
Evolving Neural Networks for the Classification of Galaxies

Erick Cantú-Paz and Chandrika Kamath
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551
cantupaz,kamath2@llnl.gov

Abstract

The FIRST survey (Faint Images of the Ra-
dio Sky at Twenty-cm) is scheduled to cover
10,000 square degrees of the northern and
southern galactic caps. Until recently, as-
tronomers classified radio-emitting galaxies
through a visual inspection of FIRST im-
ages. Besides being subjective, prone to er-
ror and tedious, this manual approach is be-
coming infeasible: upon completion, FIRST
will include almost a million galaxies. This
paper describes the application of six meth-
ods of evolving neural networks (NNs) with
genetic algorithms (GAs) to identify bent-
double galaxies. The objective is to demon-
strate that GAs can successfully address
some common problems in the application of
NNs to classification problems, such as train-
ing the networks, choosing appropriate net-
work topologies, and selecting relevant fea-
tures. The results indicate that most of the
methods we tried performed equally well on
our data, but using a GA to select features
produced the best results.

1 INTRODUCTION

The Faint Images of the Radio Sky at Twenty-cm
(FIRST) survey (Becker et al., 1995) started in 1993
with the goal of producing the radio equivalent of the
Palomar Observatory Sky Survey. Using the Very
Large Array at the National Radio Astronomy Ob-
servatory, FIRST is scheduled to cover more than
10,000 square degrees of the northern and southern
galactic caps. At present, FIRST has covered about
8,000 square degrees, producing more than 32,000 two-
million pixel images. At a threshold of 1 mJy, there

are approximately 90 radio-emitting galaxies, or radio
sources, in a typical square degree.

Radio sources exhibit a wide range of morphological
types that provide clues to the source’s class, emis-
sion mechanism, and properties of the surrounding
medium. Sources with a bent-double morphology are
of particular interest as they indicate the presence of
clusters of galaxies, a key project within the FIRST
survey. FIRST scientists currently identify the bent-
double galaxies by visual inspection, which—besides
being subjective, prone to error and tedious—is be-
coming increasingly infeasible as the survey grows.

Our goal is to bring automation to the classification
of galaxies using techniques from data mining, such as
neural networks. Neural networks (NNs) have been
used successfully to classify objects in many astro-
nomical applications (Odewahn et al., 1992; Storrie-
Lombardi et al., 1992; Adams & Woolley, 1994). How-
ever, the success of NNs largely depends on their ar-
chitecture, their training algorithm, and the choice of
features used in training. Unfortunately, determining
the architecture of a neural network is a trial-and-
error process; the learning algorithms must be care-
fully tuned to the data; and the relevance of features
to the classification problem may not be known a pri-
ori. Our objective is to demonstrate that genetic al-
gorithms (GAs) can successfully address the topology
selection, training, and feature selection problems, re-
sulting in accurate networks with good generalization
abilities. This paper describes the application of six
combinations of genetic algorithms and neural net-
works to the identification of bent-double galaxies.

This study is one of a handful that compares different
methods to evolve neural nets on the same domain
(Roberts & Turenga, 1995; Siddiqi & Lucas, 1998;
Grönross, 1998). In contrast with other studies that
limit their scope to two or three methods, we com-
pare six combinations of GAs and NNs against hand-



designed networks. Most of the methods we tried per-
formed equally well on our data, but using a GA to se-
lect features yielded the best results. The experiments
also show that most of the GA and NN combinations
produced significantly more accurate classifiers than
we could obtain by designing the networks by hand.

The next section outlines the problem of detecting
bent-double galaxies in the FIRST data. Section 3 de-
scribes several existing combinations of GAs and NNs.
Section 4 presents our experiments and reports the re-
sults. The paper concludes with our observations and
plans for future work.

