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Abstract

For the valuation of American put options ex-

act pricing formulas haven't as yet been de-

rived We therefore determine analytical ap-

proximations for pricing such options by in-

troducing the Generalized Ant Programming

(GAP) approach applicable to all problems

in which the search space of feasible solu-

tions consists of computer programs. GAP is

a new method inspired by Genetic Program-

ming as well as by Ant Algorithms. Applying

our GAP-approximations for the valuation of

American put options on non-dividend pay-

ing stocks to experimental data as well as

huge validation data sets we can show that

our formulas deliver accurate results and out-

perform other formulas presented in the lit-

erature.

1 INTRODUCTION

In their seminal papers Black and Scholes (1973) and

Merton (1973) derived an analytical solution for the

valuation of European call options on stocks paying no

dividends during the time to expiration. Merton ad-

ditionally showed that premature exercising of Amer-

ican call options on this type of stocks is never op-

timal and that the valuation can also be made using

the Black/Scholes{Merton method. If in the case of an

American call option, dividends are paid, and these are

known with certainty, its value can be obtained using

the analytically exact pricing model of Roll (1977).

In comparison to American call options, premature ex-

ercise of American put options on non-dividend paying

stocks may produce bene�ts, if the stock price falls

below a certain, permanently variable critical value

(killing price). As a result of this di�erence between

the premature exercising of American call options and

of American put options, ascertaining the optimal time

for premature exercising, or the killing price, is a part

of the problem to be solved, for which there was pre-

viously no exact model. Thus, the valuation of Amer-

ican put options is based on numerical procedures or

analytical approximations. The best-known numeri-

cal procedures are the lattice approach of Cox, Ross,

and Rubinstein (1979) and the �nite di�erence method

of Brennan and Schwartz (1977). However, getting

accurate results by using numerical procedures nor-

mally requires long calculation time. A simple analyt-

ical approximation for the valuation of American put

options on non-dividend paying stocks was presented

by Johnson (1983). This simple analytical approxima-

tion, however, is not very accurate, so that many more

ambitious analytical approximations have been devel-

oped. The best-known of these come from MacMillan

(1986) and Geske and Johnson (1984).

MacMillan's analytical approximation for the valua-

tion of American put options consists of raising the

value of a suitable European put option by the value

of the approximately calculated premature exercising

of the option. This method forms the basis for analyt-

ical approximations used to evaluate a range of other

American options, such as index options, currency op-

tions, and options on futures (see, e.g., Barone-Adesi

and Whaley (1987)). Geske and Johnson's analyti-

cal approximation assumes that premature exercise is

possible only at particular, discrete points in time. Ac-

cordingly, for each of these moments an option value is

calculated, and, based on this, the value of the Amer-

ican put option is ascertained using the polynomial

extrapolation method. This method treats American

put options both with and without dividends. The

MacMillan method, however, deals only with put op-

tions on stocks paying no dividend during the maturity

of the options, although it was extended by Barone-

Adesi and Whaley (1988) as well as Fischer (1993) to



include the dividend paying case. It is characteristic

of most approximations for the valuation of Ameri-

can put options found in the literature that they ap-

proximate either the stochastic stock price process, or

the partial di�erential equation (with the appropri-

ate boundaries) which implicitly describes the option

price. In contrast, Geske and Johnson (1984) as well

as Kim (1990) formulate a valuation equation which

represents an exact solution of the partial di�erential

equation, and then solve it either by analytical approx-

imation or by numerical techniques.

During the last few decades an increasing number of

researchers of various disciplines has been impressed

by the problem-solving power of nature. They devel-

oped optimization algorithms and heuristics based on

the imitation and simulation of admirable natural phe-

nomena. For example, Arti�cial Neural Networks im-

itate the principle of human brains and Evolutionary

Algorithms make use of the Darwinian principle of the

survival{of{the{�ttest. Both methodologies are used

to solve problems which are normally not amenable to

traditional solution techniques and have been applied

to option pricing problems. For instance, Hutchinson,

Lo, and Poggio (1994) employ an arti�cial neural net-

work for the valuation of European options whereas

Chen, Lee, and Yeh (1999), Chidambaran, Lee, and

Trigueros (2000), and Keber (2000) use Genetic Pro-

gramming to solve option pricing problems.

A further example and one of the most recent develop-

ments of nature-based solution techniques is the Ant

Colony Optimization meta-heuristic. Ant Algorithms

originally introduced by Dorigo and colleagues (Dorigo

(1992) and Dorigo, Maniezzo, and Colorni (1991)) as

a multi-agent approach to diÆcult combinatorial op-

timization problems like the travelling salesman prob-

lem (TSP) are inspired by the foraging behaviour of

real ant colonies, in particular, how ants can �nd short-

est paths between two points. Real ant colonies are

capable of solving such problems using collective be-

haviour and indirect communication via a chemical

substance called pheromone deposited on the ground.

