
An Evolution Strategies Based Approach to Image 
Registration 

 
 
 
 
 
 
 
 

Abstract 
 
 

An image registration approach based on 
Evolution Strategies is proposed. In image 
registration, an invariant reference needs to be 
established within each source image, which is 
unavailable in many cases. To solve this problem, 
feature configuration (which is defined as the 
cluster of feature vectors on an image representing 
homogeneous feature distribution,) is employed to 
describe the object inside the scene. Instead of 
finding the correspondence of the entire image, the 
spatial relationships of the feature configuration in 
every source image are discovered with Evolution 
Strategies (ES). While one approach, even this one, 
may not be suitable for every image domain, the 
ES approach has many advantages. Compared to 
some methods, it is computationally effective; 
compared to other, it is capable of discovering 
transformations of larger scope (e.g., greater 
rotation angles or translation distances etc.) The 
search structure we use is an ellipsoid. The results 
from various images prove it to be an efficient and 
effective method. 

1 INTRODUCTION 

A fundamental image-processing task, image registration 
matches two or more images such that features from each 
individual source are aligned against the same reference. 
Virtually all image understanding tasks, such as image 
fusion, object recognition etc., require image registration 
procedure as pre-processing. It is a particular important 
issue faced in almost all remote sensing domains. In medical 
imaging, a patient’s cranial scan must be matched with 
medical atlas images as well as previous scans of the same 
patient. In Earth science, the extent of deforestation can be 
determined only if the present image can be compared to 
ones from previous time periods. These and many other 
examples exist that assert the need to put multiple images 
into pixel-by-pixel correspondence. 

Intensive research has been devoted to find the most 
effective and efficient registration methods [2, 8, 14, 17]. 
Approaches proposed include control point based methods 
[13], frequency feature based methods [1, 16], mutual 
information based methods [9] etc. Figure 1 illustrates an 
image registration example. Two images are superimposed 
one on the other, as shown in Figure 1(c), based on the 
transformation discovered by the registration process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image registration can be viewed as a combination of 
different choices of feature space, search space, searching 
strategy, and similarity measure [12]. The feature space 
extracts information from the source images, which 
provides a quantitative space for transformation. All 
possible transformations form a search space, such that 
given a pair of images a sequence of transformations can be 
found in the search space to put these images in 
correspondence. The searching strategy defines rules of 
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Figure 1. Image (a) and (b) are two source images focusing 
on the same object but containing different scene. (c) is the 
superimposed image after registration.  



finding the next transformation. The registration accuracy is 
assessed by the similarity measure. The registration process 
proceeds iteratively by searching and applying transforms 
until the similarity measurement is satisfied.  

Generally, a similarity measure is required to evaluate the 
accuracy of aligned image after transformation. During 
registration, the similarity measurement is iteratively 
computed and improved by adjusting the transformation. 
However, most similarity measurements are 
computationally expensive even on moderately sized 
images, which makes registration inefficient, especially 
when there is a large initial difference between images. Here 
we propose a fast, control point free and feature based 
image registration method, which is based on Evolution 
Strategies. The objective is to find the correspondence 
between two or more images having a spatial difference 
caused by rigid transformation.   

The principal idea is to search for the correspondence 
between some specific feature configurations instead of the 
correspondence across the whole image. Given the specific 
feature description, Evolution Strategies is employed to find 
the feature configuration, defined in section 3.2, on all 
source images. A reference image is randomly selected 
thereafter, in which the feature configuration is located and 
is used for registering other images. However, the region 
defined by feature configurations may not enclose the same 
feature distribution. Therefore, a refinement process based 
on the reference image is followed to adjust the feature 
configuration such that similar feature enclosure is ensured. 
Finally, the transformation functions are determined by 
comparing the spatial characteristic of configurations, which 
is represented in the form of feature ellipse, against that of 
the reference configuration and are used to register those 
images. 

The rest of this article is organized as follows. In section 2, 
a short review of Evolution Strategies is given. Section 3 
presents the retrospective image registration problem and 
illustrates Evolution Strategies based image registration 
scheme. Experiments are illustrated in section 4. The paper 
is concluded with discussion in section 5.  