2 FIRST SURVEY DATA

Figure 1 has several examples of radio sources from
the FIRST survey. While some bent-double galaxies
are relatively simple in shape (examples (a) and (b)),
others, such as the ones in examples (e) and (f), can
be rather complex. Note the similarity between the
bent-double in example (a) and the non-bent-double
in example (c).

Data from FIRST are available on the FIRST web site
(sundog.stsci.edu). There are two forms of data avail-
able: image maps and a catalog. The images in figure 1
are close-ups of galaxies. The catalog (White et al.,
1997) is obtained by fitting two-dimensional Gaussians
to each radio source on an image map. Each entry in
the catalog corresponds to a single Gaussian.

We decided that, initially, we would identify the radio
sources and extract the features using only the cata-
log. The astronomers expected that the catalog was
a good approximation to all but the most complex of
radio sources, and several of the features they thought
were important in identifying bent-doubles were easily
calculated from the catalog.

We identified the features for the bent-double prob-
lem through extensive conversations with FIRST as-
tronomers. When they justified their decisions of iden-
tifying a radio source as a bent-double, they placed
great importance on spatial features such as distances
and angles. Frequently, the astronomers would char-
acterize a bent-double as a radio-emitting “core” with
one or more additional components at various angles.

In the past, we have concentrated our work on in-
stances described by three catalog entries, because we
have more labeled examples of this type. Our previous
experience with this data suggested that the best ac-
curacies are usually achieved using features extracted
considering triplets of catalog entries (as opposed to
pairs or single entries). Therefore, in the remainder

of this paper we focus on the 20 triplet features that
we extracted. A full list of features is described else-
where (Fodor et al., 2000).

Unfortunately, our training set is relatively small,
containing 195 examples for the three-catalog entry
sources. Since the bent- and non-bent-doubles must
be manually labeled by FIRST scientists, putting to-
gether an adequate training set is non-trivial. More-
over, scientists are usually subjective in their labeling
of galaxies, and the astronomers often disagree in the
hard-to-classify cases. There is also no ground truth
we can use to verify our results. These issues imply
that the training set itself is not very accurate, and
there is a limit to the accuracy we can obtain.

Among the 195 labeled examples of 3-entry sources, 28
are non-bent and 167 are bent-double galaxies. This
unbalanced distribution in the training set presents
problems in estimating the accuracy of the NNs, which
are discussed in section 4.

3 GENETIC NEURAL NETWORKS

Genetic algorithms and neural networks have been
used together in several ways, and this section presents
a brief review of previous work. In particular, GAs
have been used to search for the weights of the network
and to select the most relevant features of the training
data. GAs have also been used to design the structure
of the network. It is well known that to solve non-
linearly separable problems, the network must have
at least one hidden layer between the inputs and out-
puts; but determining the number and the size of the
hidden layers is mostly a matter of trial and error.
GAs have been used to search for these parameters,
as well as for the pattern of connections and for de-
velopmental instructions to generate a network. The
interested reader may consult the reviews by Branke
(1995), Schaffer (1994) and Yao (1999).

3.1 TRAINING NETWORKS WITH GAs

Training a NN is an optimization task with the goal of
finding a set of weights that minimizes an error mea-
sure. The search space is high dimensional and, de-
pending on the error measure, it may contain numer-
ous local optima. Some network training algorithms,
such as backpropagation (BP), use some form of gra-
dient search, and may get trapped in local optima.

A straightforward combination of genetic algorithms
and neural networks is to use the GA to search for
weights that make the network perform as desired.
The architecture of the network is fixed by the user



(a) (b) (c)

(d) (e) (f)

Figure 1: Example radio sources: (a)-(b) Bent-doubles, (c)-(d) Non-bent doubles, (e)-(f) Complex Sources

prior to the experiment. In this method, each individ-
ual in the GA represents a vector with all the weights
of the network. There are two popular variations:

• Use the weights found by the GA without any fur-
ther refinement (Caudell & Dolan, 1989; Montana
& Davis, 1988; Whitley & Hanson, 1989).