It is hardly surprising that for the �rst time ant al-

gorithms have been applied to the travelling salesman

problem because the analogy between the real ants'

problem and the TSP is obvious. In the meantime,

ant-based algorithms have been applied successfully to

a broad �eld of combinatorial optimization problems

(see, e.g., Dorigo, Caro, and Gambardella (1999)).

In this contribution we develop the Generalized Ant

Programming (GAP) approach as a new variant of ant

algorithms and apply the proposed method to the op-

tion valuation problem. GAP enables computers to

solve problems without being explicitly programmed.

It is applicable to all problems in which the search

space of feasible solutions consists of computer pro-

grams. GAP works by using arti�cial ants to automat-

ically generate computer programs. As an acid test for

GAP we derive analytical approximations for the valu-

ation of American put options on non-dividend paying

stocks. We focus on this problem for several reasons.

Firstly, analytical exact solutions for pricing American

puts have not as yet been derived. Secondly, testing

new techniques should not be based on simple prob-

lems because any assessment of the proposed method

would be open to criticism. Furthermore, our results

have to be compared with other approximations pre-

sented in the literature. This can be easily done by

using the most frequently quoted approximations men-

tioned above. Using experimental data as well as huge

validation data sets we can show that the GAP based

formulas for the valuation of American put options on

non-dividend paying stocks deliver accurate approxi-

mation results and outperform other approximations

presented in the literature.

In the second section we focus on the concept of the

Generalized Ant Programming approach. The third

section presents the GAP-approximations for the valu-

ation of American put options on non-dividend paying

stocks. In the fourth section we show the experimental

results. The contribution concludes with a summary.

2 GENERALIZED ANT

PROGRAMMING

2.1 INTRODUCTION

The Generalized Ant Programming (GAP) approach

is a new method inspired by the Genetic Program-

ming approach introduced by Koza (1992) as well

as by Ant Algorithms originally presented by Dorigo

(1992) as a multi-agent approach to diÆcult combi-

natorial optimization problems like TSP. GAP is an

approach designed to generate computer programs by

simulating the behaviour of real ant colonies. When

travelling real ants deposit pheromone on the ground

which in
uence the choices they make. Ants tend to

choose steps marked by strong pheromone concentra-

tions. Pheromone trails can be seen as \public in-

formation" which is modi�ed by ants to re
ect their

experience while solving a problem, e.g., to �nd short-

est paths between the nest and food sources. The

quantity of pheromone left by an ant depends on the

amount of food found. Within a given interval of time,

shorter paths can be travelled more often, which causes

a stronger pheromone concentration. In return, this



increases the probability of the path to be chosen.

2.2 METHODOLOGY

Generalized Ant Programming is an algorithmic

framework which enables computers to solve problems

without being explicitly programmed. It is applicable

to all problems in which the search space of feasible

solutions consists of computer programs. GAP works

by using arti�cial ants to automatically generate com-

puter programs. Similar to real ants, the arti�cial ants

explore a search space now representing the set of all

feasible computer programs which we describe as paths

through a graph. The pheromone amount deposited by

an arti�cial ant depends on the quality of the solution

found. In other words, it depends on which path (com-

puter program) was chosen. The quality of a path is

measured using the corresponding computer program

as an \input parameter" to an \algorithmic regression

problem". These transpositions lead to our proposed

GAP approach which we describe in a more detailed

way in the next few paragraphs.

Computer programs are usually based on a well de-

�ned programming language. In our GAP{application

we therefore use a programming language L speci�ed

by the context-free grammar G = (N ; T ;R;S), see,
e.g., Aho and Ullmann (1972). L(G) is to be seen sim-

ply as the set of all analytical expressions which can

be produced from a start symbol S under application

of substitution rules R, a �nite set of non-terminal

symbols N , and a �nite set or vocabulary of terminal

symbols T . Thus,

L = fp j S =) p ^ p 2 T �g (1)

where T � represents the set of all analytical expres-

sions which can be produced from the symbols of the

vocabulary T . Using the grammar G a derivation

of an analytical expression p 2 L consists of a se-

quence t1; t2; : : : ; tp of terminal symbols and the corre-

sponding derivation steps (productions) ti ! ti+1 (for

i = 1; : : : ; p� 1). This derivation is denoted by

S �

=)
G

p: (2)

To take a simple example, assume

G = (N = fS; T; Fg;
T = fa;+; �; (; )g;
R = fS ! S + T jT; T ! T � F jF; F ! (S)jag;
S)

and let us express this grammar in an equivalent

graphical representation (syntax diagram).

