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Abstract

This paper suggests a new hybrid genetic al-
gorithm for the 2D Euclidean vehicle rout-
ing problem with time windows. The natu-
ral crossover, proposed for the 2D Euclidean
traveling salesman problem, was adopted with
some modification in the suggested genetic al-
gorithm. The most notable feature of the nat-
ural crossover is that it uses the 2D image of
a solution itself for chromosomal cutting. We
also investigate the usefulness of parents’ deci-
sion variables such as arrival times during re-
combination. The suggested genetic algorithm
found optimal solutions for 26 out of 31 in-
stances with known optimal solutions.

1 Introduction

The vehicle routing problem (VRP) is the problem of
finding a set of minimum-cost vehicle routes which start
at a central depot, serve a set of customers with known
demands, and return to the depot without any viola-
tion of constraints [6], [24]. There are several variants
of VRP depending on their constraints. The vehicle
routing problem with time windows (VRPTW) is an ex-
tension of VRP. In VRPTW, time-window constraints
are added to the basic constrains of VRP. Each cus-
tomer must be served only once by one vehicle, and the
total demands of the customers served by a particu-
lar vehicle must not exceed the capacity of the vehicle.
Each customer must be served within his/her time win-
dow. A vehicle must wait until the service is possible if
the vehicle arrives at a customer earlier than the lower
bound of his/her time window — the earliest arrival time.
The depot also has a time window, and all the vehicles
must return by the latest arrival time of the depot. In
VRPTW, the objective can be the minimization of the
travel distance, the travel time, the number of vehicles,

or their combinations.

VRPTW has shown its usefulness in the area of
distribution-related systems — school bus routing,
newspaper delivery, garbage collection, fuel oil delivery,
dial-a-ride service, etc. If a new routing plan of vehicles
is more efficient than before, we can save fuel, money,
and/or time.

Various algorithms for VRP and its variants have been
studied intensively for decades. There are some of ex-
act methods to solve VRPs and VRPTWs to the op-
timality [10], [12], [19], [21]. Although the speed-up
techniques for exact methods have been introduced, the
NP-hardness of VRPTW [27] still makes the required
computational time prohibitive. Local heuristic meth-
ods often produce good near-optimal solutions in short
computational time. They are divided into two classes:
route construction heuristics [13], [11] and route im-
provement heuristics [7], [32]. Solomon [26] designed
and reviewed several route construction heuristics. In
[18], A number of route improvement heuristics are
clearly described. Although these heuristics were able
to run separately to solve VRPTW, they have also been
incorporated in meta heuristics like tabu search, sim-
ulated annealing, genetic algorithm (GA), etc [4], [5],
[30], [23], [15].

Blanton and Wainwright [2] introduced a genetic algo-
rithm for VRPTW that used a sequence of customers
as a chromosome. A greedy insertion-based heuristic
interprets a chromosome (sequence), and calculates the
fitness of the chromosome. The sequence means the in-
sertion order of customers for the heuristic. GIDEON,
suggested by Thangiah et al. [31], [30], is a framework
for VRPTW, adopting a cluster-first route-second strat-
egy. Their GA was used in the clustering phase. The
chromosome represents angles whose origin is the de-
pot, in order to define sectors to which customers will
belong. Customers within a sector are assigned to one
vehicle, and routed by the cheapest insertion method



[14]. In another system of Thangiah [29], a chromosome
represents circles (by defining an origin and a radius).
Customers within or near a circle are assigned to one ve-
hicle. GENEROUS of Potvin and Bengio [23] uses a set
of routes themselves as a chromosome. The crossover
merges two parents heuristically, then the repair oper-
ator is applied to the offspring. Most approaches use a
set of routes themselves as a chromosome after Potvin
and Bengio’s work [23]. Recently, Tan et al. [28] intro-
duced a messy genetic algorithm that a chromosome is
a sequence of (customer number, vehicle number) pairs.

The natural crossover, introduced by Jung and Moon
[17], [16] is a crossover manipulating chromosomes in
which genes are laid on a 2D space. Because 2D chro-
mosomes can preserve problem information with less
distortion, two-dimensional chromosomes are often used
in genetic algorithms for 2D problems [8], [1], [3]. The
natural crossover was originally devised for the 2D Eu-
clidean traveling salesman problem (TSP), and pro-
duced better experimental results than state-of-the-art
GAs for TSP [17]. In most VRPTW instances includ-
ing Solomon’s benchmark instances [26], customers are
located on a 2D FEuclidean space. Therefore, only if
a 2D form of chromosomes are defined for VRPTW,
it is possible for a genetic algorithm to use the natu-
ral crossover. This paper provides an extension of the
natural crossover to VRPTW, and investigates its com-
petence.

