
A Hybrid Genetic Algorithm for the Vehicle Routing Problem
with Time Windows

Soonchul Jung and Byung-Ro Moon

School of Computer Science and Engineering
Seoul National University
Seoul, 151-742 Korea

fsamuel,moong@soar.snu.ac.kr

Abstract

This paper suggests a new hybrid genetic al-
gorithm for the 2D Euclidean vehicle rout-
ing problem with time windows. The natu-
ral crossover, proposed for the 2D Euclidean
traveling salesman problem, was adopted with
some modi�cation in the suggested genetic al-
gorithm. The most notable feature of the nat-
ural crossover is that it uses the 2D image of
a solution itself for chromosomal cutting. We
also investigate the usefulness of parents' deci-
sion variables such as arrival times during re-
combination. The suggested genetic algorithm
found optimal solutions for 26 out of 31 in-
stances with known optimal solutions.

1 Introduction

The vehicle routing problem (VRP) is the problem of
�nding a set of minimum-cost vehicle routes which start
at a central depot, serve a set of customers with known
demands, and return to the depot without any viola-
tion of constraints [6], [24]. There are several variants
of VRP depending on their constraints. The vehicle
routing problem with time windows (VRPTW) is an ex-
tension of VRP. In VRPTW, time-window constraints
are added to the basic constrains of VRP. Each cus-
tomer must be served only once by one vehicle, and the
total demands of the customers served by a particu-
lar vehicle must not exceed the capacity of the vehicle.
Each customer must be served within his/her time win-
dow. A vehicle must wait until the service is possible if
the vehicle arrives at a customer earlier than the lower
bound of his/her time window { the earliest arrival time.
The depot also has a time window, and all the vehicles
must return by the latest arrival time of the depot. In
VRPTW, the objective can be the minimization of the
travel distance, the travel time, the number of vehicles,

or their combinations.

VRPTW has shown its usefulness in the area of
distribution-related systems | school bus routing,
newspaper delivery, garbage collection, fuel oil delivery,
dial-a-ride service, etc. If a new routing plan of vehicles
is more eÆcient than before, we can save fuel, money,
and/or time.

Various algorithms for VRP and its variants have been
studied intensively for decades. There are some of ex-
act methods to solve VRPs and VRPTWs to the op-
timality [10], [12], [19], [21]. Although the speed-up
techniques for exact methods have been introduced, the
NP-hardness of VRPTW [27] still makes the required
computational time prohibitive. Local heuristic meth-
ods often produce good near-optimal solutions in short
computational time. They are divided into two classes:
route construction heuristics [13], [11] and route im-
provement heuristics [7], [32]. Solomon [26] designed
and reviewed several route construction heuristics. In
[18], A number of route improvement heuristics are
clearly described. Although these heuristics were able
to run separately to solve VRPTW, they have also been
incorporated in meta heuristics like tabu search, sim-
ulated annealing, genetic algorithm (GA), etc [4], [5],
[30], [23], [15].

Blanton and Wainwright [2] introduced a genetic algo-
rithm for VRPTW that used a sequence of customers
as a chromosome. A greedy insertion-based heuristic
interprets a chromosome (sequence), and calculates the
�tness of the chromosome. The sequence means the in-
sertion order of customers for the heuristic. GIDEON,
suggested by Thangiah et al. [31], [30], is a framework
for VRPTW, adopting a cluster-�rst route-second strat-
egy. Their GA was used in the clustering phase. The
chromosome represents angles whose origin is the de-
pot, in order to de�ne sectors to which customers will
belong. Customers within a sector are assigned to one
vehicle, and routed by the cheapest insertion method

[14]. In another system of Thangiah [29], a chromosome
represents circles (by de�ning an origin and a radius).
Customers within or near a circle are assigned to one ve-
hicle. GENEROUS of Potvin and Bengio [23] uses a set
of routes themselves as a chromosome. The crossover
merges two parents heuristically, then the repair oper-
ator is applied to the o�spring. Most approaches use a
set of routes themselves as a chromosome after Potvin
and Bengio's work [23]. Recently, Tan et al. [28] intro-
duced a messy genetic algorithm that a chromosome is
a sequence of (customer number, vehicle number) pairs.

The natural crossover, introduced by Jung and Moon
[17], [16] is a crossover manipulating chromosomes in
which genes are laid on a 2D space. Because 2D chro-
mosomes can preserve problem information with less
distortion, two-dimensional chromosomes are often used
in genetic algorithms for 2D problems [8], [1], [3]. The
natural crossover was originally devised for the 2D Eu-
clidean traveling salesman problem (TSP), and pro-
duced better experimental results than state-of-the-art
GAs for TSP [17]. In most VRPTW instances includ-
ing Solomon's benchmark instances [26], customers are
located on a 2D Euclidean space. Therefore, only if
a 2D form of chromosomes are de�ned for VRPTW,
it is possible for a genetic algorithm to use the natu-
ral crossover. This paper provides an extension of the
natural crossover to VRPTW, and investigates its com-
petence.