S -
T

-

T
j+

6

T -
F

-

F
j�6

F - j
a

-

j( S j)-
6

Each derivation in this grammar represents a simple

arithmetic expression including the symbols a;+; �; (;
and ) and can be interpreted as a path through the

syntax diagram. An example of a derivation in our

simple grammar would be

S) S + T ) T + T ) F + T ) a+ T

) a+ T � F ) a+ F � F ) a+ a � F ) a+ a � a
In the sense of GAP, L is the search space of all po-

tential analytical expressions to be generated, p 2 L is

a path which can be visited by ants, and J (t) � L is

a set of paths already visited at time t. Furthermore,

each path p 2 L consists of a sequence of terminal

symbols t1; t2; : : : ; tp and the corresponding derivation

steps ti ! ti+1 (for i = 1; : : : ; p� 1).

In GAP each path pi 2 J (t) can be seen as a derivation

S �

=)
Pi

pi; (3)

where Pi � G. While walking each ant forms a new

path p
0 which is a derivation based on P 0 = [ni=1Pi �

G,
S �

=)
P0

p
0
; (4)

and where all derivation steps contained in p
0 are se-

lected according to the pheromone amounts of the cor-

responding paths pi. In the proposed GAP-application

the pheromone trail is put on whole paths implying

that the derivation steps describing a path are equally

weighted. This is just for simpli�cation and can be ex-

tended to di�erent pheromone amounts along a path.

We are going to present this extension in one of our

next papers.

The amount of pheromone trail on path p at time t is

given by

�p(t) = (1� �) � �p(t) + ��p(t); (5)

where 0 < � � 1 is the coeÆcient representing

pheromone evaporation, and

��p(t) =

KX
k=1

��
k
p (t)



is the pheromone increase obtained by cumulating the
contributions ��

k
p (t) of each ant k = 1; : : : ;K. In

other words, this is the amount of pheromone de-
posited on path p by the kth ant at time t. This quan-
tity of pheromone trail is given by

��
k
p (t) =

�
Q � Lk(t; p) if kth ant takes path p

0 otherwise
(6)

where Q is a constant and Lk(t; p) is the value of the

objective function obtained by ant k at time t. As

GAP is similar to the Genetic Programming approach

each path p 2 L represents a computer programm (or

an analytical expression) and can therefore be seen as

a function p : E ! A transforming input data E into

a solution or output data A. Accordingly, the func-

tion Lk :A ! IIR has to be de�ned in a way that it

awards higher values to those paths (computer pro-

grams) which represent a good solution to the task in

hand, and lower values to less suitable paths (com-

puter programs). The value of the objective function

is measured using a representative set of test records

Ei, for i = 1; : : : ;D. If these input data are processed

using the computer program p 2 J (t), the result will

be the output data Ai, which can then be compared

to the target output data AS
i . Using a deviation func-

tion Æ(Ai;AS
i ) in a way that it delivers higher values

the more the output data di�er from the target output

data, the aggregated deviation is given by

z(p) =

DX
i=1

Æ(Ai;AS
i ) with Ai = p(Ei): (7)

The objective function Lk(t; p) can be formulated as

Lk(t; p) =
1

1 +z(p)
(8)

so that the values of the objective function lie between

zero and one, and larger values represent better paths

(computer programs).

For the (new) path p
0 2 L(P 0) being built by the

k
th ant, see (4), the probability of selecting derivation
steps describing old paths pi 2 J (t) is given as

P
k
pi
(t) =

8>><
>>:

[�pi(t)]
� � [�pi ]

�X
�2P0

k
(t)

[��(t)]
� � [�� ]�

if pi 2 P 0k(t)

0 otherwise

(9)

where P 0

k(t) � P 0(t) is the set of derivation steps of

path pi that the k
th ant has not visited yet. �pi is a

heuristic value of including derivation steps of pi. The

parameters � and � control the relative importance of

pheromone trail versus visibility.

Using the above de�nitions, GAP can be outlined by

the following (pseudo) computer program.

[ 0] program Generalized AntProgramming;

[ 1] t = 0;

[ 2] Init �; �; �;Q;J (t); �p(t);

[ 3] repeat

[ 4] t = t+ 1;

[ 5] for each ant k do

[ 6] Build a path p
0 according to (4) and (9);

[ 7] Calculate Lk(t; p
0) using (8);

[ 8] J (t) = J (t� 1) [ p
0;

[ 9] end;

[10] Save the best solution found so far;

[11] Update trail levels �p(t) according to (5);

[12] Shrink J (t);

[13] Perform global shaking on �p(t);

[14] until termination;

[15] end.