There are variables created during the evaluation of a
route. Waiting times, arrival times, and travel-so-far
distances are some of such decision variables. Almost all
genetic algorithms for VRPTW did not utilize parents’
decision variables in the course of recombination and
mutation. In this paper, we utilize parents’ decision
variables during crossover.

The paper is organized as follows. Section 2 describes
the mathematical formulation of VRPTW. Section 3
explains the genetic operators used in the proposed ge-
netic algorithm. Section 4 presents the experimental
results. Finally Section 5 makes conclusions.

2 Formulation of VRPTW

Table 1 represents the meanings of terms related to
VRPTW. For a given route Ry = (v1,v2,...,0m),01 =
¢y, decision variables are calculated as follows:

._ [0 i=1
vi T tty,_, +to, v, ©>1
0, i=1
Wy, = .
: max(0, ey, — ay;), >1

v = 0, i=1
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Table 1: Terminologies

| constants | meaning

N number of customers
Q capacity of vehicles
c set of all customers including the depot
ci customer i, 0 < i < N (¢ is the depot.)
dij distance from customer ¢ to customer j
1 travel time from customer ¢ to customer j
qi demand of customer 1
S; service time of customer ¢
e; earliest arrival time to customer ¢
l; latest arrival time to customer ¢
variables | meaning
n(R) number of routes
n(Ry,) number of customers in route k
Vjk j“‘ customer of route k
Ry route k = (vig, vak, -..)
Sk set of customers in route k
RD;, travel distance of route &
RT}, travel time of route k
RLy, total load of route k
a; arrival time at ¢;
al; adjusted latest arrival time at ¢;
w; waiting time before servicing ¢;
tt; travel-so-far time after servicing ¢;
td; travel-so-far distance when arriving at ¢;
ad; accumulated demands of customers
after servicing ¢;
0, 1=1
;= { by, + gy 0> 1
0, i=1
adv; = { ady,_, + o, P> 1

RT, = tty, +tu v
RD, = tdy,, +dy, v
RLk = advm

The objective of our genetic algorithm is to find a set
of routes having the minimal travel distance. In other
words, we have to minimize

n(R)
> RDy
k=1
subject to
S1US2U---USyrR) =C, (1)
SinSj={co}, 1<i,j<n(R),i#j (2)
’Uik;évjka ]-SZ:.]SH(RIC)77/7£] (3)
aiglia ]-SlSN (4)



GA()
{
initialize population P of size IV;
while ( stopping condition is unsatisfied ) {
select parent: and parents from P;
offspring < crossover(parenti, parents);
if ( random number is larger than mutation rate )
mutate offspring;
local-optimize offspring;
replace an individual in P with offspring;

return the best individual;

}

Figure 1: A typical steady-state hybrid genetic algo-
rithm

RTy <o,
RLk S Q;

1<k<n(R) (5)
1<k <n(R). (6)
Restriction (1) ensures that all the customers are nec-
essarily visited. Restriction (2) means that all the cus-
tomers must be partitioned disjoint, and the depot is
included in all routes. Restriction (3) ensures that ev-
ery customer is visited only once. Restriction (4) and
(5) take care of time constraints. Restriction (6) pre-
vents the overload of vehicles.

3 Hybrid Genetic Algorithm

We use a typical steady-state hybrid genetic algorithm
(Figure 1). Local optimization algorithms help GAs
fine-tuning around local optima. The following subsec-
tions describe our genetic algorithm in detail.

3.1 Initialization of Population

A lot of route construction heuristics have been pro-
posed for VRPTW. In [26], several heuristics are care-
fully designed and compared with one another. Ac-
cording to [26], the insertion heuristic 1 (I1) overall
beat other route construction heuristics such as savings,
nearest neighbor, etc. The core part of I1 is the rou-
tine inserting a new unrouted customer into the current
route, between two adjacent customers on the route. If
there is no feasible customer to insert, a new route is
created. I1 repeats the loop until there are no unrouted
customers.

