Learning in RoboCup Keepaway using Evolutionary Algorithms

Anthony Di Pietro

Lyndon While

Luigi Barone

Department of Computer Science & Software Engineering
The University of Western Australia
Western Australia 6009

Email:

{anthony, lyndon, luigi}@cs.uwa.edu.au

Telephone: +61 8 9380 2720

Abstract

Manually coordinating the efforts of many
autonomous agents can be a formidable chal-
lenge, so the idea of using machine learning
techniques (such as evolutionary algorithms)
to produce such coordination is attractive.
We present a study using evolutionary algo-
rithms to train autonomous agents to play
the game of keepaway — a sub-problem of
the RoboCup robotic soccer league. Our re-
sults exceed those previously produced using
other methods.

1 INTRODUCTION

Multi-agent systems is an active area of artificial intel-
ligence research that focuses on the interaction of ar-
tificially intelligent agents. Manually coordinating the
efforts of many autonomous agents can be a formidable
challenge, so the idea of using machine learning to pro-
duce such coordination is attractive.

Team sports, such as soccer, involve autonomous hu-
mans collaborating to achieve a common goal. The
RoboCup initiative challenges AT researchers to achieve
this same collaboration among autonomous software
agents in a complex, noisy, real-time environment.

Evolutionary algorithms are a robust technique for
learning in such environments. A population of candi-
dates is generated with an initial solution encoded into
each candidate, and the population evolves to produce
better solutions.

This paper describes a study where autonomous agents
learn to play the game of keepaway (a sub-problem of
the RoboCup robotic soccer league) using evolutionary
algorithms, and compares our approach to others that
have been used previously.

Section 2 describes the RoboCup set-up, introduces the
keepaway sub-problem, and discusses previous work
in this area. Section 3 describes the evolutionary
algorithm that we use and gives details of its vari-
ous components, especially the genetic representation
(Section 3.2) and the fitness function (Section 3.3).
Section 4 describes our experiments and results, and
Sections 5 and 6 conclude the paper.

2 THE ROBOCUP SIMULATION
LEAGUE

The RoboCup initiative (Kitano et al., 1997) aims to
create a robot soccer team that can beat the human
world champion team by the year 2050. It is hoped
that this ambitious goal will promote research and
collaboration in a variety of fields. There are several
RoboCup leagues for physical robots of different sizes,
and there is also a simulator league in which software
agents connect via a network to the RoboCup soccer
server and play in a virtual environment.

The soccer server provides a virtual soccer field, simu-
lates the physics of the ball and players, and enforces
the rules of the game. The field, physics, and rules
used by the server are based on those of real soccer,
but there are significant differences: for example, the
goal width is doubled and the world is two dimensional
— and the referee always makes perfect judgements!
The soccer server communicates with the players via
a client/server protocol, allowing them to receive in-
formation about the game state and send commands
to perform actions. The game state available to the
players is incomplete: a player receives only the in-
formation that would be available to a real player in
their position. Furthermore, each client may control
only one player, and players are allowed to commu-
nicate only with limited virtual speech via the soccer
server, so coordination among agents is difficult. The
soccer server manual (Chen et al., 2001) states,

One of [the] purposes of soccerserver is
[the] evaluation of multi-agent systems, in
which efficiency of communication between
agents is one of the criteria. Users must re-
alize control of multiple clients by such re-
stricted communication.

The soccer server also incorporates complex game pa-
rameters (such as stamina and inertia), and adds noise
to the movement of objects and to the players’ senses.

RoboCup tournaments are held regularly, allowing re-
searchers to demonstrate the effectiveness of their tech-
niques by competing against other teams in a complex,
noisy, real-time environment.

2.1 THE KEEPAWAY SUB-PROBLEM

While the RoboCup competition itself presents a
valid application for machine learning, its complex-
ity makes many machine learning experiments pro-
hibitively time-consuming; better/faster experimental
results can be expected for simpler problems.

One such sub-problem in RoboCup is the game of keep-
away. In keepaway, one team (the keepers or forwards)
starts with possession of the ball, and the other team
(the takers or defenders) must take the ball from them.
The game ends when a taker gets possession of the
ball, or when the ball leaves the area of play. The
keepers’ objective is to maximise the duration of the
game, while the takers’ objective is the opposite.

