
Code Factoring and the Evolution of Evolvability

Terry Van Belle
Department of Computer Science

University of New Mexico
Albuquerque, New Mexico, USA

vanbelle@cs.unm.edu

505-277-7833

David H. Ackley
Department of Computer Science

University of New Mexico
Albuquerque, New Mexico, USA

ackley@cs.unm.edu

505-277-9149

Abstract

Evolvability can be defined as the capacity of a
population to evolve. We show that one advan-
tage of Automatically Defined Functions (ADFs)
in genetic programming is their ability to in-
crease the evolvability of a population over time.
We observe this evolution of evolvability in ex-
periments using genetic programming to solve a
symbolic regression problem that varies in a par-
tially unpredictable manner. When ADFs are part
of a tree’s architecture, then not only do aver-
age populations recover from periodic changes
in the fitness function, but that recovery rate it-
self increases over time, as the trees adopt modu-
lar software designs more suited to the changing
requirements of their environment.

1 EVOLUTION OF EVOLVABILITY

Evolutionary biologists have explored the sometimes con-
troversial notion that beyond merely producing organ-
isms adapted to their environments, the forces of evolu-
tion may operate to improve the adaptation process itself
(Dawkins 1989, for example). The idea is that over rel-
atively long time periods populations can become more
capable of adaptation in the face of future environmental
change, a process described as “the evolution of evolvabil-
ity.”

While it may appear only logical that a ‘more adaptable’
population would ultimately outcompete and displace some
other population that is less so, it seems a good deal less ob-
vious when imagining how that competition would actually
have to play out. If two individuals are equally fit in their
environment there will be no direct pressure favoring the
survival of one over the other, even if they vary drastically
in how well-suited their designs would be for evolutionary

adaptation to future changes. Even worse, if there is any
near-term fitness cost associated with being adaptable for
the future, we would expect such adaptability to dwindle
rather than proliferate.

1.1 EVOLVABILITY IN ARTIFICIAL LIFE

Artificial life researchers have developed models in which
the capacity of populations to adapt improves. Some
approaches have involved mechanisms such as encoding
the mutation rate inside of the genotype (Fogel, Fogel
& Atmar 1991), using ‘locking bits’ to turn on and off
the mutability of individual data bits (Turney 1999), and
allowing variable gene ordering to encourage modularity
(Pepper 2000). Although not providing experimental re-
sults, (Altenberg 1994) suggested that genetic program-
ming (GP) experiments can exhibit an increase in evolv-
ability through the proliferation of favorable blocks of
code.

On the other hand, given an unchanging fitness function
most typical genetic algorithms will converge to a small
number of genotypes. As that happens, the average fitness
of the population rises, but the ability of the population to
adapt further declines, because less and less of the overall
solution space remains easily reachable by applications of
the genetic operators. In such cases, shorter-term fitness
optimization is antagonistic to longer-term maintenance of
evolvability.

1.2 CODE FACTORING

In software engineering, code factoring refers to the pro-
cess of reorganizing the code within a program to improve
its ‘internal structure’ in some manner, generally without
changing what the program actually does (Fowler, Beck,
Brant, Opdyke & Roberts 1999). Code factoring is used,
for example, to merge duplicated pieces of code, and to
separate more volatile code elements from a more stable
code base. In this paper we explore a model that displays



an increase in evolvability based on evolutionary code fac-
toring.

We applied genetic programming to a simple symbolic re-
gression task with a repeated term. Unlike typical GP ex-
periments, we periodically varied the value of this repeated
term over the course of a run, thus changing the GP popu-
lation’s environment. We report on three experiments com-
paring trees that contained an ADF (Koza 1994) with trees
that did not. We found that while both populations only
adapted in temporarily constant environments, the ADF
population also evolved forms capable of adapting more
quickly to a changed environment—the evolvability of the
ADF population evolved in a positive direction.