We create a population of solutions using a stochastic
version of I1. The existence of adjustable weights in the
cost function of I1 makes the creation of various solu-
tions possible. In calculating an insertion cost of a cus-
tomer, the weights determine the balance between the
spatial aspect and the temporal aspect of the problem

instance. The values of weights are changed at random
in the ranges of p € [0.1,0.9], A € [0,1],; € [0.1,0.9],
and ap € [0.1,0.9](a1 + a2 = 1). This is expected to be
helpful in creating a robust population whose solution
qualities do not depend on specific aspects of the prob-
lem instance. The first customer for a new route is cho-
sen at random among the farthest unrouted customer,
the unrouted customer with the earliest deadline, and
a random unrouted customer.

3.2 Selection and Crossover

We use the typical binary tournament selection.

Most genetic algorithms for VRPTW do not consider
the representation of chromosomes as important, and
they recombine the new offspring by heuristically inter-
preting the two parents. In recombining the offspring,
they consider a number of criteria like distances between
customers, ranges of time windows, sizes of routes, dis-
tribution of distances, etc; but they do not consider the
physical locations of customers. In GIDEON system
of Thangiah et al. [31], [30], each chromosome con-
tains a set of numbers representing the angles defining
sectors (centered at the depot) instead of routes them-
selves. Customers in a sector basically belong to the
same route. Namely, this system considers the locations
of customers to be more important than other elements.

Multi-dimensional chromosomes were suggested for
problems with multi-dimensional characteristics. A
two-dimensional crossover, introduced by Cohoon and
Paris [8], chooses a small rectangle from one parent and
then copies the genes in the rectangle into the offspring
with the rest of genes copied from the other parent.
Anderson et al. [1] suggested a block-uniform crossover
which tessellates a 2D chromosome into ¢ x j blocks,
and copies the genes block by block from a uniformly
selected parent. Bui and Moon [3] proposed a general-
ization of crossovers to n dimensions. Jung and Moon
[17], [16] introduced an encoding/crossover pair for the
2D Euclidean traveling salesman problem which uses a
2D image as a chromosome, and performs crossover on
the chromosome. Since 2D Euclidean VRPs and 2D Eu-
clidean TSPs share a lot of characteristics, we inherit
the natural encoding/crossover pair with some modifi-
cation.

In this paper, we use the 2D image of routes as a chro-
mosome, where each gene is located at the coordinate
of the corresponding customer. We describe the natural
crossover for the 2D Euclidean VRPTW in the follow-

ing:

1. The 2D image of two solutions are selected as par-
ents (Figure 2 (a),(b)).
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(b) parent B

(d) inherited arcs from parent A

{ The diamond represents the depot.

(e) adding arcs from parent B

(f) new offspring

Figure 2: An example of the natural crossover for VRPTW

2. Free curves or figures are drawn on the 2D space
where customers are located!. It is proven that
they always partition the chromosomal space into
two equivalent classes [17] (marked white and gray
in Figure 2 (c)). Every customer belongs to one
of the classes. Customers in the white class are
marked black and customers in the other gray class
are marked white.

3. For every arc of the parent A, if both of the start-
point and the end-point are marked black?, it sur-
vives in the offspring (Figure 2(d)); for every arc
of the parent B, if both are marked white, it sur-
vives in the offspring (Figure 2(e)). Then we have
a number of disconnected segments.

4. The decision variables of the parent A such as
a;, w;, tt;, and td; are saved as af‘, w{‘, ttf‘, and tdf‘,
respectively. The decision variables of the parent
B are saved in the same way. They are used in

repairing the offspring later.

5. A valid solution is made by adding arcs by the re-
pair algorithm in Section 3.2.1 (Figure 2(f)).

Because we only have to calculate the class of every
customer, the time complexity of the crossover grows
linearly with respect to the number of customers.

'We do not have an efficient implementation for drawing
fully free curves. Instead, we use four types of curves —
straight line, triangle, quadrangle, and ellipse. Two curves
are chosen at random among them allowing multiple occur-
rences. Refer to [16] for more information.

%It is possible that the arc passes through the gray region
even when both points are marked black; there are a few
arcs in Figure 2 (d). For efficient implementation, we ignore
classes of arcs.