• Use the GA to find a promising set of weights from
which a gradient-based method can quickly reach
an optimum (Skinner & Broughton, 1995). The
motivation is that GAs quickly identify promising
regions of the search space, but they may not fine-
tune parameters very fast.

These approaches are straightforward and numerous
studies report good results. However, since adjacent
layers in a network are usually fully connected, the to-
tal number of weights is O(n2), where n is the number
of units. Longer individuals usually require larger pop-
ulations, which in turn result in higher computational
costs. Therefore, the GA may be efficient for small net-
works, but this method may not scale up well. Another
drawback is the so-called permutations problem (Rad-
cliffe, 1990). The problem is that by permuting the
hidden nodes of a network, the representation of the
weights in the chromosome would change, but the net-
work is functionally the same. Some permutations may
not be suitable for GAs because crossover might easily
disrupt favorable combinations of weights. To amelio-
rate this problem, Thierens et al. (1991) suggested to

place incoming and outgoing weights of a hidden node
next to each other, which was the encoding we used.

3.2 FEATURE SELECTION

Besides searching for weights, GAs may be used to
select the features that are input to the NNs. The
training examples may contain irrelevant or redundant
features, but it is generally unknown a priori which
features are relevant. Avoiding irrelevant or redundant
features is desirable not only because they increase the
size of the network and the training time, but also
because they may reduce the accuracy of the network.

Applying GAs to select features is straightforward
using what is referred to as the wrapper approach:
the chromosome of the individuals contains one bit
for each feature, and the value of the bit deter-
mines whether the feature will be used in the clas-
sification (Brill, Brown, & Martin, 1990; Brotherton
& Simpson, 1995). The individuals are evaluated
by training the networks (that have a predetermined
structure) with the subset of features indicated by the
chromosome. The resulting accuracy estimate is used
to calculate the fitness.

3.3 DESIGNING NETWORKS WITH GAs

As mentioned before, the topology of a network is cru-
cial to its performance. If a network has too few nodes
and connections, it may not be able to learn the re-



quired concept. On the other hand, if a network has
too many nodes and connections, it may overfit the
training data and have poor generalization. GAs have
been used successfully to design the topology of NNs.
There are two basic approaches for applying GAs to
the design of NNs: use a direct encoding to specify
every connection of the network or evolve an indirect
specification of the connectivity.

The key idea behind direct encodings is that a neu-
ral network can be regarded as a directed graph where
each node represents a neuron and each edge is a con-
nection. A common method of representing directed
graphs is with a binary connectivity matrix: the i, j-
th element of the matrix is one if there is an edge
between nodes i and j, and zero otherwise. The con-
nectivity matrix can be represented in a GA simply
by concatenating its rows or columns (Miller et al.,
1989; Belew et al., 1990). Using this method, Whitley
et al. (1990) showed that the GA can find topologies
that learn faster than the typical fully-connected feed-
forward network. The GA can be explicitly biased to
favor smaller networks, which can be trained faster.

A simple method to avoid specifying all the connec-
tions is to commit to a particular topology and learn-
ing algorithm, and then use the GA to find the parame-
ter values that complete the network specification. For
example, with a fully-connected feedforward topology,
the GA may search for the number of layers and the
number of neurons per layer. Another example would
be to code the parameters of a particular learning al-
gorithm, such as the momentum and the learning rate
of BP (Belew et al., 1990; Marshall & Harrison, 1991).
Of course, this method is constrained by the initial
choice of topology and learning algorithm.

Another approach is to use a grammar to encode
rules that govern the development of a network. Ki-
tano (1990) introduced the earliest grammar-based ap-
proach. He used a connectivity matrix to represent the
network, but instead of encoding the matrix directly in
the chromosome, the matrix is generated by a graph-
rewriting grammar. The chromosomes contain rules
that rewrite scalar elements into 2× 2 matrices.

