Instrumenting Programs with Flag Variables for Test Data Search
by Genetic Algorithm

Leonardo Bottaci
Computer Science Dept.
Hull University
Hull, HU6 7RX, U.K.

Abstract

Evolutionary search is potentially a powerful
way of searching for software test data to sat-
isfy various structural testing criteria. Spe-
cific test cases are evaluated by a fitness func-
tion constructed by instrumenting the pro-
gram under test. The more discriminating
the fitness function, the more efficient the
search. When a program uses flag variables
to store the results of predicate expressions,
it is difficult to instrument the program effec-
tively. The problem is examined and a solu-
tion is given for a special case. An approach
for tackling the general cases is described.

1 INTRODUCTION

The testing of software is a time consuming and expen-
sive activity and consequently the idea that it might be
automated is an attractive prospect. The vast major-
ity of testing tools in current use focus on automating
the execution of test cases and on collecting cover-
age and output data to compare with known results.
What these tools do not do, however, is generate the
test data to satisfy a given criterion. In some cases, the
data may be generated randomly but this is unlikely to
be adequate to satisfy the criterion. After application
of an initial set of tests, testers often have the problem
of constructing additional tests to completely satisfy
the given criterion. Even with a good knowledge of
the subject program under test this can be challeng-
ing. The problem is worse when testers work, as they
often do, on code written by others.

The automation of test data generation is a problem
that has been tackled by a number of researchers.
Ince (Ince 1987) gives an account of relatively early
work in this area. The test data generation problem,

for a nontrivial criterion, is undecidable in general.
This, coupled with the increased awareness of the po-
tential of heuristic search techniques has prompted re-
searchers to use these techniques to find test data for
various structural testing criteria. Korel (Korel 1990)
and Ferguson (Ferguson and Korel 1996) have used
function minimisation to find tests to satisfy path cri-
teria. Jones et al. (Jones, Sthamer, and Eyres 1996)
and Wegener et al. (Wegener, Sthamer, Jones, and
Eyres 1997) have applied genetic algorithms (Goldberg
1989) to find test data to satisfy branch coverage and
minimum and maximum execution times. Tracey et
al. (Tracey, Clark, and Mander 1998) have used sim-
ulated annealing to search for failure conditions. A
genetic algorithm is used in the GADGET (McGraw,
Michael, and Schatz 1998), test data generation sys-
tem. Pargas et al. (Pargas, Harrold, and Peck 1999)
describe a test tool in which a genetic algorithm is used
to search for test data that reaches a given node in the
program control flow graph. The conformance of the
test execution path to the control dependency condi-
tions (Ferrante, Ottenstein, and Warren 1987) for the
given node is used as the fitness function. The tool
developed by Wegener et al. (Wegener, Baresel, and
Sthamer 2001) uses evolutionary algorithms and, by
combining node and path conditions, may be used to
generate test data for most structural test criteria.

A common technique in the work mentioned above is
the instrumentation of the subject program to produce
a heuristic evaluation function or fitness function. Ul-
timately, the fitness function must evaluate the extent
to which a given test case satisfies specific predicate
expressions in the subject program. When the value
of a predicate expression is stored in a flag variable
there is the risk of losing the information gathered by
the instrumentation code. This paper considers this
problem and shows how to instrument a special case.
An approach for tackling the general case is also de-
scribed. The techniques described in this paper have

been implemented in a prototype test data generation
tool.

2 INSTRUMENTING A
PREDICATE EXPRESSION TO
SEARCH FOR TEST DATA

Consider the control flow graph of a subject program.
The nodes are the basic blocks of the subject and
the edges are the possible transitions between basic
blocks. The conditional transitions are associated with
a branch predicate. There is a distinguished start node
and a distinguished exit node. Many test criteria re-
quire a test case to execute a given statement. If the
particular path is unimportant then the control depen-
dency predicate path (or sometimes paths) of the goal
statement specifies the required value for each critical
branch predicate expression. A predicate expression
may not be critical because it is not part of any path
to the goal statement or because both outcomes may
lead to the goal statement.

