
Agent Support for Genetic Search in an Immunological Model of
Sparse Distributed Memory

Keith E. Mathias and Jason S. Byassee
TRW Systems

16201 E. Centretech Pkwy.
Aurora, CO 80011

keith.mathias, jason.byassee@auc.trw.com

Abstract

This research focuses on agent migration
strategies and communication behaviors in
a sparse distributed memory implementation
based on the human immune system. Evalua-
tion of various agent strategy/behavior com-
binations is measured in the context of ge-
netic search performance at multiple, in-
dependent system nodes. Results indicate
that agent behaviors which promote and
enhance information exchange between dis-
tributed nodes yield the best performance.

1 Introduction

Our research involves a sparse distributed memory
(SDM) where the theoretical memory capacity far out-
weighs the physical memory space (i.e., the ratio of
memory cells to items represented is 1 to n, where
n >> 1). This model is based in part on the human
immune system, wherein memory persists in the form
of a relatively modest population of antibodies (107

to 108) with a high affinity to a much greater number
(1012 to 1016) of possible antigen strains [5]. An effec-
tive SDM must develop and maintain a sufficient (with
respect to quality) population of memory cells so that
associative recall is not only feasible, but efficient.

The memory cell population in this SDM is sparsely
distributed in representation space and physically dis-
tributed in the execution environment. In this system,
mobile software agents circulate a limited number of
memory cells between system nodes (Figure 1). Dis-
tributed, independent genetic search is leveraged in
order to develop a system-wide memory cell popula-
tion. Emergent behavior at the system level is a result
of interactions between simultaneous and independent
genetic searches, as well as, local feedback decisions.

Significant work has been performed with respect to
agent strategies and enhanced distributed communi-
cation performance [3, 4]. This research differs in that
we seek to examine the impact of mobile agents with
respect to their migration strategies and communica-
tion behaviors to improve genetic search performance.
Improved genetic search performance in turn, results
in a more efficient SDM.

Figure 1: Agent Circulation of Antibodies.

2 Sparse Distributed Memory

This investigation is influenced by previous work that
incorporates genetic algorithms in an immune system
model to explore pattern recognition [2]. We have
modeled the problem space using Hamming space (i.e.,
bit strings). In training the SDM, the objective is to
dynamically develop “immunity” to patterns that are
repeatedly re-introduced from a fixed library of pat-
terns. Immunity is achieved by evolving a memory
cell population that generalizes to adequately repre-
sent a much larger set of random bit string patterns.
The random set of bit string patterns that must be
matched is known here as the antigen library. The
system population of memory cells, known as anti-
bodies, consists of a small (relative to the size of the
antigen library) collection of bit string patterns. Anti-
body evolution (i.e., system level learning) is a result



of isolated genetic search, local feedback decisions, and
the ability of mobile agents to maintain an adequate
distribution and diversity of antibodies between sys-
tem nodes.

2.1 System Operation

This SDM consists of two core operations. The first is
genetic search, taking place simultaneously and con-
tinuously on each node. The second involves mobile
agents that circulate antibodies between the system
nodes. Genetic search is used to perform pattern
matching at each node, where each node randomly
samples from a common antigen library, similar to For-
rest, et. al. [2]. When an antigen sample is taken, the
resident antibodies in the input queue on each respec-
tive node are compared against the sample. If a match
is found, the search is complete and the node prepares
for a new antigen sample. If a match is not found,
the antibody population in the local input queue is
used to seed the initial population for genetic search.
The sampling of an antigen and searching for a match
constitute a cycle.

The final population for each independent search in-
cludes the solution (i.e., antibody pattern matching
the sampled antigen) and antibodies that are similar to
the antigen, but not necessarily perfect matches. This
provides the opportunity to feed patterns (in the form
of antibodies) back into the system that are similar
to the current antigen sample. The system antibody
population subsequently evolves with representatives
that have high affinity for the antigen library.

