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Abstract 
The aim of this paper is to clearly demonstrate 
the importance of finding a good balance 
between genetic search and local search in the 
implementation of hybrid evolutionary multi-
criterion optimization (EMO) algorithms. We 
first modify the local search part of an existing 
multi-objective genetic local search (MOGLS) 
algorithm. In the modified MOGLS algorithm, 
the computation time spent by local search can be 
decreased by two tricks: to apply local search to 
only selected solutions (not all solutions) and to 
terminate local search before all neighbors of the 
current solution are examined. Next we show that 
the local search part of the modified MOGLS 
algorithm can be combined with other EMO 
algorithms. We implement a hybrid version of a 
strength Pareto evolutionary algorithm (SPEA). 
Using the modified MOGLS algorithm and the 
hybrid SPEA algorithm, we examine the balance 
between genetic search and local search through 
computer simulations on a two-objective 
flowshop scheduling problem. Computer 
simulations are performed using various 
specifications of parameter values that control the 
computation time spent by local search. 

1. INTRODUCTION 
One promising trick for improving the search ability of 
evolutionary multi-criterion optimization (EMO) 
algorithms is the hybridization with local search. Such a 
hybrid EMO algorithm was first implemented as a multi-
objective genetic local search (MOGLS) algorithm in 
Ishibuchi & Murata (1996) together with a simple idea of 
elitism. The MOGLS algorithm was successfully applied 
to multi-objective flowshop scheduling problems in 
Ishibuchi & Murata (1998). While their MOGLS 

algorithm implemented two promising tricks for 
improving the search ability of EMO algorithms (i.e., 
hybridization and elitism), its search ability is not high if 
compared with recently proposed EMO algorithms such 
as a strength Pareto evolutionary algorithm (SPEA) of 
Zitzler & Thiele (1999) and a revised non-dominated 
sorting genetic algorithm (NSGA-II) of Deb et al. (2000). 

Jaszkiewicz (1998) and Jaszkiewicz et al. (2001) 
improved the performance of the MOGLS algorithm by 
modifying its selection mechanism of parent solutions. 
While his MOGLS algorithm uses a scalar fitness 
function with random weight values for selection and 
local search as in the original MOGLS algorithm in 
Ishibuchi & Murata (1996), it does not use the roulette 
wheel selection. A pair of parent solutions is randomly 
selected from a pre-specified number of the best solutions 
(i.e., a kind of subpopulation) with respect to the scalar 
fitness function with the current weight values. The 
weight values are randomly updated whenever a pair of 
parent solutions is selected as in the original MOGLS 
algorithm. In the above-mentioned two MOGLS 
algorithms, local search is applied to all solutions 
generated by genetic operations in every generation. In 
some hybrid EMO algorithms, local search is used only 
when the execution of EMO algorithms is terminated. 
Deb & Goel (2001) applied local search to final solutions 
obtained by EMO algorithms for decreasing the number 
of non-dominated solutions (i.e., for decreasing the 
variety of final solutions). On the other hand, Talbi (2001) 
intended to increase the variety of final solutions by the 
application of local search. 

The performance of the original MOGLS algorithm in 
Ishibuchi & Murata (1996) can be improved by carefully 
addressing the following issues: 

Choice of initial solutions for local search: Local search 
was applied to all solutions in the current population in 
the original MOGLS algorithm. Its performance can be 



 

improved by choosing only good solutions from the 
current population as initial solutions for local search. 

Specification of local search directions: The local 
search direction for each solution was specified by the 
scalar fitness function used in the selection of its parent 
solutions in the original MOGLS algorithm. Its 
performance can be improved by specifying an 
appropriate local search direction for each solution 
independent of the scalar fitness function used in the 
selection of its parent solutions. 

Balance between genetic search and local search: If we 
simply combine local search with EMO algorithms, 
almost all the available computation time is spent by local 
search. This is because a large number of solutions are 
usually examined by local search for a single initial 
solution until a locally optimal solution is found. As a 
result, the global search ability of EMO algorithms is 
deteriorated by the hybridization with local search. In the 
original MOGLS algorithm, the balance between genetic 
search and local search was controlled by the number of 
neighbors examined by local search around the current 
solution. Local search was terminated if a better solution 
was not found among a pre-specified number of neighbors 
examined around the current solution. The balance can be 
also controlled by the number of solutions in the current 
population to which local search is applied. The 
performance of the original MOGLS algorithm can be 
improved by finding a good balance between genetic 
search and local search. 