Figure 1 shows a keepaway game in progress.

Boundar

Figure 1: A 3 vs. 2 Keepaway Game In Progress (Di-
agram From Stone et al. (2001)).

2.2 MACHINE LEARNING IN
KEEPAWAY

Thus far, the best RoboCup teams have been manually
programmed agents (Reis and Lau, 2001; Stone and
McAllester, 2001). These teams were created based on
the assumption that because RoboCup is a simulation
of real soccer, implementing strategies known to work
in real soccer will result in a good RoboCup team.

However, this fails to account for the fundamental dif-
ferences between RoboCup and real soccer, and the
high-level differences that these create. Also, the
RoboCup rules and soccer server are constantly chang-
ing, so maintaining a manually programmed team
can be difficult. Hence the idea of applying machine
learning techniques to RoboCup is gaining ground
(e.g. (Luke et al., 1998; Andre and Teller, 1999))*.

Stone et al. (2001) used reinforcement learning to train
keepers for 3 vs. 2 keepaway (i.e. three keepers vs. two
takers) on a 20m X 20m playing field. They used a
software coach to set up games, enforce the rules, ter-
minate the games, and provide feedback to the players.
They defined the following high-level behaviour func-
tions for keepers to use.

HoldBall(): Remain stationary while keep-
ing possession of the ball and turning it
such that it is as far away from the op-
ponents as possible.

PassBall(f): Kick the ball directly to team-
mate f.

GoToBall(): Intercept a moving ball or
move directly to a stationary ball.

GetOpen(): Move to a position that is free
from opponents and open for a pass
from the ball’s current position (using
SPAR (Veloso et al., 1998)).

The keepers’ decision-making process was simplified
by using the policy space shown in Figure 2. The tak-
ers always called GoToBall() (or HoldBall() if they
already had the ball). This meant that decisions were
required only for the keeper in possession of the ball,
and that the decision was a choice of three possible ac-
tions: HoldBall(), PassBall(1l) and PassBall(2).

Stone et al. also implemented three benchmark poli-
cies: making random decisions; always holding the
ball; and a manually-coded policy that holds the ball
unless a taker is within 10m and a safe pass is avail-
able. The reinforcement learning generated policies

!We describe here only applications of machine learning
to keepaway.

Teammate with ball
or can get there
faster

Ball not

GetOpen() kickable

Ball
kickable

GoToBal() {HoldBall(),PassBall(f)}

(fis1 of 2teammates)

Figure 2: The Keepers’ Policy Space (Diagram
From Stone et al. (2001)).

that achieved game durations of 14 seconds, whereas
all of the benchmark policies (including the manually-
coded one) could manage durations of only 5 seconds.

Gustafson (2001) used genetic programming (Koza,
1992; Luke et al., 1998) to evolve keepers for 3 vs. 1
keepaway, using the TeamBots (Belch) simulator.
Games were of a fixed duration and the keepers’ ob-
jective was to minimise the number of turnovers per
game. He also used somewhat different physics: the
ball moved twice as fast as the takers, which moved
twice as fast as the keepers.

Using his best layered learning genetic programming
parameters, Gustafson produced a final population
with a mean fitness of 70 turnovers, and a best fitness
of 9 turnovers. These results are not easily compara-
ble to Stone’s because the problem domain and fitness
evaluation are fundamentally different.

2.3 OUR KEEPAWAY SET-UP

Following Stone et al., we generated keepers for 3 vs. 2
keepaway on a 20m x 20m playing field in the RoboCup
soccer server. We reconfigured the soccer server to use
50ms cycles, i.e. to run at double speed, without oth-
erwise changing the mechanics of the game. We based
the takers on the freely-available CM United-99 (Stone
et al., 2000) source code that always called GoToBall ()
(or HoldBall () if it already had the ball).

