

Adaptive Control utilising Neural Swarming

Alex v.E. Conradie
Department of Chemical Engineering

University of Stellenbosch
South Africa

aconradi@ing.sun.ac.za

Risto Miikkulainen
Department of Computer Sciences

University of Texas at Austin
USA

risto@cs.utexas.edu

Christiaan Aldrich
Department of Chemical Engineering

University of Stellenbosch
South Africa

ca1@ing.sun.ac.za

Abstract

Process changes, such as flow disturbances
and sensor noise, are common in the chemical
and metallurgical industries. To maintain
optimal performance, the controlling system
has to adapt continuously to these changes.
This is a difficult problem because the
controller also has to perform well while it is
adapting. The Adaptive Neural Swarming
(ANS) method introduced in this paper
satisfies these goals. Using an existing neural
network controller as a starting point, ANS
modifies the network weights through Particle
Swarm Optimisation. The ANS method was
tested in a real-world task of controlling a
simulated non-linear bioreactor. ANS was
able to adapt to process changes while
simultaneously avoiding hard operating
constraints. This way, ANS balances the need
to adapt with the need to preserve
generalisation, and constitutes a general tool
for adapting neural network controllers on-
line.

1. INTRODUCTION

The chemical and metallurgical industries face constant
demands for greater economic return that requires
increased production and greater product purity. Also,
environmental concerns call for the use of minimal
resources. By addressing these issues, intelligent
control techniques add economic value to process
plants.

A process' operating point (i.e., the process state)
determines the product purity and production rate. The
operating point thus has an intrinsic economic value.
Control engineers select fixed operating points (i.e., set
points) based on their economic value. Process
changes, due to process disturbances and drifting
dynamics, cause deviations from the set points,
requiring corrective action. Optimal set points and
effective corrective actions yield greater economic
return. Typically, linear controllers (e.g., PID
controllers) maintain the set points and provide
corrective action to process changes (Seborg et al.,
1989).

 For example, a chemical reactor has an optimal
operating temperature. This temperature determines the
production rate that directly impacts on the economic
return from the reactor. The control engineer selects
this optimal temperature as a set point. A PID
controller responds to process disturbances that affect
the reactor temperature, by increasing or decreasing the
cooling water flow rate, thereby maintaining the set
point

PID controllers typically utilise both set points and
fixed controller parameters. The PID controller
parameters govern the corrective action (i.e., the
control response) to process changes. There are three
PID controller parameters: gain, integral and
derivative. PID control's linear control structure is the
industry standard, though not suited to non-linear
processes.

Non-linear processes are common in the process
industries. In such cases, PID controller parameters are
optimal only over a limited operating region. Process
changes may cause the operating point to stray far from
the set point, whereupon PID controllers may
implement sub-optimal corrective actions. Sub-optimal
performance may be avoided only by adapting the
controller parameters. As the set points largely
determine the economic return, the set points must also
adapt in response to process changes. Tracking the
economic optimum therefore requires adapting both the
controller parameters and the set points (Hrycej, 1997).

Effective generalisation and adaptability during process
changes are essential to tracking a process' economic
optimum. Generalisation tools, such as neural
networks, are invaluable in creating non-linear
controllers for non-linear processes. Non-linear
controllers are near optimal over wider operating
regions than possible with PID control (Conradie,
2000). Near optimal performance may be further
improved by on-line adaptation of the neural network
weights in response to process changes. Robust search
techniques are required for effective on-line adaptation
of neurocontroller weights.

This paper introduces an adaptive neurocontrol
strategy, Adaptive Neural Swarming (ANS). A highly
non-linear bioreactor benchmark is used in the control
simulation. The bioreactor's dynamic behaviour is

changed continuously, which shifts the operating point
with maximum economic return. ANS adapts an
existing neurocontroller's weights to reap greater
economic return from the changing bioreactor process.
ANS emerges as an effective tool for adapting existing
neural network strategies, resulting in enhanced
performance.

Section 2 outlines basic notions in conventional
adaptive control, which remain relevant to an advanced
scheme such as ANS. Section 3 describes Adaptive
Neural Swarming (ANS). Section 4 outlines the
bioreactor case study. The paper concludes with an
explanation of ANS' mechanism.