2 ES SHORT REVIEW  

Evolution Strategies (ESs) are algorithms  that imitate the 
principles of natural evolution as a method to solve 
parameter optimization problem [4, 3, 18] 

The goal of a parameter optimization problem f: M⊆Rn → 
R, M≠0, where f is called objective function, is to find a 
vector x*∈M such that  

)()(: *xfxfMx ≥∈∀    (1) 

where f*:=f(x*)>-∞ is called a global minimum; x* is the 
global minimum point. M is the set of feasible points for a 
problem. In correspondence with global minimum, a local 
minimum )ˆ(ˆ xff =  is defined by the following condition: 

)(ˆˆ:0 xffxxMx ≤⇒<−∈∀>∃ εε       (2) 

Coexistence of global minimum and several local minima 
make optimization a non-trivial problem. 

Each ES individual represents a vector within the domain of 
the objective function f.  Each xi, i = 1, 2, …, n, is  termed an 
object variable and is represented as a real value in the 
individual. Evolution Strategies is essentially randomized 
hill climbing, which makes it a non-deterministic 
optimization strategy. Hill climbing necessitates the 
resolution of two issues at each iteration -- (i) the direction 
to move and (ii) the distance (step size). These issues are 
resolved by embedding control variables into individual and 
an ES individual is, organized as object variables and 
control variables, illustrated below. 

},...,,;,...,,;,...,{ 212121 pmlxxx θθθσσσ  (3) 

where the σ’s and θ’s are control variables. 

An object variable should be considered the mean of a 
normally distributed random variable. Under that 
interpretation, each σi is a standard deviation for an object 
variable. Thus m ≤ l. (If m < l then σm applies to all xj, m ≤ j 
≤ l.) Each θi is a surrogate for the covariance of two object 
variables. θ is organized as an upper triangular matrix as is a 
covariance matrix. (That is to say, p = (2l-m)(m-l)/2.) The 
correspondence between θij, i,j ≤ m and the covariance, cij is  

22

2
)2tan(

ji

ij
ij

c

σσ
θ

−
=     (4) 

An interpretation of an ES organism is an l-dimensional 
jointly distributed normal variate with mean x and the 
standard deviation σ. The orientation of the distribution in l-
space is determined indirectly by the covariance and directly 
by θ.  

The incorporation of control variables into the individual 
representation establishes a two-level self-learning process, 
since not only the object variable adapts according to the 
objective function, but also the control variables change 
with respect to the actual topological requirements. In other 
words, the control variables make up an internal model of 
the objective function, which is learned on-line during 
optimum seeking without an additional measure of fitness.  

The ES algorithm is formulated in the language of biology 
as follows: 

Step 1. A given population consists of µ individuals. Each 
is characterized by its genotype consisting of n 
genes, which unambiguously determine the fitness 
for survival. 

Step 2. By mutation and recombination operations, each 
individual parent produces λ/µ offspring on 
average, so that a total number of λ offspring 
individuals are available.  

Step 3. Select the best of the offspring to form parents of 
the following generation and continue at Step 1. 



3 IMAGE REGISTRATION WITH ES 
Let I1 and I2 denote two image matrices, then image 
registration, under Cartesian Coordinates, can be expressed 
as:  

))),(((),( 21 yxfIgyxI =    (5) 

where function f(.) is a 2D spatial-coordinate 
transformation, i.e. f(.) maps two spatial coordinates, x and 
y, to new spatial coordinates x’ and y’, and function g(.)  is a 
1-D intensity or radiometric transformation.  

The registration problem is to find the optimal transform 
functions f(.) and g(.) , namely spatial and intensity 
transformation, so that the images are aligned under the 
same coordinates system. The intensity transformation g(.)  
is not always necessary, and if g(.) is need, a lookup table is 
usually sufficient [12]. 

3.1 RETROSPECTIVE REGISTRATION 

Restrospective registration is required when an image is 
obtained without the benefit of a fiducial reference system, 
e.g. a battle field surveillance image or MRI cranial scan 
image. In this case, a reference is not included in the source 
image.  

Let point (x, y) denotes the central point of the object and let 
the rotation angle be θ. In order to describe the scaling 
transformation, let’s denote a point in an image in 
homogeneous coordinates (x, y, s), with (x/s, y/s) being the 
corresponding Cartesian coordinates. Using the 
homogeneous coordinates, the transformation function f(x,y) 
has the following general form: 
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where θ determines the rotation angle. tx/s and ty/s are 
translations on horizontal and vertical directions. s is the 
scaling weight that also functions as the normalization 
factor in the homogeneous coordinates.  

