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Abstract 
 

Process changes, such as flow disturbances 
and sensor noise, are common in the chemical 
and metallurgical industries. To maintain 
optimal performance, the controlling system 
has to adapt continuously to these changes. 
This is a difficult problem because the 
controller also has to perform well while it is 
adapting. The Adaptive Neural Swarming 
(ANS) method introduced in this paper 
satisfies these goals. Using an existing neural 
network controller as a starting point, ANS 
modifies the network weights through Particle 
Swarm Optimisation. The ANS method was 
tested in a real-world task of controlling a 
simulated non-linear bioreactor. ANS was 
able to adapt to process changes while 
simultaneously avoiding hard operating 
constraints. This way, ANS balances the need 
to adapt with the need to preserve 
generalisation, and constitutes a general tool 
for adapting neural network controllers on-
line. 

 
1.  INTRODUCTION 
 
The chemical and metallurgical industries face constant 
demands for greater economic return that requires 
increased production and greater product purity. Also, 
environmental concerns call for the use of minimal 
resources. By addressing these issues, intelligent 
control techniques add economic value to process 
plants.  
 
A process' operating point (i.e., the process state) 
determines the product purity and production rate. The 
operating point thus has an intrinsic economic value. 
Control engineers select fixed operating points (i.e., set 
points) based on their economic value. Process 
changes, due to process disturbances and drifting 
dynamics, cause deviations from the set points, 
requiring corrective action. Optimal set points and 
effective corrective actions yield greater economic 
return. Typically, linear controllers (e.g., PID 
controllers) maintain the set points and provide 
corrective action to process changes (Seborg et al., 
1989). 
 

 For example, a chemical reactor has an optimal 
operating temperature. This temperature determines the 
production rate that directly impacts on the economic 
return from the reactor. The control engineer selects 
this optimal temperature as a set point. A PID 
controller responds to process disturbances that affect 
the reactor temperature, by increasing or decreasing the 
cooling water flow rate, thereby maintaining the set 
point 
 
PID controllers typically utilise both set points and 
fixed controller parameters. The PID controller 
parameters govern the corrective action (i.e., the 
control response) to process changes. There are three 
PID controller parameters: gain, integral and 
derivative. PID control's linear control structure is the 
industry standard, though not suited to non-linear 
processes.  
 
Non-linear processes are common in the process 
industries. In such cases, PID controller parameters are 
optimal only over a limited operating region. Process 
changes may cause the operating point to stray far from 
the set point, whereupon PID controllers may 
implement sub-optimal corrective actions. Sub-optimal 
performance may be avoided only by adapting the 
controller parameters. As the set points largely 
determine the economic return, the set points must also 
adapt in response to process changes. Tracking the 
economic optimum therefore requires adapting both the 
controller parameters and the set points (Hrycej, 1997).  
 
Effective generalisation and adaptability during process 
changes are essential to tracking a process' economic 
optimum. Generalisation tools, such as neural 
networks, are invaluable in creating non-linear 
controllers for non-linear processes. Non-linear 
controllers are near optimal over wider operating 
regions than possible with PID control (Conradie, 
2000). Near optimal performance may be further 
improved by on-line adaptation of the neural network 
weights in response to process changes. Robust search 
techniques are required for effective on-line adaptation 
of neurocontroller weights. 
 
This paper introduces an adaptive neurocontrol 
strategy, Adaptive Neural Swarming (ANS). A highly 
non-linear bioreactor benchmark is used in the control 
simulation. The bioreactor's dynamic behaviour is 



changed continuously, which shifts the operating point 
with maximum economic return. ANS adapts an 
existing neurocontroller's weights to reap greater 
economic return from the changing bioreactor process. 
ANS emerges as an effective tool for adapting existing 
neural network strategies, resulting in enhanced 
performance.   
 
Section 2 outlines basic notions in conventional 
adaptive control, which remain relevant to an advanced 
scheme such as ANS. Section 3 describes Adaptive 
Neural Swarming (ANS). Section 4 outlines the 
bioreactor case study. The paper concludes with an 
explanation of ANS' mechanism.    
 
2.  ADAPTIVE CONTROL METHODS 
 
Control design requires a dynamic process model. 
Optimal control design is possible only if the process 
model is accurate. However, the model and the actual 
process are invariably mismatched. Also, exact 
knowledge of possible process changes is seldom 
available for control design purposes. Despite these 
shortcomings, robust control remains a control 
requirement. Generalisation is the ability of a controller 
to deliver near optimal performance, despite limited 
process knowledge during its design.  
 