3.2.1 Repair Algorithm

The step 5 in the previous section repairs the inter-
mediate offspring to a valid solution. We utilize the
parents’ decision variables in this process. Figure 3
represents the repair algorithm. Its key routine is con-
necting the last customer on the current partial route to
the minimum-cost start-point of a segment in a nearest-
neighbor manner.

In calculating the cost of adding an arc, we consider
terms about spatial and temporal closenesses of cus-
tomers, and terms about parents. Let ¢; be the last
customer (point) on the current partial route, and let
cj be a candidate customer to connect c;. The cost is
the weighted sum of i) the distance between ¢; and ¢;,
ii) the waiting time at c;, iii) the slack time of delivery
to ¢;, and iv) the difference of the service completion
between parents and the offspring at c;:

Cij =01 dij + 02 - Wi +0d3-5j + 04 P;
where

01+ 02 +3+8, =1,

Aj = 4+,

Wi = max(0,e; — 4;),

Sj = lj - Aj, and

P; = min(|ttd — (4; + W; + 55)],

|tt]-B — (A] + Wj + Sj)|).

01, 02,03, and d4 are reinitialized within respective spe-
cific ranges whenever the repair function is invoked.

To investigate the usefulness of parents’ decision vari-
ables, we compare in Section 4 a GA version with d4 # 0
against one with 64 = 0.



repair()

{

while( there are segments starting from the depot ) {
randomly choose a segment among them as a partial route;
complete_a_route(the last customer of the partial route, start-points of the remaining segments);

while( there are remaining segments )

complete_a_route(depot, start-points of the segments);

complete_a_route(the last customer, candidate customers)

t < the last customer;
do {

find a feasible customer, say c¢*, among candidate customers and the depot,
such that the cost from ¢ to ¢* is minimized;

add an arc from ¢ to c*;

t < the end-point of the segment whose start-point is c*;

} while( ¢ is not the depot )

Figure 3: The pseudo-code of the repair algorithm

3.3 Mutation

In mutation, each route of the offspring is split into
at most three routes. Two cut-points are selected at
random to split a route.

3.4 Local Optimization

A considerable number of local optimization algorithms
have been proposed to improve routes. Most of them be-
long to edge-exchange neighborhoods [18]. Most edge-
exchange neighborhoods can be viewed as special cases
of the cyclic transfer algorithm introduced by Thomp-
son and Psaraftis [32]. Although the cyclic transfer al-
gorithm is a generalized edge-exchange algorithm, its
performance is limited due to its computational cost.

We call three local optimization heuristics in sequence
— Or-opt [22], crossover [25], relocation [25] — to
optimize the offspring locally. These three heuristics
have different characteristics from one another; they are
thought to produce synergies. The Or-opt is a vertex-
based algorithm trying to move a vertex to another
place within a single route. The crossover is a special
type of two-edge exchange which removes the cross links
of two routes. The relocation is similar to the Or-opt;
it is different in that it manipulates multiple routes. Its
key routine is moving a vertex in a route to another
place in other routes (an example in Figure 4).

In VRPTW, it consumes considerable CPU time to
check the time-feasibility of a solution. Consider the
routine which checks whether an unrouted customer u
can be inserted between two specific adjacent customer

(b) after relocation

For the sake of convenience, the depot was depicted as two
diamonds.

Figure 4: An example of a relocation

vp—1 and v, on the route Ry = (v1,v2,...,0m). The
routine must check the time-feasibility at u, vp, vpt1, ...,
and v,,, respectively. Solomon introduced Push For-
ward [26] to practically speed up this kind of operation.
However, the time-feasibility checking takes O(n) in the
worst case even when using Push Forward (n is the num-
ber of customers in the route.).

We use the adjusted latest arrival time (aly,), instead
[20]. The adjusted latest arrival times at customers on
a route are computed as follows:

alvi = { lO o t’u,'Co;

min(lvi ’ alvi+1 - tvivi+1 - Svi)a

The adjusted latest arrival time of a customer is the



time by which the vehicle must arrive at the customer to
satisfy the time-feasibility with no further checking. Us-
ing the adjusted latest arrival times, the time-feasibility
check is completed in constant time even in the worst
case. In other words, when inserting an unrouted cus-
tomer u between v,_1, and vy, it only have to check to
see if tt,, | +ty,_yu+ Wy + Sy + tuy, < aly,.