In this paper, first we briefly discuss the first two issues: 
choice of initial solutions for local search and 
specification of a local search direction for each initial 
solution. Then the balance between genetic search and 
local search is discussed through computer simulations on 
a two-objective flowshop scheduling problem. 

2. MULTI-CRITERION OPTIMIZATION 
Let us consider the following n-objective minimization 
problem: 

  Minimize z = ,    (1) ))(...,),(),(( 21 xxx nfff
  subject to x∈ ,            (2) X

where z is the objective vector, x is the decision vector, 
and X is the feasible region in the decision space. Usually, 
there is no optimal solution x* that satisfies the following 
inequality condition: 

   for  and ∀ . (3) )()( * xx ii ff ≤ },...,2,1{ ni∈∀ Xx∈

Thus the task of EMO algorithms is not to find a single 
final solution but to find all solutions that are not 
dominated by any other solutions. Let a and b be two 
decision vectors ( ). Then b is said to be 
dominated by a (i.e., a ) if and only if the following 

two conditions hold: 

Xba ∈,
bp

    for  ,     (4) )
)
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    for  .     (5) ()( ba ii ff < },...,2,1{ ni∈∃

When b is not dominated by any other solutions in X, b is 
said to be a Pareto-optimal solution. That is, b is a Pareto-
optimal solution when there is no solution a in X that 
satisfies the above two conditions. 

While the task of EMO algorithms is to find all Pareto-
optimal solutions, it is impractical to try to find true 
Pareto-optimal solutions of large problems. Thus EMO 
algorithms usually present non-dominated solutions 
among examined ones to decision makers as a result of 
their execution. In this case, the task of EMO algorithms 
is to drive populations to true Pareto-optimal solutions as 
close as possible. 

3. HYBRID EMO ALGORITHMS 

3.1 MOGLS ALGORITHM 

In the original MOGLS algorithm, local search is applied 
to all solutions in every generation. The following scalar 
fitness function was used for both the selection of a pair 
of parent solutions and the local search for their offspring.  

   ,   (6) )()()()( 2211 xxxx nn fwfwfwf +⋅⋅⋅++=

where  is a non-negative weight. The point is to 
randomly specify the weight values whenever a pair of 
parent solutions is selected. This weight specification 
mechanism generates various search directions in the n-
dimensional objective space. The MOGLS algorithm also 
uses a kind of elitism where all non-dominated solutions 
obtained during its execution are stored as a secondary 
population separately from the current population. A few 
non-dominated solutions are randomly selected from the 
secondary population and their copies are added to the 
current population. 

iw

The main characteristic feature of local search in the 
MOGLS algorithm is that all neighbors of the current 
solution are not examined. For decreasing the 
computation time spent by local search, only k neighbors 
of the current solution are randomly chosen and examined. 
If no better solution is found among the examined k 
neighbors, local search for the current solution is 
terminated. The first move strategy is used in local search. 
That is, the current solution is replaced as soon as a better 
neighbor is found.  

Figure 1 shows the general outline of hybrid EMO 
algorithms discussed in this paper. In hybrid EMO 
algorithms, a new population is generated by genetic 
operations in the EMO algorithm part. Then the new 
population is improved by local search. The improved 
population is handled as the current population in the 



 

EMO algorithm part. In this manner, the population 
update is iterated by genetic operations and local search 
until a pre-specified stopping condition is satisfied. 
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Initial 
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New 
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Figure 1: Outline of hybrid EMO algorithms. 

3.2 MODIFICATION OF LOCAL SEARCH PART 

In the original MOGLS algorithm, local search was 
applied to all solutions in the current population. The 
drawback of this scheme is computational inefficiency. 
That is, the application of local search to poor solutions 
seems to be mere waste of computation time. The 
efficiency of the original MOGLS algorithm can be 
improved by applying local search to only good solutions 
in the current population. The local search direction for 
each solution was specified by the scalar fitness function 
used in the selection of its parents. The drawback of this 
scheme is that the local search direction for each solution 
is not always appropriate. 