While most of the programming steps are already dis-

cussed, programming step [12], Shrink J (t), is to be

seen in conjunction with step [8], J (t) = J (t�1)[p0.
Executing [8] repeatedly implies that the set of paths

already visited, J (t), becomes bigger and bigger or

could go to in�nity in worst case which is highly unde-

sirable. On the other hand, J (t) also contains paths

where pheromone trails are completely evaporated so

that they can be excluded in further exploration, i.e.,

when ants choose a new path. Hence, in step [12] we

shrink J (t) accordingly. A second step not yet men-

tioned is the global shaking procedure in [13]. In (1)

we choose a speci�cation (of our language) which is of

�nite size, although the language being speci�ed is not

�nite. Hence, GAP is comparable to dynamic prob-

lems such as the TSP with the insertion or deletion

of cities, see, e.g., Bonabeau, Dorigo, and Theraulaz

(1999) and Guntsch, Middendorf, and Schmeck (2001).

If, in GAP, the pheromone amount on a derivation step

(or path) becomes much higher than all others, this

step (or path) will almost certainly always be chosen.

This would be �ne in a static model but is a prob-

lem in GAP because it prevents ants from taking new

derivation steps. Similar to dynamic approaches we

therefore apply the \shaking technique" to normalise

the pheromone levels. The formula used in our appli-

cation is a logarithmic one and is given by

�p(t) = �
0
p �
�
1 + ln

�
�p(t)

�
0
p

��
; (10)

where �0p is the minimum value for �p(t), forced by the

algorithm, so that �p(t) � �
0
p (Eyckelhof (2001) and

St�utzle and Hoos (2000)). In our GAP-application we

use the initial value as the lower boundary.



2.3 RELATED WORK

To our knowledge, the �rst attempt using ants for au-

tomatic programming comes from Roux and Fonlupt

(2000). At �rst glance one tends to believe that their

approach can solve symbolic regression problems. But

on a closer view it is doubtful whether the approach

provides accurate approximation results. Hence, we

have retraced and implemented their method. Testing

the approach on several problems we have got poor

approximation results. This is in accordance with the

results presented in their own paper which, from our

point of view, are not very promising. Furthermore,

in the present version of the proposed method the au-

thors focus only on symbolic regression problems. In

comparison, our approach can be used for general \al-

gorithmic regression problems". Thus, we refer to our

approach as Generalized Ant Programming.

3 APPLICATION

3.1 EXPERIMENTAL DESIGN

By applying the GAP approach to option pricing we

have to specify some parameters. For the aggregated

deviations used in the objective function (8) we used a

randomly generated training sample of 1,000 American

put options on non-dividend paying stocks described

by the tuple hP0; S0; X; r; T; �i where S0 > S
�. S� rep-

resents the killing price calculated using MacMillan's

(1986) procedure, P0 refers to the \exact" value of an

American put option on a non-dividend paying stock

at t = 0, S0 denotes the stock price at t = 0, X is the

exercise price, r represents the annual continuous risk-

free interest rate (in %), T is the time to expiration (in

years), and � is the annual volatility of the stock price

(in %). Each option price P0 was calculated by using

the �nite di�erence method1 and served as the exact

value of the American puts. Applying the property

that option prices are linear homogenous in S0 and

X , i.e., 
 � f0(S0; X; r; T; �) = f0(
 � S0; 
 � X; r; T; �)

where 
 is a constant and f0 denotes a function for

calculating the option price, we are able to use a stock

price S0 = 1 for all the options of the training sam-

ple. The remaining parameters were drawn randomly

based on uniform distributions. In accordance with

the literature as well as realistic circumstances we de-

�ned the following domains: 2 � r � 10, 1=360 � T � 1=4,

10 � � � 50, and 0:8 � � � 1:2. The domain of

the moneyness ratio � = S0=X is based on the con-

sideration that option trading always starts near-the-

money. Additionally, Stephan and Whaley (1990) look

at a sample of 950,346 stock option transactions and

1With �t = (1=365)=5, �S = 0:01, and Smax = 2 � S0.

report that the moneyness is between 0.9 and 1.1 in

about 78 % of cases.