In this grammar, there are 16 terminal symbols that
are 2 × 2 binary matrices. There are 16 non-terminal
symbols, and the rules have the form n → m, where
n is one of the scalar non-terminals, and m is a 2× 2
matrix of non-terminals. There is an arbitrarily desig-
nated start symbol, and the number of rewriting steps
is fixed by the user.

To evaluate the fitness, the rules are decoded and the
connectivity matrix is developed by applying all the

rules that match non-terminal symbols. Then, the
connectivity matrix is interpreted and the network is
constructed and trained with BP.

Other examples of grammar-based developmental sys-
tems are the work of Boers and Kuiper (1992) with
Lindenmayer systems, Gruau’s “cellular encoding”
method (Gruau, 1992), and the system of Nolfi, El-
man, and Parisi (1994) that simulates cell growth, mi-
gration, and differentiation.

4 EXPERIMENTS

This section details the experimental methods and the
results that we obtained with six combinations of neu-
ral networks and genetic algorithms.

The programs were written in C++ and compiled with
g++ version 2.96. The experiments were executed on
a single processor of a Linux (Red Hat 7.1) workstation
with dual 1.5 GHz Intel Xeon processors and 512 Mb
of memory. The programs used a Mersenne Twister
random number generator.

All the GAs used a population of 50 individuals. We
used a simple GA with binary encoding, pairwise
tournament selection, and multi-point crossover. The
number of crossover points was varied in each exper-
iment according to the length of the chromosomes, l.
In all cases, the probability of crossover was 1, and
the probability of mutation was set to 1/l. The initial
population was initialized uniformly at random.

The experiments used feedforward networks with one
hidden layer. All neurons are connected to a “bias”
unit with constant output of 1.0. Unless specified oth-
erwise, the output units are connected to all the hidden
units, which in turn are connected to all the inputs. In
feedforward operation, the units compute their net ac-
tivation as

net =
d

∑

i=1

xiwi + w0,

where d is the number of inputs to the neuron, xi

is an input and wi is the corresponding weight, w0

is the weight corresponding to the “bias” unit. Each
unit emits an output according to f(net) = tanh(β ∗
net), where β is a user-specified coefficient. Simple
backpropagation was used in some of the experiments.
The weights from the hidden to the output layer were
updated using ∆wkj = ηδkyj = η(tk − zk)f

′(netk)yj ,
where η denotes the learning rate, k indexes the output
units, tk the desired output, zk the actual output, f ′

is the derivative of f , and yj is the output of the j-th
hidden unit. The weights from the i-th input to the



hidden layer were updated using

∆wji = η

[

c
∑

k=1

wkjδk

]

f ′(netj)xi.

In all experiments, each feature in the data was lin-
early normalized to the interval [−1, 1]. The type of
galaxy was encoded in one output value (-1 for bent
and 1 for non-bent). When backpropagation was used,
the examples were presented in random order for 20
epochs. All the results reported are averages over 10
runs of the algorithms. Comparisons were made using
standard t-tests with 95% confidence.

4.1 FITNESS CALCULATION

One of the crucial design decisions for the application
of GAs is the calculation of fitness values for each mem-
ber of the population. Since we are interested in net-
works that predict accurately the type of galaxies not
used in training, the fitness calculation must include an
estimate of the generalization ability of the networks.

There are multiple ways to estimate generalization.
Since we do not have much training data, hold-out
methods (dividing the data into training and testing
sets and perhaps an additional validation set) are not
practical. To calculate the fitness, we used the ac-
curacy estimate of five-fold crossvalidation trials. In
this method, the data D is divided into five non-
overlapping sets, D1, ..., D5. At each iteration i (from
1 to 5), the network is trained with D\Di and tested
on Di. The average of the five tests was used as the fit-
ness. A better estimate of accuracy would be to use an
average of multiple crossvalidation experiments, but
we found the cost excessive.