We developed a software coach to set up games, en-
force the rules, terminate games, and provide feedback
to the players. A game ended when the ball went out
of bounds, or when the ball had been within the kick-
able area of at least one taker for 5 or more consecutive
server cycles. We introduced the additional constraint
that if a game lasted for 600 server cycles (one minute
of RoboCup game time), it would automatically be ter-
minated. This constraint was added to impose a limit
on degenerate luck in the noisy RoboCup environment.

3 EVOLUTIONARY ALGORITHMS

Evolutionary computation is a broad term that encom-
passes all methods of using the principles of biological
evolution (Darwin, 1859) to solve problems on a com-
puter.

We chose an evolutionary algorithm (EA) for this
study because they are known to work well in noisy
and unknown domains (Darwen, 2000). In an EA, the
population is modelled as a set of candidates, and the
parameters that vary between individuals are encoded
into the candidates as genetic attributes. These at-
tributes may be initialised with random or other val-
ues. The evolutionary process is then simulated to pro-
duce new candidates that represent better solutions.

To instantiate this technique for a particular problem,
we have to specify the representation used for candi-
dates’ keepaway policies, the fitness function used to
evaluate policies, and the operators and parameters
used for reproduction, mutation and selection. We de-
scribe these aspects of the set-up in Sections 3.1-3.3.

3.1 EVOLUTIONARY OPERATORS

We used a (1 + 1) evolutionary strategy. In each gen-
eration, each candidate produces one child, then the
population members for the next generation are chosen
from the combined parents and children populations.

Reproduction is simulated by creating a duplicate of
the candidate with mutation. We implemented muta-
tion using a Gaussian random distribution with zero
mean difference. The standard deviation of the distri-
bution determines how aggressively the system tries to
evolve. We used a value of 0.1, resulting in about 18%
of children surviving into the next generation.

The selection function determines which candidates
will survive into the next generation , and which will
die. We used a simple scheme where the n candidates
with the highest fitness ratings survived (from the 2n
parents+children available).

3.2 PROBLEM REPRESENTATION

We allowed our keepers the same high-level actions at
each cycle as Stone’s (see Section 2.2). However, be-
cause these high-level primitives (and the correspond-
ing low-level skills) were independently implemented,
our keepers could be expected to perform differently
and to learn different strategies. Furthermore, whereas
Stone et al. used SPAR (Veloso et al., 1998) for
their GetOpen() function, we used a superior algo-
rithm given in Stone and McAllester (2001).

Opponent within
pressure distance

No opponent within
pressure distance

Decision not
under pressure

Decision
under pressure

Figure 3: The Agents’ Overall Decision-Making
Framework.
Passing to
teammate O

seems safe

Passing to
teammate 1
seems safe

passBall(0)

Opponent
within
desperation
distance

passBall(1)

holdBall() passBall(1)

Figure 4: The Agents’ Decision-Making Framework
When Under Pressure.

Our keepers used the same policy space as Stone’s
(Figure 2), thus a decision was required only for the
keeper in possession of the ball. We further decom-
posed this case using the decision-making framework
shown in Figures 3, 4, 5. This is a simplistic initial
framework that is likely to be extended in the future.
Note that teammate 0 is the teammate nearest to the
ball and teammate 1 is the other teammate.

If there is an opponent within the pressure distance
(an evolved parameter), the agent acts “under pres-
sure” (Figure 4); otherwise, it acts “not under pres-
sure” (Figure 5).

When “under pressure”, the agent wants to pass the
ball. If passing to teammate O seems “safe”, it will do
so; otherwise, it will consider passing to teammate 1.
If neither pass seems “safe”, the agent holds the ball,
unless there is an opponent within the desperation dis-
tance (another evolved parameter), in which case it
clears the ball by passing to teammate 1.

When “not under pressure”, the agent will pass only
if it can improve the strategic utility of the state by
centralising the ball. It passes to the most central
teammate that is “very safe” to pass to, if any.

A pass is deemed safe only if the following three values
are all “large enough”:

e the distance to the recipient;

e the minimum angle formed by the recipient, the
ball, and each opponent; and

e the distance between the recipient and each op-
ponent.