The Or-opt algorithm and the relocation algorithm call
the above routine very frequently, and thus the time-
feasibility is checked fast using the adjusted latest ar-
rival time described in Section 3.1.

3.5 Replacement

The offspring is compared with one of the parents. The
parent is replaced to the offspring if the offspring is
better. Otherwise, the other parent is replaced if the
offspring is better than it. Otherwise, the worst in the
population is replaced.

3.6 Stop Condition

Our GA stops when the best solution has not been bro-
ken during p consecutive generations. p was set to 2,000.

4 Experimental Results

We set a GA with 4, € [0.4,0.9],0, € [0.2,0.7],05 €
[0.1,0.6], and & € [0.3,0.8]% and call it VGAL.

We programmed our GA in C++ language. In the ex-
periment, the population size and the mutation rate
were set to 60 and 0.05, respectively. 100 runs were
performed for each Solomon’s VRPTW instance [26].

4.1 Performance

Table 2 shows the experimental results of VGA1 and
TLOL [28], a recent representative paper from the
field of the evolutionary computation. Inter-customer
distances were calculated with real double-precision.
VGA1-best and VGAl-average represent the best and
the average results of VGA1 over 100 runs, respectively.
For TLOL, only the best results are available [28]. The
figures were rounded off to two decimal places. “#V”
and “TD” mean the number of vehicles and the travel
distance, respectively. “t” represents the average CPU
seconds on Pentium IIT 1GHz.

VGAL1 outperformed TLOL for 47 of the 56 instances;
TLOL outperformed VGA1 for two of them; they tied
for the other seven instances. Among the 47 cases that

3If 61 4+ 62 + 63 + 64 > 1, then they are scaled down to
satisfy that their sum is equal to 1.

VGAL outperformed, even the average results of VGA1
were better than TLOL (the best results) for all of them
except one (R206).

In Table 3, we compared VGA1-best with the optimal
solutions? reported in [9]. Inter-customer distances were
truncated to the first decimal place to be consistent with
[9]. The bold-faced numbers represent that the results
of VGALI equal the optimal solutions. VGA1 found op-
timal solutions for 26 out of 31 instances whose optimal
solutions are known. VGA1 found most of the opti-
mal solutions for the C and R groups, but it found the
optimum for one of the five in the RC group.

4.2 The Usefulness of Parents’ Decision
Variables During Crossover

To test the usefulness of parents’ decision variables, we
set another GA with 6, € [0.4,0.9],d, € [0.5,1.0],05 €
[0.1,0.6], and 64 = 0 (VGA2). Because d4 # 0, VGAL1
utilized parents’ decision variables (parents’ travel-so-
far times, in detail), while VGA2 did not.

Table 4 shows the results of VGA1 and VGA2 for each
problem group. Each group of problems has about 10
instances, e.g., C1 has C101 through C109. The best
(“Best”) and average (“Average”) results of each group
are the averages of the best and average results for the
corresponding instances, respectively.

According to the best results, VGA1 found better solu-
tions more frequently than VGA2, but VGA2 was bet-
ter on the average. In other words, the deviation of
the best and average results in VGA1 was larger than
in VGA2. VGAL1 seems to be strong in instances that
have long scheduling horizons and large vehicle capaci-
ties (C2, R2, and RC2 groups), although there are only
slight differences compared to VGA2. Overall, the per-
formances of VGA1 and VGA2 were comparable. It is
notable that VGA1 was about 30% faster than VGA2.

5 Conclusion

In this paper, we suggested a new hybrid genetic al-
gorithm for the 2D Euclidean vehicle routing problem
with time windows. In our genetic algorithm, the 2D
image itself of a solution becomes a chromosome; each
gene corresponds to a customer in the 2D plane; the
natural crossover cuts the chromosomal space with free
curves. Because of its simplicity, the natural crossover
may be applied to other variants of VRP with minor
modification. The experimental results showed that the
suggested hybrid genetic algorithm solved VRPTWs to

*http://web.cba.neu.edu/ msolomon /problems.htm.
After [9], some more optimal solutions were added.