2. ADAPTIVE CONTROL METHODS

Control design requires a dynamic process model.
Optimal control design is possible only if the process
model is accurate. However, the model and the actual
process are invariably mismatched. Also, exact
knowledge of possible process changes is seldom
available for control design purposes. Despite these
shortcomings, robust control remains a control
requirement. Generalisation is the ability of a controller
to deliver near optimal performance, despite limited
process knowledge during its design.

Generalisation may provide robust control, but optimal
control is rarely ensured during the control design
process. The designed controller frequently requires
on-line refinements to the controller parameters and set
points. Improved generalisation is difficult to impart
on-line, as it involves reconciling past (i.e., design) and
current process information into a single control
strategy. For example, catalyst decay may cause the
optimal temperature of a reactor to change over time.
In contrast, adaptation changes controller parameters
giving precedence to on-line process information.
However, degraded performance may result should
past process conditions return. A balance must thus be
maintained between retaining generalisation imparted
during design, while allowing adaptation to exploit
changes in the process conditions (Hrycej, 1997).

On-line process information contains inaccuracies due
to sensor noise and short-lived disturbances. Adapting
controller parameters based on imperfect process
information involves operational risk. The process may
become unstable. On-line adaptation to control
parameters faces numerous challenges: (1) Balancing
the use of past and present process information, (2)
Supervising process stability, (3) Implementing
emergency procedures should the process become
unsafe, due to on-line adaptation (Hrycej, 1997).

The following two sub-sections illustrate the aims of
conventional methods for adapting controller
parameters (section 2.1) and process set points (section
2.2). ANS has the same aims, though its methodology
is dissimilar.

0 10 20 30 40 50
0

0.5

1

1.5

2

Pr
oc

es
s

va
ria

bl
e Process variable

Set point

0 10 20 30 40 50
0

0.5

1

1.5

Time [s]

Pr
oc

es
s

va
ria

bl
e

Process variable
Set point

(a)

(b)

Figure 1: Objective of linear adaptive control. An
oscillatory control response around the set point (a) is
changed to a specified control response (b). The
specified response settles sooner on the set point.

2.1 CONVENTIONAL ADAPTIVE CONTROL

An adaptive linear controller maintains a specified
control response (i.e., corrective action) around a set
point during process changes. For non-linear processes,
a set of PID controller parameters can only maintain
the specified control response for a limited range of
process conditions. Process changes in non-linear
processes may cause the control response to become
oscillatory around the set point, as illustrated in figure
1a. Adaptive linear control tunes the PID controller
parameters, which corrects the oscillatory response in
figure 1a to the specified response in figure 1b.
Conventional adaptive control relies on on-line process
modelling (i.e., Model Reference Adaptive Control)
and heuristic methods (i.e., Ziegler-Nichols) for
adapting controller parameters (Ghanadan, 1990). ANS
must also ensure that a specified control response is
maintained.

2.2 EVOLUTIONARY OPERATION

Adaptive control does not change the set points that
largely determine the economic return. Set points are
selected during design based on an optimisation of
dynamic model equations. The optimisation considers
both economic return and controllability. However,
process changes during operation may make the current
set points economically sub-optimal.

Evolutionary operation (EVOP) challenges the use of
constant set points in a continuously changing process.
EVOP monitors the process and improves operation by
changing the set points towards the economic optimum.
EVOP makes a number of small set point changes that
do not disrupt production. However, the set point
changes need to be sufficiently large to discover
potential improvements in the operating point. EVOP
uses an experimental design to determine the number
of set point change experiments. Pattern search
methods use the experimental results to determine
whether and in which direction the set points should be
changed (Walters, 1991).

Consider figure 2, which graphs the economic return of

6 8 10 12 14 16 18

17

18

19

20

21

22

23

Process variable 1

Pr
oc

es
s

va
ria

bl
e

2

Figure 2: EVOP for a process with two process
variables. The current set point (circular marker) is
moved along the arrow's trajectory based on the
economic return of each set point experiment (square
markers). The process operation is thus improved.

a process that has two process variables. The contour
lines represent operating points with similar economic
returns. The circular marker represents the current set
point, which is economically sub-optimal. The set
points for both process variables should be reduced for
optimal economic return. EVOP conducts a number of
set point change experiments (represented by square
markers) in the neighbourhood of the current set point.
The economic return for each set point experiment is
determined. In figure 2, three experiments have greater
economic return than the current set point. EVOP
adjusts the current set point in the direction of greater
economic return. The process is repeated until optimal
set points are found (Walters, 1991).