There are variables created during the evaluation of a
route. Waiting times, arrival times, and travel-so-far
distances are some of such decision variables. Almost all
genetic algorithms for VRPTW did not utilize parents'
decision variables in the course of recombination and
mutation. In this paper, we utilize parents' decision
variables during crossover.

The paper is organized as follows. Section 2 describes
the mathematical formulation of VRPTW. Section 3
explains the genetic operators used in the proposed ge-
netic algorithm. Section 4 presents the experimental
results. Finally Section 5 makes conclusions.

2 Formulation of VRPTW

Table 1 represents the meanings of terms related to
VRPTW. For a given route Rk = (v1; v2; :::; vm); v1 =
c0, decision variables are calculated as follows:

avi =

�
0; i = 1
ttvi�1 + tvi�1vi ; i > 1

wvi =

�
0; i = 1
max(0; evi � avi); i > 1

ttvi =

�
0; i = 1
avi + wvi + svi ; i > 1

Table 1: Terminologies

constants meaning

N number of customers
Q capacity of vehicles
C set of all customers including the depot
ci customer i, 0 � i � N (c0 is the depot.)
dij distance from customer i to customer j
tij travel time from customer i to customer j
qi demand of customer i
si service time of customer i
ei earliest arrival time to customer i
li latest arrival time to customer i

variables meaning

n(R) number of routes
n(Rk) number of customers in route k
vjk jth customer of route k
Rk route k = (v1k ; v2k; :::)
Sk set of customers in route k
RDk travel distance of route k
RTk travel time of route k
RLk total load of route k
ai arrival time at ci
ali adjusted latest arrival time at ci
wi waiting time before servicing ci
tti travel-so-far time after servicing ci
tdi travel-so-far distance when arriving at ci
adi accumulated demands of customers

after servicing ci

tdvi =

�
0; i = 1
tdvi�1 + dvi�1vi ; i > 1

advi =

�
0; i = 1
advi�1 + qvi ; i > 1

RTk = ttvm + tvmv1

RDk = tdvm + dvmv1

RLk = advm

The objective of our genetic algorithm is to �nd a set
of routes having the minimal travel distance. In other
words, we have to minimize

n(R)X
k=1

RDk

subject to

S1 [S2 [� � � [Sn(R) = C; (1)

Si \ Sj = fc0g; 1 � i; j � n(R); i 6= j (2)

vik 6= vjk ; 1 � i; j � n(Rk); i 6= j (3)

ai � li; 1 � i � N (4)

GA()
f

initialize population P of size N ;
while (stopping condition is unsatis�ed) f

select parent1 and parent2 from P ;
o�spring crossover(parent1; parent2);
if (random number is larger than mutation rate)

mutate o�spring;
local-optimize o�spring;
replace an individual in P with o�spring;

g
return the best individual;

g

Figure 1: A typical steady-state hybrid genetic algo-
rithm

RTk � l0; 1 � k � n(R) (5)

RLk � Q; 1 � k � n(R): (6)

Restriction (1) ensures that all the customers are nec-
essarily visited. Restriction (2) means that all the cus-
tomers must be partitioned disjoint, and the depot is
included in all routes. Restriction (3) ensures that ev-
ery customer is visited only once. Restriction (4) and
(5) take care of time constraints. Restriction (6) pre-
vents the overload of vehicles.

3 Hybrid Genetic Algorithm

We use a typical steady-state hybrid genetic algorithm
(Figure 1). Local optimization algorithms help GAs
�ne-tuning around local optima. The following subsec-
tions describe our genetic algorithm in detail.

3.1 Initialization of Population

A lot of route construction heuristics have been pro-
posed for VRPTW. In [26], several heuristics are care-
fully designed and compared with one another. Ac-
cording to [26], the insertion heuristic 1 (I1) overall
beat other route construction heuristics such as savings,
nearest neighbor, etc. The core part of I1 is the rou-
tine inserting a new unrouted customer into the current
route, between two adjacent customers on the route. If
there is no feasible customer to insert, a new route is
created. I1 repeats the loop until there are no unrouted
customers.

We create a population of solutions using a stochastic
version of I1. The existence of adjustable weights in the
cost function of I1 makes the creation of various solu-
tions possible. In calculating an insertion cost of a cus-
tomer, the weights determine the balance between the
spatial aspect and the temporal aspect of the problem

instance. The values of weights are changed at random
in the ranges of � 2 [0:1; 0:9]; � 2 [0; 1]; �1 2 [0:1; 0:9];
and �2 2 [0:1; 0:9](�1+�2 = 1). This is expected to be
helpful in creating a robust population whose solution
qualities do not depend on speci�c aspects of the prob-
lem instance. The �rst customer for a new route is cho-
sen at random among the farthest unrouted customer,
the unrouted customer with the earliest deadline, and
a random unrouted customer.