Table 2: Experimental Results of VGA1

TLOL VGAI-best VGA1l-average TLOL VGAIl-best VGAIl-average
Instance | #V TD | #V TD #V TD t Instance | #V TD | #V TD #V TD t
C101 10 828.94 10 828.94 | 10.00 828.94 6 C201 3 591.56 3 591.56 | 3.00 591.56 9
C102 10 828.94 10 828.94 | 10.00 828.94 12 C202 3 591.56 3 591.56 | 3.00 591.56 16
C103 10 859.78 10 828.06 | 10.00 828.06 18 C203 3 618.00 3 591.17 | 3.00 591.17 30
C104 10 893.23 10 824.78 | 10.00 824.96 29 C204 3 609.02 3 590.60 | 3.00 591.18 44
C105 10 828.94 10 828.94 | 10.00 828.94 7 C205 3 616.32 3 588.88 | 3.00 588.88 10
C106 10 828.94 10 828.94 | 10.00 828.94 7 C206 3 615.92 3 588.49 | 3.00 588.49 12
c1o7 10 828.94 10 828.94 | 10.00 828.94 7 Cc207 3 636.62 3 588.29 | 3.00 588.29 13
C108 10 830.94 10 828.94 | 10.00 828.94 8 C208 3 611.29 3 588.32 | 3.00 588.32 12
C109 10 849.03 10 828.94 | 10.00 828.94 9
R101 18 1648.86 20 1642.88 | 20.00 1643.53 30 R201 8 1198.15 9 1149.68 | 8.29 1153.04 64
R102 17 1486.71 18 1472.81 | 18.50 1479.19 52 R202 9 1057.56 8 1034.35 | 7.40 1038.40 81
R103 14 1234.43 14 1213.62 | 14.81 1222.29 51 R203 5 922.38 6 874.87 | 6.00 875.87 84
R104 11 1024.38 11 976.61 | 11.70 1001.44 61 R204 5 791.78 4 736.52 | 4.46 741.41 92
R105 15 1372.71 15 1360.78 | 15.91 1371.52 34 R205 5 1015.99 5 955.82 | 6.05 964.69 70
R106 12 1271.11 13 1240.47 | 13.59 1252.44 48 R206 4 884.65 5 879.89 | 5.33 892.55 93
R107 12 1106.19 11 1073.34 | 11.73 1083.10 63 R207 4 875.76 4 799.86 | 4.66 814.05 97
R108 9 992.12 10 947.55 | 10.74 959.65 65 R208 3 778.38 4 705.45 | 3.50 714.37 99
R109 13 1101.37 13 1151.84 | 12.97 1157.27 41 R209 3 920.34 5 859.39 | 5.26 867.52 83
R110 11 1119.12 12 1072.41 | 12.00 1082.72 53 R210 4 961.18 5 910.70 | 6.10 918.37 102
R111 12 1083.05 12 1053.50 | 12.00 1063.21 56 R211 6 820.23 4 755.96 | 4.70 765.64 96
R112 11 1020.52 10 953.63 | 10.77 971.89 49
RC101 14 1659.68 16 1643.41 | 16.46 1658.34 28 RC201 4 1354.96 9 1265.56 | 9.00 1269.94 50
RC102 15 1492.10 14 1461.23 | 14.65 1480.82 45 RC202 8 1151.46 8 1095.64 | 7.84 1101.03 74
RC103 11 1249.86 12 1277.54 | 12.11 1313.73 48 RC203 7 1018.09 5 928.51 | 5.29 943.81 104
RC104 11 1202.12 10 1136.81 | 10.56 1154.26 57 RC204 4 865.51 4 786.38 | 4.05 799.19 81
RC105 16 1585.34 16 1518.58 | 15.96 1540.66 42 RC205 9 1225.69 7 1157.55 | 7.80 1164.43 69
RC106 12 1449.30 13 1381.23 | 13.39 1397.45 33 RC206 5 1122.23 7 1054.61 | 6.39 1067.49 64
RC107 11 1303.36 12 1212.83 | 12.03 1227.81 32 RC207 6 1047.86 6 966.08 | 6.07 975.24 76
RC108 11 1197.13 11 1117.53 | 11.00 1135.81 32 RC208 4 854.75 4 779.31 | 4.98 791.35 68
the near-optimality. [4] W. Chiang and R. Russell. Simulated annealing metaheuristics

for the vehicle routing problem with time windows. Annals of

We also tested the usefulness of parents’ decision vari- Operations Research, 63:3-27, 1996.
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We used the synergy of three local optimization heuris-
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