2 BACKGROUND

2.1 BIOLOGY AND SOFTWARE

(Kirschner & Gerhart 1998) point out how some biologi-
cal mechanisms—such as versatile protein elements, weak
linkage, compartmentation, redundancy, and exploratory
behavior—can improve the evolvability of multicellular or-
ganisms. Such mechanisms can reduce the interdepen-
dence between components, allowing functionally inde-
pendent traits to vary without adversely affecting each
other.

At the same time, sometimes decreasing flexibility can be
advantageous. (Dawkins 1996) cites bilateral symmetry as
an example of a constraint that can improve evolvability.
If longer legs, say, would improve fitness, a developmen-
tal process structured so that both legs lengthened equally
as the result of a single mutation could have an advantage
over another ontogeny that required a separate mutation for
each leg to occur simultaneously. The former approach sac-
rifices the added flexibility of differing limb lengths, but
we imagine that would be generally detrimental anyway.
Evolvability is inherently about placing both flexibility and
constraint where they are likely to help more than hurt, and
involves betting on how the future is likely to be different
from the present. If there are patterns in the environmental
changes, evolvability may be able to gain traction.

Similar issues arise in software design (Altenberg 1994, for
example). The environment to which the software must
adapt includes the changing requirements of the software
users (Nehaniv 2000, Stiemerling & Cremers 2000). Such
changes are not completely random, and good software de-
sign tries to anticipate them.

For example, when designing code for a graphical user in-
terface that contains some clickable buttons, one possible
approach would be to write a completely separate module
for each button. This allows great flexibility in that ev-
erything about the appearance and behavior of one button

could be changed without any effect on the others, but es-
sentially no software designer would even consider such an
approach. Buttons in GUIs generally behave in largely sim-
ilar fashions, so the code responsible for each button can be
very similar as well. Software designers separate attributes
that distinguish the buttons—location, label, and action, for
example—and provide them as parameters modifying the
behavior of a single piece of code. The designer can then
maintain the common code for all buttons simultaneously.

Although both solutions—lots of nearly duplicated code
versus parameterized common code—could precisely sat-
isfy the immediate behavioral needs, one solution is likely
to be more evolvable than the other. Designers of durable
systems strive not only to satisfy current requirements, but
also to be adaptable along the dimensions in which they
believe the requirements will vary in the future. This, we
hypothesize, is a key part of the distinction between a pro-
gram which merely solves a problem and one which solves
it with good design: The latter is more evolvable.

In both biological and computational systems, the environ-
ment within which an organism or piece of software must
function is likely to be more constant along some dimen-
sions, and more variable along others. Systems with high
evolvability will be adaptable along the variable dimen-
sions of the environment without disrupting those design
elements that have adapted to the environment’s constant
dimensions.

2.2 MODULARITY IN GP

(Koza 1994) introduced a variant to genetic programming,
known as “Automatically Defined Functions” (ADFs), to
introduce modularity into genetic programming, which
previously had typically involved only a single block of
code per organism. With ADFs, each genotype contains
multiple blocks of code. One is designated the “Result
Producing Branch” (RPB), and is the code that calculates
the tree’s result. The RPB can make use of special non-
terminals that make calls to other blocks of code—the
ADFs—that are by convention identified ADF0, ADF1, : : : .
Each ADF contains a pre-set number of arguments, usually
defined by the experimenter, which it can access through
special argument terminal nodes, conventionally labelled
ARG0, ARG1, : : : . The function (x� 1)2 +(x� 1), for ex-
ample, could be represented by:

ADF0: (- X 1)

RPB: (+ (* ADF0 ADF0) ADF0)

In this example, ADF0 takes no arguments and computes
x�1; the RPB computes the final function by calling ADF0

several times. The combination of ADF0 and the RPB con-
stitutes a single genome.



(Koza 1994) demonstrated that introducing ADFs pro-
duced a near-universal improvement both in computational
effort and in code size over equivalents without ADFs, pro-
vided the problem complexity exceeds a certain threshold.
In this paper we show that ADFs can also improve a GP
genome’s evolvability over time.

3 EXPERIMENTAL FRAMEWORK

To investigate evolvability, we need both a dynamic en-
vironment and some evolutionary organisms. Here we
present the models we used for each.