3.2 Selection and Crossover

We use the typical binary tournament selection.

Most genetic algorithms for VRPTW do not consider
the representation of chromosomes as important, and
they recombine the new o�spring by heuristically inter-
preting the two parents. In recombining the o�spring,
they consider a number of criteria like distances between
customers, ranges of time windows, sizes of routes, dis-
tribution of distances, etc; but they do not consider the
physical locations of customers. In GIDEON system
of Thangiah et al. [31], [30], each chromosome con-
tains a set of numbers representing the angles de�ning
sectors (centered at the depot) instead of routes them-
selves. Customers in a sector basically belong to the
same route. Namely, this system considers the locations
of customers to be more important than other elements.

Multi-dimensional chromosomes were suggested for
problems with multi-dimensional characteristics. A
two-dimensional crossover, introduced by Cohoon and
Paris [8], chooses a small rectangle from one parent and
then copies the genes in the rectangle into the o�spring
with the rest of genes copied from the other parent.
Anderson et al. [1] suggested a block-uniform crossover
which tessellates a 2D chromosome into i � j blocks,
and copies the genes block by block from a uniformly
selected parent. Bui and Moon [3] proposed a general-
ization of crossovers to n dimensions. Jung and Moon
[17], [16] introduced an encoding/crossover pair for the
2D Euclidean traveling salesman problem which uses a
2D image as a chromosome, and performs crossover on
the chromosome. Since 2D Euclidean VRPs and 2D Eu-
clidean TSPs share a lot of characteristics, we inherit
the natural encoding/crossover pair with some modi�-
cation.

In this paper, we use the 2D image of routes as a chro-
mosome, where each gene is located at the coordinate
of the corresponding customer. We describe the natural
crossover for the 2D Euclidean VRPTW in the follow-
ing:

1. The 2D image of two solutions are selected as par-
ents (Figure 2 (a),(b)).

(a) parent A (b) parent B

���
���
���
���

������

���
���
���
���

����

����

������

����

����

��
��
��
��

���
���
���
���

����

��
��
��
��

����

���
���
���
���

���
���
���
���

����

���
���
���
���

������

������

��
��
��
��

����

���
���
���
�������

������

���
���
���
���

������
����

������

��
��
��
��

����

������

��
��
��
��

���
���
���
���

���
���
���
���

������

���
���
���
���

��
��
��
��

������

���
���
���
���

������

����

���� ������

��
��
��
��

������

���
���
���
���

��
��
��
��

������

����

���
���
���
���

��
��
��
��

������

��
��
��
�� ������

��
��
��
�� ���

���
���
���

��
��
��
�����

���
���
���

��������

����

��
��
��
��

���
���
���
���

������

���
���
���
���

����

����

������

����

����

��
��
��
��

���
���
���
���

����

��
��
��
��

����

���
���
���
���

���
���
���
���

����

���
���
���
���

������

������

��
��
��
��

����

���
���
���
�������

������

���
���
���
���

������
����

������

��
��
��
��

����

������

��
��
��
��

���
���
���
���

���
���
���
���

������

���
���
���
���

��
��
��
��

������

���
���
���
���

������

����

���� ������

��
��
��
��

������

���
���
���
���

��
��
��
��

������

����

���
���
���
���

��
��
��
��

������

��
��
��
�� ������

��
��
��
�� ���

���
���
���

��
��
��
�����

���
���
���

��������

����

��
��
��
��

���
���
���
���

������

���
���
���
���

����

����

������

����

����

��
��
��
��

���
���
���
���

����

��
��
��
��

����

���
���
���
���

���
���
���
���

����

���
���
���
���

������

������

��
��
��
��

����

���
���
���
�������

������

���
���
���
���

������
����

������

��
��
��
��

����

������

��
��
��
��

���
���
���
���

���
���
���
���

������

���
���
���
���

��
��
��
��

������

���
���
���
���

������

����

���� ������

��
��
��
��

������

���
���
���
���

��
��
��
��

������

����

���
���
���
���

��
��
��
��

������

��
��
��
�� ������

��
��
��
�� ���

���
���
���

��
��
��
�����

���
���
���

��������

����

��
��
��
��

���
���
���
���

������

���
���
���
���

����

����

������

����

����

��
��
��
��

���
���
���
���

����

��
��
��
��

����

���
���
���
���

���
���
���
���

����

���
���
���
���

������

������

��
��
��
��

����

���
���
���
�������

������

���
���
���
���

������
����

������

��
��
��
��

����

������

��
��
��
��

���
���
���
���

���
���
���
���

������

���
���
���
���

��
��
��
��

������

���
���
���
���

������

����

���� ������

��
��
��
��

������

���
���
���
���

��
��
��
��

������

����

���
���
���
���

��
��
��
��

������

��
��
��
�� ������

��
��
��
�� ���

���
���
���

��
��
��
�����

���
���
���

��������

����

��
��
��
��

���
���
���
���

������

���
���
���
���

����

����

������

����

����

��
��
��
��

���
���
���
���

����

��
��
��
��

����

���
���
���
���

���
���
���
���

����

���
���
���
���

������

������

��
��
��
��

����

���
���
���
�������

������

���
���
���
���

������
����

������

��
��
��
��

����

������

��
��
��
��

���
���
���
���

���
���
���
���

������

���
���
���
���

��
��
��
��

������

���
���
���
���

������

����

���� ������

��
��
��
��

������

���
���
���
���

��
��
��
��

������

����

���
���
���
���

��
��
��
��

������

��
��
��
�� ������

��
��
��
�� ���

���
���
���

��
��
��
�����

���
���
���

��������

����

��
��
��
��

(c) partitioned customers

(d) inherited arcs from parent A (e) adding arcs from parent B (f) new o�spring

} The diamond represents the depot.

Figure 2: An example of the natural crossover for VRPTW

2. Free curves or �gures are drawn on the 2D space
where customers are located1. It is proven that
they always partition the chromosomal space into
two equivalent classes [17] (marked white and gray
in Figure 2 (c)). Every customer belongs to one
of the classes. Customers in the white class are
marked black and customers in the other gray class
are marked white.

3. For every arc of the parent A, if both of the start-
point and the end-point are marked black2, it sur-
vives in the o�spring (Figure 2(d)); for every arc
of the parent B, if both are marked white, it sur-
vives in the o�spring (Figure 2(e)). Then we have
a number of disconnected segments.

4. The decision variables of the parent A such as
ai; wi; tti; and tdi are saved as a

A
i ; w

A
i ; tt

A
i ; and td

A
i ,

respectively. The decision variables of the parent
B are saved in the same way. They are used in
repairing the o�spring later.

5. A valid solution is made by adding arcs by the re-
pair algorithm in Section 3.2.1 (Figure 2(f)).

Because we only have to calculate the class of every
customer, the time complexity of the crossover grows
linearly with respect to the number of customers.

1We do not have an eÆcient implementation for drawing
fully free curves. Instead, we use four types of curves |
straight line, triangle, quadrangle, and ellipse. Two curves
are chosen at random among them allowing multiple occur-
rences. Refer to [16] for more information.

2It is possible that the arc passes through the gray region
even when both points are marked black; there are a few
arcs in Figure 2 (d). For eÆcient implementation, we ignore
classes of arcs.

3.2.1 Repair Algorithm

The step 5 in the previous section repairs the inter-
mediate o�spring to a valid solution. We utilize the
parents' decision variables in this process. Figure 3
represents the repair algorithm. Its key routine is con-
necting the last customer on the current partial route to
the minimum-cost start-point of a segment in a nearest-
neighbor manner.

In calculating the cost of adding an arc, we consider
terms about spatial and temporal closenesses of cus-
tomers, and terms about parents. Let ci be the last
customer (point) on the current partial route, and let
cj be a candidate customer to connect ci. The cost is
the weighted sum of i) the distance between ci and cj ,
ii) the waiting time at cj , iii) the slack time of delivery
to cj , and iv) the di�erence of the service completion
between parents and the o�spring at cj :

cij = Æ1 � dij + Æ2 �Wj + Æ3 � Sj + Æ4 � Pj

where

Æ1 + Æ2 + Æ3 + Æ4 = 1;
Aj = ti + tij ;

Wj = max(0; ej �Aj);
Sj = lj �Aj ; and
Pj = min(jttAj � (Aj +Wj + sj)j;

jttBj � (Aj +Wj + sj)j):

Æ1; Æ2; Æ3, and Æ4 are reinitialized within respective spe-
ci�c ranges whenever the repair function is invoked.

To investigate the usefulness of parents' decision vari-
ables, we compare in Section 4 a GA version with Æ4 6= 0
against one with Æ4 = 0.

repair()
f

while(there are segments starting from the depot) f
randomly choose a segment among them as a partial route;
complete a route(the last customer of the partial route, start-points of the remaining segments);

g
while(there are remaining segments)

complete a route(depot, start-points of the segments);
g
complete a route(the last customer, candidate customers)
f

t the last customer;
do f

�nd a feasible customer, say c�, among candidate customers and the depot,
such that the cost from t to c� is minimized;

add an arc from t to c�;
t the end-point of the segment whose start-point is c�;

g while(t is not the depot)
g

Figure 3: The pseudo-code of the repair algorithm

3.3 Mutation

In mutation, each route of the o�spring is split into
at most three routes. Two cut-points are selected at
random to split a route.

3.4 Local Optimization

A considerable number of local optimization algorithms
have been proposed to improve routes. Most of them be-
long to edge-exchange neighborhoods [18]. Most edge-
exchange neighborhoods can be viewed as special cases
of the cyclic transfer algorithm introduced by Thomp-
son and Psaraftis [32]. Although the cyclic transfer al-
gorithm is a generalized edge-exchange algorithm, its
performance is limited due to its computational cost.