There are a number of approaches, grouped under the
general heading of static methods, that attempt to cal-
culate the appropriate condition on the input data by
analysis of the program. One of these is symbolic eval-
uation (Clarke 1976) (Howden 1977). As the name
suggests, the program itself is not executed but in-
stead a description is constructed of how execution
along a particular path would affect a set of variables.
This description cannot give the precise values of vari-
ables but instead provides constraints on their possible
values, expressed, ultimately on the values of the in-
put variables. In general, however, the relationship
between the input data and the values of internal vari-
ables at the point where they are used in a predicate
expression may not be readily analysable because of
the presence of loops and computed storage locations,
e.g arrays and pointers.

Dynamic analysis is an alternative to static methods.
In this approach, the subject program is instrumented
in order that it may reveal, during execution, the in-
formation that can be used to guide the search towards
the required test case. In the most basic instrumenta-
tion, a record is kept of the values of all branch predi-
cate expressions executed. A cost for the given input is
computed by counting the number of predicate condi-
tions in the control dependency path of the goal state-
ment that have not been satisfied by the execution of
the program. This is the method described by Pargas
et al. (1999). A zero cost indicates that a solution has
been found whereas a nonzero cost indicates that an
undesired branch was taken at some predicate.

Although a count of undesired branch decisions pro-
vides some guidance to the search; in some situations,
the first few conditions of the control dependency path
will be easily satisfied but the next condition may be
quite difficult to satisfy. Our experience is that during
genetic search in this situation, the entire population
of test cases all quickly evolve to the same fitness which
is that obtained by satisfying only the easy predicates.
At this point, the search space has become flat and the
search becomes random.

As an example, consider the program fragment below.

if (a <= b)
// EXECUTION REQUIRED
// TO ENTER THIS BRANCH

Suppose we are seeking a test case that will cause ex-
ecution of the true branch of the conditional shown
above. If the required branch is difficult to enter, many
test cases will cause a <= b to be false. To discrimi-
nate between these tests, the program in instrumented
to calculate a cost measure that penalises those tests
that may be considered to be “far from” satisfying
a <= b. For this expression a suitable cost measure
would be a —b. A test that has a zero cost (a — b = 0)
“just” satisfies the condition. A positive cost indicates
that the predicate expression is false.

The subject program is instrumented at the point a
particular condition is required to hold, in our exam-
ple at a <= b. Through instrumentation, the subject
program has in effect been converted into another pro-
gram that computes a function that we seek to min-
imise to zero. This method has been used by Ko-
rel (Korel 1990), Tracey et al. (Tracey, Clark, Man-
der, and McDermid 1998), Wegener et al. (Wegener,
Baresel, and Sthamer 2001) and others.

Below are shown the typical relational predicate cost
formulae. a,b are numbers and e is the smallest posi-
tive constant in the domain (i.e. 1in the case of integer
domains and the smallest number greater than zero in
the particular real number representation).

Predicate Cost of not satisfying
expression predicate expression
a<b a—>

a<b a—b+e

a>b b—a

a>b b—a+e

a=b abs(a — b)

a#b € — abs(a — b)

The cost formulae must be extended beyond the re-

lational predicates to the logical predicates to pro-
vide a cost for branch predicate expressions such as

a <= b and not(x > 0). As a simple case, consider
the logical negation operator. Presented with the ar-
gument true with cost ¢ it must return false with cost
—c+e€. This cost formula for negation follows from con-
sideration of the costs of a < b and a > b. Possible cost
tables for or and and are given in Table 1 where ¢, is
the cost representation of a boolean value a. In the
table below, ¢, and ¢, are always positive so that the
four rows correspond to the four rows of the classical
truth table for two boolean values.

Table 1: Logical Operator Cost Table

| a | b | aorb | a and b |
Ca Cp min(caa cb) max(ca, cb)
Ca —Cp —Cp Ca
—Cq Cp —Cq Cp
—cq | —¢p | min(—cq,—cp) | maz(—cq, —cp)

The intuition behind the cost formula for or is that
if either of the ¢, or ¢, costs are to be incurred we
need incur only the least cost hence the min function.
When both costs must be incurred, we are obliged to
accept at least the maximum cost!.