In accordance with the Generalized Ant Programming

approach we transformed each tuple hP0; S0; X; r; T; �i
into an input data record Ei (b= hS0; X; r; T; �i) and a

corresponding target output data record AS
i (b= hP0i),

for i = 1; : : : ; 1000. For the aggregated deviations

used in (7) we used the sum of the squared errorsP1000

i=1 (Ai � AS
i )

2. In the terminal symbol set we in-

cluded the variables S0, X , r, T , �, �, ephemeral con-

stants, the commonly used mathematical operators +,

�, �, �, px, ln(x), x2, xy , and the cumulative dis-

tribution function of the univariate standard normal

distribution �(x). For the substitution rules, R, and
the non-terminal symbol set, N , we used subsets of

the grammar de�ning Jensen and Wirth's \Standard

Pascal" (see Jensen and Wirth (1975), pp. 110{118).

This subset was chosen so that simple analytical ex-

pressions can be derived. For the other GAP related

parameters we used the following settings resulting in

a balanced relationship between convergence speed,

calculation e�ort and e�ectiveness of the GAP algo-

rithm. The ant colony includes K = 50 members and

for the relative importance of pheromone trails we used

� = 1. The remaining parameters are de�ned as fol-

lows: � = 1; � = 0:5 and Q = 1. Among other things,

� is used to restrict the formula complexity. Further-

more, we stopped the GAP algorithm after 100,000

cycles.

3.2 APPROXIMATION

Applying the GAP approach as described we get vari-

ous approximations for the valuation of American put

options on non-dividend paying stocks. One of our

best approximations (for options with S0 = 1 and

S0 > S
� as mentioned above) is given by

P0 � P
GAP
0 = X � e��r�T � �(�d2)� S0 � �(�d1) (11)

where

d1 =
ln(S0=X)

�
p
T

; d2 = d1 � �

p
T :

The above formula is as derived by the GAP algo-

rithm without possible simpli�cation. Looking at (11)

it is amazing that our formula can be characterised

as a simple approximation when compared to other

analytical approximations presented in the literature.

Furthermore, our formula shows a strong structural

similarity to the Black/Scholes{Merton equation for

valuing European put options. Both formulas are iden-

tical except for the parameters d1 and d2 as well as �r

given in the appendix.



4 EXPERIMENTAL RESULTS

To give a �rst impression of the accuracy of the GAP

based analytical approximations for the valuation of

American put options on non-dividend paying stocks

we use the data sets of Geske and Johnson (1984)

and Barone-Adesi and Whaley (1988) because these

data sets are often used as comparisons. Furthermore,

we use a huge sample of 50,000 randomly generated

American put options (validation data set). This en-

sures that the assessment of the approximations will be

highly accurate. The corresponding parameters are in-

dependent from those of the training sample and their

domains are as follows: 10 � S0 � 100, 2 � r � 8,
1=360 � T � 1=4, 5 � � � 50, and 0:8 � � � 1:2. The

numerically exact put option and killing prices P0 and

S
� were calculated using the �nite di�erence method

(with �t = (1=365)=5, �S = 0:01, and Smax = 2 � S0)
and MacMillan's (1986) procedure, respectively. For

the method-related comparison we use the most fre-

quently quoted analytical approximations P J
0 of John-

son (1983), PGJ
0 of Geske and Johnson (1984), and

P
MM
0 of MacMillan (1986).

In Table 1 and 2 the GAP based approximation PGAP
0

as well as the most frequently quoted approximations

P
J
0 , P

GJ
0 , and P

MM
0 are applied to the data sets

of Geske and Johnson (1984) and Barone-Adesi and

Whaley (1988), respectively. P0 denotes the numeri-

cally exact put option price. At the end of each table

the three error measures mean absolute error (MAE),

mean squared error (MSE) and mean absolute percent-

age error (MAPE) are given for each approximation.

The approximation results can be summarised as fol-

lows:

� From Tables 1 and 2 it can be seen that John-

son's (1983) put pricing formula delivers less ac-

curate approximations. The mean absolute er-

rors are about 7 and 71 pence, respectively. The

next best approximation comes from the GAP ap-

proach having mean absolute errors of about two

and three pence, respectively. MacMillan's (1986)

and Geske and Johnson's (1984) approximations

are better than the others because their mean ab-

solute errors are between about four tenths of a

penny and two pence. With respect to the ac-

curacy of the GAP based approximation we have

to keep in mind that only 40 % of the options

are consistent with the parameter domains used

in the GAP application. However, if we look at

these options exclusively the GAP based formula

delivers the best approximations.

The application results just shown cannot be used for

Table 1: Approximations for the value of American put

options on non-dividend paying stocks (S0 = 40; r =

4:88, data from (Geske and Johnson 1984, page 1519)).