As a remedy for these two drawbacks, we modify the 
local search part of the original MOGLS algorithm as 
follows: 

[Modified Local Search Part] 

Step 1. Iterate the following two procedures for 
constructing a local search pool of  solutions: popN
(a) Randomly specify the weight values . nww ...,,1
(b) Select a solution to be included in the local search 

pool from the current population (i.e., new 
population generated by genetic operations in Fig. 
1) using the size four tournament selection with 
replacement based on the scalar fitness function 
with the current weight values specified in (a). 
That is, four solutions are randomly selected from 
the current population and a copy of the best one is 
added to the local search pool. The four solutions 
are returned to the current population for further 
selection to construct the local search pool. 

Step 2. Randomly select N  solutions from the local 
search pool without replacement. Local search is 
applied to only the selected N  solutions. The local 
search direction of each solution is specified by the 

weight values used in the selection of that solution for 
constructing the local search pool. The next 
population consists of the improved N  solutions 
and the other (  solutions in the local 
search pool. 

LS

LS

LS
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3.3 HYBRIDIZATION WITH EMO ALGORITHMS 

In the modified local search part, the local search 
direction of each solution is not inherited from its parent 
solutions. The local search direction is specified in the 
local search part independent of the EMO algorithm part 
in Fig. 1. Thus the modified local search part can be 
combined with any EMO algorithms even if they do not 
use the scalar fitness function in (6) for the selection of 
parent solutions. As shown in Fig. 1, the local search part 
of hybrid EMO algorithms receives a new population 
updated in the EMO algorithm part and returns an 
improved population by local search. It is an advantage of 
the modified MOGLS algorithm over the original one that 
the modified local search part can be combined as a 
module with any EMO algorithms. 

In this paper, we examine the original MOGLS algorithm 
and its modified version. We also examine a hybrid 
version of the SPEA algorithm because high search ability 
of the SPEA algorithm to find Pareto-optimal solutions 
has been reported in the literature (see Zitzler & Thiele 
1999 and Zitzler et al. 2000).  

4. COMPUTER SIMULATIONS 

4.1 EFFECT OF MODIFICATION OF MOGLS  

We examined the effect of the modification of the local 
search part on the performance of the MOGLS algorithm. 
In the same manner as in Ishibuchi & Murata (1998), we 
generated a 40-job and 20-machine flowshop scheduling 
problem with two objectives: to minimize the makespan 
and to minimize the maximum tardiness. We applied the 
original MOGLS algorithm and its modified version to 
this test problem. Each algorithm was terminated when 
60000 solutions were examined. As in Ishibuchi & 
Murata (1998), we used the position-based two-point 
crossover and the shift mutation as genetic operations. 
The neighborhood structure was defined by the shift 
mutation in local search.  

We used the following parameter specifications. 
Population size: 20, crossover probability: 0.9, mutation 
probability for each string: 0.3, the number of elite 
solutions: 3, the number of neighbors examined for 
improving the current solution in local search (i.e., k): 2. 
These specifications are almost the same as Ishibuchi & 
Murata (1998). In the modified MOGLS algorithm, the 
tournament size was specified as four for constructing the 
local search pool from the current population. The number 



 

of selected initial solutions for local search was specified 
as 20 (i.e., the same as the population size).  =LSN

Each algorithm was applied to the test problem 150 times. 
Fig. 2 and Fig. 3 show all solutions obtained by the 150 
runs of each algorithm. From the comparison between Fig. 
2 and Fig. 3, we can see that the modified MOGLS 
algorithm in Fig. 3 outperformed the original one in Fig. 2. 
That is, the performance of the original MOGLS 
algorithm was improved by the modification of the local 
search part. 
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Figure 2: Obtained solutions by 150 runs of the original 
MOGLS algorithm.  
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Figure 3: Obtained solutions by 150 runs of the modified 
MOGLS algorithm. Only the choice of initial solutions for local 
search is different from the original MOGLS algorithm. 

4.2 EFFECT OF LOCAL SEARCH 

In the same manner as in the previous subsection, we 
examined the effect of the hybridization with local search 
on the performance of EMO algorithms. In Fig. 4, we 
show simulation results by a simple EMO algorithm 
implemented by removing the local search part from the 
original MOGLS algorithm. Since the performance of this 
algorithm was very poor, many solutions are out of the 
range of Fig. 4. From the comparison of Fig. 4 with Fig. 2 
and Fig. 3, we can see that the hybridization with local 

search significantly improved the performance of the 
simple EMO algorithm. 
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Figure 4: Obtained solutions by 150 runs of the original 
MOGLS algorithm with no local search. Many non-dominated 
solutions are out of the range of this figure. 

