: 
 

Table 1:Factors and factor levels used in simulations 

Factors 

Level Width 
(W) 

Roll 
Gap 
(Rg) 

Arc 
Radius 
(Ar) 

Pass 
Depth 
(Pd) 

Angle 
(Ar) 

1 18 4 66 20 30 
-1 16 2 64 18 28.5 

 

Step 1: Fractional factorial (DoE) design  
A low cost resolution V design for a two-level 5 factor, 
fractional factorial design is shown in Table 2. This was 
augmented with one centre point to test for curvature. 
Each factor was run at two levels. Resolution V designs 
are types of designs where no main effect or two-factor 
interaction is aliased with any other main effect or two 
factor-interactions (Montgomery, 1997).  
FEA simulations were performed using the set-up in 
Table 2 and the settings in Table 3 as the input value for 
the FE runs. For each run, values of the measured ovality 
(Ov) and load (L) were recorded as shown in Table 3. 

Table 2:A 25-1 Design 
Run A B C D E 

1 -1 -1 -1 -1 1 
2 1 -1 -1 -1 -1 
3 -1 1 -1 -1 -1 
4 1 1 -1 -1 1 
5 -1 -1 1 -1 -1 
6 1 -1 1 -1 1 
7 -1 1 1 -1 1 
8 1 1 1 -1 -1 
9 -1 -1 -1 1 -1 
10 1 -1 -1 1 1 
11 -1 1 -1 1 1 
12 1 1 -1 1 -1 
13 -1 -1 1 1 1 
14 1 -1 1 1 -1 
15 -1 1 1 1 -1 
16 1 1 1 1 1 
17 0 0 0 0 0 

 

Table 3:Input settings and response values from 
simulation study 

Run W 
(A) 

Rg 
(B) 

Ar 
(C) 

Pd 
(D) 

An 
(E) Ov L 

1 16 2 64 18 30 1.17 238.5 
2 18 2 64 18 28.5 4.69 299.5 
3 16 4 64 18 28.5 3.17 178.0 
4 18 4 64 18 30 1.15 232.0 
5 16 2 66 18 28.5 1.28 241.0 
6 18 2 66 18 30 4.6 293.0 
7 16 4 66 18 30 3.2 167.0 
8 18 4 66 18 28.5 1.24 226.3 
9 16 2 64 20 28.5 3.17 169.3 
10 18 2 64 20 30 1.15 222.8 
11 16 4 64 20 30 6.55 129.7 
12 18 4 64 20 28.5 3.93 159.1 
13 16 2 66 20 30 3.22 171.4 
14 18 2 66 20 28.5 1.25 233.5 
15 16 4 66 20 28.5 6.52 122.2 
16 18 4 66 20 30 3.99 154.4 
17 17 3 65 19 29.2 1.74 217.3 

 

Step 2: Model Fitting 
Regression models of both responses are generated by 
fitting the model types shown in section 5 step 4 (main 
effects and interaction effects). The fit with the lowest 
sum of squares error (highest R2) was selected, this 
resulted in the following experimental model as predicted 
using ANOVA for ovality (Ov) and load (L) as functions 
of the inputs,  
f(xOv) = 3.06 – 0.3925x1 + 0.5762x2 + 0.02x3  + 0.58x4 – 
0.0138x5  –  0.75x1x2  –  0.75x1x4 + 0.95x2x4 + 0.0175x2x5 + 
0.604 x3x5 + 0.019x4x5       (1) 



f(xL) = 203.28 + 25.21x1 – 31.29x2  – 1.25x3  – 32.05x4   –
1.25x5 – 3.35x1x2 – 3.07x1x4 – 0.77x1x5 – 2.36x2x3 + 
2.32x2x4   + 0.95x2x5  + 1.33x3x4    – 3.4x3x5     (2) 
With the inputs expressed in coded [-1,1] units (useful for 
comparing experimental models). The input was also 
expressed in engineering units as shown in equation 3 and 
4. This can be useful for engineering decision making. 
Ov = 1314.263 + 16.1W – 4.7Rg – 23.53Ar + 9.75Pd – 
52.82An  – 0.75WRg – 0.75WPd  + 0.95RgPd + 0.805ArAn  + 
0.025PdAn        (3)  
L = – 8246.94 + 123.7W + 97.74Rg  + 113Ar – 73Pd + 
306.1An – 3.35WRg – 3.1WPd  – 1.03WAn  – 2.36Rg Ar  + 
2.32RgPd  + 1.27RgAn + 1.33 Ar Pd  – 4.52ArAn   (4)  
This model was used to perform the multi-objective 
optimisation problem. 
 

