

An Application Service Provider Approach for Hybrid Evolutionary
Algorithm-based Real-world Flexible Job Shop Scheduling Problem

Ivan T. Tanev

Synthetic Planning Industry Co.Ltd.
HK Building 2F, 2-21-10 Nishiogikubo,

Suginami, Tokyo 167-0053,
Japan

i.tanev@computer.org

Takashi Uozumi

Dept. of Computer Science and
System Engineering,

Muroran Institute of Technology,
Mizumoto 27-1, Muroran 050-8585,

Japan
uozumi@csse.muroran-it.ac.jp

Yoshiharu Morotome

Synthetic Planning Industry Co.Ltd.
HK Building 2F, 2-21-10 Nishiogikubo,

Suginami, Tokyo 167-0053
Japan

moro@spi-sys.co.jp

Abstract

This paper presents an approach for scheduling
of customers’ orders in factories of plastic
injection machines (FPIM) as a case of real-
world flexible job shop scheduling problem
(FJSS). The objective of discussed work is to
provide FPIM with high business speed which
implies (a) providing a customers with conve-
nient way for remote online access to the facto-
ry’s database and (b) developing an efficient
scheduling routine for planning the assignment
of the submitted customers’ orders to FPIM
machines. Remote online access to FPIM databa-
se, approached via delivering the software as a
Web-service in accordance with the application
service provider (ASP) paradigm is proposed. As
an approach addressing the issue of efficient
scheduling routine a hybrid evolutionary algo-
rithm (HEA) combining priority-dispatching ru-
les (PDRs) with GA, is developed. An imple-
mentation of HEA as a database stored proce-
dure is discussed. Performance evaluation results
are presented. The results obtained for evolving a
schedule of 400 customers’ orders on experi-
mental model of FPIM indicate that the business
delays in order of half an hour can be achieved.

1 INTRODUCTION

Until recently the role of the production factories had
been associated with the manufacturing of a high volume
of low-cost and high-quality goods. However, an
evolution of these features is lately observed as a result of
the recently emerged trend in the major world’s econo-
mies of decreasing the rate of economic growth. Still
maintaining the importance of producing low-cost and
high quality goods, the relevance of the high manu-
factured volume is going to be gradually replaced by the
role of the high business speed – the ability to react quick-
ly in submitting and modifying the customers’ orders. The

high business speed implies that factories should provide
the customers with services such as remote submission of
orders in operative mode; prompt feedback to allow for
customers’ awareness about the anticipated due dates of
their orders as well as about the expected ratio of tardy
orders and their respective delays; and tracking the state
of the submitted orders.

Within this context, the objective of our research is to
investigate the feasibility of developing a scheduling sys-
tem for FPIM, emphasizing on providing the mentioned
above customers services needed for achieving factory’s
high business speed. Fulfilling the objective implies
addressing of the following two main tasks. First,
allowing for submission of orders and tracking their
statuses requires providing a convenient way for remote
online access to the factory’s database. And second,
allowing for prompt customers’ awareness about the
anticipated due dates of their orders assumes developing
of efficient (both in terms of runtime and quality of
solution) scheduling routine for planning the assignment
of the submitted customers’ orders to the factory’s
machines. Our work is intended to address these main
tasks, and its contents could be viewed from three
different aspects, representing the following three layers
of abstraction of the proposed scheduling system:

• Problem aspect – the task from the specific problem
domain intended to be solved,

• Aspect of algorithmic paradigm – the algorithmic
paradigm employed to solve the problem,

• Implementation aspect – the system architecture used
to solve the problem exploiting the adopted
algorithmic paradigm.

The discussion, presented in this document, is
attempting to highlight these aspects of our work, and the
remaining of the paper is structured as follows. Section 2
briefly explains the problem aspect – a real-world prob-
lem of scheduling of FPIM as an instance of the class of
FJSS. Section 3 discusses the aspect of algorithmic para-
digm – the main attributes of the hybrid evolutionary
algorithm we developed to solve the targeted FPIM FJSS.
Section 4 considers the implementation aspect – the ASP

approach, focusing on developing of three-tiered Web-
based system architecture. Performance evaluation results
are given in Section 5. Finally, Section 6 draws a conclu-
sion and discusses some directions for future work.