Tracey et al. (Tracey, Clark, Mander, and McDermid
1998) use essentially the same cost functions although
their’s are restricted to nonnegative values. A notable
difference, however, is the use of + rather than max
for and. One can argue that when both costs must be
incurred, we are obliged to accept them both. There
are also situations in which + is a better operator than
min for or and the above truth table is presented only
as a heuristic; the precise cost formulae used is not
relevant to the subject of this paper.

3 FLAG VARIABLE PROBLEM

Given an effective cost function, problems can
nonetheless arise in trying to use it. A particular prob-
lem is that sometimes the point in the program where
a predicate expression is evaluated, this is the point
at which a cost may be calculated dynamically, may
not be the point at which the predicate value is used,
which is where the cost value is required. In the soft-
ware testing literature, this is often referred to as the

INote that the above formulas are consistent with De Mor-
gan’s laws. For example, the cost of the negation of a or b is
—min(ca, ¢p) + € which is equal to maz(—cq + €, —cp + €) which
is the cost of not a and not b. This cost equality is a stronger
condition than is necessary, we require only that truth values be
preserved.

boolean flag problem.

3.1 SPECIAL CASE

The following code fragment illustrates a special case
of this problem.

flag := a <= b; // COST a - b CALCULATED

if (flag) // COST a - b REQUIRED
// AS EXECUTION REQUIRED
// TO ENTER THIS BRANCH

In the predicate expression of the condition, we require
flag = true but this is not a useful expression to in-
strument because a boolean variable can provide only
one of two values leading to an ineffective cost function
with a flat surface.

Since the problem arises because the information that
is used to compute the boolean value of the flag is
discarded once the flag is set, the solution described in
this paper is to retain this information so that it may
be used later in the execution when, for example, the
flag is evaluated as part of a conditional. In this way,
when the flag variable is evaluated in the predicate of
the conditional, it may be associated with the cost of
the expression a <= b computed at the time that the
flag was set earlier, in the execution.

A prototype test data generation tool has been con-
structed in which the above scheme has been imple-
mented. All predicate expressions in the subject pro-
gram are instrumented to compute the costs described
in the previous section. In addition, whenever any
variable is assigned the value of a predicate expres-
sion, the cost of that expression is associated with the
variable. In the example above, if flag is set then the
cost a — b is associated with flag. When the vari-
able flag is used in the if-statement, the saved cost is
retrieved and associated with the if-statement.

There may be a number of statements where a flag
variable may be set and used during the execution of
a program as for example

if (...)

flag := a <= b;
else

flag := a >= c;

// COST a - b IF EXEC
// COST c - a IF EXEC
// COST OF

// flag USED
// AND SAVED

flag := not(flag) and (x > 0);

Whenever a variable is set to the value of a predicate
expression, the variable is also associated with the cost

of that expression and so the cost of any expression
involving flag variables may be calculated.

Note that the above scheme allows for the cost of a
predicate expression to be associated with the assign-
ment of a value to any variable, even a computed vari-
able such as an array element or pointer reference.
Pointer variables have not yet been implemented in
the prototype but they will not present a problem for
this scheme.

3.2 GENERAL CASE

The above technique fails, however, when the boolean
expression that in effect determines the flag value is
not directly assigned to the flag but is used to control
the assignment of a “summary” value, as is shown in
the following fragment.

flag := false;

if (a <= b) { // COST KNOWN HERE
flag := true;

}

if (flag) // COST POSSIBLY USEFUL HERE

// DESIRED BRANCH

When the flag is false and it is desired to set it true
there is no cost value associated with the flag that can
be use to guide the search towards satisfying a <= b.
The cost of this expression is computed, however, but
it is associated only with the first conditional state-
ment.

It is not at all clear how the computed cost can be
propagated usefully in this situation. To establish that
this cost is even relevant to the problem it is necessary
to recognise that the second assignment to flag is rel-
evant to the selection of the required branch. Data
dependence analysis (Aho, Sethi, and Ullman 1986)
could be used to do this. We might then identify the
conditional statement closest to the unexecuted assign-
ment to the flag, i.e. that conditional which controls
entry to the basic block that contains the assignment.
If in the code flag is set true then the cost of the con-
ditional predicate expression should be associated with
the use of the flag in the second conditional statement
and conversely if in the code flag is set false (and a
false value is required) then the flag should be associ-
ated with the negation of the cost of the conditional
predicate expression.