  
(a)               (b)  

Figure 2: Finite Element contour plots of rod profile 
(a) Transverse section (b) Full view showing SS zone 

 
Table 4: Parameters used in simulation study 

Geometrical parameters  Material specification 
Height 30.6 mm 
Roll Radius 250 mm 
Pass Radius 20 mm 
Width (W) Factor 
Roll Gap (Rg) Factor 
Arc Radius (Ar) Factor 

0.08% Carbon steel 
C 0.087, Si 0.003, Mn 
0.34, P 0.025 S 0.02.  
Hot rolled and annealed 
Suzuki (4.22) 

Pass Depth (Pd) Factor 
Arc Angle (An) Factor Process Parameters 

Ovality (Ov) Response Temperature: 1000 º C 
Load (L) Response Roll Speed: 1000 m/s 

 

6.2 Process conditions used in experiment 
The choice of geometrical parameters and material 
properties is discussed in this section. The choice of 
parameters was driven by the need to mimic the real 
design problem experienced on the plant in the study.   
The results obtained can then be validated using existing 
domain knowledge. 

Geometrical parameters: 
Expert domain knowledge was used to select the 
geometrical parameters and the region of interest defined 
according to the ranges shown in Table 1. These five 
factors are varied in the simulation runs. Other parameters 

such as height roll radius and pass radius are kept constant 
to make the simulations comparable. A summary of these 
geometrical parameters is shown in Table 4.  

Material specification 
The material specification used in the study is shown in 
Table 4. The specification was identical for all runs.   

Process parameters 
The same loading conditions were applied in all the 
simulations so that the response could be obtained under 
similar conditions.  

Finite Element Analysis and Data Extraction 
The finite element runs were performed using Abaqus 
version 6.2.2. The mesh was generated using Patran 
software. A contour plot of PEEQ (equivalent plastic 
strain) for a typical run is shown in figure 2a. Results 
showing the deformation characteristics are taken in the 
steady state (SS) zone of the rod. The SS is defined as the 
region where the deformation characteristics is assumed 
to be uniform. This zone is identified by using a 
qualitative judgement to identify region along the rod 
(figure 2b) where the contour profiles are parallel.  
 

Figure 3: Interaction effects on Ovality Response 

 

6.3 MULTI-OBJECTIVE OPTIMISATION OF 
ROD DESIGN PROBLEM USING NSGAII 

 NSGAII (Deb, Agrawal, et al., 2000) was considered 
suitable for optimising the response function described in 
section 6.1. (Equations 3 and 4). This is because NSGAII 
has been shown to perform well on equations with low-
level inseparable function interaction (Deb, 2001). If the 
model were developed with higher order interaction 
terms, then GRGA would have being used. The models 
shown in section 6.1 (equations 3 and 4) were used as the 
fitness function in NSGAII. The parameters were 
represented using binary coding. The crowded tournament 
selector operator was used to select new offsprings. The 
experiment was run with a population of size 100 for 
1000 generation with a crossover probability of 0.8 and a 
mutation probability of 0.05.  