2 REAL-WORLD CASE OF INJECTION
MACHINES SCHEDULING

The FPIM FJSS problem consists of a finite set of orders
to be processed on a finite set of machines. Each order
specifies the amount of just one good from the finite set
of goods, produced by the factory. Each good can be
produced using any of currently available molds from the
finite set of mold instances of at least one of the finite set
of the available mold types. Each mold type can be
attached to at least one machine from the available finite
set of machines. The one-to-many relationship between
the goods and molds, and between the molds and the
machines implies that any order can be processed in at
least one machine. In general, processing the order on
specified machine is preceded by the set-up phase, needed
to attach the required mold (if mold of the current order
differs from the previous one) and to change the resin (if
needed). Analogically, the processing of the order might
be followed by completion phase, required to remove the
mold in case that the next scheduled order requires an
attachment of different mold type.

The capacity constraints specify that each mold can be
attached to just one machine at a time and each machine
can attach just one mold. Consequently a machine can
process only one order and each order can be processed
by only one machine at a time. An additional constraint
stipulates that the amount of the molds of specified type is
limited; therefore an order can be processed only if the
required mold is currently available. Also, the machines
can be suspended for scheduled maintenance and for daily
operation breaks. The order cannot be preempted by ano-
ther order, however, depending on the specified machine
operation mode, the orders, started before the suspension
time should be interrupted upon the commencing the
maintenance interval or might be allowed to complete
within the maintenance interval. In the former case, the
processing of the interrupted orders resumes upon
resuming the operations of the corresponding machine.

The objective of the scheduler is to determine the pro-
cessing starting time, the processing machine, the mold
and the mold type for each order, obeying the imposed
constraints and minimizing the ratio of tardy jobs, the
variance of the flow time, the amount of mold changes,
and maximizing the efficiency of the machines. The sche-
dule is viewed as a table of rows each including creation
date/time, customer’s name, customer’s order, processing
machine, mold, mold type, starting and finishing times for
setup, processing, and completion phases respectively.

In our approach, the FPIM data about orders,
manufactured goods, available resins, mold types, molds,
machines and operation patterns constraints are organized
as an entities (tables) in relational database. The entity-

relationship diagram for FPIM database is shown in
Figure 1. The mechanisms used to access the data in
FPIM database is elaborated later in Section 4.

Figure 1: Entity-relationship Diagram for FPIM Database

The main differences between the theoretical models
and the real-world case of FPIM FJSS are the availability
of the setup and completion times, which depend on
previous and next order respectively; the availability of
maintenance time and operational break time; order
interruption and restart; and limited and dynamically
changeable amount of available machines and molds.
These differences additionally complicate the concrete
instance of the FJSS. The latter, being NP-hard is well
known to be a notoriously difficult to solve. Such an
additional complication affected our choice of algorithmic
paradigm intended to solve the FPIM FJSS, as elaborated
in the following Section 3.

3 HYBRID EVOLUTIONARY
ALGORITHM FOR FPIM FJSS

In our approach we propose a hybrid evolutionary
algorithm, which combines the approaches of using PDRs
with GA (Holland, 1975; Goldberg, 1989; M.Varquez and
L.D.Whitley, 2000). A PDR is a rule that is used to
determine which order is to be executed next, from the list
of unscheduled orders. Compared with other
approximation approaches, PDR-based approaches offer
the advantage of simplicity, featuring low computational
cost and can therefore be applied to complex real-world
problems such as FPIM FJSS. They are usually tempo-
rally local without trying to predict the future. Instead,
making decisions based on the present; they are very use-
ful in factories such FPIM, where the future availability of
the resources (machines, molds, etc.) is very unpredictab-
le. The main disadvantage of PDR is their myopic nature:
often the quality of the overall schedule, build using
locally applied PDR is far from optimal. In addition, no
single PDR can be success-fully applied for the whole
range of possible cases of FJSS (Pierreval and N. Mebar-
ki, 1997). This might require to empirically evolve the
PDRs and their combination, which are most suitable for
the concrete instance of FJSS. In order to address the
disadvantages of PDRs we propose a hybrid evolutionary
algorithm (HEA) as a combination of PDRs with GA. GA
is used as a way to empirically evolve the most suitable
combinations (strings) of PDRs for the considered FPIM