3.2 REGISTRATION WITH ES  

To deal with retrospective registration, an image feature is 
employed in our scheme. Frequently used features include 
luminosity, texture, shape, etc. Usually, a picture contains at 
least one object, which can be distinguished from its 
background with a set of characteristic features. Such 
features are distributed in a certain region, i.e., the area 
defined by the shape of that object. That is , the co-
occurrence of these features is only satisfied within the 
object. Hence, the area that concurrently contains a set of 
certain features is called the feature configuration. The 
feature configuration, Φ, is defined on image I such that a 
cluster of pixels constitute a close region P within which 
image features, F1, F2, …, Fn, are uniformly distributed.  
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where ),(,...,21 yxI nFFF  is the feature vector generated by 
applying feature filters onto image I and function |.| 
measures the distance of two vectors.  

The rigid transformation does not change the feature of an 
image. That is, given the initial image I1 and the 
transformation function f, the outcome image I2 has the 
same feature as I1. Thus, the feature configurations of these 
features in I1 and I2 are also spatially related with the same 
transformation. 
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Because of its separability, a transformation function can 
also be expressed as follows: 

)),),,),,((((),( 12 syxyxITRSyxI θ∆∆∆=            (9) 

where T(.), R(.) and S(.) denote translation, rotation and 
scaling respectively. Notice that the translation parameters 
∆x and ∆y are defined with regard to the central point of the 
image. To prove equation (8), it is sufficient to prove that 
after translation and rotation, the distance between any two 
points in the feature configuration remains unchanged, 
while scaling enlarges the distance by scale of s. Due to 
space constraints, proofs are not included. 

Yuan et al. reported successful feature identification using 
Evolution Strategies [18]. Inspired by the success of their 
work, Evolution Strategies is employed to search for the 
optimal transformation. During the search for image 
correspondence, instead of evaluating similarity 
measurements over the whole image, ES identifies the 
region from each source image that contains a homogeneous 
feature configuration. To capture the feature configuration, 
an ellipse structure is used to enclose the maximum 
homogeneous feature area. Here we call such an ellipse the 
feature ellipse. 

Feature Ellipse 

Feature ellipse, Λ, is the search structure used to enclose 
feature configuration nFFF ,...,, 21Φ . Feature vectors inside the 
ellipse represent the same type of features. That is, it 
encloses only one type of feature configuration. 
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where ),(,...,, 21 yxI nFFF
Λ  and ),(,...,, 21 yxI nFFF ′′Λ  are any two 

different feature vectors enclosed by Λ.  

A feature ellipse is determined by the coordinates of the 
center (x0,  y0), the lengths of the major and minor axes a1 
and a2, and the angle θ between the major axis and the 
horizontal line. These parameters are embedded into ES as 
objective variables and are organized as (x0,  y0, a1, a2, θ). 
Figure 2 illustrates the structure of a feature ellipse. (Notice 
that ES also uses control variables denoted as θ’s that 



establish a relationship with covariance as illustrated in 
equation (2) and directly determine the orientation of the 
distribution in l-space.) 

 

 

 

 

 

 

 

 

 

 

 

The optimum to the objective function of one ES application 
is a feature ellipse that maximizes its area under the 
constraint that only one feature configuration is included. Or 
in the other words, it minimizes the difference among the 
feature vectors inside the ellipse while enlarging its area. 

Parameters Estimation 

Given the feature description, ES is applied to all source 
images to find the feature configuration Φi, i=1,…,n . The 
feature configuration Φp located from one of the source 
images, which is randomly selected, is used as the reference 
for registering other images. This arbitrarily selected image 
is distinguished as the reference image. Figure 3 illustrates 
the diagram of ES based image registration. 

Although the same feature description is used to guide the 
ES search, the outcome Φi usually does not give the same 
quantitative measurement, which appears as slightly 
different feature ellipses as shown in Figure 4(c) and 4(d). 
This is because of the probability-controlled randomness of 
reproduction process in ES. Therefore, a refinement process 
is followed. The refinement takes Φp as a reference and 
adjusts the feature configuration Φi of image Ii, such that the 
quantitative measurements, e.g. mean and variance, of each 
feature configuration, Φp and Φi, match. 

 

 

 

 

 

 

 

 

 

 

After searching, the feature configuration is reported as the 
parameters of an ellipse. The transformations fi, i=2, …, n , 
are determined by comparing the spatial parameters of 
ellipses with that of the reference. 