Each of these distances and angles is an evolved pa-
rameter. Thus the decision-making framework used a
total of twelve evolved parameters:

e the pressure distance;
e the desperation distance;

e five parameters for assessing passes to
teammate 0: two distances and an angle for
acting “under pressure”, plus one distance and
an angle for acting “not under pressure”; and

e the same five parameters for teammate 1.

Each parameter is a real value in the range [0, 1], repre-
senting a proportion of the range available. Distances
were scaled by the maximum diagonal length of the
field, and angles were scaled by 180° (the maximum
absolute angle size). The only exception to this was
that the desperation distance was scaled by the pres-
sure distance. This forced the desperation distance to
be less than the pressure distance, so that there was
always some taker-proximity at which the agent would
clear the ball.

3.3 FITNESS EVALUATION

The noisy environment of the RoboCup soccer server
induces noisy fitness evaluations. Beyer (2000) states
that coping with noisy fitness evaluations in an EA is
still in its infancy. He describes three techniques, the
simplest of which are increasing the population size,
and resampling and averaging the fitness.

As the population size and the number of fitness sam-
ples/evaluation are increased, generations take longer
to simulate. Thus one must choose a balance be-
tween population size, number of samples/evaluation,
and number of generations simulated. Darwen (2000)
claims that to obtain the best result from the available
CPU time, one should use a “generously large” pop-
ulation, and that the number of fitness samples used
should be just enough such that using more does not
improve learning (clearly this is problem dependent).

Neither pass
isvery safe

holdBall()

Teammate 1lis
more central

TeammateOis
more central

passBall(0) holdBall() passBall(1)

holdBall()

Both passes

Teammate 1
is most central

passBall(1)

Teammate O
is most central

holdBall) passBall(0)

Figure 5: The Agents’ Decision-Making Framework When Not Under Pressure.

The noisy fitness evaluations of keepaway forced us
to reevaluate all candidates in each generation, oth-
erwise a mediocre candidate might bias the popula-
tion by receiving a fortuitously good fitness. However,
this reevaluation is very expensive. If we use n sam-
ples/evaluation in a population of size p, and if each
candidate is completely reevaluated in each generation,
this requires a total of 2np samples/generation.

We used a different approach based on keeping a mov-
ing average of the candidates’ samples. When a can-
didate is first generated (as a child), its fitness is sam-
pled n times, and its fitness array is initialised with n
copies of the average of these samples. In each subse-
quent generation, the fitness is sampled once only, and
this new sample replaces the oldest sample remaining
in its fitness array. The fitness estimate for a candidate
in a given generation is the average of the samples in
its fitness array at that time, ignoring outliers.

This technique reduces the number of sam-
ples/generation from 2np to (n + 1)p, allowing
us to run nearly twice as many generations in a given
run-time. Note that this technique is applicable only
where candidates can persist in the population.

In addition to the noisy environment of the RoboCup
soccer server, fitness evaluations are affected by the
choice of team members. Fitness samples are assigned
equally to all players on a team. A good player that is
teamed with two inferior players is unlikely to achieve
a good game duration; conversely, a bad player that is
teamed with two superior players is likely to achieve
a good game duration. To minimise this effect, before
each round of reevaluation we randomised the order
in which the candidates were scheduled for evaluation.
Thus if a player’s fitness was sampled n times in a gen-
eration, it would play in n randomly selected teams.

Each keepaway game starts with one keeper in each
of three corners. Both takers are placed in the other
corner, and the ball is dropped in a randomly-selected
corner occupied by a keeper. This means that one of
the keepers will always start between two teammates
and opposite the takers. This creates the potential to
evolve specialised roles depending on player position.
To exploit this potential for specialisation, we used
a different population for each of the three keepers.
This meant using three small populations instead of
one large population.

4 RESULTS AND COMPARISONS

Darwen (2000) suggests that two important parame-
ters that effect EA performance in a noisy environ-
ment are population size and number of fitness sam-
ples/evaluation. Our first round of experiments fo-
cused on varying these parameters to determine the
range of parameters which behaved the “best”. We
experimented with population sizes ranging from 3 to
200, with the number of fitness samples ranging from
1 to 200. We found that smaller population sizes did
not maintain enough diversity to cope with the noisy
fitness evaluations, while larger population sizes learnt
more slowly with no apparent benefit. Similarly, using
too few fitness samples resulted in a fitness approxima-
tion that was too noisy and produced erratic results,
while using too many fitness samples resulted in slower
learning with no apparent benefit. This round of ex-
periments lead us to conclude that a population size
of 10 to 40 should be used, with samples/evaluation
between 5 and 10.