In this SDM, the mobile agents operate autonomously.
From the perspective of each node, agents continuously
arrive, deposit antibodies in the input queue, retrieve
new antibodies from the output queue and transport
them to new nodes (Figure 2). Meanwhile, patterns
are continuously sampled from the antigen library as
described above. When a sample is taken from the
antigen library that must be matched, an initial pop-
ulation of 50 individuals is constructed to start ge-
netic search. To take advantage of the system’s learned
knowledge, the initial population is comprised of: 1)
antibodies taken from the local input queue, 2) copies
of antibodies currently waiting in the output queue
and 3) mutated copies of antibodies from steps 1 and
2. Copying and mutating antibodies is repeated until
the initial population is complete.

In order to bound the size of the antibody population
while promoting quality information in the system, we
have introduced a survival scoring mechanism based
on 1) age and 2) affinity to antigen library samples.
This rewards antibodies for survival time (long-term

Figure 2: Simultaneous Activities At Each Node.

reward) and for scoring well against the current anti-
gen sample (short-term reward). The survival score is
the sum of the age and affinity values.

The age of an antibody corresponds to the number of
nodes that it has visited since creation. A new anti-
body has an age of zero, and this value is subsequently
incremented by one for each new search in which it is
used as an initial seed. The affinity is based on the
percentage of bits that match antigen samples. This
value is initially set to 100, giving newly created anti-
bodies a chance to survive infancy. The value is subse-
quently decremented at each feedback step. The affin-
ity value is reset to the affinity for the current antigen
sample if that score is greater than the current affinity.

At the conclusion of every genetic search on each sys-
tem node (when a given antigen sample is matched), a
competition takes place to determine which antibod-
ies are fed back into the system. At each competition,
individuals in the antibody population that were in
the input queue prior to genetic search (i.e., seeds) are
compared with individuals from the final search pop-
ulation. The highest scoring antibodies are fed back
into the system, and the remainder are discarded. A
search feedback threshold allows individuals from the
final search population that are not exact matches to
be competitive in the feedback competition.

2.2 Pattern Matching Application

These experiments were designed to examine the im-
pact of agent behavior and agent mobility strategies on
the performance of this SDM. Performance in this con-
text is measured with respect to the work necessary to
discover the antibody strings that match the antigens
sampled at the nodes in the system over the course of
time. The antibody population consists of bit strings
that are used to seed the population at local nodes for
genetic search in order to match the patterns sampled
from the antigen library.



Figure 3: Antigen Library Distribution.

In each of these experiments, a parameter space is
defined surrounding a randomly generated bit string,
known as the base antigen string. An antigen li-
brary is generated in a binomial distribution around
the base antigen, bounded by a given Hamming dis-
tance (Figure 3). The distribution reflects the fre-
quency of occurrence of samples based on their Ham-
ming distance from the base antigen. Thus, bit strings
that are closer to the base antigen string are included
in the library less frequently than those that are far-
ther from the base string. This distribution is similar
to that of B and T cell clones as modeled by Smith,
et. al. [6], in simulations of immune system models.

In training the SDM, success is measured by the ability
to generate antibodies quickly (i.e., few trials) that
match strings sampled from the antigen library. A
trivial solution to this problem is to generate one or
more antibodies that match each antigen sampled (i.e.,
specialists). However, in a sparse distributed memory,
the address space can be orders of magnitude larger
than the instantiated address locations[6]. We used an
antigen to antibody ratio in this system of 10:1. This
means that, on average, one antibody must represent
ten antigens. The hypothesis is that good system-wide
performance requires an antibody circulation scheme
that promotes an antibody population comprised of
“generalist” antibodies (as opposed to specialists).

2.3 Migration Strategies and Communication
Behaviors

Within the context of the SDM described, we have de-
vised three agent migration strategies and three agent
communication behaviors for investigation. This re-
sults in nine agent strategy/behavior combinations.
The three agent migration strategies are as follows:

1. RandomMigration - In this migration strategy,
agents circulate antibodies by moving at random
between system nodes.

2. Directed Migration - This migration strategy is
intended to promote maximum diversity by corre-
lating agent movement with the specific antibody
that is being transported. Each node maintains a
most recently sent queue that consists of a single
entry representing every other node in the system.
Each entry associates a node ID with the last an-
tibody transported by an agent to the respective
remote node from the local node. When an agent
retrieves an antibody to transport, the Hamming
distance between that antibody and every other
entry in the queue is measured. The agent selects
the destination node based on the entry that is
furthest away in Hamming space.