Orders

Goods

Resins Mold types

Molds Machines

Attachable
mold types

Working
patterns

Maintenance
suspensions

FJSS. Also, GA is intended to address the myopic nature
of PDRs given that GA is based on the survival of the
overall fittest individuals (i.e. schedules), rather than these
with better local features. The only concern of combining
GA with PDR-based sys-tem into HEA for solving real-
world problem is whether GA would invalidate the
advantage of PDR of being less time consuming. Howe-
ver, despite the longer computational times of GA, we
believe that the GA might be successfully applied in
FPIM FJSS since it can be considered as a form of anyti-
me algorithm (Ciesielski and Scerri, 1998), and as a
result, a feasible tradeoff between the runtime and the
desirable quality of schedule could be easily maintained.

It is generally accepted that the GA feature five basic
attributes: genetic representation of solutions to the
problem; way to create an initial population; ’genetic’
operators that alter the genetic population; evaluation
function and values for the parameters. The remaining of
the current Section is intended to elaborate on these basic
attributes of GA.

3.1 THE GENETIC REPRESENTATION OF
SCHEDULES. THE INITIAL POPULATION

There are two basic approaches for genetic representation,
which can be applied for FPIM FJSS: direct and indirect.
Direct representation encodes the schedules as chromoso-
mes, and genetic operations are used to evolve the popula-
tion of such chromosomes into better schedules. In the
indirect encoding schemes a sequence of schedule-buil-
ding instructions is encoded (“generative encoding”) in
the chromosome (Fang et al, 1994; O'Neill and Ryan,
2000). The genetic operations are used to evolve the po-
pulation of such sequences of schedule-building instruc-
tions into ones that generate better schedules. Considering
the complexity of various constraints imposed on FPIM
FJSS, it is highly likely that direct representation of
chromosome would yield unfeasible schedules, i.e.
schedules that violate some of the constraints. The
repairing, needed in such cases might be inefficient in
both that it requires additional runtime and tends to break
the developed building blocks of the solutions. In
addition, dynamic nature of some of the constraints (as,
for example, the limited amount of molds) assumes that
obeying them (i.e. using mold that currently is not being
used by other orders) requires corresponding runtime
verification on the build-so-far schedule. These concerns
indicate that the eventual direct encoding is impractical
for the concrete case of FPIM FJSS. In the proposed
approach a PDR-based indirect representation of the
schedule is used, where the allele in chromosome
represent the PDR used for assigning the order to the
specified machine. Each chromosome (the genotype) is
represented as a string ‘g0,g1,g2,…’ which is mapped
into the corresponding schedule (the phenotype) by
schedule builder during the chromosome evaluation phase
of HEA. Each of the genes gi of the chromosome
‘g0,g1,g2,…’ is interpreted by schedule builder as
follows: “for the currently becoming free machine mk,
select all the unscheduled orders that can be currently

processed on mk and range them in accordance with the
gi–th PDR; then select the first order oj from the
arranged list of unscheduled orders and assign oj to mk”.
The following nine PDRs have been used: FIFO (also
known as AT- arrival time, and TIS- time in the sys-tem);
FIFO SM – the same as FIFO but trying the same mold
(SM); FIFO SMR – the same as FIFO but trying the same
mold and same resin; SPT – shortest processing time;
LPT – longest processing time; DT – order due time; DT
SM – the same as DT but trying the same mold; DT SMR
– the same DT but trying the same mold and same resin;
and ST – order start time.

The preliminary comparative results of convergence
of the fitness of best individuals for typical runs of HEA
and GA without PDRs confirm the advantages of
incorporating PDRs into GA. The results indicate that in
contrast to the GA without PDRs, HEA features much
faster fitness convergence with better values of absolute
fitness. The desirable schedules (schedules with no tardy
jobs) are evolved relatively quickly by HEA within
several generations.

Initial population is created by generating a (NPS–2)
chromosomes where NPS is the population size. The genes
of each of these chromosomes are set to a random
numbers within the range (0,NPDR-1) where NPDR is the
total amount of used PDRs. Two additional chromosomes
are created, alleles of which contain a single PDR only –
FIFO and DT respectively, in order to allow for the HEA
to quickly find the solution in some trivial scheduling
cases. Note that due to the adopted indirect genetic
representation the process of creating initial population
always generates feasible schedules only, where no
constraints are violated.