Generalisation may provide robust control, but optimal 
control is rarely ensured during the control design 
process.  The designed controller frequently requires 
on-line refinements to the controller parameters and set 
points. Improved generalisation is difficult to impart 
on-line, as it involves reconciling past (i.e., design) and 
current process information into a single control 
strategy. For example, catalyst decay may cause the 
optimal temperature of a reactor to change over time. 
In contrast, adaptation changes controller parameters 
giving precedence to on-line process information. 
However, degraded performance may result should 
past process conditions return. A balance must thus be 
maintained between retaining generalisation imparted 
during design, while allowing adaptation to exploit 
changes in the process conditions (Hrycej, 1997).  
 
On-line process information contains inaccuracies due 
to sensor noise and short-lived disturbances. Adapting 
controller parameters based on imperfect process 
information involves operational risk. The process may 
become unstable. On-line adaptation to control 
parameters faces numerous challenges: (1) Balancing 
the use of past and present process information, (2) 
Supervising process stability, (3) Implementing 
emergency procedures should the process become 
unsafe, due to on-line adaptation (Hrycej, 1997).  
 
The following two sub-sections illustrate the aims of 
conventional methods for adapting controller 
parameters (section 2.1) and process set points (section 
2.2). ANS has the same aims, though its methodology 
is dissimilar. 
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Figure 1: Objective of linear adaptive control. An 
oscillatory control response around the set point (a) is 
changed to a specified control response (b). The 
specified response settles sooner on the set point. 
 
2.1  CONVENTIONAL ADAPTIVE CONTROL 
 
An adaptive linear controller maintains a specified 
control response (i.e., corrective action) around a set 
point during process changes. For non-linear processes, 
a set of PID controller parameters can only maintain 
the specified control response for a limited range of 
process conditions. Process changes in non-linear 
processes may cause the control response to become 
oscillatory around the set point, as illustrated in figure 
1a. Adaptive linear control tunes the PID controller 
parameters, which corrects the oscillatory response in 
figure 1a to the specified response in figure 1b. 
Conventional adaptive control relies on on-line process 
modelling (i.e., Model Reference Adaptive Control) 
and heuristic methods (i.e., Ziegler-Nichols) for 
adapting controller parameters (Ghanadan, 1990). ANS 
must also ensure that a specified control response is 
maintained. 
  
2.2  EVOLUTIONARY OPERATION  
 
Adaptive control does not change the set points that 
largely determine the economic return. Set points are 
selected during design based on an optimisation of 
dynamic model equations. The optimisation considers 
both economic return and controllability. However, 
process changes during operation may make the current 
set points economically sub-optimal.  
 
Evolutionary operation (EVOP) challenges the use of 
constant set points in a continuously changing process. 
EVOP monitors the process and improves operation by 
changing the set points towards the economic optimum. 
EVOP makes a number of small set point changes that 
do not disrupt production. However, the set point 
changes need to be sufficiently large to discover 
potential improvements in the operating point. EVOP 
uses an experimental design to determine the number 
of set point change experiments. Pattern search 
methods use the experimental results to determine 
whether and in which direction the set points should be 
changed (Walters, 1991).  
 
Consider figure 2, which graphs the economic return of 
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Figure 2: EVOP for a process with two process 
variables. The current set point (circular marker) is 
moved along the arrow's trajectory based on the 
economic return of each set point experiment (square 
markers). The process operation is thus improved. 
 
a process that has two process variables. The contour 
lines represent operating points with similar economic 
returns.  The circular marker represents the current set 
point, which is economically sub-optimal. The set 
points for both process variables should be reduced for 
optimal economic return. EVOP conducts a number of 
set point change experiments (represented by square 
markers) in the neighbourhood of the current set point. 
The economic return for each set point experiment is 
determined. In figure 2, three experiments have greater 
economic return than the current set point. EVOP 
adjusts the current set point in the direction of greater 
economic return. The process is repeated until optimal 
set points are found (Walters, 1991).    
 
EVOP does not adapt the PID controller parameters for 
each of the set point experiments. As discussed in 
section 2.1, using the same controller parameters for all 
the set point experiments may give oscillatory 
responses. Poor control responses impact negatively 
the accurate determination of economic returns. 
 