To correct for the unbalanced distribution of bent and
non-bent examples in our training data, we calculate
the accuracy as the geometric mean of the accuracies
of each class of galaxy (bent and non-bent) (Kubat &
Matwin, 1997). Using the geometric mean gives equal
weight to the accuracies on both types of galaxies in
the overall performance.

4.2 TRAINING NETWORKS WITH GAs

We implemented the first of the methods described in
section 3.1: the GA was used to find the network’s
weights. The network had 20 inputs that correspond
to each of the features in the data, 25 hidden nodes,
and one output. Each weight was represented with 10
bits, and the range of possible weights was [−10, 10].

For this experiment, the GA used a population of 50
individuals, each with a length of l = 5510 bits (there

are 551 total weights). The number of crossover points
was set at 25, and the mutation rate was 0.00018
(≈ 1/l). As in all experiments, pairwise tournament
selection without replacement was used.

The second training method described in section 3.1 is
to run BP using the weights represented by the indi-
viduals in the GA to initialize the network. We imple-
mented this method and used the same network archi-
tecture and GA parameters as in the first experiment.
Each network was trained using 20 epochs of BP with
a learning rate η of 0.1 and β of 0.4.

The entries Weights and Weights+BP in table 1
present the average accuracy of the best networks
found in each run of the GA for these two sets of exper-
iments. The results highlighted in bold in the table are
the best results and those not significantly worse than
the best (according to the t-test, which may detect
more differences than there actually exist). The addi-
tion of BP produces a significant improvement in the
bent-double accuracy rate, which is of primary impor-
tance to the astronomers. However, the improvement
in the overall accuracy is not significant.

4.3 FEATURE SELECTION

The next combination of GAs and NNs is to use the
GA to select the features that will be used to train the
networks, as described in section 3.2. As in the pre-
vious experiment, we set the number of hidden units
to 25, the learning rate η to 0.1 and β to 0.4. The
networks were trained with 20 epochs of BP.

Our data has 20 features, and therefore the chromo-
somes in the GA are 20 bits long. The GA used one-
point crossover and the same parameters as in previous
experiments. The accuracy results are labeled Fea-

ture Sel and are significantly better than the other
results in table 1.

The GAs consistently selected about half of the fea-
tures, and frequently selected features that appear to
be relevant to the identification of bent-double galax-
ies, such as symmetry measures and angles.

4.4 DESIGNING NETWORKS WITH GAs

For our first application of GAs to network design, the
GA was used to find the number of hidden units, the
parameters for BP, and the range of initial weights as
described in section 3.3. The learning rate was en-
coded with four bits and the range of possible values
was [0, 1]. The coefficient β for the activation function
was also encoded with four bits and its range was [0, 1].
The upper and lower ranges for the initial weights were



encoded with five bits each and were allowed to vary in
[−10, 0] and [0, 10], respectively. Finally, the number
of hidden units was represented with seven bits and
could take values in [0, 127].

After extracting the parameters from a chromosome, a
network was built and initialized according to the pa-
rameters and trained with 20 epochs of BP. There is no
explicit bias to prefer smaller networks, but there is an
implicit bias toward networks that can learn quickly,
since we are using only 20 epochs of BP. It is probable
that small networks learn faster than larger ones, and
so it is likely that the GA favors small networks.

The GA used two-point crossover and the same param-
eters as in previous experiments. The accuracy results
are labeled Parameters in table 1. On average, the
best learning rate found by the GA was 0.82 (with
0.06 std. error), which is higher than the usual rec-
ommendation of 0.1–0.2 (Duda, Hart, & Stork, 2001).
Perhaps the learning rate is high because of the im-
plicit bias for learning quickly. This bias may also
explain the average number of hidden units being rel-
atively small at 15.6 (std. error 2.8). The average β
was 0.16 (0.01), and the range of initial weights was
[−3.51, 3.45] (both with std. errors of 0.4).