Steady 
state zone 



7 DISCUSSION AND RESULTS 

7.1 METAMODELS 
The response ovality and load from the simulation results 
were recorded as shown in Table 3 and the data used to 
perform the ANOVA shown in Table 5. The result 
suggests that for the ovality response, the most significant 
terms are A (W), B (Rg), D (Pd), AB, AD, BD and CE. 
The sum of square of these terms accounts for over 96% 
of the total variability in the response. Figure 3 shows 
interaction effect plots of pass depth and roll gap. These 
response surface have been generated whilst the third 
variable has been held constant. This plot indicates that 
pass depth has a much stronger effect on ovality when the 
roll gap is at high level. For minimum ovality, the roll gap 
should be at the low level and pass depth at high level. 
For the load response, factors A, B and D show the most 
significant effect on the load response. These three factors 
explain 98% of the variation in the load. Interaction effect 
of pass depth and width is plotted in figure 4. Again the 
plot indicates that pass depth has a much stronger effect 
on ovality where minimum ovality occurs at high pass 
depth level and low width level.   
 
Table 5: Analysis of Variance (ANOVA) associated with 

regression model in equations 3 and 4 
  Ovality Load 
Term DoF SSq Term DoF SSq 
A (W) 1 2.465 A (W) 1 10175.9 
B (Rg) 1 5.313 B (Rg) 1 15664.4 
C (Ar) 1 0.0064 C (Ar) 1 25.0 
D (Pd) 1 5.382 D (Pd) 1 16432.0 
E (An) 1 0.003 E (An) 1 24.9 
AB 1 8.97 AB 1 179.1 
AD 1 9.0 AD 1 151.2 
BD 1 14.4 AE 1 9.5 
AE 1 0.005 BC 1 89.0 
CE 1 5.832 BD 1 86.4 
DE 1 0.006 BE 1 14.4 
Model 11 51.38 CD 1 28.2 
Error 5 1.85 CE 1 184.3 
Total 16 53.23 Model 13 43064.3 

Error 3 220 SSq: Sum of Squares  
DoF: Degree of Freedom Total 16 43284.3 

 

7.2 MULTI-OBJECTIVE OPTIMISATION 
(NSGAII)  

The result in figure 5 shows the plots of solution results 
obtained by running the NSGAII algorithm. NSGAII was 
used to minimise both load and ovality using the GA 
parameters described in section 6.3 and equation 3 and 4 
as the objective function. NSGAII was run ten times with 
different random number seeds. The best convergence is 
presented in figure 5. Seven out of ten runs obtained 
similar results. Therefore it is likely that NSGAII has 
converged to the global Pareto front. It can also be seen 

from figure 5 that NSGAII converges to the Pareto 
optimal front with a good spread of multiple optimal 
solutions. Table 6 shows decision variable values at two 
optimal solution points picked at one and two in figure 5, 
the extreme ends of the Pareto front. This demonstrates 
how multiple optimal solution can help produce a variety 
of optimal solutions. 

Figure 4: Interaction effects on Load Response 
 

Table 6:Variable values for optimal solutions 
Point W Rg Ar Pd An Ov Load 
1 16 2.4 64.7 18.7 30 2.2 216.9 
2 16 4 66 20 30 7.7 130.5 

 

Figure 5: Multi-Objective Optimisation Solution Plot 

8 FUTURE RESEARCH ACTIVITIES 
The limitations in the current modelling and optimisation 
approach and the corresponding research activities are 
listed below. 

• Qualitative (QL) knowledge cannot be used within the 
optimisation phase of the current methodology. It will 
be very useful to develop a framework explore the 
effect of QL variables on quantitative variables. This 
information can be used to guide the search in the 
optimisation process.  

• The GA runs differ in results when different parameter 
settings and scaling for the decision variable space are 
used. The choice of the best parameter settings is 
difficult as it depends on the nature of the problem. 
Developing parameter-less GA's provides a 
challenging research area. 
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9 CONCLUSION 
Traditional solution methods for optimising complex real 
life engineering problems can be very expensive and often 
results in sub-optimal solutions. A multi-objective 
optimisation approach is presented to address expensive 
computational cost of large FE runs using meta-models. 
This technique is effective in approximating FE runs and 
exploring complex search spaces for achieving multiple 
global optimal solutions. NSGAII was applied to a rod-
rolling problem. NSGAII converged to the Pareto optimal 
front showing good results. Multiple optimal solutions 
give the opportunities to deliver variety of optimal 
designs in the presence of existing qualitative knowledge.   
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