T � X P0 PJ
0

PMM
0

PGJ
0

PGAP
0

0.0833 0.20 35.00 0.0063 0.0062 0.0065 0.0062 0.0063

0.3333 0.20 35.00 0.2001 0.1969 0.2044 0.2000 0.2042

0.5833 0.20 35.00 0.4323 0.4205 0.4415 0.4318 0.4582

0.0833 0.20 40.00 0.8509 0.8406 0.8503 0.8521 0.8533

0.3333 0.20 40.00 1.5787 1.5262 1.5768 1.5759 1.5937

0.5833 0.20 40.00 1.9894 1.8916 1.9888 1.9827 2.0551

0.0833 0.20 45.00 5.0000 4.8403 5.0000 4.9969 5.0000

0.3333 0.20 45.00 5.0875 4.7882 5.0661 5.1053 5.1069

0.5833 0.20 45.00 5.2661 4.8584 5.2364 5.2893 5.3536

0.0833 0.30 35.00 0.0777 0.0777 0.0780 0.0772 0.0773

0.3333 0.30 35.00 0.6967 0.7056 0.7014 0.6972 0.7012

0.5833 0.30 35.00 1.2188 1.2390 1.2281 1.2198 1.2506

0.0833 0.30 40.00 1.3081 1.3047 1.3078 1.3103 1.3104

0.3333 0.30 40.00 2.4810 2.4757 2.4783 2.4801 2.4952

0.5833 0.30 40.00 3.1681 3.1634 3.1667 3.1628 3.2331

0.0833 0.30 45.00 5.0590 4.9910 5.0470 5.0631 5.0578

0.3333 0.30 45.00 5.7042 5.6090 5.6794 5.7017 5.7232

0.5833 0.30 45.00 6.2421 6.1265 6.2150 6.2367 6.3292

0.0833 0.40 35.00 0.2466 0.2499 0.2472 0.2461 0.2461

0.3333 0.40 35.00 1.3447 1.3886 1.3491 1.3461 1.3421

0.5833 0.40 35.00 2.1533 2.2475 2.1619 2.1553 2.1698

0.0833 0.40 40.00 1.7659 1.7763 1.7659 1.7688 1.7670

0.3333 0.40 40.00 3.3854 3.4494 3.3825 3.3863 3.3902

0.5833 0.40 40.00 4.3506 4.4728 4.3494 4.3475 4.3943

0.0833 0.40 45.00 5.2856 5.2706 5.2735 5.2848 5.2847

0.3333 0.40 45.00 6.5078 6.5535 6.4875 6.5015 6.5211

0.5833 0.40 45.00 7.3808 7.4874 7.3597 7.3695 7.4498

MAE 0.0692 0.0082 0.0040 0.0210

MSE (�10�5) 1351.8420 15.4237 4.4433 117.0473

MAPE 0.0217 0.0045 0.0025 0.0096

a general assessment of the accuracy of the approxi-

mation formulas because the underlying data sets are

too small. If we use the 1,000 data records used in the

GAP approach as a basis for a general assessment the

problem arises that this data sample represents train-

ing data, and thus the assessment would be open to

criticism of being a \self-ful�lling prophecy". There-

fore, the de�nitive judgement of the approximation

formulas is to be made from the above mentioned val-

idation data set which is independent of the training

data set. Based on the validation data set Table 3 gives

the error measures and the graph in Figure 1 shows

the accuracy of the GAP based approximations as well

as Johnson's (1983), Geske and Johnson's (1984), and

MacMillan's (1986) put pricing formulas. The accu-

racy is shown in terms of cumulated frequencies of

the absolute deviations between the numerically cal-

culated exact put option price and the approximations

just mentioned.

� Johnson's (1983) put pricing formula delivers the

weakest approximation results. This can be seen

from Table 3 as well as the graph in Figure 1.

While for the other approximations it can be said

with almost 100 % probability that the approx-

imated option prices di�er from the numerically



Table 2: Approximations for the value of American put

options on non-dividend paying stocks (X = 100, data

from (Barone-Adesi and Whaley 1988, page 315)).