3.1 A DYNAMIC ENVIRONMENT

The environmental task was to perform symbolic regres-
sion on the function

y = Asin(Ax) (1)

where A is a constant, and x ranges from �1 to 1. Al-
though A was held constant during fitness evaluations, it
was changed periodically on a longer time scale, caus-
ing the fitness function to vary along a single dimension,
while keeping all other dimensions constant. As software
designers—seeing that A appears twice in the objective
function and armed with the foreknowledge that A will vary
over evolutionary time—we can readily conclude that it
would be advantageous to factor out the computation of A
and reuse that code; the question was whether ‘blind evo-
lution’ would be able to see that as well.

Every generation, 200 x values were generated uniformly at
random from the interval [�1;1), and the corresponding y
values were obtained from Equation 1 using the current A.
A tree’s fitness was calculated by evaluating it on the 200
current x’s, and summing the absolute values of the differ-
ences between the correct y value and what the tree pro-
duced. For display purposes, we also computed the num-
ber of hits of a tree—the number of sample points where
the calculated result was within 0:1 of the correct y value.
Any tree scoring 200 hits was considered a correct tree,
regardless of how it accomplished that performance.

Each run consisted of 1000 generations, evenly divided into
epochs of L generations each. At the end of each epoch, a
new value for A was selected uniformly at random from the
range [0;6).1 Fitness of the best of generation was reported
at the start of each epoch (immediately after A had been se-
lected), and at the end of each epoch (after L generations of
evolution had elapsed). Figure 1 summarizes the procedure
used for the dynamic environment.

1Since �Asin(�Ax) � Asin(Ax), negative values of A would
not add any problem complexity.

1. Update A

2. Generate 200 random sample points

3. Calculate fitnesses at the start of the epoch

4. Loop for L generations:

4.1. Evolve for a generation

4.2. Regenerate 200 random sample points

5. Calculate fitnesses at the end of the epoch

6. Calculate evolvability

7. Go to step 1

Figure 1: Experimental framework for a dynamic environ-
ment. See text for details.

3.1.1 Evolvability Defined

Within that environment, we defined the evolvability of the
population at each epoch to be the following:

E =
Fe�Fs

L
(2)

where Fs was the population’s best fitness (measured in
hits) just after A was changed and Fe was the best fitness
at the end of L generations of evolution beyond that point.

3.2 EVOLUTIONARY ARCHITECTURES

We compared a ‘monolithic’ tree architecture containing no
ADFs with an ‘ADF’ tree architecture that provided a sin-
gle zero-argument ADF. In Experiment 1, below, the termi-
nal node ‘x’ was not allowed in the ADF, so the ADF could
only produce a constant value. In the monolithic configu-
ration, a single branch calculated the entire function.

We used lil-gp 1.1 (Punch & Goodman 1995), to run
the experiments. A summary of the details can be found in
Table 1. The percentage indicated for each operator gives
the probability it will be used to produce an offspring. The
‘Best’ operator simply reproduces the best genome from
the previous generation, then the second best, and so on for
as many times as it is called, providing a kind of probabilis-
tic elitism.

4 RESULTS

For each experimental configuration, we collected statistics
such as the fitness (measured in hits) at the beginning and
end of each epoch, the evolvability E , and the sizes of the
various branches in numbers of nodes. All values reported



Population Size 1000
Generations 1000
Function y = Asin(Ax)
Fitness sum of absolute value of error

for 200 points
Fitness Reported number of hits (max 200)
Operators Crossover (80%), Mutation

(10%), Reproduction (5%), Best
(5%)

Crossover Branch Typing
Selection Generational, Tournament,

Tournament Size = 7
Non-terminals sin;cos; log;exp;+;�;�;=

Terminals Random constant in [�1;1].
RPB of ADF: x, ADF0.
Monolithic: x.