Our second round of experiments tested each of the
population sizes 10, 20, 30, and 40, with 5, 7, and
9 fitness samples. We found that a population size

of 20 with 7 fitness samples learned fastest, but were
concerned that the population size may be too small
to maintain diversity (hence limiting further improve-
ment), and to retain what had been learnt (exposing
the population to the danger of a poor candidate be-
ing awarded an over-generous fitness due to limited
sampling). We observed that in the experiments with
a population size of 10, the populations almost al-
ways lost diversity after their performance levelled off,
sometimes resulting in a degradation in fitness due a
“lucky” candidate dominating the small population.
Populations of size 20 occasionally exhibited this be-
haviour, but to a lesser extent, and with swifter recov-
ery. Populations of size 30 never exhibited any signif-
icant problems with fitness retention. Populations of
size 40 learnt more slowly with no apparent benefit.

Based on these experiments, we concluded that the
fastest learning speed was obtained using a population
size of 20 with 7 fitness samples, but that for a reliable
balance between learning speed and fitness retention,
a population size of 30 with 9 fitness samples should be
used. We then ran a third round of experiments using
population sizes of 20 and 30, with 7 and 9 fitness
samples, over a large number of runs, to confirm that
our results could be reliably reproduced.

Finally, in our fourth round of experiments, we took
a typical run with a population size of 30 and 9 fit-
ness samples, and retroactively evaluated each mem-
ber of the initial and final populations over thousands
of games to accurately estimate their actual fitnesses.
Meanwhile, we ran experiments with population sizes
of 40 with 9 fitness samples for a longer time to con-
firm that the runs with a population size of 30 with 9
fitness samples were finding good solutions.

Figure 6 shows a scatter-graph of the surviving candi-
dates from each generation of one keeper population
for a run using a population size of 30 and 9 fitness
samples. We observed similar trends in the popula-
tions of the other two players. The lines represent the
best (maximum), average, and worst (minimum) fit-
nesses of the surviving candidates of each generation.
The time for the run was 53 hours, (67 generations).

The highest average fitness was approximately 300 cy-
cles (30 seconds of RoboCup game time). This was
attained within 25 generations, or 20 hours of run-
ning time, after which the average fitness levels off.
The degradation in fitness from generations 30 to 55
is a result of noise in the fitness evaluations. The first
generation in which the best fitness was greater than
300 cycles was generation 8, which corresponds to 6.4
hours of running time; however, because the fitness
evaluation is noisy, it is likely that the “real” fitness of

500

400 A i

Fitness (cycles)

average e
minimum

10 20 30 40 50 60 70
Generation

Figure 6: Fitness Versus Generations Using A Popu-
lation Size Of 30 With 9 Fitness Samples.

this candidate was lower.

The scatter-graph reveals that no candidates obtained
an estimated fitness greater than 350 cycles in the first
15 generations. This is significant because it suggests
that some learning is required before such high fitness
estimates can be attained. Thus although there is an
element of luck in playing keepaway, skill is an overrid-
ing factor in determining the game duration and hence
a candidate’s chance of survival (at least initially).

Figure 7 plots the distribution of the “accurately” es-
timated fitnesses for the initial and final populations
from Figure 6. Note that the plotted accurately es-
timated fitness differs from the EA’s coarse estima-
tion (9 fitness samples); an accurate fitness estimate is
determined retroactively by testing the candidate for
thousands of fitness samples (to within + 1 second).

14 T T T T T —
initial

12 |

Number of Candidates

ob— L L L L L L
0 50 100 150 200 250 300 350
Fitness (cycles)

Figure 7: Fitness Distribution Of The Initial And Fi-
nal Populations From Figure 6.