3.2 GENETIC OPERATORS

The main genetic operators are selection, crossover, and
mutation. In our work we used binary tournament
selection – a robust, commonly used selection mecha-
nism, which has proved to be efficient and simple to code.
In addition, it results a selection pressure that provides a
good convergence rates yet avoiding premature conver-
gence to a sub-optimal solutions. The canonical two-point
crossover operation is employed. The mutation operation
changes the genes from each chromosome with specified
probability to the value within the range (0,NPDR-1),
where NPDR is the total amount of used PDRs.

3.3 EVALUATION FUNCTION

The evaluation function estimates the fitness of the
chromosomes (respectively, the schedules they generate)
by measuring the severity of constraints violation and the
extent of approaching the scheduling objectives. In our
approach all the imposed constraints are considered as
hard in that on neither stage of HEA they are violated.
Regarding the objectives, applying the heuristics rule that
from the customer viewpoint any schedule containing
tardy orders, is worse (feasible, but undesirable schedule)

that schedule that do not have ones (desirable schedule),
we consider an evaluation function that allows HEA to
clearly distinguish the desirable schedules from
undesirable ones. In our approach the evaluation function
maps the fitness of all the desirable schedules within the
range of (0,Q) while maintaining the fitness of
undesirable schedules within the (Q,+∞). For both the
cases the lower values of the fitness correspond to the
better schedules. The evaluation function for desirable
schedules evalD(x) can be expressed as follows:

evalD(x)=eval(x)

where eval(x) is a sum, normalized to 100, of the ratio
of tardy jobs, the variance of the flow time, the relative
amount of mold changes, and complement to one of the
efficiency of the machines usage (as a ratio of the sum of
setup and completion time to the order processing time).
Respectively, the evaluation function for undesirable
schedules evalU(x) is defined as

evalU(x)=eval(x)+Q

where Q is the penalty for schedule having at least one
tardy order. The penalty value should fulfill the condition
Q> max(evalD(x)), and in our approach Q=101.

3.4 VALUES OF PARAMETERS

The values of parameters are as follows. Population size
is 20 individuals (chromosomes), selection method is
binary tournament with elitism where selection and
elitism ratio are 0.2 and 0.1 respectively, and mutation
rate is 0.01. The termination criteria are runtime, fitness
of the best of individuals, or number of generations.
Notice the relatively small population size. The results of
parameters tuning experiments indicate that varying the
population size yields negligible small variance in
computational effort of developed HEA. Smaller
population sizes reduce the runtime for evolving a single
generation, and consequently, to allows for the authorized
user to quickly intervene in the evolution process if
needed.

4 IMPLEMENTATION

As we mentioned before, achieving our objective of
developing FPIM FJSS that features high business speed
implies the addressing of the task of providing the
customers with convenient way for remote access to the
FPIM data. Considering the Web as most favorable
deployment platform due to its ubiquitous nature, this task
could be decomposed into the following two problems:
how to implement the HEA on the Web, and how to make
the FPIM database (including the schedules, build as
result of HEA functionality) available on the Web.
Regarding the implementations of HEA on the Web, the
developed-so-far approaches of using Internet as a
deployment environment for EA are exclusively focused
on the issue of parallel, distributed implementation of EA
(Chong, 1999; Tanev et al, 2001), improving the
computational speed of the latter. As a result the issue of

incorporating the adequate user interface providing
remote access to the real-world problem-related databases
is not considered as relevant in these approaches. In
addition, taking into consideration the distributed nature
of the Internet-based implementations of EA in these
methods, their eventual straightforward use for the
considered case of FPIM FJSS would feature considerable
performance degradation of the HEA due to heavy data
traffic due to the need for the distributed entities of these
architectures to intensively access the centralized FPIM
business data (shown in Figure 1) during scheduling. The
volume of such data for the moderately scaled FPIM
might be in order of few hundreds of Megabytes, which
also proves the unfeasibility of the idea of downloading
such data (caching) for intended future local use by HEA.