3. Cyclic Migration - Cyclic migration agents
move in a fixed pattern between system nodes.
Each agent generates a random itinerary upon
creation that includes a single visit to each node
(i.e., Hamiltonian cycle).

The three communication behaviors are as follows:

1. Always Communicate - This is a simple behav-
ior that requires no thinking, or decision process,
on behalf of the agent. The agent simply deposits
the transported antibody into the input queue of
the node on which it arrives.

2. Just In Time (JIT) Communication - Agents
search for a host that has just sampled an anti-
gen from the library and is ready to begin ge-
netic search. Agents continue to move until a host
in this state is found, and then they deposit the
transported antibody, “just in time” to begin ge-
netic search.

3. Load Balanced Communication - Agents have
a tendency to move away from other agents when
exhibiting a load balancing communication be-
havior. This behavior forces agents to move away
from “busy” nodes, thereby evenly distributing
the antibody population among the system nodes.

2.4 CHC Algorithm

There are numerous genetic search approaches that
could be used in the context of this SDM. We have
chosen to incorporate the CHC adaptive search algo-
rithm for antibody evolution at the local nodes. The
CHC adaptive search algorithm [1] is a generational
genetic algorithm that has been shown to yield very
good performance for optimizing a wide variety of test
problems and requires no parameter tuning [7]. Mat-
ing in CHC is performed by randomly pairing parents



and applying the HUX crossover operator. HUX ex-
changes exactly half of the bits that differ between the
mates. Crossover is only performed if the differences
between mates is greater than a threshold that is dy-
namically adjusted during the search process. This is
known as incest prevention and serves to slow genetic
convergence appreciably. Selection is performed using
the (µ + λ) strategy, preserving the best N individu-
als from the child and parent populations, where N is
the population size. When the population does con-
verge, the search process is restarted via cataclysmic
mutation. The population is filled with copies of the
best individual and then 35% of the bits in all but one
individual are complemented and search is restarted.

3 Experimental Conditions

For these experiments, the three migration strategies
were paired with all three of the communication behav-
iors. These strategy/behavior combinations were also
compared against the performance of a control strat-
egy wherein no agents were used (i.e., no communi-
cation between nodes was possible). Table 1 identifies
the system parameter values used for all experiments.1

To emulate a sparse distributed memory, we main-
tained a 10:1 antigen to antibody ratio. To adequately
sample the antigen pool, each simulation consisted of
5,000 cycles2 at each of four nodes. This allows ex-
amination of a full range of behavior without spurious
states (due to early termination) and an even sampling
distribution of the patterns from the antigen library.

4 Results

All nine of the agent migration strategy/ communi-
cation behavior combinations were simulated for 30
independent runs. Combining all agent communica-
tion behaviors with all of the agent migration strate-
gies provides a complete factorial design, supporting
analysis of variance (ANOVA) testing. This allowed
us to determine if any of the migration strategies or
communication behaviors resulted in a statistically sig-
nificant performance advantage or disadvantage (i.e.,
significant main effect).

1To support a fair comparison between the migration
strategy/communication behavior pairs, the parameter val-
ues for the total number of agents, antibody mutation rate,
and search feedback threshold were established via a sepa-
rate search using a meta-GA. The purpose of the meta-GA
was to find a good, if not optimal, set of parameter values
for operation of this system.

2Genetic search is used to find an antibody that matches
an antigen sample at each cycle except when a perfect
match resides in the initial genetic population.

Parameter Value
System Nodes 4
Antigen Library Size 320
System Antibody Population 32
Antibody String Length (bits) 32
Parameter Radius (bits) 5
Cycles (antigen samples/node) 5000
Time Between Search at each Node (msec) 20
Total Agents 24
Antibody Mutation Rate (bits) 3
Search Feedback Threshold (bits) 5

Table 1: System Operational Parameters.