We call three local optimization heuristics in sequence
| Or-opt [22], crossover [25], relocation [25] | to
optimize the o�spring locally. These three heuristics
have di�erent characteristics from one another; they are
thought to produce synergies. The Or-opt is a vertex-
based algorithm trying to move a vertex to another
place within a single route. The crossover is a special
type of two-edge exchange which removes the cross links
of two routes. The relocation is similar to the Or-opt;
it is di�erent in that it manipulates multiple routes. Its
key routine is moving a vertex in a route to another
place in other routes (an example in Figure 4).

In VRPTW, it consumes considerable CPU time to
check the time-feasibility of a solution. Consider the
routine which checks whether an unrouted customer u
can be inserted between two speci�c adjacent customer

(a) before relocation

(b) after relocation

For the sake of convenience, the depot was depicted as two
diamonds.

Figure 4: An example of a relocation

vp�1 and vp on the route Rk = (v1; v2; :::; vm). The
routine must check the time-feasibility at u; vp; vp+1; :::;
and vm, respectively. Solomon introduced Push For-

ward [26] to practically speed up this kind of operation.
However, the time-feasibility checking takes O(n) in the
worst case even when using Push Forward (n is the num-
ber of customers in the route.).

We use the adjusted latest arrival time (alvi), instead
[20]. The adjusted latest arrival times at customers on
a route are computed as follows:

alvi =

�
l0 � tvic0 ; i = m

min(lvi ; alvi+1 � tvivi+1 � svi); i < m:

The adjusted latest arrival time of a customer is the

time by which the vehicle must arrive at the customer to
satisfy the time-feasibility with no further checking. Us-
ing the adjusted latest arrival times, the time-feasibility
check is completed in constant time even in the worst
case. In other words, when inserting an unrouted cus-
tomer u between vp�1, and vp, it only have to check to
see if ttvp�1 + tvp�1u + wu + su + tuvp � alvp .

The Or-opt algorithm and the relocation algorithm call
the above routine very frequently, and thus the time-
feasibility is checked fast using the adjusted latest ar-
rival time described in Section 3.1.

3.5 Replacement

The o�spring is compared with one of the parents. The
parent is replaced to the o�spring if the o�spring is
better. Otherwise, the other parent is replaced if the
o�spring is better than it. Otherwise, the worst in the
population is replaced.

3.6 Stop Condition

Our GA stops when the best solution has not been bro-
ken during p consecutive generations. p was set to 2,000.

4 Experimental Results

We set a GA with Æ1 2 [0:4; 0:9]; Æ2 2 [0:2; 0:7]; Æ3 2
[0:1; 0:6], and Æ4 2 [0:3; 0:8]3 and call it VGA1.

We programmed our GA in C++ language. In the ex-
periment, the population size and the mutation rate
were set to 60 and 0.05, respectively. 100 runs were
performed for each Solomon's VRPTW instance [26].

4.1 Performance

Table 2 shows the experimental results of VGA1 and
TLOL [28], a recent representative paper from the
�eld of the evolutionary computation. Inter-customer
distances were calculated with real double-precision.
VGA1-best and VGA1-average represent the best and
the average results of VGA1 over 100 runs, respectively.
For TLOL, only the best results are available [28]. The
�gures were rounded o� to two decimal places. \#V"
and \TD" mean the number of vehicles and the travel
distance, respectively. \t" represents the average CPU
seconds on Pentium III 1GHz.

VGA1 outperformed TLOL for 47 of the 56 instances;
TLOL outperformed VGA1 for two of them; they tied
for the other seven instances. Among the 47 cases that

3If Æ1 + Æ2 + Æ3 + Æ4 > 1, then they are scaled down to
satisfy that their sum is equal to 1.

VGA1 outperformed, even the average results of VGA1
were better than TLOL (the best results) for all of them
except one (R206).

In Table 3, we compared VGA1-best with the optimal
solutions4 reported in [9]. Inter-customer distances were
truncated to the �rst decimal place to be consistent with
[9]. The bold-faced numbers represent that the results
of VGA1 equal the optimal solutions. VGA1 found op-
timal solutions for 26 out of 31 instances whose optimal
solutions are known. VGA1 found most of the opti-
mal solutions for the C and R groups, but it found the
optimum for one of the �ve in the RC group.

4.2 The Usefulness of Parents' Decision

Variables During Crossover

To test the usefulness of parents' decision variables, we
set another GA with Æ1 2 [0:4; 0:9]; Æ2 2 [0:5; 1:0]; Æ3 2
[0:1; 0:6], and Æ4 = 0 (VGA2). Because Æ4 6= 0, VGA1
utilized parents' decision variables (parents' travel-so-
far times, in detail), while VGA2 did not.