While the comparison between Fig. 3 and Fig. 4 clearly 
shows that the simple EMO algorithm was significantly 
improved by the hybridization with local search, one may 
think that the improvement is mainly due to the poor 
performance of the simple EMO algorithm in Fig. 4. So 
we also implemented a hybrid version of the SPEA in the 
same manner as the modified MOGLS algorithm. 
Simulation results are summarized in Fig. 5 and Fig. 6. 
The maximum number of stored non-dominated solutions 
was specified as 20 in the computer simulations. The 
other parameters were specified in the same manner as in 
the previous subsection. 

From the comparison between Fig. 5 and Fig. 6, we can 
see that the performance of the SPEA was slightly 
improved by the hybridization with local search. For 
example, more solutions were obtained in the region 

 of Fig. 6 by the hybrid SPEA 
than the original SPEA in Fig. 5. 

]1500,500[]3400,3300[ ×

For further examining the effect of the hybridization with 
local search on the performance of the SPEA, a solution 
set obtained by the SPEA was compared with another 
solution set obtained by the hybrid SPEA. In this 
comparison, solutions obtained by one algorithm were 
examined whether they were dominated by other solutions 
obtained by the other algorithm. This comparison was 
performed over 150 runs of these two algorithms. Then 
the average number of non-dominated solutions was 
calculated. Simulation results are summarized in Table 1. 
This table shows the average number of obtained 
solutions by each algorithm, the average number of 
solutions that were not dominated by other solutions 
obtained by the other algorithm, the ratio of non-
dominated solutions to obtained solutions, and the 
average CPU time. From this table, we can see that the 



 

hybrid SPEA outperformed the original SPEA in terms of 
the ratio of non-dominated solutions. We can also see 
from Table 1 that the CPU time was decreased by the 
hybridization with local search. This is because local 
search can be executed more efficiently than genetic 
search. If these two algorithms are compared under the 
same CPU time, it is more clearly shown that the hybrid 
SPEA outperforms the original SPEA (compare Fig. 7 
with Fig. 5).  

Table 1: Comparison between SPEA and its hybrid version. 

Algorithm Obtained 
solutions 

Non- 
dominated 

Ratio of non-
dominated 

CPU time 
(Sec.) 

SPEA 17.34 10.08 58.13% 17.47 
Hybrid 14.69 9.85 67.05% 13.26 

 

4.3  BALANCE BETWEEN GENETIC SEARCH 
AND LOCAL SEARCH IN THE MODIFIED 
MOGLS   

The performance of hybrid EMO algorithms depends on 
parameter specifications. The point is to find a good 
balance between genetic search and local search. The 
balance is controlled by two parameters k and  in the 
modified MOGLS algorithm (k: the number of neighbors 
examined for improving the current solution by local 
search, : the number of solutions in each population 
to which local search is applied). Table 2 shows 
simulation results with various values of k. In this table, 

 was specified as N 20. Good results were not 
obtained from large values of k (see the column labeled as 
“Non-dominated”). Good specifications of k in Table 2 
are 1~5.  
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Figure 5: Obtained solutions by 150 runs of the original SPEA.  

 
Table 2: Simulation results by the modified MOGLS algorithm 
with various values of k. The value of N  was specified as 

20. Good results are highlighted by boldface letters. 
“Generation updates” means the number of generations.  
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k Generation 
updates 

Obtained 
solutions 

Non- 
dominated 

CPU time 
 (seconds) 

0 3000.00 17.78 1.08 19.81 
1 1490.56 18.09 4.29 14.75 
2 952.24 17.01 4.60 13.21 
3 696.80 16.90 3.41 12.46 
4 543.65 16.99 3.44 12.10 
5 440.84 17.08 3.13 11.78 
10 212.56 17.78 1.99 10.84 
20 92.43 17.03 1.57 10.40 
30 55.25 17.19 1.41 10.25 
40 37.90 16.88 1.02 10.19 
50 28.39 17.03 1.36 10.16 

100 11.83 14.91 1.08 10.09 
1521 1.00 5.28 1.36 13.75 

Figure 6: Obtained solutions by 150 runs of the hybrid SPEA. 
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On the other hand, Table 3 shows simulation results with 
various values of N . In this table, k was specified as 

2. Good results were not obtained from small values 
of . Good specifications of N  in Table 3 are 

8~20.  