In the above fragment, we have the benefit of knowing
that if the flag is set, it is set true, in general, unless the

statement is executed, the value of the flag is unknown.
With an unknown flag value there is the danger that
the cost of the conditional predicate expression is not
useful since it may guide the search towards the exe-
cution of a statement that does not change the value
of the flag to the required value. A more difficult case
is shown in the fragment below.

if‘(a <=b) { // COST KNOWN

if (a > ¢) { // COST KNOWN IF a <= b
flag := true;

The variable flag is set true only when both predicate
expressions a <= b and a > c are true. This suggests
that the cost to be associated with the value of flag
at the assignment is the cost of a <= band a > c but
if a <= b is false then there is no cost for a > c.

In general, flag values can be known only when they
are set and cost information can be collected only when
predicate expressions are executed. The need to exe-
cute code in order to analyse it is a fundamental limi-
tation of dynamic program analysis in general.

Fergusonet al. (Ferguson and Korel 1996) also tackle
the problem of generating test data in a program with
flag variables. They do not associate costs with flag
values. The approach they take when a search fails to
find a test case that will execute a required branch is
to identify the statements which could affect the value
of the flag. Data dependence analysis (Aho, Sethi, and
Ullman 1986) is used to do this. Once these statements
are identified, their execution become subgoals of the
test generator. In this way, the search for statements
to execute is goal directed and depth first in that a
subgoal is pursued before a sibling goal.

Clearly, program execution must be directed to cur-
rently unexecuted parts of the program. It may not
be necessary, however, to use a focussed technique to
identify the specific statements that may affect the
predicate expression under consideration. In any case,
it is not possible to tell if the execution of the state-
ment will solve the problem unless the statement is ex-
ecuted. A much simpler approach, for example, would
be to attempt to execute all acyclic paths that reach
the problem node.

A genetic algorithm is well suited to exploring many
areas of the search space in parallel (breadth first
search on a serial machine). The initial population
of random test cases could be separated into separate
subpopulations or islands. In each island there would

be a search for a specific acyclic path. Given the use
of a genetic algorithm as a search tool for this work
it seems sensible to investigate if the ability of the ge-
netic algorithm to search different parts of the search
space breadth first can be exploited to solve this prob-
lem. It may turn out that a search for test cases that
will execute all acyclic paths to the required branch
is reasonably efficient in practice in which case it is
possible to avoid the implementation complexities of a
more goal directed search.

4 IMPLEMENTATION

A prototype test data generation system has been writ-
ten (using CMU Common Lisp) to apply the ideas de-
scribed in this paper to example programs. The proto-
type has two main modules. One module is concerned
with the instrumentation of the subject program and
the other, smaller, module is responsible for searching
for test data using a genetic algorithm.

The subject program is parsed into an abstract syntax
tree?. From this tree is generated the instrumented
subject program. The subject and mutant program is
instrumented as follows. Each conditional statement
has a fixed length FIFO queue® in which predicate
expression costs are saved as they are calculated. In
addition, the conditional retains the lowest positive
cost produced (recall that the cost is positive when
the predicate is false) and the highest non-positive cost
(recall that the cost is zero or negative when the pred-
icate is true). In this way it is possible to determine if
both branches have been taken. Each variable also has
a similar fixed length FIFO queue in which is saved the
cost of any predicate expression value assigned.

In addition to the subject program, the only additional
information that the user may supply is a constraint
and probability distribution on the subject program
input domain. This is done by defining subsets of the
input domain and assigning a probability to each sub-
set. The input domain definition and probability dis-
tribution is used to create the initial random popula-

2Currently the subject program must be hand translated into
a common input language. The common input language is an
expedient that for the purpose of research avoids the need to
construct a parser for the language of the subject program. It
has not yet proved to be a handicap since it is not difficult to
find quite small subject programs that provide the test gener-
ator with a difficult challenge. The common input language is
procedural and block structured although not all the features
found in this type of language are as yet available. In particu-
lar, pointers are absent and the array is the only aggregate data
type.