EVOP does not adapt the PID controller parameters for
each of the set point experiments. As discussed in
section 2.1, using the same controller parameters for all
the set point experiments may give oscillatory
responses. Poor control responses impact negatively
the accurate determination of economic returns.

Adaptive control and EVOP may be combined in a
two-step methodology to track a changing economic
optimum. EVOP selects a number of set point
experiments. An adaptive control method establishes a
specified control response for each set point
experiment. The economic evaluations for each
experiment will consequently be comparable,
whereupon EVOP adjusts the current set point. This
cumbersome two-step process is repeated until the
optimal set point is found. Ideally, a single on-line
experiment (evaluation) should provide information on
both the economic return and the control response.

3. ADAPTIVE NEURAL SWARMING

This section describes Adaptive Neural Swarming
(ANS), which combines adaptive control and EVOP
into a single comprehensive step. In ANS, both the
economic return and the control response are combined
into a single feedback signal. A local PSO uses this
sparse reinforcement information to adapt the weights

of existing neural network controllers towards greater
economic return in response to a changing process.

3.1 NEURAL NETWORK STRUCTURES

Neurocontrollers may originate from various sources.
Neural networks may be trained to mimic the control
actions of existing PID controllers, thereby distributing
the PID functionality over several neurons. Existing
fuzzy logic systems may be converted to equivalent
neural network architectures (Jong & Sun, 1993).
Neurocontrollers are also developed utilising
evolutionary reinforcement learning techniques
(Conradie et al., 2000). Neural networks possess
characteristics that are beneficial to an adaptive
scheme, such as generalisation and graceful
degradation.

Once a PID controller is adapted, the small number of
control parameters prohibits effective generalisation to
past process conditions. Neural network controllers are
collections of neurons, with each neuron specifying the
weights from the input layer (process states) to output
layer (control actions). Neurocontroller parameters are
the neural network weights. A neurocontroller that is
equivalent to a PID controller, has additional degrees
of freedom, owing to a larger number of controller
parameters. During adaptation, a neural network's
distributed functionality preserves greater
generalisation to past process conditions. The need for
effective generalisation justifies the use of neural
networks.

Neural networks also exhibit graceful degradation.
Graceful degradation allows small changes to the
weights, without causing catastrophic control
performance loss (S'euim & Clay, 1990). Process
stability is preserved during adaptation.

These neural network characteristics are relied upon in
a reinforcement learning framework, described below,
to provide process stability and continued
generalisation.

3.2 REINFORCEMENT LEARNING

Reinforcement learning (RL) automates the acquisition
of on-line performance (i.e., feedback) information and
the adaptation process. RL uses on-line performance
evaluations to guide adaptation. RL improves
controller performance without a need to specify how
the control objectives should be reached (Kaelbling et
al., 1996).

ANS maintains a population of possible
neurocontroller solutions that serve as RL evaluations,
similar to EVOP experiments. Each neurocontroller is
evaluated individually over a number of sensor sample
periods while interacting with a dynamic process as in
figure 3. Initially, the process may be at an arbitrary
operating point (state, st). The neurocontroller observes
the current process operating point at sample, t, and
selects a control action, at. The control action changes

Dynamic
process

NeurocontrollerReward
rt

rt+1

st+1

State
 st

Action
at

Evaluation

Stimulus

Response

Figure 3: Reinforcement learning framework. A
neurocontroller interacts with a dynamic process to
learn an optimal control policy from cause-effect
relationships.

the operating point to st+1. A reward, rt, is assigned
based on the economic value of this new operating
point. The objective is to maximise the total reward
over a series of control actions, while maintaining a
specified control response. An optimisation algorithm
adapts the neural network weights based the reward
feedback from each evaluations.