The next experiment used the GA to search for a con-
nectivity matrix as described in section 3.3. We fixed
the number of hidden units to 25, the learning rate to
0.1 and β to 0.4. The neurons are numbered consecu-
tively starting with the inputs and followed by the hid-
den units and outputs. The connectivity matrix is en-
coded by concatenating its rows. Since we allow direct
connections between the inputs and the outputs, the
string length is (hidden+ outputs) ∗ inputs+hidden ∗
outputs = (26∗20)+(25∗1) = 545 bits. For this longer
string, we use 10 crossover points, and the same GA
parameters as before. The results corresponding to
this method are labeled Matrix in table 1.

We also implemented Kitano’s graph rewriting gram-
mar method. We limited the number of rewriting steps
to 6, resulting in networks with at most 64 units. Since
the chromosomes encode four 2×2 binary matrices for
each of the 16 rules, the string length is 256 bits. The
GAs used five crossover points. The results obtained
with this method are labeled Grammar in table 1.

4.5 COMPARISON AND DISCUSSION

Table 1 summarizes the results obtained with each
method. The results show few differences among the
various methods in the accuracy rate for bent-doubles.
While the direct encoding of connections (Matrix)
has the best accuracy, four other methods do not ap-

pear to be significantly less accurate. In terms of the
accuracy on the non-bents and the overall accuracy, it
is clear that the feature selection method obtained the
best results.

We also performed numerous experiments with net-
works designed by hand. The best parameters that
we could find for 20 epochs of backpropagation were
those used in the experiments with the GAs: β = 0.1,
the learning rate was 0.4, and the number of hidden
was 25. The average of ten 10-fold crossvalidation ex-
periments resulted in an accuracy on the non-bents of
only 16.4% (with std. error of 1.7) and on the bents
of 99.69% (0.16). The overall accuracy estimated with
the geometric mean is a disappointing 23.41% (2.02).

Increasing the number of training epochs to 100 raised
the standard the geometric mean accuracy to 72.69%
(0.32). The accuracy on the non-bents also improved
to 56.7%, while the accuracy on the bents decreased
slightly to 94.38%.

5 CONCLUSIONS

This paper presented a comparison of six combinations
of GAs and NNs for the identification of bent-double
galaxies in the FIRST survey. Our experiments sug-
gest that, for this application, some combinations of
GAs and NNs can produce accurate classifiers that are
competitive with networks designed by hand. For our
application, we found few differences among the GA
and NN combinations that we tried. The only consis-
tently best method was to use the GA to select the fea-
tures used to train the networks, which suggests that
some of the features in the training set are irrelevant
or redundant.

There are several avenues to extend this work. The
highly unbalanced training set presents some difficul-
ties that could be avoided or ameliorated by including
more examples of the minority class. However, extend-
ing the training set is non-trivial, because the labeling
is subjective and disagreements among the experts are
common.

Other optimization techniques, evolutionary and tra-
ditional, can be used to train NNs. In this paper we
used a simple genetic algorithm with a binary encod-
ing, but other evolutionary algorithms operate on vec-
tors of real numbers that can be directly mapped to
the network’s weights or the BP parameters (but not
to a connectivity matrix, a grammar, or a feature se-
lection application). There are other combinations of
GAs and NNs that we did not include in this study,
but appear promising. For instance, since evolution-
ary algorithms use a population of networks, a natural



Method Bent-Doubles Non-Bent Overall
Weights 86.34 (2.83) 78.01 (4.13) 80.98 (2.41)

Weights+BP 91.89 (0.67) 75.23 (0.87) 81.68 (0.53)
Feature Sel 92.99 (0.55) 83.65 (1.41) 87.51 (0.77)
Parameters 92.35 (0.89) 69.13 (1.56) 78.76 (0.57)

Matrix 93.58 (0.46) 70.77 (1.34) 80.22 (0.69)
Grammar 92.84 (0.69) 73.73 (1.40) 81.78 (0.72)

Table 1: Mean accuracies on the bent and non-bent doubles and overall accuracy for different combinations of
GAs and NNs using the geometric mean of class-wise accuracies as fitness. The numbers in parenthesis are the
standard errors, and the results in bold are the best and those not significantly worse than the best.

extension of this work would be to use evolutionary
algorithms to create ensembles that combine several
NNs to improve the accuracy of classifications.