Retroactive testing of the final population showed that
although the accurately estimated fitnesses of the sur-
viving candidates were usually lower than the coarsely
estimated fitnesses, there were several candidates with
high accurately estimated fitnesses, and in some cases
the accurately estimated fitness was higher than the
coarsely estimated fitness. The candidate with the
best accurately estimated fitness was rated the 6!* best
member in the population by the EA. We call this can-
didate Stuart. We computed the 95% confidence inter-
val for the mean fitness of this candidate as [319, 339]
cycles. We call the second best candidate (using the
accurately estimated fitness) in the final population
Bowser, and the third best candidate Vince.

We also retroactively tested the initial (randomly gen-
erated) population to accurately estimate the average
fitness before learning. The average fitness of the ini-
tial population was 128 cycles.

We were concerned about the high fitnesses of some of
the members of the initial population, so we ran addi-
tional experiments (with a population size of 30 and 9
fitness samples) that began with a poor initial popula-
tion. We confirmed that the same fitness values were
learnt from the poor initial population, suggesting that
our results are independent of the initial population.

Table 1 compares the results of this work with that
of the reinforcement learning approach undertaken by
Stone et al. We observe that Stone was able to im-
prove game duration from approximately 5.5 seconds
to 14.5 seconds (an improvement of 9.0 seconds) with
approximately 20 hours of learning. Our results show
improvement in the average game duration from 12.8
seconds to 24.8 seconds (an improvement of 12.0 sec-
onds). Note this value is somewhat smaller than the
estimated fitness determined by the EA — the accu-
rate fitness estimate uses many more samples, with
the EA including only those candidates that survive
into the next generation (intuition suggests that sur-
viving candidates will have been luckier than rejected
candidates). The best member in the final population
of the EA was found to have an accurately estimated
game duration of 32.9 seconds. We expect that the dif-
ferences in the static fixed strategies (always holding
the ball and random) between the two works are due
to differences between the underlying basic skills of the
agents (HoldBall(), GoToBall(), and GetOpen()).

Figure 8 compares the strategies evolved by the players
Stuart, Bowser, and Vince. It shows the frequency of
hold durations between passes or turnovers — shorter
hold durations mean that the player passes more of-
ten. We observe that Bowser and Vince are similar in
that they both pass infrequently (approximately 4% of

Table 1: Comparison Of Our Results To Stone’s.

Strategy Stone et al. | This work
Always Hold 4.7 7.2
Random 4.9 13.5
Learning (Initial 5.5 12.8
Average)

Learning (Final 14.5 24.8
Average)

the time). However, investigation of these candidates
shows that the EA has evolved a similar strategy us-
ing different representations. Bowser only passes when
desperate; consequently, all his passes are clearances to
his farther teammate. Vince however, can pass when
not desperate, distributing his passes equally between
his two teammates. Stuart however passes much more
often, passing to both players. He uses strategic passes
to centralise the ball when not under pressure.

T
Bowser

Stuart -------

Frequency (%)
w
T

I - S
10 20 30 40 50 60 70
Hold Duration (cycles)

Figure 8: Frequency Of Hold Durations For Stuart,
Bowser, and Vince.

5 CONCLUSIONS

We constructed an evolutionary algorithm to learn
policies for playing the game of 3 vs. 2 keepaway, a
sub-problem of the RoboCup soccer simulation league.
We investigated the effects of the noisy fitness eval-
uation on the results from the system, and we used
several techniques to alleviate this effect. In particu-
lar, we implemented a technique based on maintain-
ing moving averages of fitness samples to enable us to
use a good-sized population with several fitness sam-
ples/evaluation, yet still with a reasonable run-time.

Our results exceeded those from previous studies of
this problem. Although the results are based on differ-

ent keeper implementations, the best previous learn-
ing system improved 9 seconds in its game duration,
whereas the population in our system improved by 12
seconds. Although we ran our system for longer than
in previous studies, in fact it achieved its best results
well before the end of most experiments, so the learn-
ing is not as slow as it may appear at first sight.

The idea of using moving averages to improve the
learning rate (in the real-time sense) in the context
of noisy fitness evaluations may find uses in other ap-
plications. We expect that this technique can be used
wherever individuals can persist in the population.