Adaptive control and EVOP may be combined in a 
two-step methodology to track a changing economic 
optimum. EVOP selects a number of set point 
experiments. An adaptive control method establishes a 
specified control response for each set point 
experiment. The economic evaluations for each 
experiment will consequently be comparable, 
whereupon EVOP adjusts the current set point. This 
cumbersome two-step process is repeated until the 
optimal set point is found. Ideally, a single on-line 
experiment (evaluation) should provide information on 
both the economic return and the control response. 
 
3.  ADAPTIVE NEURAL SWARMING 
 
This section describes Adaptive Neural Swarming 
(ANS), which combines adaptive control and EVOP 
into a single comprehensive step. In ANS, both the 
economic return and the control response are combined 
into a single feedback signal. A local PSO uses this 
sparse reinforcement information to adapt the weights 

of existing neural network controllers towards greater 
economic return in response to a changing process.  
  
3.1  NEURAL NETWORK STRUCTURES 
 
Neurocontrollers may originate from various sources. 
Neural networks may be trained to mimic the control 
actions of existing PID controllers, thereby distributing 
the PID functionality over several neurons. Existing 
fuzzy logic systems may be converted to equivalent 
neural network architectures (Jong & Sun, 1993). 
Neurocontrollers are also developed utilising 
evolutionary reinforcement learning techniques 
(Conradie et al., 2000). Neural networks possess 
characteristics that are beneficial to an adaptive 
scheme, such as generalisation and graceful 
degradation. 
 
Once a PID controller is adapted, the small number of 
control parameters prohibits effective generalisation to 
past process conditions. Neural network controllers are 
collections of neurons, with each neuron specifying the 
weights from the input layer (process states) to output 
layer (control actions). Neurocontroller parameters are 
the neural network weights. A neurocontroller that is 
equivalent to a PID controller, has additional degrees 
of freedom, owing to a larger number of controller 
parameters. During adaptation, a neural network's 
distributed functionality preserves greater 
generalisation to past process conditions. The need for 
effective generalisation justifies the use of neural 
networks. 
 
Neural networks also exhibit graceful degradation. 
Graceful degradation allows small changes to the 
weights, without causing catastrophic control 
performance loss (S'euim & Clay, 1990). Process 
stability is preserved during adaptation.   
 
These neural network characteristics are relied upon in 
a reinforcement learning framework, described below, 
to provide process stability and continued 
generalisation.  
 
3.2  REINFORCEMENT LEARNING 
 
Reinforcement learning (RL) automates the acquisition 
of on-line performance (i.e., feedback) information and 
the adaptation process. RL uses on-line performance 
evaluations to guide adaptation. RL improves 
controller performance without a need to specify how 
the control objectives should be reached (Kaelbling et 
al., 1996).    
 
ANS maintains a population of possible 
neurocontroller solutions that serve as RL evaluations, 
similar to EVOP experiments. Each neurocontroller is 
evaluated individually over a number of sensor sample 
periods while interacting with a dynamic process as in 
figure 3. Initially, the process may be at an arbitrary 
operating point (state, st). The neurocontroller observes 
the current process operating point at sample, t, and 
selects a control action, at. The control action changes 
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Figure 3: Reinforcement learning framework. A 
neurocontroller interacts with a dynamic process to 
learn an optimal control policy from cause-effect 
relationships. 
 
the operating point to st+1. A reward, rt, is assigned 
based on the economic value of this new operating 
point. The objective is to maximise the total reward 
over a series of control actions, while maintaining a 
specified control response. An optimisation algorithm 
adapts the neural network weights based the reward 
feedback from each evaluations.  
 
ANS treats the population of neurocontrollers as a 
swarm, using a local particle swarm optimisation for 
adapting the weights of each neurocontroller.   
 
3.3  PARTICLE SWARM OPTIMISATION 
 
PSO is loosely based on the social behaviour of flocks 
of birds. A population of individuals is updated based 
on feedback evaluations, gathered from the collective 
experience of the swarm individuals (Shi & Eberhart, 
1999). Equations 1 and 2 determine the velocity and 
position of the swarm in the solution space: 
 

( )+−⋅⋅+= idididid xprandcvv (): 1  
           ( )idgd xprandc −⋅⋅ ()2                                  (1)     

ididid vxx +=:                                                         (2) 
 
where each particle, i, moves through the solution 
space with dimension, d. Each particles velocity vector, 
vid, is dynamically adjusted according to the particle's 
own best experience, pid, and that of the current best 
particle, pgd, in the swarm. These two knowledge 
components are blended with each particle's current 
velocity vector to determine the next position of the 
particle as per equation 2 (Shi and Eberhart, 1999).  
 