ANS treats the population of neurocontrollers as a
swarm, using a local particle swarm optimisation for
adapting the weights of each neurocontroller.

3.3 PARTICLE SWARM OPTIMISATION

PSO is loosely based on the social behaviour of flocks
of birds. A population of individuals is updated based
on feedback evaluations, gathered from the collective
experience of the swarm individuals (Shi & Eberhart,
1999). Equations 1 and 2 determine the velocity and
position of the swarm in the solution space:

()+−⋅⋅+= idididid xprandcvv (): 1
 ()idgd xprandc −⋅⋅ ()2 (1)

ididid vxx +=: (2)

where each particle, i, moves through the solution
space with dimension, d. Each particles velocity vector,
vid, is dynamically adjusted according to the particle's
own best experience, pid, and that of the current best
particle, pgd, in the swarm. These two knowledge
components are blended with each particle's current
velocity vector to determine the next position of the
particle as per equation 2 (Shi and Eberhart, 1999).

The best swarm particle is a beacon to a region of the
solution space that may contain better optimisation
solutions. Each particle searches the solution space
along its unique trajectory for better solutions. Should a
better solution be found, the new best swarm particle
moves the swarm in a new direction. The momentum in
each particle's current velocity provides some
protection against convergence to a local optimum (Shi
and Eberhart, 1999).

PSO has been utilised in tracking changing optima in
function optimisation problems (Carlisle and Dozier,

 2001; Angeline, 1997). PSO's success in these artificial
domains motivates its use in complex real-world
problems.

3.4 ON-LINE OPTIMISATION

ANS uses a local PSO search as the optimisation
algorithm within a reinforcement learning framework.
ANS thereby tracks the shifting economic optimum
resulting from a changing process. Practical
considerations for on-line use relate to the selection of
swarm size, swarm initialisation, appropriate PSO
parameters and duration of an RL evaluation.

Each on-line experiment is time and resource intensive,
since no control improvements are possible during the
evaluation phase. The number of reinforcement
learning evaluations per PSO adaptation must therefore
be minimal. However, the dimensionality of the control
task constrains the minimum number of evaluations.
More process information (i.e., more evaluations) is
required during the evaluation phase, as the
dimensionality of the control task increases. Otherwise,
effective adaptation based on on-line feedback is not
possible. Each neuron in a neurocontroller represents a
partial solution to the control task. The number of
neuron weights reflects the dimensionality of such
partial solutions. For example, to effectively adapt
neurons with 12 weights, an absolute minimum of 12
evaluations is required. The number of swarm
neurocontrollers (n) is thereby selected based on the
dimensionality of the control task, as reflected by the
number of neuron weights.

In ANS, each swarm particle is an altered version of an
existing neurocontroller. The initial swarm consists of
the original (i.e., existing) neurocontroller and (n-1)
altered neurocontrollers. Each altered neurocontroller is
initialised with a small gaussian deviation from the
existing neurocontroller weights. The maximum weight
deviation is 3% from the each original weight, thereby
altering the control policy only marginally. A
neurocontroller swarm is thus initialised in a local
region of the network weight solution space. This slight
weight alteration determines the direction in which the
swarm should move, without negatively effecting
production and inducing process instability. On-line
evaluation (experimentation) is thus limited to
neighbouring solutions of an existing solution.

Each swarm neurocontroller is evaluated on-line for a
limited number of sensor samples. A process' time
constant is defined as the process response time to a
step change in a control action. The process' time
constant determines the number of sensor samples used
in each evaluation. Equation 3 is the fitness evaluation
that serves as feedback of each swarm neurocontroller's
economic return:

PenaltydttPtFitness
t

t

−⋅⋅= ∫
2

1

)((3)

where the evaluation is conducted for the number of

0
0.5

1
1.5

2

1.2
1.4

1.6
1.8

2
0.5

1

1.5

2

1st weight2nd weight

3r
d

w
ei

gh
t

current particle position
best particle position
global best position

Figure 4: Possible adaptation trajectories of a weight
vector based on the swarm's experience. The possible
final position after adaptation lies in the plane formed
by the arrow lines. The limited trajectories make the
search exploitative.

samples between t1 and t2 and P(t) is the instantaneous
profit at time t.