Table 4 shows the results of VGA1 and VGA2 for each
problem group. Each group of problems has about 10
instances, e.g., C1 has C101 through C109. The best
(\Best") and average (\Average") results of each group
are the averages of the best and average results for the
corresponding instances, respectively.

According to the best results, VGA1 found better solu-
tions more frequently than VGA2, but VGA2 was bet-
ter on the average. In other words, the deviation of
the best and average results in VGA1 was larger than
in VGA2. VGA1 seems to be strong in instances that
have long scheduling horizons and large vehicle capaci-
ties (C2, R2, and RC2 groups), although there are only
slight di�erences compared to VGA2. Overall, the per-
formances of VGA1 and VGA2 were comparable. It is
notable that VGA1 was about 30% faster than VGA2.

5 Conclusion

In this paper, we suggested a new hybrid genetic al-
gorithm for the 2D Euclidean vehicle routing problem
with time windows. In our genetic algorithm, the 2D
image itself of a solution becomes a chromosome; each
gene corresponds to a customer in the 2D plane; the
natural crossover cuts the chromosomal space with free
curves. Because of its simplicity, the natural crossover
may be applied to other variants of VRP with minor
modi�cation. The experimental results showed that the
suggested hybrid genetic algorithm solved VRPTWs to

4http://web.cba.neu.edu/~msolomon/problems.htm.
After [9], some more optimal solutions were added.

Table 2: Experimental Results of VGA1
TLOL VGA1-best VGA1-average TLOL VGA1-best VGA1-average

Instance #V TD #V TD #V TD t Instance #V TD #V TD #V TD t

C101 10 828.94 10 828.94 10.00 828.94 6 C201 3 591.56 3 591.56 3.00 591.56 9
C102 10 828.94 10 828.94 10.00 828.94 12 C202 3 591.56 3 591.56 3.00 591.56 16
C103 10 859.78 10 828.06 10.00 828.06 18 C203 3 618.00 3 591.17 3.00 591.17 30
C104 10 893.23 10 824.78 10.00 824.96 29 C204 3 609.02 3 590.60 3.00 591.18 44
C105 10 828.94 10 828.94 10.00 828.94 7 C205 3 616.32 3 588.88 3.00 588.88 10
C106 10 828.94 10 828.94 10.00 828.94 7 C206 3 615.92 3 588.49 3.00 588.49 12
C107 10 828.94 10 828.94 10.00 828.94 7 C207 3 636.62 3 588.29 3.00 588.29 13
C108 10 830.94 10 828.94 10.00 828.94 8 C208 3 611.29 3 588.32 3.00 588.32 12
C109 10 849.03 10 828.94 10.00 828.94 9

R101 18 1648.86 20 1642.88 20.00 1643.53 30 R201 8 1198.15 9 1149.68 8.29 1153.04 64
R102 17 1486.71 18 1472.81 18.50 1479.19 52 R202 9 1057.56 8 1034.35 7.40 1038.40 81
R103 14 1234.43 14 1213.62 14.81 1222.29 51 R203 5 922.38 6 874.87 6.00 875.87 84
R104 11 1024.38 11 976.61 11.70 1001.44 61 R204 5 791.78 4 736.52 4.46 741.41 92
R105 15 1372.71 15 1360.78 15.91 1371.52 34 R205 5 1015.99 5 955.82 6.05 964.69 70
R106 12 1271.11 13 1240.47 13.59 1252.44 48 R206 4 884.65 5 879.89 5.33 892.55 93
R107 12 1106.19 11 1073.34 11.73 1083.10 63 R207 4 875.76 4 799.86 4.66 814.05 97
R108 9 992.12 10 947.55 10.74 959.65 65 R208 3 778.38 4 705.45 3.50 714.37 99
R109 13 1101.37 13 1151.84 12.97 1157.27 41 R209 3 920.34 5 859.39 5.26 867.52 83
R110 11 1119.12 12 1072.41 12.00 1082.72 53 R210 4 961.18 5 910.70 6.10 918.37 102
R111 12 1083.05 12 1053.50 12.00 1063.21 56 R211 6 820.23 4 755.96 4.70 765.64 96
R112 11 1020.52 10 953.63 10.77 971.89 49

RC101 14 1659.68 16 1643.41 16.46 1658.34 28 RC201 4 1354.96 9 1265.56 9.00 1269.94 50
RC102 15 1492.10 14 1461.23 14.65 1480.82 45 RC202 8 1151.46 8 1095.64 7.84 1101.03 74
RC103 11 1249.86 12 1277.54 12.11 1313.73 48 RC203 7 1018.09 5 928.51 5.29 943.81 104
RC104 11 1202.12 10 1136.81 10.56 1154.26 57 RC204 4 865.51 4 786.38 4.05 799.19 81
RC105 16 1585.34 16 1518.58 15.96 1540.66 42 RC205 9 1225.69 7 1157.55 7.80 1164.43 69
RC106 12 1449.30 13 1381.23 13.39 1397.45 33 RC206 5 1122.23 7 1054.61 6.39 1067.49 64
RC107 11 1303.36 12 1212.83 12.03 1227.81 32 RC207 6 1047.86 6 966.08 6.07 975.24 76
RC108 11 1197.13 11 1117.53 11.00 1135.81 32 RC208 4 854.75 4 779.31 4.98 791.35 68

the near-optimality.