4 EXPERIMENTS 

In our experiments, the parent population size is chosen as 
50 and the descendant population size is 300. These 
population sizes are used in both the initial search as well as 
the later refinement step. For the purpose of accelerating the 
search process, discrete recombination on object variables 
and panmictic intermediate recombination of control 
variables is preferred [21, 3, 22]. 

Moments are used in our experiments as the quantitative 
measurements of the feature configuration. Generally, only 
the first few moments are required to differentiate between 
signatures of clearly distinct shapes [7, 6]. 
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The quantity m is recognized as the mean of v, which 
represents the gray level of an image, and µ2 as its variance. 
p(vi) is the normalized amplitude histogram at gray level vi. 
Besides the moments, the compactness of the ellipse, which 
is the ratio of the major axis and the minor axis, is 
considered as another constraint of the feature ellipse. Given 
the match of the compactness measurement, the ratio of the 
axes from two feature ellipses exposes the scale factor of the 
image. Let the axes of two feature ellipses be (a1, a2) and 
(a1’, a2’), where a1, a1’ are the length of major axes and a2, 
a2’ are the length of minor axes. The scaling factor is 
determined by the average of the ratio as shown below. 
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Figure 4 illustrates the process with sample images Child_1 
and Child_2. An initial feature ellipse is randomly chosen 
for each source image, which are drawn and shown in 
Figure 4(a) and 4(b). After approximately 50 generations, 
both feature configurations are found, as shown in Figure 
4(c) and 4(d).  
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Figure 2. Encoding parameters of ellipse into objective 
variables in ES. Region inside the ellipse contains 
homogeneous configuration of certain feature 

Figure 3. ES based image registration. Transformation function fi represents the spatial relationship between image i and 
image 1, which is selected as the reference image. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although two ES process are running under the same 
feature description, regions covered by two feature ellipses 
are usually not identical. This is due to the non-deterministic 
search characteristic of the ES algorithm. Therefore, a 
refinement process is followed. In this experiment, Child_1 
is chosen as the reference image. The mean and variance 
values of the area inside feature ellipse in image Child_1 are 
computed and used to refine the parameters of feature 
ellipse in Child_2. The refinement process uses ES 

optimization with one more constraint. That is, the 
difference between the quality measure of feature ellipse in 
Child_2 and the quality measure extracted from Child_1 is 
minimized and allow 1% error for mean, 0.1% error for 
variance and 1% error for the ellipse compactness. 

Table 1 lists the estimated transformation on six pairs of test 
images. Each pair of images is of the same size. The first 
two columns give the condition and the name of images 
used in the experiments. The next three columns contain the 

Rotation Translation 
Test Image 

Image 1 Image 2 ∆θ Image 1 Image 2 (∆x, ∆y) 
Child -0.3 -9.4 -9.1 (248, 220) (228, 182) (-20, -38) 
Plane -2.1 28.9 31.0 (180, 211) (231, 217) (51, 6) 

Phone 44.5 75.0 30.5 (194, 201) (173, 180) (-21, -21) 

River 21.6 5.6 -16.0 (222, 211) (243, 245) (21, 33) 

Infrared -5.1 -31.2 -26.1 (220, 184) (215, 177) (-5, -7) 

Noise 
Free 

Image 

Lighthouse 86.0 75.5 -10.5 (171, 270) (221, 278) (50, 8) 

Child -0.3 -9.6 -9.3 (235, 220) (218, 176) (-17, -44) 

Plane -0.3 29.7 30.0 (184, 206) (230, 212) (46, 6) 

Phone 45.3 75.2 29.9 (193, 201) (172, 180) (-21, -21) 

River 24.4 8.1 -16.3 (217, 216) (238, 245) (21, 29) 

Infrared -6.5 -33.6 -27.1 (225, 175) (215, 173) (-10, -2) 

Noisy 
Image 

Lighthouse -3.6 -12.8 -9.2 (172, 265) (221, 276) (49, 11) 

(a) (c) 

(b) (d) (e) 
Figure 4. Registration stepwise images are shown. Image (a) and image (b) illustrate source images. Image (c) and 
(d) illustrate the feature configuration found by ES. Image (e) is the outcome of the refinement step.  