T � S0 P0 PJ
0

PMM
0

PGJ
0

PGAP
0

r = 8:00

0.25 0.20 80.00 20.0000 18.0909 20.0000 20.0012 20.0000

0.25 0.20 90.00 10.0353 9.0470 10.0130 10.0730 10.0456

0.25 0.20 100.00 3.2217 3.0378 3.2201 3.2115 3.2262

0.25 0.20 110.00 0.6642 0.6406 0.6810 0.6647 0.6725

0.25 0.20 120.00 0.0888 0.0865 0.0967 0.0879 0.0863

r = 12:00

0.25 0.20 80.00 20.0000 17.1344 20.0000 20.0112 20.0000

0.25 0.20 90.00 10.0000 8.2620 10.0000 9.9811 10.0000

0.25 0.20 100.00 2.9225 2.6265 2.9251 2.9110 2.9050

0.25 0.20 110.00 0.5541 0.5189 0.5781 0.5541 0.5549

0.25 0.20 120.00 0.0685 0.0654 0.0789 0.0676 0.0609

r = 8:00

0.25 0.40 80.00 20.3196 19.7588 20.2478 20.3699 20.3078

0.25 0.40 90.00 12.5635 12.4222 12.5142 12.5511 12.5769

0.25 0.40 100.00 7.1049 7.1204 7.0999 7.1018 7.1162

0.25 0.40 110.00 3.6968 3.7476 3.7120 3.7017 3.7002

0.25 0.40 120.00 1.7885 1.8310 1.8068 1.7892 1.7824

r = 8:00

0.50 0.20 80.00 20.0000 16.6555 20.0000 19.9402 20.0000

0.50 0.20 90.00 10.2890 8.8392 10.2348 10.3712 10.4406

0.50 0.20 100.00 4.1885 3.7889 4.1933 4.1519 4.3474

0.50 0.20 110.00 1.4095 1.3140 1.4459 1.4121 1.5142

0.50 0.20 120.00 0.3969 0.3768 0.4244 0.3961 0.4239

MAE 0.7083 0.0184 0.0173 0.0256

MSE (�10�4) 14886.3928 7.3752 8.2725 29.2733

MAPE 0.0721 0.0218 0.0034 0.0177

Table 3: Error measures for the approximations for the

value of American put options on non-dividend paying

stocks based on a sample of 50,000 put options.

P
J
0 P

MM
0 P

GJ
0 P

GAP
0

MAE 0.0674 0.0059 0.0031 0.0025
MSE (�10�3) 27.0546 0.1197 0.1008 0.0201
MAX 1.8806 0.0827 1.2102 0.0584

exact option prices by no more than 5 pence, de-

viation to this level is only found in Johnson's

(1983) solution in 72 % of cases. Put another

way, in 28 % of cases there is a deviation of more

than 5 pence. Due to these poor results, John-

son's (1983) approximation is not considered in

further discussions.

� The next best approximations come fromMacMil-

lan (1986) and Geske and Johnson (1984) hav-

ing MAEs of about 6 and 3 tenths of a penny

and maximum absolute deviations of about 8 and

120 pence, respectively. In comparison, the GAP

based formula delivers the best approximations

having a MAE of two and a half tenths of a penny

and a maximum absolute deviation of about 6

pence.

� In option pricing we usally look at the penny ac-

curacy of an approximation. From the graphs in

Figure 1 it can be seen that the penny accuracy

Figure 1: Cumulated frequencies of the absolute devi-

ations between P0 and the approximations based on a

sample of 50,000 put options.

of MacMillan's and Geske and Johnson's, approx-

imations is achieved in about 83 and 94 % of cases,

respectively. In comparison, the penny accuracy

of the GAP approximation is already achieved in

about 96 % of cases.

Summing up, for realistic and frequently observed

option parameters we can conclude that the GAP

based approximation clearly outperforms the approx-

imations of Johnson, MacMillan as well as Geske and

Johnson. Additionally, our approximation consists

only of fundamental mathematical operations and is

therefore easy to use whereas, e.g., Geske and John-

son's formula requires at least the distribution function

of the trivariate, possibly also the multivariate, stan-

dard normal distribution which is normally calculated

using numerical integration. Moreover, the results pre-

sented so far represent work in progress and seem to

be very promising.

5 CONCLUSION

In this paper we have introduced the Generalized Ant

Programming approach as a new method for solving

problems in which the search space of feasible solutions

consists of computer programs. We have shown that

Generalized Ant Programming can be used to derive

accurate analytical approximations for the valuation of

American put options on non-dividend paying stocks.

Based on experimental data as well as huge validation

data sets we have shown that our formula delivers ac-

curate approximation results and outperforms other

formulas presented in the literature.
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and

c1 = 2:190564158 c2 = 1:757516557 c3 = 7:556576426
c4 = 0:219427468 c5 = 0:119453070 c6 = �0:158050093

References

Aho, A. V., and J. D. Ullmann, 1972, The Theory of Pars-
ing, Translation, and Compiling vol. I Parsing. (Prentice
Hall Englewood Cli�s).

Barone-Adesi, G., and R. E. Whaley, 1987, EÆcient Ana-
lytic Approximation of American Option Values, Jour-
nal of Finance 42, 301{320.