The best swarm particle is a beacon to a region of the 
solution space that may contain better optimisation 
solutions. Each particle searches the solution space 
along its unique trajectory for better solutions. Should a 
better solution be found, the new best swarm particle 
moves the swarm in a new direction. The momentum in 
each particle's current velocity provides some 
protection against convergence to a local optimum (Shi 
and Eberhart, 1999).  
 
PSO has been utilised in tracking changing optima in 
function optimisation problems (Carlisle and Dozier, 

 2001; Angeline, 1997). PSO's success in these artificial 
domains motivates its use in complex real-world 
problems. 
 
3.4  ON-LINE OPTIMISATION  
 
ANS uses a local PSO search as the optimisation 
algorithm within a reinforcement learning framework. 
ANS thereby tracks the shifting economic optimum 
resulting from a changing process.  Practical 
considerations for on-line use relate to the selection of 
swarm size, swarm initialisation, appropriate PSO 
parameters and duration of an RL evaluation. 
 
Each on-line experiment is time and resource intensive, 
since no control improvements are possible during the 
evaluation phase. The number of reinforcement 
learning evaluations per PSO adaptation must therefore 
be minimal. However, the dimensionality of the control 
task constrains the minimum number of evaluations. 
More process information (i.e., more evaluations) is 
required during the evaluation phase, as the 
dimensionality of the control task increases. Otherwise, 
effective adaptation based on on-line feedback is not 
possible. Each neuron in a neurocontroller represents a 
partial solution to the control task. The number of 
neuron weights reflects the dimensionality of such 
partial solutions. For example, to effectively adapt 
neurons with 12 weights, an absolute minimum of 12 
evaluations is required. The number of swarm 
neurocontrollers (n) is thereby selected based on the 
dimensionality of the control task, as reflected by the 
number of neuron weights.  
 
In ANS, each swarm particle is an altered version of an 
existing neurocontroller. The initial swarm consists of 
the original (i.e., existing) neurocontroller and (n-1) 
altered neurocontrollers. Each altered neurocontroller is 
initialised with a small gaussian deviation from the 
existing neurocontroller weights. The maximum weight 
deviation is 3% from the each original weight, thereby 
altering the control policy only marginally. A 
neurocontroller swarm is thus initialised in a local 
region of the network weight solution space. This slight 
weight alteration determines the direction in which the 
swarm should move, without negatively effecting 
production and inducing process instability. On-line 
evaluation (experimentation) is thus limited to 
neighbouring solutions of an existing solution.  
 
Each swarm neurocontroller is evaluated on-line for a 
limited number of sensor samples. A process' time 
constant is defined as the process response time to a 
step change in a control action. The process' time 
constant determines the number of sensor samples used 
in each evaluation.  Equation 3 is the fitness evaluation 
that serves as feedback of each swarm neurocontroller's 
economic return: 

PenaltydttPtFitness
t

t

−⋅⋅= ∫
2

1

)(      (3) 

where the evaluation is conducted for the number of 
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Figure 4: Possible adaptation trajectories of a weight 
vector based on the swarm's experience. The possible 
final position after adaptation lies in the plane formed 
by the arrow lines. The limited trajectories make the 
search exploitative. 
 
samples between t1 and t2 and P(t) is the instantaneous 
profit at time t.  
 
A higher P(t) for each sample reflects a higher 
economic return, which increases the fitness value. 
ANS thus searches for improved economic return. 
Equation 3 also dictates the specified control response. 
An ITAE (integral-time-absolute-error) control 
response has minimal oscillation, which is suited to 
numerous process control applications. Maximising the 
integral results in an ITAE control response. The 
fitness evaluation thus contains information regarding 
both the economic return and the control response. 
Also, should hard operating constraints exist for the 
process, a penalty is assigned should such operating 
constraints be approached during adaptation. This 
penalty reduces the fitness and solutions are therefore 
pursued only within the search boundaries.  
 