3A queue of costs is required to tackle the problem of in-
strumenting code within loops, a problem not relevant to this

paper.

tion of test cases. For each designated subset, the user
may also specify the parameters of the genetic muta-
tion operator (uniform or Gaussian distribution and
variance).

Test inputs are coded not as binary strings but as
strings of atomic values of the common programming
language data types, i.e. integer, float, etc. The ge-
netic algorithm is of the steady-state variety and sim-
ilar to Genitor (Whitley 1989). Reproduction takes
place between two individuals who produce one or two
offspring (depending on the choice of reproduction op-
erator). These offspring are then immediately inserted
into the population expelling the one or two least fit.
The population is kept sorted according to cost and
the probability of selection for reproduction is based
on rank in this ordering.

5 CONCLUSIONS

The instrumentation of predicates in a program un-
der test is a common technique for guiding the search
for test data. The presence of flag variables, however,
has long been recognised as an impediment to such in-
strumentation. The approach described in this paper
is to propagate the cost information from the predi-
cate expression instrumentation, i.e. the statement in
the program where it is calculated, to the conditional
where it is required. This technique cannot solve the
general problem with flag variables but here it is pro-
posed to use the genetic algorithm to search among
the relevant acyclic paths.

References

Aho, A. V., R. Sethi, and J. D. Ullman (1986). Com-
pilers: Principles, Techniques and Tools. Addi-
son - Wesley.

Clarke, L. A. (1976, September). A system to gener-
ate test data and symbolically execute programs.
IEEE Transactions on Software Engineering SE-
2(3), 215-222.

Ferguson, R. and B. Korel (1996, January). The
chaining approach for software test data genera-
tion. ACM Transactions on Software Engineer-
ing and Methodology 5(1), 63—86.

Ferrante, J., K. J. Ottenstein, and J. D. Warren
(1987, July). The program dependence graph
and its use in optimization. ACM Transactions

on Programming Languages and Systems 9(3),
319-349.

Goldberg, D. E. (1989). Genetic Algorithms in
Search, Optimization and Machine Learning.

Addison Wesley.

Howden, W. (1977). Symbolic testing and the dis-
sect symbolic evaluation system. IEEE Trans-
actions on Software Engineering SE-4(4), 266—
278.

Ince, D. C. (1987). The automatic generation of test
data. The Computer Journal 30(1), 63—69.

Jones, B. F., H. Sthamer, and D. Eyres (1996).
Automatic structural testing using genetic al-
gorithms. Software Engineering Journal 11(5),
299-306.

Korel, B. (1990, August). Automated software test
data generation. IEEE Transactions on Software
Engineering 16(8), 870-879.

McGraw, G., C. Michael, and M. Schatz (1998).
Generating software test data by evolution.
Technical Report RSTR-018-97-01, RST Corpo-
ration, Suite 250, 21515 Ridgetop Circle, Ster-
ling VA 20166.

Pargas, R. P., M. J. Harrold, and R. P. Peck (1999).
Test-data generation using genetic algorithms.
Software Testing, Verification and Reliabillity 9,
263-282.

Tracey, N., J. Clark, and K. Mander (1998,
March). Automated program flaw finding us-
ing simulated annealing. Software Engineering
Notes 23(2), 73-81.

Tracey, N., J. Clark, K. Mander, and J. McDer-
mid (1998). An automated framework for struc-
tural test data generation. Procceedings of the
18th IEEE Conference on Automated Software
Engineering.

Untch, R. H., A. J. Offutt, and M. J. Harrold (1993).
Mutation analysis using mutant schemata. In
Proceedings of the 1993 International Sympo-
sium on Software Testing and Analysis ISSTA
1993, New York, NY, USA, pp. 139-147. ACM.

Wegener, J., A. Baresel, and H. Sthamer (2001).
Evolutionary test environment for automatic

structural testing. Information and Software
Technology 43, 841-854.

Wegener, J., H. Sthamer, B. F. Jones, and D. Eyres
(1997). Testing real-time systems using genetic
algorithms. Software Quality Journal 6, 127—
135.

Whitley, D. (1989). The genitor algorithm and se-
lective pressure: why rank based allocation of re-
productive trials is best. Proceedings of the Third
International Conference GAs., 116-121.