Barone-Adesi, G., and R. E. Whaley, 1988, On the Val-
uation of American Put Options on Dividend{Paying
Stocks, Advances in Futures and Options Research 3,
1{13.

Black, F., and M. Scholes, 1973, The Pricing of Options
and Corporate Liabilities, Journal of Political Economy
81, 637{659.

Bonabeau, E., M. Dorigo, and G. Theraulaz, 1999, Swarm
Intelligence: From Natural to Arti�cial Systems. (Ox-
ford University Press New York).

Brennan, M., and E. Schwartz, 1977, The Valuation of
American Put Options, Journal of Finance pp. 449{462.

Chen, S.-H., W.-C. Lee, and C.-H. Yeh, 1999, Hedging
Derivative Securities with Genetic Programming, Inter-
national Journal of Intelligent Systems in Accounting,
Finance and Management 8, 237{251.

Chidambaran, N. K., C. W. J. Lee, and J. R. Trigueros,
2000, Option Pricing via Genetic Programming, in Com-
putational Finance 1999, ed. by Y. S. Abu-Mostafa et al.
pp. 583{598 Cambridge, Massachusetts. The MIT Press.

Cox, J., S. Ross, and M. Rubinstein, 1979, Option Pricing:
A Simpli�ed Approach, Journal of Financial Economics
pp. 229{263.

Dorigo, M., 1992, Optimization, Learning, and Natural Al-
gorithms, Ph.D. thesis Politecnico di Milano Milano.

Dorigo, M., G. Caro, and L. M. Gambardella, 1999, Ant
Algorithms for Discrete Optimization, Arti�cial Life pp.
137{172.

Dorigo, M., V. Maniezzo, and A. Colorni, 1991, Positive
feedback as a Search Strategy, Working paper, 91{016
Politecnico di Milano.

Eyckelhof, C. J., 2001, Ants Systems for Dynamic Prob-
lems: The TSP Case { Ants caught in a traÆc jam,
Working paper, University of Twente.

Fischer, E. O., 1993, Analytic Approximation for the Val-
uation of American Put Options on Stocks with Known
Dividends, International Review of Economics and Fi-
nance pp. 115{127.

Geske, R., and H. E. Johnson, 1984, The American Put Op-
tion Valued Analytically, Journal of Finance pp. 1511{
1524.

Guntsch, M., M. Middendorf, and H. Schmeck, 2001, An
Ant Colony Optimization Approach to Dynamic TSP, in
Proceedings GECCO{2001, ed. by L. Spector et al. pp.
860{867 San Fransico. Morgan Kaufmann.

Hutchinson, J. M., A. W. Lo, and T. Poggio, 1994, A Non-
parametric Approach to Pricing and Hedging Derivative
Securities Via Learning Networks, Journal of Finance
pp. 851{889.

Jensen, K., and N. Wirth, 1975, Pascal, User Manual and
Report. (Springer Verlag New York) 2nd edn.

Johnson, H. E., 1983, An Analytic Approximation for the
American Put Price, Journal of Financial and Quanti-
tative Analysis pp. 141{148.

Keber, C., 2000, Option Valuation with the Genetic Pro-
gramming Approach, in Computational Finance 1999,
ed. by Y.S. Abu-Mostafa et al. pp. 689{703 Cambridge,
Massachusetts. The MIT Press.

Kim, I. J., 1990, The Analytic Valuation of American Op-
tions, Review of Financial Studies pp. 547{572.

Koza, J. R., 1992, Genetic Programming. On the Program-
ming of Computers by Means of Natural Selection. (The
MIT Press Cambridge, Massachusetts).

MacMillan, L. W., 1986, Analytic Approximation for the
American Put Option, Advances in Futures and Options
Research 1, 119{139.

Merton, R. C., 1973, Theory of Rational Option Pricing,
Bell Journal of Economics and Management Science 4,
141{183.

Roll, R., 1977, An Analytic Valuation Formula for Unpro-
tected American Call Options with Known Dividends,
Journal of Financial Economics pp. 251{258.

Roux, O., and C. Fonlupt, 2000, Ant Programming: Or
How to Use Ants for Automatic Programming, in Pro-
ceedings of ANTS'2000, ed. by M. Dorigo et al. pp. 121{
129.

Stephan, J. A., and R. E. Whaley, 1990, Intraday Price
Changes and Trading Volume Relations in the Stock and
Stock Option Markets, Journal of Finance 45, 191{220.

St�utzle, T., and H. H. Hoos, 2000, MAX-MIN Ant System,
Future Generation Computer Systems Journal 16, 889{
914.