A higher P(t) for each sample reflects a higher
economic return, which increases the fitness value.
ANS thus searches for improved economic return.
Equation 3 also dictates the specified control response.
An ITAE (integral-time-absolute-error) control
response has minimal oscillation, which is suited to
numerous process control applications. Maximising the
integral results in an ITAE control response. The
fitness evaluation thus contains information regarding
both the economic return and the control response.
Also, should hard operating constraints exist for the
process, a penalty is assigned should such operating
constraints be approached during adaptation. This
penalty reduces the fitness and solutions are therefore
pursued only within the search boundaries.

An exploitative search preserves generalisation and
reduces the risk of inducing process instability. A local
(i.e., exploitative) PSO search is implemented by
selecting a small inertia weight (ω = 0.4) and the
parameters c1 and c2 equal to 0.5 (conventionally 2.0)
in equation 1. Each neurocontroller, i, adapts each
weight, xid, at position d in accordance with equation 2.

A neurocontroller may move only in a limited number
of trajectories based on the swarm's experience.
Consider a neurocontroller comprised of one neuron
with 3 weights with no initial velocity. In figure 4, the
circular marker represents the current weight vector.
The dashed arrow lines illustrate the possible
adaptation trajectories. These trajectories are
determined by the global best neurocontroller (square
marker) and the neurocontroller's own best experience
(diamond marker). These limited trajectories make the
search exploitative and are relevant to the optimisation
objectives, since the directions are determined by the
swarm's collective experience (Shi and Eberhart,
1999).

Initialise
neurocontroller

swarm

Evaluate each
neurocontroller

in swarm

Move each
neurocontroller

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫

x5
New best

neurocontroller
Previous best

neurocontroller

Figure 5: Adaptive neural swarming flow diagram. An
effective neurocontroller is initialised into a swarm and
adapted based on the evaluation of the swarm.

The local PSO search is run for five iterations, as
illustrated in figure 5. The swarm is then re-initialised
around the new best neurocontroller. Re-initialisation
starts a new search in the neighbouring solution space
of the new best neurocontroller. The search thus
continues outside the space of the prior initialisations.

ANS was tested in a real-world bioreactor case study.
The case study illustrates ANS' ability to adapt the
neurocontroller weights towards greater economic
return.

4. BIOREACTOR CASE STUDY

4.1 BIOREACTOR CONTROL PROBLEM

A bioreactor is a continuous stirred tank fermenter. It
contains a biomass of micro-organisms that grow by
consuming a nutrient substrate. The liquid substrate is
fed continuously into the reactor, which also
determines the reactor's liquid level (i.e., hold-up). The
biomass is sold as the product. The bioreactor's
dynamic behaviour is highly complex, non-linear and
varies unpredictably. Also, the bioreactor process is
difficult to quantify, due to unreliable biosensors and
long sampling periods (Brengel and Seider, 1992).

Furthermore, the maximum bioreactor liquid level is a
hard operating constraint. Should operation exceed the
maximum level, the bioreactor is shut down and must
then be restarted at great operational cost. However, the
maximum instantaneous profit increases as operation
approaches the hard level constraint. A trade-off
between safety and the maximum economic return is
required (Brengel and Seider, 1992).

The operating objective is to maximise the venture
profit of the process on-line in response to process
changes. This entails tracking the operating point with
the maximum venture profit and ensuring acceptable
control responses. The bioreactor may be simulated
accurately and as such constitutes a benchmark for
testing new adaptive methodologies without risking
unsafe operation.

4.2 EXPERIMENTAL SET-UP

Typical process changes were simulated to mimic real-
world bioreactor operation. The bioreactor's model was
changed significantly by reducing the cell mass growth
K (figure 6a) and increasing the substrate feed
concentration SF. The increased (i.e., off-set) SF is also

0 500 1000 1500 2000 2500 3000
0.1

0.11

0.12

0.13
K

in
et

ic
 g

ro
w

th
 p

ar
am

et
er

nominal
process change

0 500 1000 1500 2000 2500 3000

0.3
0.32
0.34
0.36
0.38

Time [sample period]

Su
bt

ra
te

 fe
ed

 c
on

ce
nt

ra
tio

n

nominal
gaussian disturbance
off-set

(a)

(b)

Figure 6: Process changes to the bioreactor. The arrows
show the changes from the nominal process conditions
(dashed line) for the growth parameter (a) and the
substrate feed (b). The process is changed significantly.

disturbed with a gaussian distribution (figure 6b). In
addition, the biosensors were inaccurate with a
gaussian distribution around the correct reading.