We also tested the usefulness of parents' decision vari-
ables during crossover. In terms of solution qualities,
the use of parents' decision variables did not give no-
table improvement; but, it shortened the running time.

We used the synergy of three local optimization heuris-
tics. Some stronger local optimization heuristic may
further improve the hybrid genetic algorithm. This part
is left for future study.

Acknowledgements

This work was partly supported by KOSEF through
Statistical Research Center for Complex Systems at
Seoul National University and Brain Korea 21 Project.
The RIACT at Seoul National University provided re-
search facilities for this study.

References

[1] C. A. Anderson, K. F. Jones, and J. Ryan. A two-dimensional ge-
netic algorithm for the Ising problem. Complex Systems, 5:327{
333, 1991.

[2] J. Blanton and R. Wainwright. Multiple vehicle routing with
time and capacity constraints using genetic algorithms. In Fifth
International Conference on Genetic Algorithms, pages 452{
459, 1993.

[3] T. N. Bui and B. R. Moon. On multi-dimensional encod-
ing/crossover. In Sixth International Conference on Genetic
Algorithms, pages 49{56, 1995.

[4] W. Chiang and R. Russell. Simulated annealing metaheuristics
for the vehicle routing problem with time windows. Annals of
Operations Research, 63:3{27, 1996.

[5] W. Chiang and R. Russell. A reactive tabu search metaheuristics
for the vehicle routing problem with time windows. INFORMS
Journal on Computing, 9:417{430, 1997.

[6] N. Christo�des. Vehicle routing. In E. Lawler, J. Lenstra, A. Rin-
nooy Kan, and D. Shmoys, editors, The Traveling Salesman
Problem, pages 431{448. John Wiley & Sons, 1985.

[7] G. Clarke and J. Wright. Scheduling of vehicles from a central
depot to a number of delivery points. Operations Research,
12:568{582, 1964.

[8] J. P. Cohoon and W. Paris. Genetic placement. IEEE Trans.
on Computer-Aided Design, CAD-6(6):956{964, 1987.

[9] J. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, and
F. Soumis. The VRP with time windows. In P. Toth and D. Vigo,
editors, The Vehicle Routing Problem, pages 157{193. SIAM
Monographs on Discrete Mathematics and Applications, 2002.

[10] M. Desrochers, J. Desrosiers, and M.M. Solomon. A new op-
timization algorithm for the vehicle routing problem with time
windows. Operations Research, 40:342{354, 1992.

[11] M. Fisher and R. Jaikumar. A generalized assignment heuristic
for vehicle routing. Networks, 11:109{124, 1981.

[12] M. Fisher, K. Jornsten, and O. Madsen. Vehicle routing with
time windows: Two optimization algorithms. Operations Re-
search, 45:488{492, 1995.

[13] B. Gillet and L. Miller. A heuristic algorithm for the vehcile
distpatch problem. Operations Research, 22:340{349, 1974.

[14] B. Golden and W. Stewart. Empirical analysis of heuristics. In
E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys, editors,
The Traveling Salesman Problem, pages 207{249. John Wiley
& Sons, 1985.

[15] J. Homberger and H. Gehring. Two evolutionary metaheuristics
for the vehicle routing problem with time windows. INFOR,
37:297{318, 1999.

Table 3: Comparison with Optimal Solutions

Optimum VGA1-best Optimum VGA1-best Optimum VGA1-best
Instance #V TD #V TD Instance #V TD #V TD Instance #V TD #V TD

C101 10 827.3 10 827.3 R101 20 1637.7 20 1637.7 RC101 15 1619.8 16 1637.8
C102 10 827.3 10 827.3 R102 18 1466.6 18 1466.6 RC102 14 1457.4 14 1473.5
C103 10 826.3 10 826.3 R103 14 1208.7 14 1208.7 RC103 11 1258.0 11 1273.4
C104 10 822.9 10 822.9 R104 - - 11 971.5 RC104 - - 10 1132.8
C105 10 827.3 10 827.3 R105 15 1355.3 15 1355.3 RC105 15 1513.7 15 1513.7

C106 10 827.3 10 827.3 R106 13 1234.6 13 1234.6 RC106 - - 13 1373.9
C107 10 827.3 10 827.3 R107 11 1064.6 11 1064.6 RC107 - - 12 1209.3
C108 10 827.3 10 827.3 R108 - - 10 935.1 RC108 - - 11 1114.2
C109 10 827.3 10 827.3 R109 13 1146.9 13 1146.9