Architecture Monolithic vs. one 0-arg ADF
Update of A Uniform random from [0;6)
Epoch Length L = 5 generations (except in Sec-

tion 4.3)

Table 1: Details of Experiment 1

were measured from the best of generation, and averaged
over 100 runs.

0

50

100

150

200

0 20 40 60 80 100 120 140 160 180 200

F
itn

es
s 

(H
its

)

Epochs (5 Generations each)

ADF Fe
Monolithic Fe

ADF Fs
Monolithic Fs

Figure 2: Average fitness values at the start (Fs) and end
(Fe) of each epoch when regressing to y = Asin(Ax). A is
selected at the start of each epoch uniformly from the range
[0;6).

4.1 ADFS AND EVOLVABILITY

The first experiment asked if ADFs can increase average
evolvability of a population compared to their absence. The
results can be seen in Figures 2 through 5. The x axis is
measured in epochs.

Figure 2 shows fitnesses, while Figure 3 presents the data

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

E
vo

lv
ab

ili
ty

 (
H

it 
G

ai
n 

pe
r 

G
en

er
at

io
n)

Epochs (5 Generations each)

ADF Fe
Monolithic Fe

Figure 3: Average evolvabilities for each epoch, regressing
to y = Asin(Ax).

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

T
re

e 
S

iz
e 

(N
od

es
)

Epochs (5 Generations each)

ADF, RPB branch
Monolithic

ADF, ADF branch

Figure 4: The average sizes of the three major branches.
The ADF case shows sizes for both the RPB and the ADF;
the monolithic size is the entire tree.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

F
ra

ct
io

n 
of

 r
un

s

Epochs (5 Generations each)

ADF correct
Monolithic correct

ADF correct and minimal

Figure 5: Fraction of runs, at each epoch, that contained
correct solutions (hits = 200). Also plotted is the percent
of ADF runs that contains a minimal (RPB size 6) correct
solution—the tree size of Equation 3.



expressed as evolvabilities. The gap between the start (Fs)
and end (Fe) fitnesses increases over time when ADFs are
part of the tree architecture, but shows little to no increase
when they are not; only when the trees contained ADFs
did the best of generation average evolvability increase sub-
stantially over time.

An unexpected result visible in Figure 2 is that Fs increased
over time when ADFs were part of the tree architecture.
This is somewhat surprising, since Fs is calculated immedi-
ately after a new random value had been chosen for A, and
before any evolution using that value has occurred. The
ADF populations not only improved their capacity to track
the changing environment, but as time went on, the popula-
tions became seeded with good solutions along the dimen-
sion of varying A.

Figure 4, showing the average tree sizes over time, suggests
that the environmental change also had the effect of curbing
any substantial tree size increases, so ‘code bloat’ (Blickle
& Thiele 1994) was not a problem. The average sizes of all
branches increased at most slowly, staying below 60 nodes.

A ‘poster child’ best-of-generation solution in the ADF
case, taken from the end of the last epoch of run 10, looks
like this:

RPB: (* ADF0 (sin (* ADF0 X))

ADF0: (+ -0.52751 (- 0.03383

(+ (sin -0.84486) -0.07376)))

This is an example of an ideally structured RPB. The calcu-
lation of the constant A has been moved to the ADF0 branch,
and the form of the RPB:

y = ADF0() � sin(ADF0() � x) (3)

matches that of Equation 1. The RPB contains six nodes
(two multiplications, two ADF calls, one sin() call and one
access to x), which is minimal for a correct general solu-
tion, given the set of terminals and non-terminals available.
36% of the runs ended with a solution of 200 hits and an
RPB of size 6 at the end of the last epoch. Figure 5 shows
that both the percent of correct solutions, and of correct
minimal solutions rises substantially over the course of the
ADF run, while staying fairly constant in the monolithic
case.

Not all minimal correct trees will represent an ideal so-
lution like Equation 3—it is possible to generate a non-
general correct solution of size 6. However, manual ex-
amination of the last generation of the ADF case indicates
that all but one of the runs was an ideal solution, or one of
the form

RPB: (/ (sin (/ X ADF0)) ADF0)

where the ADF calculates the reciprocal of A. The one ex-

ception had had the correct form at the end of the penulti-
mate epoch, but had succumbed to an A-specific approxi-
mation during the last epoch.