Process search limits ensured that the process operation
did not exceed the operation constraints. An adaptation
scheme should never induce process shutdown by
searching for operating points that are unsafe. The
reactor level must remain below a high level alarm,
which is a safety margin before bioreactor shutdown is
initiated. The high level alarm was set at 5.95 [m] and
bioreactor shutdown at 6.2 [m].

An optimal neurocontroller, with 12 neurons comprised
of 7 weights each, was developed for the nominal
process conditions using methods developed in prior
work (Conradie et al, 2000). As discussed in section
3.4, ANS utilised this original neurocontroller to
initialise a swarm of 10 neurocontrollers and each
swarm neurocontroller was evaluated on-line over 20
sample periods. The inaccurate sensors and randomly
changing process conditions make obtaining accurate
feedback (i.e., evaluations) for ANS difficult. The ten
evaluations, though not based on precise information,
determined the direction and velocity of the
neurocontroller swarm.

4.3 RESULTS

4.3.1 Adaptation efficiency of ANS

Figure 7 presents the instantaneous profit (IP) for the
original neurocontroller and the ANS neurocontroller
over a hundred day operating period. Figure 7
illustrates the effect of the process changes on the IP.
The average instantaneous profit for the original
neurocontroller was 55 [$/min]. As shown in table 1,
this is well below the optimal profit of 96 [$/min]
expected during design for the nominal process
conditions. The original neurocontroller's IP is reduced
due to sub-optimal generalisation to the process
changes, though it was able to keep the process stable.

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Time [days]

In
st

an
ta

ne
ou

s
pr

of
it

[$
/m

in
]

Original neurocontroller

Adaptive neurocontroller

Figure 7: Instantaneous profit for the original and ANS
neurocontrollers over 100 days of on-line operation.
The adaptive neurocontroller garners greater economic
return from the changing process than the original
neurocontroller.

Table 1: Maximum IP for changing process conditions

Process condition Maximum
profit[$/min]

Nominal process conditions
K reduced, Off-set SF
K reduced, Minimum SF deviation
K reduced, Maximum SF deviation

96
106
69

130

The original neurocontroller incurs an economic
opportunity cost. Improved performance over 55
[$/min] is attainable with ANS. The average increase in
SF (i.e. off-set) presents an opportunity for greater
venture profit. ANS achieves a substantially increased
average profit of 94 [$/min] (figure 7), which is only
slightly below the attainable 106 [$/min] possible for
the increased SF (table 1).

As seen in figure 7, the ANS neurocontroller has a
larger IP standard deviation than the original
neurocontroller. ANS tracks the optimal IP that is due
to the gaussian disturbance in SF. For high SF values
over extended periods (figure 6b, between samples
2000-2250), an IP of 120 [$/min] was attained, though
a maximum of 130 [$/min] is attainable (table 1). For
unusually low SF values over extended periods, the
swarm attained a minimal profit of 60 [$/min]. The
optimal profit for this unfavourable process condition
is 69 [$/min] (table 1). ANS thus approximates the
changing optimal IP. A small difference remains,
because SF changes substantially over time periods that
are too short for the swarm to adapt completely. The
swarm is thus essentially tracking the moving average
of SF. Nevertheless, the IP for ANS control exceeds the
highest IP for the original neurocontroller at all times
(figure 7). ANS offers considerable benefits over the
generalisation offered by the original neurocontroller.