To address the first of the mentioned problems – pro-
viding Web-access to the FPIM FJSS we used the ASP-
based approach. And for the problem of efficient
implementation the HEA on the Web we employed a
method of implementing HEA as a database stored
procedure (SP). An additional motivation for considering
SP as a way to implement HEA is that to our best
knowledge, we are not aware about any work regarding
implementing EA as a SP, and we were interested about
the feasibility for applying such an approach for the
considered case of real-world FPIM FJSS problem. The
remainder of the Section elaborates the approaches we
propose to address these two problems.

4.1 THE APPROACH OF ASP

ASPs are a recently emerged way to sell and distribute
software and software services via Internet. In most cases
the ASPs can be viewed as companies that supply
software applications and/or software-related services
over the Internet. The significant advantages offered both
to the factories and to their customers by providing the
web-access to business solutions instead of using the
traditional model to physically deliver the required
specialized applications are the low cost of entry,
considerably less expensive pay-as-you-go model, and
shifting the Internet bandwidth to the ASP, who can often
provide it at lower cost. Implementing FJSS as ASP
allows the FPIM to focus on its core competencies instead
of managing the complexities of today's IT infrastructure.
In addition, ASP significantly alleviates the problem
related to the maintenance of complex software system
and the need for software upgrades. The eventual
distribution of corresponding “fat”-clients to the hundreds
of customers for the real-world instance of FPIM FJSS
would become extremely expensive both from FPIM and
customers standpoints; and the need for future upgrades
deteriorates the problem even more.

The three-tiered system structure incorporating Web-
browser (as thin client), Web-server, and database server
is widely adopted as a de facto standard for building
applications using ASP paradigm. Following the common
trend, we adopted the three-tiered architecture (Figure 2)
with the following functionality of the main entities.

Figure 2: Three Tiered Architecture For ASP-Based
Implementation Of FPIM FJSS

4.1.1 Web-browser

Web-browser represents the client-side functionality
of developed ASP-based approach for FPIM FJSS.
Depending on the access rights, two separate user roles
for clients are defined: customers, and factory users.
Customers are allowed to submit the orders in operative
mode, accessing three main FPIM data entities: their own
orders (for updating), the manufactured goods (for
reading only), and the schedule, generated for their own
orders. The factory users are granted with full access
allowing reading and updating of all the available data in
FPIM database. In addition, factory users are allowed to
initiate the HEA for creating schedule of all orders,
including recently submitted and still unscheduled ones.
For both types of user roles maintaining adequate user
interface was considered as a crucial issue in developing
the Web-client side of FPIM FJSS. We use an ActiveX
Data Objects (ADO) recordsets incorporated into Web-
browser for maintaining the data obtained from FPIM
database. ADO-recordsets offer a way to adequately han-
dle the database tables by the browser. The FPIM databa-
se data are received by Web-browser as XML-data islands
within HTML-pages. In order to minimize the network
traffic, and consequently, to provide better scalability cha-
racteristics of the system, the Web-browser updates the
data in offline mode in that all the changes of ADO-
recordsets are buffered on client side in a form of delta
XML-packet. Using a single HTML-form submission, the
delta XML-packet is forwarded to the Web-server, which
performs all the accumulated updates in batch mode. The
functionality of Web-browser, including browsing and
updating the ADO-recordsets, maintaining a XML-delta
packet, managing the master-detail and lookup relation-
ships in FPIM database is accomplished by specially
developed API written in JavaScript. Figure 3 depicts the
snapshot of the client screen for browsing/updating the
FPIM database table containing mold types and the
corresponding detail table of machines these mold types
could be attached to. Figure 4 shows the screen snapshot
of viewing the schedule of all orders. In both cases the
screen snapshots correspond to user role of factory user.