By way of contrast, we ran 100 runs using a static fitness
function, where the value for A never varied from 3 for the
entire run. In this case, only 2 runs provided solutions of
the ideal form at any point in the run.

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

E
vo

lv
ab

ili
ty

 (
H

it 
G

ai
n 

pe
r 

G
en

er
at

io
n)

Epochs (5 Generations each)

ADF Fe
Monolithic Fe

Figure 6: Average evolvabilities per epoch, regressing to
y = Asin(Bx), with A and B varying independently. Com-
pare to Figure 3.

We also performed a control experiment in which all con-
ditions were identical to Experiment 1 except that the func-
tion being optimized was y=Asin(Bx), where A and B var-
ied independently at random over precisely the same range.
In that case there is no code reuse and thus should be no
advantage to factoring the computation, and as Figure 6
shows, the ADF evolvability advantage completely disap-
peared in this case.

Experiment 1 strongly supports the idea that factoring the
repeated and varying portion of the environment into a sep-
arate function aided the long-term successful populations
by reducing the number of changes necessary to adapt to
a new value of A. Though trees arose in ADF populations
that did not perform such a factorization and still achieved
correct solutions, such non-factored trees were less evolv-
able than the ones that factored, and so they and their de-
scendents tended eventually to be out-competed.

4.2 EVOLVING CONSTANCY

Experiment 1 disallowed x in the body of the ADF, thus
constraining the ADF to only produce constant values.
Since that could bias solutions toward the ‘more intuitive’
factored representation, we also tested architectures with-
out that constancy constraint.

In Experiment 2 the terminal node x was included in the
ADF’s terminal set, so the only remaining difference be-



0

50

100

150

200

0 50 100 150 200 250 300 350 400

F
itn

es
s 

(H
its

)

Epochs (5 Generations each)

ADF Fe
Monolithic Fe

ADF Fs
Monolithic Fs

Figure 7: Experiment 2: Average Fs and Fs values when x
is allowed in the ADF. The number of epochs is doubled
over Experiment 1.

tween the RPB and the ADF was that the RPB could call
the ADF but not vice-versa. The run length was doubled
to 400 epochs over 2000 generations. The parameters were
otherwise identical to Experiment 1.

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400

E
vo

lv
ab

ili
ty

 (
H

it 
G

ai
n 

pe
r 

G
en

er
at

io
n)

Epochs (5 Generations each)

ADF Fe
Monolithic Fe

Figure 8: Average evolvabilities over time when x can be
used in the ADF. The number of epochs is doubled over the
first experiment.

The results can be seen in Figures 7 and 8. Increasing
evolvability was still observed, though less pronounced
than in Experiment 1. 22% of the runs produced ideal, min-
imal, correct solutions.

We wondered whether that increasing evolvability corre-
sponded to increasing constancy in the ADF, but determin-
ing an ADF’s constancy in a satisfying way is somewhat
problematic. Simply counting the number of x’s in the
ADF’s code fails because the x nodes may be contained in-
side of introns, non-functional blocks of code such as 0�x,
or x� x (Angeline 1994).

Another approach might be to measure the variance of

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400

O
cc

up
ie

d 
B

in
s 

(w
id

th
 0

.0
1)

Epochs (5 Generations each)

Figure 9: The average number of occupied bins returned
by the evolved ADFs over time, given 200 random inputs.
Lower numbers (minimum 1) imply ‘more constancy’.

ADF(x) sampled over many values of x, but that tends to be
highly sensitive to occasional large-magnitude outliers that
skew the averages across runs. The procedure we eventu-
ally used is as follows: We called ADF(x) on 200 random
points in the range [�1;1) and quantized the return values
into bins of size 0.01, so that results were judged identical
if they rounded to the same nearest hundredth. We could
then simply count the number of distinct occupied bins as
a crude measure of ADF constancy. A completely constant
function would produce only one occupied bin.