LS
=k

N
LSN

LS
=

LS

For further examining the balance between genetic search 
and local search, we examined various combinations of k 
and . A solution set obtained from each combination LSN

Figure 7: Obtained solutions by 150 runs of the hybrid SPEA 
with  using the same CPU time as the original SPEA. 3=k



 

was compared with other solution sets obtained from 
other combinations in the same manner as in the previous 
computer simulations. Simulation results are summarized 
in Table 4. This table shows the number of solutions that 
were not dominated by any other solutions obtained from 
other parameter specifications. Table 4 shows average 
results over 150 trials as in the previous computer 
simulations. From this table, we can see that appropriate 
specifications of  and k are related to each other. An 
appropriate value of  decreases as the specified value 
of k increases in Table 4. In general, larger values of these 
two parameters mean longer computation time spent by 
local search. Thus the increase of one parameter value 
needs the decreases of the other parameter value for 
keeping a good balance between genetic search and local 
search. 

LSN
N LS

LS

We also performed the same computer simulation using 
different specifications of the stopping condition. In one 
specification, we decreased the available computation 
time from the examination of 60000 solutions to 20000 
solutions. Simulation results are shown in Table 5. In the 
other specification, it was increased to 120000 solutions. 
Simulation results are summarized in Table 6. Table 5 and 
Table 6 show that appropriate values of N  and k are 
related to each other as in Table 4. From the comparison 
among the three tables, we can see that larger values of k 
can be used when the available computation resource is 
larger (i.e., Table 6). This means that we can use a larger 
portion of the computation time for local search when the 
available computation time is longer. 

LS

 

Table 5: The average number of solutions that were not 
dominated by any other solutions from other combinations of 
parameter values. The execution of the modified MOGLS 
algorithm was terminated when 20000 solutions were examined. 
Good results are highlighted by boldface letters. 

 
Table 3: Simulation results by the modified MOGLS algorithm 
with various values of N . The value of k was specified as 

2. Good results are highlighted by boldface letters. =k
  

The value of k 
LSN  

0 1 2 3 4 5 10 20 30 40 50 
0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
2 0.02 0.04 0.37 0.39 0.51 0.52 0.44 0.63 0.68 0.49 0.92 
4 0.02 0.11 0.23 0.47 0.48 0.57 0.49 0.37 0.39 0.43 0.39 
6 0.02 0.35 0.45 0.49 0.43 0.51 0.39 0.33 0.30 0.35 0.23 
8 0.02 0.18 0.71 0.54 0.35 0.23 0.24 0.25 0.22 0.18 0.29 
10 0.02 0.43 0.43 0.43 0.29 0.41 0.24 0.20 0.16 0.17 0.24 
12 0.02 0.40 0.52 0.30 0.45 0.41 0.17 0.11 0.15 0.11 0.18 
14 0.02 0.41 0.52 0.48 0.27 0.28 0.11 0.06 0.16 0.17 0.05 
16 0.02 0.32 0.53 0.41 0.32 0.26 0.20 0.05 0.05 0.07 0.09 
18 0.02 0.35 0.33 0.53 0.31 0.23 0.12 0.04 0.04 0.05 0.02 
20 0.02 0.49 0.53 0.32 0.40 0.29 0.11 0.07 0.01 0.01 0.07 

LSN  Generation 
updates 

Obtained 
solutions 

Non- 
dominated 

CPU time 
(seconds) 

0 3000.00 17.35 0.77 18.90 
2 2467.09 17.37 1.46 17.26 
4 2094.59 17.77 2.12 16.26 
6 1819.94 17.93 2.56 15.53 
8 1611.89 16.93 3.33 14.92 
10 1444.13 16.81 3.11 14.49 
12 1306.81 17.70 2.71 14.14 
14 1193.71 17.51 3.27 13.85 
16 1100.39 17.27 2.93 13.59 
18 1019.59 17.58 3.09 13.37 
20 952.24 17.01 3.62 13.21 

  

Table 6: The average number of solutions that were not 
dominated by any other solutions from other combinations of 
parameter values. The execution of the modified MOGLS 
algorithm was terminated when 120000 solutions were 
examined. Good results are highlighted by boldface letters. 