4.1.2 Web-server

The Apache Web server, used in proposed implementa-

tion of FPIM FJSS employs the Java Server Pages (JSP)
technology to provide the browsers with the content,
dynamically generated in result of FPIM database access.
JSP incorporates both formatting, static HTML-tags,
which are directly passed back to the response page, and
Java scriplets that are dynamically executed by Web-
server and the result of their execution is incorporated
into the response page. The scriplets included in JSP call
the application logic components for database access. In
our approach we use OracleXMLQuery and
OracleXMLSave Java classes for accessing the FPIM
database. The former is used by JSP for serving the
request from Web-clients for displaying the contents of
corresponding tables in FPIM database. Upon activation
by JSP, it submits a corresponding SELECT SQL-state-
ment against FPIM database and returns the XML-enco-
ded result set. The latter is then incorporated into the
response page and forwarded to Web-browser as an
XML-data island. The OracleXMLSave class is used by
JSP for updating the FPIM database with the changes
made by Web-clients. OracleXMLSave accepts the delta
XML-packet, parses it, generates the corresponding set of
INSERT, UPDATE and/or DELETE SQL-statements,
and finally submits these statements to the FPIM database
for their execution.

4.1.3 Database Server

As we stated before, the FPIM-data containing the created
schedule, submitted orders, available machines, molds,
mold types, resins, manufactured goods etc. are organized
as an entities of a relational database system. In our
implementation we use Oracle 8.1.7 database server as a
platform, well known with its performance, scalability,
reliability, providing adequate data security and integrity.
It offers seamless integration with the adopted JSP-
technology providing a sufficient set of Web-server side
deployed application logic components (such as
OracleXMLQuery and OracleXMLSave).

4.2 IMPLEMENTING HEA AS DATABASE
STORED PROCEDURE

Few ways to implement and deploy the HEA on the
Web exists depending on which entity of system structure
(Web-client, Web-server, or database server) runs the
HEA code. In our approach HEA is developed using
Oracle PL/SQL programming language and stored on
database server as a stored procedure (SP). Database ser-
ver also handles the execution of SP. The benefits of im-
plementing HEA as SP are improved performance – data-
base server compiles SP once and then reruns the compi-
led execution plan; minimized interconnection network
overhead – SP reduces the eventual long sequences of
SQL statements into a single line, and enhanced security -
Web-clients are granted with permission to execute a
HEA SP independently of underlying table permissions.
The functionality of HEA SP includes code, organized in
two routines:

DB

Server

I
n
t
e
r
n
e
t

Web
Browser

+
ADO

recordsets

Web
Server

+
JSP

 OracleXMLQuery

 OracleXMLSave

delta XML-packets SQL statements

Result sets HTML+XML-data islands, XSL, JavaScript

Stored
procedures

+
Data

Figure 3: A Snapshot Of The Client Screen For Browsing/updating The FPIM Database

Figure 4: A Snapshot Of The Client Screen During Viewing The Schedule

• Routine which performing the main genetic opera-

tions evolves the population of chromosomes, and

• Evaluation of the fitness of the chromosomes.

The first of the routines implements the canonical GA.
The routine of fitness evaluation incorporates the schedu-
le builder that maps each of the chromosomes into corres-
ponding schedule and evaluates it using the evaluation
function as described earlier in Section 3.3. The mapping
itself includes the scanning of all the genes in
chromosome ‘g0,g1,g2,…’ and applying the mapping

rule (as elaborated earlier in Section 3.1) for each of the
genes gi in accordance with the following steps:

• Step 1: Defining the currently becoming free machine
mi, and the instance tk when it will be available,

• Step 2: Selecting all the unscheduled orders that can
be currently processed on mi at tk and range them in
accordance with the gi–th PDR,

• Step 3: Acquiring the first order oj from the given list
of unscheduled orders and assign oj to mi”.

While the first step requires only an access to the FPIM
database table of so-far-generated schedule, the following
two steps require intensive database access (shown in
Table 1 and Table 2 respectively). As a result, the fitness
evaluation routine consumes more than 95% of HEA
runtime. The performance evaluation results are discussed
in the following Section 5.