Figure 9 shows that the average number of ADF occupied
bins declined significantly over time, suggesting that the
ADFs indeed tended towards constancy.

4.3 VARYING EPOCH LENGTHS

In general, there is every reason to expect evolvability ef-
fects to depend on the rate of change of the environment.
At one extreme, there is no advantage to maintaining a flex-
ible design for future change if no environmental change is
ever forthcoming; at the other extreme if there too much
change too frequently then no effective adaptation will be
possible at all.

In our model, the length of an epoch provides a natural
index of the rate of environmental change. In Experiment 3,
the epoch length L was varied over the values L = 1, 2, 5,
10, 20, 50, 100, and 200 generations, resulting in runs that
ranged from 5 to 1000 epochs. All other parameters were
the same as in Experiment 1. In particular, the ADF was
not allowed to use x.

The average over 100 runs of the last-epoch Fs and Fe val-
ues can be seen in Figure 10 as a function of L. The largest
Fs occurs at L = 2, while the maximum Fe occurs at L = 5.
At present we are unsure why the ADF Fe rises from L = 50



0

50

100

150

200

1 10 100

F
itn

es
s 

(H
its

)

Epoch Length (Generations)

ADF Fe
Monolithic Fe

ADF Fs
Monolithic Fs

Figure 10: Average starting (Fs) and ending (Fe) fitnesses
for the last epoch, for various epoch lengths.

0

5

10

15

20

25

1 10 100

E
vo

lv
ab

ili
ty

 (
H

it 
G

ai
n 

pe
r 

G
en

er
at

io
n)

Epoch Length (Generations)

ADF
Monolithic

Figure 11: Average evolvability E for the last epoch, for
various epoch lengths.

to L = 100. One possibility is that L = 5 is close to the opti-
mal value when evolvable architectures are the norm, while
L = 100 is close to optimal when evolvability is not an is-
sue.

As epoch lengths increase, the monolithic Fe increases
and Fs declines slowly, in line with expectations that the
longer intra-epoch periods allow more evolution but then
the inter-epoch changes are more disruptive. In both ADF
and monolithic cases, the evolvability peaks at L = 2 (Fig-
ure 11), suggesting that diminishing returns set in rapidly
when measured on a gain-per-generation basis.

Figure 12 shows the number of correct solutions for ADF
and monolithic cases, as well as the correct and minimal
solutions for the ADF case. The latter value is largest at
L = 5, and is unaffected by the L = 100 resurgence that
occurs for Fe and correct solutions, suggesting the L = 100
rise may not be due to improved evolvability.

As the epoch lengths increase, the tree sizes in the mono-

0

0.2

0.4

0.6

0.8

1

1 10 100

F
ra

ct
io

n 
of

 r
un

s

Epoch Length (Generations)

ADF correct
Monolithic correct

ADF correct and minimal

Figure 12: Fraction of ADF and monolithic runs that
achieve correct (hits = 200) solutions at the end of the last
epoch. Also plotted is the percent of ADF runs that are
correct and have RPBs with a size of 6.

0

20

40

60

80

100

120

140

160

1 10 100

T
re

e 
S

iz
e 

(N
od

es
)

Epoch Length (Generations)

ADF RPB
Monolithic
ADF ADF

Figure 13: Average tree sizes for the last epoch, for various
epoch lengths. Plotted are the size of the RPB in the ADF
and monolithic configurations, as well as the ADF size in
the ADF configuration.



lithic case increase steadily, but in the ADF case, the RPB
average size reaches a minimum at L = 20 (Figure 13). The
corresponding ADF size seems to vary inversely to that of
the RPB; reasons for that effect are presently obscure.

5 CONCLUSION

In this paper we have presented a model, based on genetic
programming, which demonstrates the evolution of evolv-
ability when solving a symbolic regression task with a pe-
riodically changing fitness function. The successful solu-
tions improved their evolvability by adopting forms that
segregated the reused and variable portion of the fitness
function (the A parameter), from the unitary and constant
portion (y= �sin(�x)). Many intriguing questions are open
at this point, from detailed issues of the relative effects of
redundancy and variability, to more fundamental goals such
as the evolutionary emergence of other software engineer-
ing principles, and the scaling up of this research to real
world problems.