4.3.2 Avoiding Hard Process Constraints

Figure 8 illustrates the swarm's ability to avoid the
process search limits. Recall that the IP increases as the
bioreactor level increases. The swarm neurocontrollers
thus searched for control policies that increased the

0 1000 2000 3000 4000 5000
2.5

3

3.5

4

4.5

5

5.5

6

6.5

Time [Sample periods]

B
io

re
ac

to
r l

ev
el

 [m
]

Level
Trend line
High level alarm

Figure 8: Avoiding the hard level constraint. The trend
line (solid) illustrates the swarm moving away from
high level alarm set at 5.95 [m]. Process shutdown is
thereby avoided.

bioreactor level. Consequently, the swarm moved
towards the high level alarm during on-line operation.
The high level alarm of 5.95 [m] should never be
exceeded; preserving the safety margin before
bioreactor shutdown. A neurocontroller's fitness was
penalised severely for exceeding the high level alarm.
Such a penalised fitness was always lower than the
fitness of a neurocontrol policy that remained within
the search boundaries. Neurocontrollers, with a
penalised fitness, no longer guided the swarm and the
swarm moved away from the high level alarm. In
Figure 8 at 3000 sample periods, the trend line
indicates a move away from the high level alarm.
Shutdown at a reactor level of 6.2 [m] was thus safely
avoided in ANS' on-line search.

4.3.3 Neuron Weight Adaptations

Each neuron in a neurocontroller has a particular
functionality that is a partial solution to the control
task. A neuron's weight vector determines its
functionality. The changes to a neuron's weight vector
during adaptation, provides insight into how its
functionality changed in response to the changing
process conditions. Principal component analysis
allows visualisation of neuron weight vectors and
therefore neuron functionality.

Figure 9 is a principal component plot of the weight
vector of each neuron in the swarm's current best
neurocontroller. After each adaptation, all the neuron
weight vectors for the best swarm neurocontroller were
plotted in figure 9 as circular markers. The markers
thus represent the history of adapted neuron
functionalities.

In figure 9, the clusters indicate the different neuron
functionalities that solve the control task. A cluster
that is distributed over a larger region of the neuron
weight space, had undergone a greater degree of on-
line adaptation to its functionality. The extent of each
neuron's adaptation is determined by the reigning
process changes.

-10

-5

0

5

-5

0

5
-5

0

5

Principal Component 1Principal Component 2

Pr
in

ci
pa

l C
om

po
ne

nt
 3

Figure 9: Principle component analysis of neuron
functionality (85% variance explained). Circular
markers represent neuron weight vectors. Each cluster
represents the change in neuron functionality due to
adaptation. The extent of each neuron's adaptation is
determined by the reigning process changes.

5. DISCUSSION AND FUTURE WORK

ANS' exploitative search preserves the existing
neurocontroller's generalisation. For the bioreactor,
adaptation failure (i.e., shutdown) never occurs during
extensive implementation. Also, instability is never
induced in the control response. The bounded nature of
each neuron cluster in figure 9 provides insight into
how ANS preserves generalisation. Each
neurocontroller retains memory of its best position (eq.
1) during the five iterations between initialisations. As
the fitness landscape changes, the fitness value of a
neurocontroller's best position is no longer valid. A
neurocontroller's best position rather serves as an
example of where previous good solutions have been
found. Memory of past neurocontroller positions biases
the search in the direction of good past solutions. This
memory function preserves generalisation by
considering both past and current process information
in the search. Re-initialisation, which clears the
swarm's memory, limits prolonged bias to past
solutions. Without limiting memory of past solutions, a
drifting optimum would be difficult to track.

ANS' search for optimal control policies in a changing
process works as follows. Process changes affect each
neuron's functionality differently. Some neurons
consequently no longer contribute to optimal economic
return. The functionality of such a neuron needs to be
updated, while retaining information in its weight
structure that is still valid.

Consider a neuron weight that is optimal once adapted
to a fixed value, despite continued process changes.
Such fixed weights correspond to process conditions
that remain constant (e.g., fixed growth parameter). As
described in section 3.4, the possible directions for
adaptation are limited to the positional experiences of
all the swarm neurocontrollers. In ANS, the swarm
neurocontrollers align along such a fixed weight,
preventing (as per eq. 1) the swarm from moving along
that particular weight dimension. After several ANS

-10

-5

0

5

-5

0

5
-5

0

5

Principal Component 1Principal Component 2

Pr
in

ci
pa

l C
om

po
ne

nt
 3

Figure 10: Arrow lines indicate the trajectories of
neuron functionalities in response to common (re-
occurring) process changes such as SF. ANS implicitly
takes advantage of common process changes, which
facilitates effective adaptation.