Table 1. Experimental images and estimated transformation parameters. The noisy images are distorted with 20% noise. 

xh y




estimated rotation parameters, where results in column 
‘Image 1’ are the principal orientation of the feature ellipse 
located in the first image and column ‘Image 2’ contains 
orientation parameters computed from the second image. 
The column ∆θ lists the rotation difference between image 
pairs. The last three columns contain the translation 
estimations, which are coordinates of the central points of 
ellipses found in image pairs and the translation difference, 
∆x and ∆y, between central points. Table 1 also contains the 
outcomes performed on the same experimental images, 
except each image is distorted with 20% noise. It is clear 
that the transformation parameters estimated under noise are 
very close to those computed with noise-free images. 

Figure 5 illustrates two registered images, lighthouse and 
Child, given the transformation parameters provided in table 
1. The registrations are accurate under the judgment of 
human perspective.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice, the translation parameters ∆x and ∆y are not based 
on the center of the image but the central point of the feature 
ellipse. Therefore, when registering images, the translation 
and rotation are performed with regard to the center of the 
ellipse. 

Table 2 illustrates the experimental result on scaling factor 
estimation. Notice that test images are resized to 80% of the 
original size. The second and the third columns are the axes’ 
lengths of the feature ellipses, which are formatted as 

(length of major axis, length of minor axis). The error 
estimation is below 0.02. 

 

 

Axes (long, short) Images 
100% image 80% image 

Scale 
Factor 

Child (197.0, 83.3) (172.0, 62.7) 0.813 
Plane (123.7, 38.4) (95.3, 32.5) 0.808 

Phone (130.0, 55.7) (103.9, 44.3) 0.797 

River (120.3, 24.7) (93.7, 20.4) 0.802 

Infrared (181.8, 60.7) (148.2, 47.1) 0.796 

Lighthous
e 

(114.9, 50.6) (91.4, 40.9) 0.802 

 

5 DISCUSSION AND CONCLUSION 

An Evolution Strategies based image registration approach 
is described in this article. Given the feature of an image 
remaining unchanged after rigid transformation, a search 
structure, the feature ellipse, is embedded into each ES 
individual. The objective function of ES achieves the 
minimization of differences between the quantitative 
measurements of feature configurations enclosed with 
feature ellipses while enlarging its area. The registration 
scheme contains three steps: search feature configurations 
under certain feature description, refining feature ellipses by 
minimizing quantitative measurements differences, and 
determining the transformation parameters.  

Experiments have been performed on various kinds of 
images including nature scenes, military surveillance images 
etc. Promising results are also obtained under noisy 
circumstances. The experiments show the robustness of this 
approach, which is the result of two aspects. Firstly, the 
search is performed in the feature space, where the noise is 
reduced. Secondly, the optimization process, incorporating 
with the feature quantitative measurements, is insensitive to 
the noise. Even though the feature configurations found 
within the noise-free images and within noisy images are 
different, the transformation relationships discovered are 
almost identical.  

Moreover, since the feature comparison is performed inside 
a relatively small region, the feature ellipse, the computation 
expense is reduced. Figure 6 illustrates that the ratio of 
variance vs. area (enclosed by feature ellipse) changes with 
regard to the iterations. Figure 6(a) illustrates the 
optimization process with a Phone image. In the graph, solid 
circle line records the ratio changes of the reference image. 
The solid triangle line records the ratio changes of the 
companion image. (Remember, the reference image is 
simply an arbitrarily selected source image.) The graph is 
partitioned with a vertical doted line, where the left half 
illustrates the searching phase optimization and right half 
shows the refinement phase progress. Notice that during the 
first phase of registration, ES is applied individually on each 
image. Therefore the iterations used in searching are 

Table 2. Scaling factor estimation. The test images are 
resized by eighty percent.  

Figure 5. Sample registration results, lighthouse and child. 
Two source images are superimposed one on the other 
using the transformation matrix estimated with ES 
optimization.  



different. In figure 6(b), which illustrates the optimization 
process with a Plane image, it is clear that the refinement 
process adjusts the feature ellipse in the companion image 
even closer to that of the reference image. 

Experiments have been successful on images containing one 
object, which is distinguishable with a set of features. In 
cases where image contains more than one similar objects, 
due to the non-deterministic characteristic of ES, feature 
configurations representing different but similar objects may 
be found, e.g., the image shown in Figure 7. Obviously, it is 
hard to further distinguish among these objects. This 
difficulty may be overcome by ES with a niching strategy. 
Zhang et al. [19] described a niching embedded ES for 
multimodal function optimization, in which successful 
locating multiple optima is reported. Further study can be 
done for multi-object involved registration.  
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