Table 4: The average number of solutions that were not 
dominated by any other solutions from other combinations of 
parameter values. The execution of the modified MOGLS 
algorithm was terminated when 60000 solutions were examined. 
Good results are highlighted by boldface letters. 

  
The value of k 

LSN  
0 1 2 3 4 5 10 20 30 40 50 

0 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 
2 0.11 0.12 0.37 0.48 0.65 0.57 0.52 0.52 0.42 0.61 0.51 
4 0.11 0.41 0.61 0.52 0.61 0.57 0.53 0.47 0.47 0.25 0.29 
6 0.11 0.27 0.70 0.55 0.54 0.73 0.51 0.37 0.35 0.31 0.35 
8 0.11 0.51 0.54 0.65 0.59 0.55 0.45 0.27 0.28 0.27 0.21 
10 0.11 0.38 0.51 0.51 0.71 0.77 0.54 0.39 0.19 0.29 0.27 
12 0.11 0.53 0.85 0.77 0.51 0.73 0.41 0.18 0.15 0.26 0.15 
14 0.11 0.71 0.53 0.69 0.56 0.55 0.38 0.31 0.15 0.14 0.19 
16 0.11 0.56 0.62 0.69 0.73 0.45 0.38 0.15 0.10 0.13 0.14 
18 0.11 0.61 0.53 0.72 0.58 0.53 0.31 0.28 0.15 0.11 0.11 
20 0.11 0.69 0.57 0.70 0.74 0.60 0.11 0.13 0.16 0.13 0.16 

The value of k 
LSN  

0 1 2 3 4 5 10 20 30 40 50 
0 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 
2 0.17 0.06 0.33 0.43 0.45 0.67 0.58 0.35 0.58 0.51 0.47 
4 0.17 0.39 0.45 0.41 0.59 0.55 0.73 0.24 0.40 0.31 0.37 
6 0.17 0.35 0.55 0.51 0.51 0.81 0.50 0.29 0.32 0.29 0.23 
8 0.17 0.48 0.83 0.61 0.65 0.37 0.52 0.27 0.11 0.25 0.17 
10 0.17 0.50 0.66 0.39 0.64 0.59 0.31 0.21 0.21 0.20 0.19 
12 0.17 0.49 0.47 0.57 0.57 0.64 0.30 0.17 0.16 0.13 0.13 
14 0.17 0.75 0.62 0.42 0.42 0.46 0.31 0.25 0.17 0.15 0.09 
16 0.17 0.61 0.74 0.53 0.67 0.29 0.21 0.12 0.11 0.06 0.13 
18 0.17 0.68 0.58 0.65 0.41 0.42 0.35 0.15 0.09 0.04 0.04 
20 0.17 0.59 0.61 0.35 0.45 0.37 0.32 0.15 0.09 0.09 0.07 



 

4.4  BALANCE BETWEEN GENETIC SEARCH 
AND LOCAL SEARCH IN THE HYBRID SPEA  

We also examined various combinations of k and N  
using the hybrid SPEA. Simulation results are 
summarized in Table 9 ~ Table 11. As in the previous 
subsection, these tables show simulation results using 
different stopping conditions. From these tables, we can 
see that appropriate specifications of N  and k are 
related to each other. An appropriate value of N  
decreases as the specified value of k increases. From the 
comparison between the simulation results in this 
subsection by the hybrid SPEA and those in the previous 
subsection by the modified MOGLS algorithm, we can 
see that appropriate specifications of N  and k depend 
on the algorithm. For example, appropriate values of k for 
the hybrid SPEA are larger than those for the modified 
MOGLS algorithm. This is observed from the comparison 
between Table 6 and Table 11. 