6 FUTURE WORK

We plan to extend this work in several directions, both
within the RoboCup domain, and otherwise.

Within the domain of keepaway, we plan to improve
the framework that agents use for representing deci-
sions. We also aim to make the problem more com-
plex (possibly by introducing a second objective), with
the aim of encouraging specialisation in the separate
player populations. We might also experiment with
different population structures, e.g. using one popu-
lation of players, or using a population of teams. We
may also translate the work to other RoboCup sub-
problems, such as developing specific skills that exploit
the physics of RoboCup.

We plan to further investigate the effects of noise, both
in this domain and more generally. The use of moving
averages has helped to improve the results, and we will
apply the same technique in other domains to refine
it further. Connected to this, we will also investigate
other possible ways to make fitness evaluations based
on multiple (noisy) samples, e.g. using the median of
a group of samples, as opposed to the mean.

References

D. Andre and A. Teller. Evolving Team Darwin
United. In M. Asada and H. Kitano, editors,
RoboCup-98: Robot Soccer World Cup II. Springer-
Verlag, Berlin, 1999.

T. Belch. TeamBots software and documentation.
URL http://www.teambots.org/.

H.-G. Beyer. Evolutionary algorithms in noisy environ-
ments: Theoretical issues and guidelines for prac-
tice. Computer Methods in Applied Mechanics and
Engineering, 186(2-4):239-267, 2000.

M. Chen, E. Foroughi, F. Heintz, Z. Huang,
S. Kapetanakis, K. Kostiadis, J. Kummeneje,

I. Noda, O. Obst, P. Riley, T. Steffens, Y. Wang,
and X. Yin. RoboCup Soccer Server (Users Man-
ual), June 2001.

P. J. Darwen. Computationally intensive and noisy
tasks: Co-evolutionary learning and temporal dif-
ference learning on Backgammon. In Proc. 2000
Congress on Evolutionary Computation, pages 872—
879, Piscataway, NJ, 2000. IEEE Service Center.

C. Darwin. The Origin of Species. Penguin Classics,
London, 1859.

S. M. Gustafson and W. H. Hsu. Layered learning in
genetic programming for a cooperative robot soccer
problem. In Furopean Conference on Genetic Pro-
gramming, pages 291-301, 2001.

H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Corade-
schi, E. Osawa, H. Matsubara, I. Noda, and
M. Asada. The robocup synthetic agent challenge.
In International Joint Conference on Artificial In-
telligence (IJCAI97), 1997.

J. R. Koza. Genetic Programming: on the program-
ming of computers by means of natural selection.
MIT Press, 1992.

S. Luke, C. Hohn, J. Farris, G. Jackson, and
J. Hendler. Co-evolving soccer softbot team co-
ordination with genetic programming. In H. Ki-
tano, editor, RoboCup-97: Robot Soccer World Cup

1. Springer-Verlag, Berlin, 1998.

L. P. Reis and N. Lau. FC Portugal team descrip-
tion: RoboCup 2000 simulation league champion.
In P. Stone, T. Balch, and G. Kraetzschmar, edi-
tors, RoboCup-2000: Robot Soccer World Cup IV.
Springer-Verlag, Berlin, 2001.

P. Stone and D. McAllester. An architecture for action
selection in robotic soccer, 2001.

P. Stone, P. Riley, and M. Veloso. The CMUnited-99
champion simulator team. In M. Veloso, E. Pagello,
and H. Kitano, editors, RoboCup-99: Robot Soccer
World Cup III. Springer-Verlag, Berlin, 2000.

P. Stone, R. S. Sutton, and S. Singh. Reinforce-
ment learning for 3 vs. 2 Keepaway. In P. Stone,
T. Balch, and G. Kraetszchmar, editors, RoboCup-
2000: Robot Soccer World Cup IV, pages 249-258.
Springer-Verlag, Berlin, 2001.

M. Veloso, P. Stone, and M. Bowling. Anticipation: a
key for collaboration in a team of agents: A case
study in robotic soccer. Proc. SPIE Sensor Fu-
sion and Decentralized Control in Robotic Systems
II, 3839, September 1998.