Table 1: Defining The Set Of Orders That Can Be
Scheduled On Machine mi At Instance tk

STEP DB
TABLE INFORMATION ACQUIRED

2a Machines Machine mi which becomes free and
should be scheduled at instant tk

2b Working
patterns

Acquiring whether tk is within the
defined working pattern for
considered day

2c Attachable
mold types

Set of mold types {MT} that can be
attached to mi

2d
Mold
types,
Molds

Set of molds instances {MI} of
types {MT} that can be attached to
mi and are not being used by other
machines at the same instant tk

2e Goods The set of goods {G} that can be
produced using {MI} of types {MT}

2f Orders The set of orders {O}, which
request the production of {G}

Table 2: Assigning Order oj At Instance tk On Machine
mi Using Mold Type MTm

STEP DB
TABLE INFORMATION ACQUIRED

3a Orders
Manufactured volume,
manufactured good, trial shots
(Yes/No) for order oi

3b Mold
types

Change time, change cycle (in
shots), cleaning time, cleaning cycle
for mold type MTm

3c Attachable
mold types

Put-on time, put-off time, shot time
interval, #trial shots for MTm when
attached to mi

3d Resins
Change time for the resin Rp, used
for production of good Gq, requested
by order oi

3e Machines Working pattern consideration
mode for machine mi

3f Working
patterns

Current working pattern for
machine mi which wraps ti

5 PERFORMANCE EVALUATION

The performance evaluation results have been experimen-
tally obtained for the developed prototype of FPIM FJSS
deployed on system with the following configuration.
Apache Web-server and Oracle 8.7.1 database server are
running on the same Hitachi Flora 370 featuring 450 MHz
Pentium II CPU with 128 Mbytes of main memory run-
ning W2000 Professional Edition. The Web-client is Mic-
rosoft Internet Explorer Version 6.0 running on same type
of computer as servers. Client and servers are connected
in 100 Base-TX LAN via Hitachi Summit-48 hub.

The task of scheduling feature 400 orders to be
scheduled in the experimental model of FPIM that produ-
ces 4 different types of goods using 4 machines. Each of
the good can be produced with 2 of the totally 4 available
mold types, and each of the mold types can be attached to
2 of the totally 4 available machines. There are 2 molds
available for each molds type. The working patterns for
each of the machines are defined as 9:00 - 12:00 and
13:00 - 17:30, with day-offs on Saturdays and Sundays. In
addition, the working patterns are considered as “hard”
for two of the machines implying that the being processed
orders which are unable to complete beyond the scope of
off time should be interrupted and resumed later when the
corresponding machine resumes operation. Figure 4,
presented earlier depicts a possible solution to the
considered case of FPIM FJSS.

The estimated computational performance of HEA is
about one individual (mapped into schedule with 400
orders) per 13 seconds, or 32 order trials per second. The
overall performance of HEA depends also on computa-
tional effort needed to solve the FPIM FJSS. We adhered
to the approach suggested by (Koza, 1992) which defines
the notion of computational effort as an amount of indivi-
duals to be processed in order to solve the problem with
specified probability (e.g. 90%). The diagram of the pro-
bability of success RS for FPIM FJSS, build from the data
of 50 independent runs is shown in Figure 5. The values
of HEA parameters are as stated in 3.4. The termination
criterion is fitness of the best individual is less or equal to
100 (desirable schedule).

Figure 5: Computational Effort Of HEA

As Figure 5 illustrates, the 90% probability of success
in developing a desirable schedule is achieved when
processing 146 individuals, which, considering the
computational performance of HEA would require about

0

20

40

60

80

100

20 48 76 104 132 160 188 216 244 272 300

Individuals

Rs, %

30 minutes of runtime. This runtime can be viewed as a
business delays for the task of evolving a desirable
(without tardy orders) schedule of 400 customers’ orders
in the considered experimental model of FPIM.

6 CONCLUSION AND DIRECTIONS
FOR FUTURE WORK

We proposed an approach for solving the problem of
scheduling the customers’ orders in FPIM as a case of
real-world JSSP. The objective of our work is to provide
the FPIM with high business speed implying addressing
of the following two main issues: (a) providing a
convenient way for remote online access to the factory’s
database and (b) developing an efficient (both in terms of
runtime and quality of solution) scheduling routine for
planning the assignment of the submitted customers’
orders to the FPIM machines. The first issue is addressed
by the proposed approach of delivering the software as a
service in accordance with the ASP paradigm, which
offers the benefits of easy software maintenance and futu-
re upgrade, low cost of entry into the business (especially
for small and medium scaled FPIM), and considerably
less expensive pay-as-you-go model. The issue of effici-
ent scheduling routine is addressed by developed HEA
which combines the approaches of using PDR with GA.
PDR-based approaches offer the advantage of simplicity,
featuring low computational cost and can therefore be
applied to complex real-world problems such as FPIM
FJSS. GA, incorporated into proposed HEA addresses the
issues of the myopic nature of PDR and the necessity to
empirically evolve the most suitable PDRs and their
combination. Implementing HEA as a database SP offers
the benefits of reduced communication network overhead
and improved performance characteristics Performance
evaluation results obtained for evolving a desirable
(without tardy orders) schedule of 400 customer’s orders
on experimental model of FPIM indicate that the business
delays are in order of half an hour.