R110 12 1068.0 12 1068.0

R111 12 1048.7 12 1049.6
R112 - - 10 948.6

C201 3 589.1 3 589.1 R201 8 1143.2 8 1143.2 RC201 9 1261.8 9 1262.4
C202 3 589.1 3 589.1 R202 - - 8 1029.6 RC202 - - 8 1092.3
C203 3 588.7 3 588.7 R203 - - 6 870.8 RC203 - - 5 925.5
C204 - - 3 588.1 R204 - - 4 731.8 RC204 - - 4 783.5
C205 3 586.4 3 586.4 R205 - - 5 951.3 RC205 - - 7 1154.0
C206 3 586.0 3 586.0 R206 - - 5 875.9 RC206 - - 7 1051.1
C207 3 585.8 3 585.8 R207 - - 4 797.1 RC207 - - 6 962.9
C208 3 585.8 3 585.8 R208 - - 4 701.4 RC208 - - 5 779.6

R209 - - 5 854.8
R210 - - 6 901.8
R211 - - 4 746.7

Table 4: Results of VGA1 and VGA2

VGA1 VGA2
Group Best Average Best Average

#V TD #V TD t #V TD #V TD t

C1 10.00 828.38 10.00 828.40 12 10.00 828.38 10.00 828.38 13
C2 3.00 589.86 3.00 589.93 18 3.00 589.86 3.00 589.95 21
R1 13.25 1179.95 13.73 1190.69 50 13.25 1180.20 13.70 1189.28 69
R2 5.36 878.41 5.61 885.99 87 5.27 878.46 5.64 886.60 109
RC1 13.00 1343.64 13.27 1363.61 40 12.88 1340.53 13.34 1362.38 54
RC2 6.25 1004.20 6.43 1014.06 73 6.38 1004.57 6.44 1013.72 88

[16] S. Jung and B. R. Moon. Toward minimal restriction of genetic
encoding and crossovers for the 2D Euclidean TSP. IEEE Trans.
on Evolutionary Computation accepted with minor revision.

[17] S. Jung and B. R. Moon. The natural crossover for the 2D Eu-
clidean TSP. In Genetic and Evolutionary Computation Con-
ference, pages 1003{1010, 2000.

[18] G. Kindervater and M. Savelsbergh. Vehicle routing: Handling
edge exchanges. In E. Aarts and J. Lenstra, editors, Local Search
in Combinatorial Optimization, pages 337{360. John-Wiley and
Sons, Ltd., 1997.

[19] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and
F. Soumis. 2-path cuts for the vehicle routing problem with time
windows. Transportation Science, 33:101{116, 1999.

[20] G. Kontoravdis and J. Bard. A GRASP for the vehicle routing
problem with time windows. ORSA Journal on Computing,
7:10{23, 1995.

[21] J. Larsen. Parallelization of the Vehicle Routing Problem with
Time Windows. PhD thesis, Technical University of Denmark,
1999.

[22] I. Or. Traveling Salesman-Type Combinatorial Problems and
Their Relation to the Logistics of Regional Blood Banking.
PhD thesis, Northwestern University, 1976.

[23] J. Potvin and S. Bengio. The vehicle routing problem with
time windows | part II: Genetic search. INFORMS Journal
on Computing, 8:165{172, 1996.

[24] M. W. P. Savelsbergh. Computer Aided Routing. PhD thesis,
Centrum voor Wiskunde en Informatica, 1988.

[25] M. W. P. Savelsbergh. The vehicle routing problem with time
windows: Minimizing route duration. ORSA Journal on Com-
puting, 4:146{154, 1992.

[26] M. Solomon. Algorithms for the vehicle routing and scheduling
problems with time window constraints. Operations Research,
35(2):254{265, 1987.

[27] M. Solomon and J. Desrosiers. Time window constrained routing
and scheduling problems. Transportation Science, 22(1):1{13,
1988.

[28] K. Tan, T. Lee, K. Ou, and L. Lee. A messy genetic algorithm
for the vehicle routing problem with time window constraints. In
IEEE Congress on Evolutionary Computation, pages 679{686,
2001.

[29] S. Thangiah. An adaptive method using a geometrical shape for
vehicle routing problems with time windows. In International
Conference on Genetic Algorithms, pages 536{543, 1995.

[30] S. Thangiah. Vehicle routing with time windows using genetic
algorithms. In Lance Chambers, editor, Application Handbook
of Genetic Algorithms: New Frontiers, pages 253{277. CRC
Press, 1995.

[31] S. Thangiah, K. Nygard, and P. Juell. GIDEON: A genetic algo-
rithm system for vehicle routing with time windows. In Seventh
Conference on Arti�cial Intelligence Applications, pages 322{
328, 1991.

[32] P. Thompson and H. Psaraftis. Cyclic transfer algorithms for
multi-vehicle routing and scheduling problems. Operations Re-
search, 41(5):935{946, 1993.