LS

LS
LS

LS

We also examined the balance between genetic search and 
local search using the hybrid SPEA in the same manner as 
in the previous subsection. Table 7 shows simulation 
results by the hybrid SPEA with N 20 and various 
values of k. Good results were not obtained from large 
values of k. Good specifications of k in Table 7 are 

2~5. On the other hand, Table 8 shows simulation 
results by the hybrid SPEA with k 2 and various values 
of . Good results were not obtained from small 
values of N . Good specifications of N  in Table 8 
are 18~20. We can also see that the simulation 
results by the hybrid SPEA in Table 7 and Table 8 are 
similar to those by the modified MOGLS algorithm in 
Table 2 and Table 3, respectively. 
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Table 9: The average number of solutions that were not 
dominated by any other solutions. The execution of the hybrid 
SPEA was terminated when 60000 solutions were examined. 
Good results are highlighted by boldface letters. 

Table 7: Simulation results by the hybrid SPEA with various 
values of k. The value of N  was specified as 20. 
Good results are highlighted by boldface letters. 
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k Generation 
updates 

Obtained 
solutions 

Non- 
Dominated 

CPU time 
 (seconds) 

0 3000.00 15.46 1.26 19.03 
1 1483.57 15.69 2.91 14.91 
2 976.18 14.69 3.12 13.26 
3 719.59 15.85 3.73 12.59 
4 565.81 15.43 3.50 12.21 
5 462.69 15.35 3.95 11.99 
10 227.53 15.68 2.93 10.95 
20 97.62 16.69 1.77 10.47 
30 57.25 16.68 1.62 10.31 
40 38.53 16.76 1.29 10.23 
50 28.95 16.38 1.15 10.19 

100 11.58 15.35 1.11 10.13 
1521 2.00 5.10 1.35 13.89 

The value of k 
LSN  

0 1 2 3 4 5 10 20 30 40 50 
0 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 
2 0.07 0.09 0.29 0.23 0.38 0.37 0.76 1.03 0.57 0.76 0.61 
4 0.07 0.25 0.37 0.29 0.37 0.29 0.63 0.55 0.53 0.50 0.35 
6 0.07 0.29 0.49 0.34 0.46 0.62 0.48 0.50 0.39 0.33 0.33 
8 0.07 0.29 0.31 0.49 0.26 0.72 0.49 0.30 0.41 0.41 0.35 
10 0.07 0.23 0.43 0.31 0.59 0.56 0.57 0.29 0.41 0.22 0.21 
12 0.07 0.32 0.35 0.41 0.33 0.66 0.58 0.49 0.15 0.18 0.16 
14 0.07 0.19 0.37 0.47 0.49 0.57 0.57 0.37 0.19 0.17 0.12 
16 0.07 0.32 0.31 0.44 0.65 0.39 0.37 0.39 0.22 0.06 0.05 
18 0.07 0.31 0.34 0.44 0.65 0.51 0.33 0.23 0.14 0.17 0.07 
20 0.07 0.24 0.67 0.43 0.41 0.34 0.33 0.12 0.15 0.08 0.08 

 

 Table 10: The average number of solutions that were not 
dominated by any other solutions. The execution of the hybrid 
SPEA was terminated when 20000 solutions were examined. 
Good results are highlighted by boldface letters. 

Table 8:  Simulation results by the hybrid SPEA with various 
values of N . The value of k was specified as k 2. Good 
results are highlighted by boldface letters.  

LS =

  
The value of k 

LSN  
0 1 2 3 4 5 10 20 30 40 50 

0 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 
2 0.06 0.10 0.28 0.17 0.23 0.26 0.61 0.68 0.47 0.69 0.72 
4 0.06 0.22 0.21 0.23 0.39 0.32 0.73 0.47 0.41 0.53 0.34 
6 0.06 0.25 0.29 0.29 0.41 0.56 0.58 0.33 0.35 0.28 0.29 
8 0.06 0.38 0.37 0.47 0.24 0.65 0.44 0.15 0.25 0.27 0.33 
10 0.06 0.23 0.23 0.31 0.24 0.35 0.38 0.14 0.25 0.14 0.13 
12 0.06 0.37 0.29 0.38 0.28 0.37 0.41 0.25 0.13 0.16 0.10 
14 0.06 0.18 0.46 0.45 0.40 0.35 0.23 0.12 0.11 0.11 0.09 
16 0.06 0.36 0.30 0.29 0.40 0.41 0.20 0.14 0.09 0.07 0.04 
18 0.06 0.43 0.51 0.19 0.39 0.35 0.13 0.11 0.03 0.06 0.04 
20 0.06 0.41 0.43 0.42 0.24 0.40 0.17 0.03 0.07 0.06 0.03 