We are intending to explore the following two approa-
ches to future reduce the business delays. The first appro-
ach is aimed at reducing the computational effort of HEA
and it would exploit the continuous nature of the schedu-
ling process. Taking into consideration the empirical
observation that newly submitted orders are unlikely to be
scheduled in a way that requires significant modifications
to the orders, scheduled earlier, we are interested in the
feasibility to incorporate few of the best schedules from
previous run into the initial population of the current run.
The second approach is intended to improve the overall
performance of HEA by inducing a noise (Miller and
Goldberg, 1995) in fitness evaluation - instead of creating
and evaluating the whole schedule, it is much faster to
create and evaluate only the initial part of it and to make a
judgment about the fitness of the whole schedule. The
preliminary obtained results are encouraging in that vary-
ing the amount of the induced noise a tradeoff between
the improved computational performance and the deterio-
rated computational effort can be achieved, leading to the

better overall performance of HEA.

Acknowledgements

We would like to thank the staff of Sumitomo Heavy
Industries Ltd. and NEC involved in this project for
providing the data and for disclosing the details about the
considered case of real-world FPIM scheduling.

References

F. S. Chong (1999), Java based distributed Genetic
Programming on the Internet, Technical Report CSRP-99-
7, The University of Birmingham, Birmingham, UK,
"ftp://ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/papers
/p.chong/p.chong.msc.25-sep-98.ps.gz

V. Ciesielski and P. Scerri (1998). Real Time Genetic
Scheduling of Aircraft Landing Times, The IEEE
International Conference on Evolutionary Computation
(ICEC98), David Fodel, ed, Anchorage, Alaska May 4-9

H.-L.Fang, P.Ross, and D.Corne (1994). A Promising
Hybrid GA/heuristic approach for open shop scheduling
problems. In A. G. Cohn, editor, Proceedings of ECAI-94:
11th European Conference on Artificial Intelligence,
pages 590--594. John Wiley and Sons Ltd.

D. E. Goldberg (1989). Genetic Algorithms in Search
Optimization and Machine Learning, MA: Addison-
Wesley, Reading.

J. H. Holland (1975). Adaptation in Natural and Artificial
Systems, The University of Michigan Press, Ann Arbor.

J. R. Koza (1992). Genetic Programming: On the Progra-
mming of Computers by Means of Natural Selection,
Cambridge, MA: MIT Press.

B.L. Miller and D. E. Goldberg (1995). Genetic
algorithms, tournament selection, and the effects of noise,
Illigal Report No. 95006, University of Illinois.

M. O'Neill and C. Ryan (2000). Incorporating gene
expression models into evolutionary algorithm 2000, In
Proceedings of the workshops of Genetic and
Evolutionary Computing Conference 2000 (GECCO
2000), 167-172, Las Vegas, Nevada, USA, July 10-12.

H. Pierreval and N. Mebarki (1997). Dynamic Selection
of Dispatching Rules for Manufacturing System
Scheduling, International Journal of production
Research, 35 (6): 1575-1591.

I.Tanev, T.Uozumi, and K.Ono (2001), Scalable
Architecture for Parallel Distributed Implementation of
Genetic Programming on Network of Workstations,
Journal of System Architecture, Special Issue on
Evolutionary Computing, Elsevier Science, 47: 557-572.

M.Varquez and L.D.Whitley (2000). A Comparison of
Genetic Algorithms for the Dynamic Job Shop
Scheduling Problem, In Proceedings of the Genetic and
Evolutionary Computing Conference 2000 (GECCO
2000), 1011-1018, Las Vegas, Nevada, USA, July 10-12.