An exploitative search preserves generalisation and 
reduces the risk of inducing process instability. A local 
(i.e., exploitative) PSO search is implemented by 
selecting a small inertia weight (ω = 0.4) and the 
parameters c1 and c2 equal to 0.5 (conventionally 2.0) 
in equation 1. Each neurocontroller, i, adapts each 
weight, xid, at position d in accordance with equation 2.  
 
A neurocontroller may move only in a limited number 
of trajectories based on the swarm's experience. 
Consider a neurocontroller comprised of one neuron 
with 3 weights with no initial velocity. In figure 4, the 
circular marker represents the current weight vector. 
The dashed arrow lines illustrate the possible 
adaptation trajectories. These trajectories are 
determined by the global best neurocontroller (square 
marker) and the neurocontroller's own best experience 
(diamond marker). These limited trajectories make the 
search exploitative and are relevant to the optimisation 
objectives, since the directions are determined by the 
swarm's collective experience (Shi and Eberhart, 
1999).   
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Figure 5: Adaptive neural swarming flow diagram. An 
effective neurocontroller is initialised into a swarm and 
adapted based on the evaluation of the swarm.  
 
The local PSO search is run for five iterations, as 
illustrated in figure 5. The swarm is then re-initialised 
around the new best neurocontroller. Re-initialisation 
starts a new search in the neighbouring solution space 
of the new best neurocontroller. The search thus 
continues outside the space of the prior initialisations.  
 
ANS was tested in a real-world bioreactor case study. 
The case study illustrates ANS' ability to adapt the 
neurocontroller weights towards greater economic 
return.   
 
4. BIOREACTOR CASE STUDY 
 
4.1  BIOREACTOR CONTROL PROBLEM 
 
A bioreactor is a continuous stirred tank fermenter. It 
contains a biomass of micro-organisms that grow by 
consuming a nutrient substrate. The liquid substrate is 
fed continuously into the reactor, which also 
determines the reactor's liquid level (i.e., hold-up). The 
biomass is sold as the product. The bioreactor's 
dynamic behaviour is highly complex, non-linear and 
varies unpredictably. Also, the bioreactor process is 
difficult to quantify, due to unreliable biosensors and 
long sampling periods (Brengel and Seider, 1992).  
 
Furthermore, the maximum bioreactor liquid level is a 
hard operating constraint. Should operation exceed the 
maximum level, the bioreactor is shut down and must 
then be restarted at great operational cost. However, the 
maximum instantaneous profit increases as operation 
approaches the hard level constraint. A trade-off 
between safety and the maximum economic return is 
required (Brengel and Seider, 1992). 
 
The operating objective is to maximise the venture 
profit of the process on-line in response to process 
changes. This entails tracking the operating point with 
the maximum venture profit and ensuring acceptable 
control responses. The bioreactor may be simulated 
accurately and as such constitutes a benchmark for 
testing new adaptive methodologies without risking 
unsafe operation. 
 
4.2  EXPERIMENTAL SET-UP 
 
Typical process changes were simulated to mimic real-
world bioreactor operation. The bioreactor's model was 
changed significantly by reducing the cell mass growth 
K (figure 6a) and increasing the substrate feed 
concentration SF. The increased (i.e., off-set) SF is also 
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Figure 6: Process changes to the bioreactor. The arrows 
show the changes from the nominal process conditions 
(dashed line) for the growth parameter (a) and the 
substrate feed (b). The process is changed significantly. 
 
disturbed with a gaussian distribution (figure 6b). In 
addition, the biosensors were inaccurate with a 
gaussian distribution around the correct reading.  
 
Process search limits ensured that the process operation 
did not exceed the operation constraints. An adaptation 
scheme should never induce process shutdown by 
searching for operating points that are unsafe. The 
reactor level must remain below a high level alarm, 
which is a safety margin before bioreactor shutdown is 
initiated. The high level alarm was set at 5.95 [m] and 
bioreactor shutdown at 6.2 [m].  
 
An optimal neurocontroller, with 12 neurons comprised 
of 7 weights each, was developed for the nominal 
process conditions using methods developed in prior 
work (Conradie et al, 2000). As discussed in section 
3.4, ANS utilised this original neurocontroller to 
initialise a swarm of 10 neurocontrollers and each 
swarm neurocontroller was evaluated on-line over 20 
sample periods. The inaccurate sensors and randomly 
changing process conditions make obtaining accurate 
feedback (i.e., evaluations) for ANS difficult. The ten 
evaluations, though not based on precise information, 
determined the direction and velocity of the 
neurocontroller swarm.  
 