LSN  Generation 
Updates 

Obtained 
solutions 

Non- 
Dominated 

CPU time 
(seconds) 

0 3000.00 15.46 0.78 19.03 
2 2486.16 15.64 1.99 17.50 
4 2123.08 15.13 1.99 16.41 
6 1850.80 16.26 2.33 15.74 
8 1641.54 15.63 2.49 15.06 
10 1474.84 16.01 2.56 14.63 
12 1338.12 15.45 2.53 14.28 
14 1223.87 15.80 2.62 14.06 
16 1128.85 15.39 2.70 13.77 
18 1046.31 15.75 3.19 13.54 
20 976.18 15.44 3.23 13.26 



 

Table 11: The average number of solutions that were not 
dominated by any other solutions. The execution of the hybrid 
SPEA was terminated when 120000 solutions were examined. 
Good results are highlighted by boldface letters. 
 

The value of k 
LSN  

0 1 2 3 4 5 10 20 30 40 50 
0 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 
2 0.09 0.11 0.23 0.25 0.21 0.21 0.63 0.62 0.65 0.77 0.56 
4 0.09 0.17 0.28 0.21 0.38 0.34 0.43 0.61 0.65 0.53 0.48 
6 0.09 0.27 0.57 0.36 0.45 0.57 0.45 0.57 0.46 0.57 0.52 
8 0.09 0.37 0.45 0.39 0.43 0.45 0.57 0.27 0.51 0.39 0.39 
10 0.09 0.39 0.45 0.31 0.43 0.47 0.54 0.51 0.44 0.51 0.41 
12 0.09 0.35 0.42 0.49 0.28 0.54 0.53 0.40 0.31 0.31 0.24 
14 0.09 0.32 0.36 0.36 0.56 0.53 0.69 0.34 0.33 0.27 0.13 
16 0.09 0.33 0.37 0.47 0.67 0.56 0.49 0.55 0.29 0.19 0.15 
18 0.09 0.34 0.47 0.58 0.58 0.54 0.47 0.25 0.21 0.23 0.16 
20 0.09 0.42 0.45 0.59 0.49 0.45 0.50 0.20 0.13 0.21 0.19 

 

5. CONCLUSIONS 
 In this paper, we first modified the local search part of 
the MOGLS algorithm of Ishibuchi & Murata (1996) for 
applying local search only to good solutions in the current 
population and assigning an appropriate local search 
direction to each solution. The local search direction of 
each solution is specified in the modified local search part 
independent of genetic operations in the EMO algorithm 
part. Thus the modified local search part can be combined 
with other EMO algorithms. We implemented a hybrid 
SPEA by combining local search with the SPEA. Using 
the modified MOGLS algorithm and the hybrid SPEA, we 
examined the balance between genetic search and local 
search. Simulation results in this paper showed that the 
performance of the hybrid EMO algorithms strongly 
depends on this balance. When a good balance is achieved 
by appropriate parameter specifications, the hybrid EMO 
algorithms outperform the corresponding non-hybrid 
EMO algorithms.  

It was also shown through computer simulations with 
different stopping conditions that appropriate parameter 
specifications for achieving a good balance between 
genetic search and local search depend on the amount of 
the available computation time. When long computation 
time was available, good results were obtained from 
parameter specifications that increase the ratio of the 
computation time spent by local search. On the other hand, 
good results were obtained in the case of a small ratio of 
the computation time spent by local search when we did 
not have long computation time. Simulation results also 
showed that different hybrid EMO algorithms require 
different parameter specifications for achieving a good 
balance. An appropriate ratio of the computation time 
spent by local search in the hybrid SPEA was larger than 

that in the modified MOGLS algorithm. Implication of 
this observation is not clear. One possible explanation is 
that genetic search in the hybrid SPEA may require 
shorter computation time than that in the modified 
MOGLS algorithm because the EMO algorithm part of 
the hybrid SPEA is more powerful than that of the 
modified MOGLS algorithm (compare Fig. 5 by the 
original non-hybrid SPEA with Fig. 4 by the EMO 
algorithm part in the modified MOGLS algorithm).  
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