A disadvantage of using genetic algorithms in combi-
nation with neural networks is the long computation
time required. This can be an obstacle to applying
these techniques to larger data sets, but there are nu-
merous alternatives to improve the performance of ge-
netic algorithms. For instance, we could approximate
the fitness evaluation using sampling or we can exploit
the inherently parallel nature of GAs using multiple
processors.

Acknowledgments

We gratefully acknowledge our FIRST collaborators
Robert Becker, Michael Gregg, David Helfand, Sally
Laurent-Muehleisen, and Richard White for their tech-
nical interest and support of this work. We would also
like to thank Imola K. Fodor and Nu Ai Tang for useful
discussions and computational help.

UCRL-JC-147020. This work was performed under
the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48.

References

Adams, A., & Woolley, A. (1994). Hubble classifica-
tion of galaxies using neural networks. Vistas in

Astronomy , 38 , 273–280.

Becker, R. H., White, R., & Helfand, D. (1995). The
FIRST survey: Faint images of the radio sky at
twenty-cm. Astrophysical Journal , 450 , 559.

Belew, R., McInerney, J., & Schraudolph, N. (1990).
Evolving networks: Using the genetic algorithm

with connectionist learning (Tech. Rep. No. CS90-
174). San Diego: University of California, Com-
puter Science and Engineering Department.

Boers, J. W., & Kuiper, H. (1992). Biological

metaphors and the design of modular artificial neu-

ral networks. umt, Leiden University, The Nether-
lands.

Branke, J. (1995). Evolutionary algorithms for neu-

ral network design and training (Technical Report).
Karlsruhe, Germany: Institute AIFB, University of
Karlsruhe.

Brill, F. Z., Brown, D. E., & Martin, W. N. (1990).
Genetic algorithms for feature selection for coun-

terpropogation networks (Tech. Rep. No. IPC-TR-
90-004). Charlottesville: University of Virginia, In-
stitute of Parallel Computation.

Brotherton, T. W., & Simpson, P. K. (1995). Dynamic
feature set training of neural nets for classification.
In McDonnell, J. R., Reynolds, R. G., & Fogel,
D. B. (Eds.), Evolutionary Programming IV (pp.
83–94). Cambridge, MA: MIT Press.

Caudell, T. P., & Dolan, C. P. (1989). Parametric con-
nectivity: Training of constrained networks using
genetic algorithms. In Schaffer, J. D. (Ed.), Pro-
ceedings of the Third International Conference on

Genetic Algorithms (pp. 370–374). San Mateo, CA:
Morgan Kaufmann.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pat-
tern classification. New York, NY: John Wiley &
Sons.

Fodor, I. K., Cantú-Paz, E., Kamath, C., & Tang,
N. (2000). Finding bent-double radio galaxies: A
case study in data mining. In Interface: Computer

Science and Statistics, Volume 33.

Grönross, M. A. (1998). Evolutionary design of neural

networks. Unpublished master’s thesis, University
of Turku.

Gruau, F. (1992). Genetic synthesis of boolean neural
networks with a cell rewritting developmental pro-
cess. In Whitley, D., & Schaffer, J. D. (Eds.), Pro-
ceedings of the International Workshop on Com-



binations of Genetic Algorithms and Neural Net-

works (pp. 55–74). Los Alamitos, CA: IEEE Com-
puter Society Press.

Kitano, H. (1990). Designing neural networks using
genetic algorithms with graph generation system.
Complex Systems, 4 (4), 461–476.