Well-factored code is not strictly required to make a pro-
gram operate correctly, and bold young programmers often
use precisely that argument to resist such basic principles
of ‘code hygiene’. We have demonstrated how effective
code factorings can emerge from an evolutionary process
under a variety of appropriate conditions, even though the
fitness function guiding the evolution is—like the novice
programmer—focused entirely on the external program be-
havior, and not at all on its internal structure.

Thus, we establish an experimental link between the evolu-
tion of evolvability experiments previously published, and
the body of knowledge that forms conventional wisdom
about good software design. Though the gap between these
two fields is still large, this paper represents a step towards
bridging that gap.

Acknowledgments

This research was supported in part by DARPA con-
tract F30602-00-2-0584, and in part by NSF contract ANI
9986555.

References

Altenberg, L. (1994), The evolution of evolvability in ge-
netic programming, in K. E. Kinnear, Jr., ed., ‘Ad-
vances in Genetic Programming’, MIT Press, pp. 47–
74.

Angeline, P. J. (1994), Genetic programming and emergent
intelligence, in K. E. Kinnear, Jr., ed., ‘Advances in
Genetic Programming’, MIT Press, chapter 4, pp. 75–
98.

Blickle, T. & Thiele, L. (1994), Genetic programming
and redundancy, in J. Hopf, ed., ‘Genetic Algorithms
Within the Framework of Evolutionary Computation
(Workshop at KI-94, Saarbrücken)’, Saarbrücken,
Germany, pp. 33–38.

Dawkins, R. (1989), The evolution of evolvability, in C. G.
Langton, ed., ‘Artificial Life: The Proceedings of an
Interdisciplinary Workshop on the Synthesis and Sim-
ulation of Living Systems’, Vol. 6, Addison-Wesley,
Redwood, CA, USA, pp. 201–220.

Dawkins, R. (1996), Climbing Mount Improbable, W. W.
Norton and Company, New York.

Fogel, D. B., Fogel, L. J. & Atmar, J. W. (1991), Meta-
evolutionary programming, in R. R. Chen, ed., ‘Pro-
ceedings of the 25th Asilomar Conference on Sig-
nals, Systems, and Computers’, Pacific Grove, CA,
pp. 540–545.

Fowler, M., Beck, K., Brant, J., Opdyke, W. & Roberts, D.
(1999), Refactoring: Improving the Design of Exist-
ing Code, Addison-Wesley, Boston, MA.

Kirschner, M. & Gerhart, J. (1998), ‘Evolvability’, Pro-
ceedings of the National Academy of Science, USA
95, 8420–8427.

Koza, J. (1994), Genetic Programming II: Automatic Dis-
covery of Reusable Programs, MIT Press, Cam-
bridge, MA.

Nehaniv, C. L. (2000), Evolvability in biology, artifacts,
and software systems, in ‘Artificial Life 7 Workshop
Proceedings’, pp. 17–21.

Pepper, J. (2000), The evolution of modularity in genome
architecture, in ‘Artificial Life 7 Workshop Proceed-
ings’, pp. 9–12.

Punch, B. & Goodman, E. (1995), ‘lil-gp1.1 genetic
programming system’.
*http://garage.cps.msu.edu/software/lil-gp/ lilgp-
index.html

Stiemerling, O. & Cremers, A. B. (2000), A paleontolog-
ical perspective on designing adaptable software, in
‘Artificial Life 7 Workshop Proceedings’, pp. 26–29.

Turney, P. D. (1999), Increasing evolvability considered
as a large-scale trend in evolution, in A. Wu, ed.,
‘Proceedings of 1999 Genetic and Evolutionary Com-
putation Conference Workshop Program (GECCO-99
Workshop on Evolvability)’, pp. 43–46.