4.3  RESULTS 
 
4.3.1  Adaptation efficiency of ANS 
 
Figure 7 presents the instantaneous profit (IP) for the 
original neurocontroller and the ANS neurocontroller 
over a hundred day operating period. Figure 7 
illustrates the effect of the process changes on the IP. 
The average instantaneous profit for the original 
neurocontroller was 55 [$/min]. As shown in table 1, 
this is well below the optimal profit of 96 [$/min] 
expected during design for the nominal process 
conditions. The original neurocontroller's IP is reduced 
due to sub-optimal generalisation to the process 
changes, though it was able to keep the process stable. 
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Figure 7: Instantaneous profit for the original and ANS 
neurocontrollers over 100 days of on-line operation. 
The adaptive neurocontroller garners greater economic 
return from the changing process than the original 
neurocontroller. 
 
Table 1: Maximum IP for changing process conditions  

Process condition Maximum 
profit[$/min] 

Nominal process conditions 
K reduced, Off-set SF 
K reduced, Minimum SF deviation 
K reduced, Maximum SF deviation 

96 
106 
69 

130 
 
The original neurocontroller incurs an economic 
opportunity cost. Improved performance over 55 
[$/min] is attainable with ANS. The average increase in 
SF (i.e. off-set) presents an opportunity for greater 
venture profit. ANS achieves a substantially increased 
average profit of 94 [$/min] (figure 7), which is only 
slightly below the attainable 106 [$/min] possible for 
the increased SF (table 1).  
 
As seen in figure 7, the ANS neurocontroller has a 
larger IP standard deviation than the original 
neurocontroller. ANS tracks the optimal IP that is due 
to the gaussian disturbance in SF. For high SF values 
over extended periods (figure 6b, between samples 
2000-2250), an IP of 120 [$/min] was attained, though 
a maximum of 130 [$/min] is attainable (table 1). For 
unusually low SF values over extended periods, the 
swarm attained a minimal profit of 60 [$/min]. The 
optimal profit for this unfavourable process condition 
is 69 [$/min] (table 1). ANS thus approximates the 
changing optimal IP. A small difference remains, 
because SF changes substantially over time periods that 
are too short for the swarm to adapt completely. The 
swarm is thus essentially tracking the moving average 
of SF. Nevertheless, the IP for ANS control exceeds the 
highest IP for the original neurocontroller at all times 
(figure 7). ANS offers considerable benefits over the 
generalisation offered by the original neurocontroller.  
 
4.3.2  Avoiding Hard Process Constraints 
 
Figure 8 illustrates the swarm's ability to avoid the 
process search limits. Recall that the IP increases as the 
bioreactor level increases. The swarm neurocontrollers 
thus searched for control policies that increased the 
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Figure 8: Avoiding the hard level constraint. The trend 
line (solid) illustrates the swarm moving away from 
high level alarm set at 5.95 [m]. Process shutdown is 
thereby avoided. 
 
bioreactor level. Consequently, the swarm moved 
towards the high level alarm during on-line operation. 
The high level alarm of 5.95 [m] should never be 
exceeded; preserving the safety margin before 
bioreactor shutdown. A neurocontroller's fitness was 
penalised severely for exceeding the high level alarm. 
Such a penalised fitness was always lower than the 
fitness of a neurocontrol policy that remained within 
the search boundaries. Neurocontrollers, with a 
penalised fitness, no longer guided the swarm and the 
swarm moved away from the high level alarm. In 
Figure 8 at 3000 sample periods, the trend line 
indicates a move away from the high level alarm. 
Shutdown at a reactor level of 6.2 [m] was thus safely 
avoided in ANS' on-line search.   
 
4.3.3  Neuron Weight Adaptations 
 
Each neuron in a neurocontroller has a particular 
functionality that is a partial solution to the control 
task. A neuron's weight vector determines its 
functionality. The changes to a neuron's weight vector 
during adaptation, provides insight into how its 
functionality changed in response to the changing 
process conditions. Principal component analysis 
allows visualisation of neuron weight vectors and 
therefore neuron functionality.  
 
Figure 9 is a principal component plot of the weight 
vector of each neuron in the swarm's current best 
neurocontroller. After each adaptation, all the neuron 
weight vectors for the best swarm neurocontroller were 
plotted in figure 9 as circular markers. The markers 
thus represent the history of adapted neuron 
functionalities.  
 