Kubat, M., & Matwin, S. (1997). Addressing the curse
of imbalanced training sets: One-sided selection. In
Proceedings of the 14th International Conference

on Machine Learning (pp. 179–186). San Francisco,
CA: Morgan Kaufmann.

Marshall, S. J., & Harrison, R. F. (1991). Optimiza-
tion and training of feedforward neural networks
by genetic algorithms. In Proceedings on the Sec-

ond International Conference on Artifical Neu-

ral Networks and Genetic Algorithms (pp. 39–43).
Springer Verlag.

Miller, G. F., Todd, P. M., & Hegde, S. U. (1989). De-
signing neural networks using genetic algorithms.
In Schaffer, J. D. (Ed.), Proceedings of the Third

International Conference on Genetic Algorithms

(pp. 379–384). San Mateo, CA: Morgan Kaufmann.

Montana, D. J., & Davis, L. (1988). Training feed-

forward neural networks using genetic algorithms.
unpublished manuscript.

Nolfi, S., Elman, J. L., & Parisi, D. (1994). Learn-
ing and evolution in neural networks (Tech. Rep.
No. 94-08). Rome, Italy: Institute of Psychology,
National Research Council.

Odewahn, S., Stockwell, E., Pennington, R.,
Humphreys, R., & Zumach, W. (1992). Automated
star/galaxy discrimination with neural networks.
The Astronomical Journal , 103 (1), 318–331.

Radcliffe, N. J. (1990). Genetic neural networks on

MIMD computers. Unpublished doctoral disserta-
tion, University of Edinburgh, Scotland.

Roberts, S. G., & Turenga, M. (1995). Evolving neural
network structures. In Pearson, D., Steele, N., &
Albrecht, R. (Eds.), International Conference on

Genetic Algorithms and Neural Networks (pp. 96–
99). New York: Springer-Verlag.

Schaffer, J. D. (1994). Combinations of genetic algo-
rithms with neural networks or fuzzy systems. In
Zurada, J. M., Marks, II, R. J., & Robinson, C. J.
(Eds.), Computational Intelligence Imitating Life

(pp. 371–382). New York, NY: IEEE Press.

Siddiqi, A. A., & Lucas, S. M. (1998). A comparison of
matrix rewriting versus direct encoding for evolv-
ing neural networks. In Proceedings of 1998 IEEE

Iternational Conference on Evolutionary Computa-

tion (pp. 392–397). Piscataway, NJ: IEEE Service
Center.

Skinner, A., & Broughton, J. Q. (1995). Neural net-
works in computational material science: training
algorithms. Modelling and Simulation in Material

Science and Enginnering , 3 , 371–390.

Storrie-Lombardi, M., Lahav, O., Sodre, L., & Storrie-
Lombardi, L. (1992). Morphological classification
of galaxies by artificial neural networks. Mon. Not.

R. Astron. Soc., 259 , 8–12.

Thierens, D., Suykens, J., Vandewalle, J., & Moor,
B. D. (1991). Genetic weight optimization of a feed-
forward neural network controller. In Proceedings

of the Conference on Neural Nets and Genetic Al-

gorithms (pp. 658–663). Springer Verlag.

White, R. L., Becker, R., Helfand, D., & Gregg, M.
(1997). A catalog of 1.4 GHz radio sources from the
FIRST survey. Astrophysical Journal , 475 , 479.

Whitley, D., & Hanson, T. (1989). Optimizing neu-
ral networks using faster, more accurate genetic
search. In Schaffer, J. D. (Ed.), Proceedings of

the Third International Conference on Genetic Al-

gorithms (pp. 391–397). San Mateo, CA: Morgan
Kaufmann.

Whitley, D., Starkweather, T., & Bogart, C. (1990).
Genetic algorithms and neural networks: Optimiz-
ing connections and connectivity. Parallel Comput-
ing , 14 , 347–361.

Yao, X. (1999). Evolving artificial neural networks.
Proceedings of the IEEE , 87 (9), 1423–1447.