iterations, only weights still relevant to improving the
IP are implicitly changed. Re-occurring process
changes (e.g., SF) govern which specific neuron
weights are continuously changed to track the
economic return. The dimensionality of the search is
thus somewhat reduced. Figure 10 is a copy of figure 9,
except that adaptation trajectories are emphasised by
drawing arrow lines through the clusters. Each neuron
functionality (cluster) moves along a fixed trajectory in
response to re-occurring process changes. ANS
establishes these trajectories implicitly and exploits this
swarm knowledge for greater economic return.

Future work will explicitly identify neuron
functionalities that require adaptation. Such explicit
knowledge may be used to further speed adaptation
using fewer on-line evaluations. As ANS is a robust
means for adapting neurocontrollers, it will be tested in
other complex domains such as robotics and gaming.

6. CONCLUSIONS

Although neurocontrollers generalise their control
actions in a changing process, such generalisation
(though robust) may be economically sub-optimal.
Adaptive Neural Swarming augments neurocontroller
weights on-line, thereby garnering greater economic
return from the changing process. ANS balances the
need to adapt with the need to preserve generalisation.
ANS also effectively avoids hard operating constraints
during its on-line search. ANS implicitly identifies re-
occurring process changes and uses this knowledge to
speed adaptation. ANS is therefore a robust general
tool for adapting of neural network controllers on-line.
The greater economic return for the bioreactor case
study suggests that the process industries would benefit
significantly by implementing Adaptive Neural
Swarming.

Acknowledgements
This work was supported in part by the South African
Foundation for Research and Development, the Harry-
Crossley Scholarship Fund, the National Science

 Foundation under grant IIS-0083776 and by the Texas
Higher Education Coordinating Board under grant
ARP-003658-476-2001.

References

Angeline, P.J., (1997). Tracking Extrema in Dynamic
Evironments. Proceedings of the 6th Int. Conference on
Evolutionary Programming, Vol. 1213: 335-345.

Brengel, D.D., and Seider, W.D., (1992). Coordinated
design and control optimization of nonlinear processes.
Computers and Chemical Engineering 16(9): 861-886.

Carlisle, A., and Dozier, G., (2000). Adapting Particle
Swarm Optimization to Dynamic Environments.
Proceedings ICAI 2000, Las Vegas, Vol. I: 429:434.

Conradie, A.v.E, (2000), Neurocontroller development
for nonlinear processes utilising evolutionary
reinforcement learning. M.S.c. thesis, Univeristy of
Stellenbosch, South Africa.

Conradie, A., Nieuwoudt, I., and Aldrich, C., (2000).
Nonlinear neurocontroller development with
evolutionary reinforcement learning. 9th National
Meeting of SAIChe, Secunda, South Africa.

Ghanadan, R., (1990). Adaptive PID control of
nonlinear systems, M.Sc. thesis, University of
Maryland, USA.

Hrycej, T., (1997). Neurocontrol: Towards an
industrial control methodology. John Wiley & Sons
(New York): 223-242.

Jang, J.S.R., and Sun, C.T., (1993). Functional
equivalence between radial basis function networks
and fuzzy inference systems. IEEE Transactions on
Neural Networks, 4(1): 156-159.

Kaelbling, L.P., Littman, M.L., and Moore, A.W.,
(1996). Reinforcement Learning: A Survey. Journal of
Artificial Intelligence Research, 4: 237-285.

Seborg, D.E., Edgar, T.F., and Mellicamp, D.A.,
(1989). Process Dynamics and Control. John Wiley &
Sons (New York).

S'equim, C.H., and Clay, R.D., (1990). Fault tolerance
in artificial neural networks. Int'l Joint Conference
Neural Networks (San Diego), vol. 1: 703-708.

Shi, Y., and Eberhart, R.C., (1999). Empirical study of
particle swarm optimization. Proceedings of the 1999
Congress on Evolutionary Computation. IEEE Service
Center (Piscataway, NJ): 1945-1950 .

Walters, F.H., (1991). Sequential simplex optimization.

CRC Press (Florida): 55-60.