In figure 9, the clusters indicate the different neuron 
functionalities that solve the control task.  A cluster 
that is distributed over a larger region of the neuron 
weight space, had undergone a greater degree of on-
line adaptation to its functionality. The extent of each 
neuron's adaptation is determined by the reigning 
process changes. 
 
 

 

-10

-5

0

5

-5

0

5
-5

0

5

Principal Component 1Principal Component 2

Pr
in

ci
pa

l C
om

po
ne

nt
 3

 
Figure 9: Principle component analysis of neuron 
functionality (85% variance explained). Circular 
markers represent neuron weight vectors. Each cluster 
represents the change in neuron functionality due to 
adaptation. The extent of each neuron's adaptation is 
determined by the reigning process changes. 
 
5.  DISCUSSION AND FUTURE WORK 
 
ANS' exploitative search preserves the existing 
neurocontroller's generalisation. For the bioreactor, 
adaptation failure (i.e., shutdown) never occurs during 
extensive implementation. Also, instability is never 
induced in the control response.  The bounded nature of 
each neuron cluster in figure 9 provides insight into 
how ANS preserves generalisation. Each 
neurocontroller retains memory of its best position (eq. 
1) during the five iterations between initialisations. As 
the fitness landscape changes, the fitness value of a 
neurocontroller's best position is no longer valid. A 
neurocontroller's best position rather serves as an 
example of where previous good solutions have been 
found. Memory of past neurocontroller positions biases 
the search in the direction of good past solutions. This 
memory function preserves generalisation by 
considering both past and current process information 
in the search. Re-initialisation, which clears the 
swarm's memory, limits prolonged bias to past 
solutions. Without limiting memory of past solutions, a 
drifting optimum would be difficult to track. 

ANS' search for optimal control policies in a changing 
process works as follows. Process changes affect each 
neuron's functionality differently. Some neurons 
consequently no longer contribute to optimal economic 
return. The functionality of such a neuron needs to be 
updated, while retaining information in its weight 
structure that is still valid.  
 
Consider a neuron weight that is optimal once adapted 
to a fixed value, despite continued process changes. 
Such fixed weights correspond to process conditions 
that remain constant (e.g., fixed growth parameter). As 
described in section 3.4, the possible directions for 
adaptation are limited to the positional experiences of 
all the swarm neurocontrollers. In ANS, the swarm 
neurocontrollers align along such a fixed weight, 
preventing (as per eq. 1) the swarm from moving along 
that particular weight dimension. After several ANS 
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Figure 10: Arrow lines indicate the trajectories of 
neuron functionalities in response to common (re-
occurring) process changes such as SF. ANS implicitly 
takes advantage of common process changes, which 
facilitates effective adaptation. 
 
iterations, only weights still relevant to improving the 
IP are implicitly changed. Re-occurring process 
changes (e.g., SF) govern which specific neuron 
weights are continuously changed to track the 
economic return. The dimensionality of the search is 
thus somewhat reduced. Figure 10 is a copy of figure 9, 
except that adaptation trajectories are emphasised by 
drawing arrow lines through the clusters. Each neuron 
functionality (cluster) moves along a fixed trajectory in 
response to re-occurring process changes. ANS 
establishes these trajectories implicitly and exploits this 
swarm knowledge for greater economic return.  
 
Future work will explicitly identify neuron 
functionalities that require adaptation. Such explicit 
knowledge may be used to further speed adaptation 
using fewer on-line evaluations. As ANS is a robust 
means for adapting neurocontrollers, it will be tested in 
other complex domains such as robotics and gaming. 
 
6.  CONCLUSIONS 
 
Although neurocontrollers generalise their control 
actions in a changing process, such generalisation 
(though robust) may be economically sub-optimal. 
Adaptive Neural Swarming augments neurocontroller 
weights on-line, thereby garnering greater economic 
return from the changing process. ANS balances the 
need to adapt with the need to preserve generalisation. 
ANS also effectively avoids hard operating constraints 
during its on-line search. ANS implicitly identifies re-
occurring process changes and uses this knowledge to 
speed adaptation. ANS is therefore a robust general 
tool for adapting of neural network controllers on-line. 
The greater economic return for the bioreactor case 
study suggests that the process industries would benefit 
significantly by implementing Adaptive Neural 
Swarming.  
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