Table 2 shows the average number of trials (and stan-
dard error of the means - SEM) to match antigen
samples for each of the strategy/behavior combina-
tions. The random agent migration strategy paired
with the always communicate behavior expended the
least amount of work (i.e, fewest trials), on average, to
discover the antibodies that match the antigens sam-
pled in the simulations. However, this performance
advantage is only statistically significantly better than
a few of the other cells in Table 23 (particularly the di-
rected/JIT combination). The average trials to match
the antigens sampled using the cyclic agent migration
strategy are significantly worse than any of the other
strategy/behavior combinations. ANOVA tests con-
firm this fact as a significant main effect.

Comm. Migration Strategy
Behavior Random Directed Cyclic
Always 283.1 (0.73) 285.1 (1.19) 300.8 (1.69)
JIT 285.5 (0.66) 286.2 (0.72) 301.1 (1.87)
Load Bal 284.3 (1.46) 287.1 (2.61) 306.2 (2.13)

Table 2: Average Trials to Match Antigen Samples.
When no agents are present, 298.7 trials (SEM = 1.49)
are needed to match the pattern, on average.

The cyclic migration strategy combined with the load
balancing communication behavior results in the worst
performance, relative to all other strategy/behavior
combinations. This performance is 10 standard errors
worse than the random migration, always communi-
cate runs and more than 2 standard errors worse than
the experimental runs with the cyclic/JIT implemen-
tation. In fact, it is even inferior to the performance of
simulations where no agents were present in the sys-
tem. The average trials to match the antigens sampled
when no agents are present (i.e., antibodies are not cir-
culated) is 298.7 (SEM = 1.49).

3This may be due to the stochastic nature of the simu-
lations contributing more noise than the variance between
the strategy/behavior combinations.



It is important to note that the system learns and per-
forms significantly better than genetic search on an
equivalent problem when a random initial population
is used. For example, on average, CHC solves a 32-bit
one-max4 problem in 504 trials (SEM = 9.12), when
beginning with a random initial population.

4.1 An Emergent Behavior

Although the goal of genetic search at each local node
is to match antigen library samples, the search efforts
combined with the local survival decisions result in a
globally emergent behavior. The communication of in-
formation via agents consistently resulted in an inter-
esting phenomenon, notably the discovery and propa-
gation of the string pattern used to create the antigen
library (i.e., the base antigen string). Table 3 shows
the average percentage of the system’s final antibody
population occupied by copies of strings matching the
base antigen for each respective strategy/behavior ex-
periment. This is referred to as the saturation rate.

Comm. Migration Strategy
Behavior Random Directed Cyclic
Always 100.0% (0.00) 100.0% (0.00) 89.7% (1.04)

JIT 100.0% (0.00) 100.0% (0.00) 89.1% (1.35)
Load Bal 96.1% (0.74) 97.2% (0.68) 82.9% (3.40)

Table 3: Antibody Population Saturation Rate. When
no agents are present, the average saturation rate is
91.1% (SEM = 0.50).

ANOVA testing confirms the trends evident by vi-
sual inspection as significant. First, the load-balancing
communication behavior does not allow the base anti-
gen to saturate the system, regardless of the agent
migration strategy employed. The cyclic agent migra-
tion strategy also prevents the base antigen string from
saturating the antibody population. This seems obvi-
ous in hindsight as the cyclic migration strategy is the
most restrictive of the migration strategies. Visita-
tion by a given agent is not equally likely at all nodes
at each time step for this migration strategy. This
restriction is so severe in fact, that the results were
comparable to runs where no agents were present in
the system. While simulations using no agents did dis-
cover this base antigen string, the simulations yielded
an average saturation rate of 91.1% (SEM = 0.50).

The discovery of antibodies that match the base anti-
gen string cannot be a result of searches in which the
base antigen is sampled from the antigen library. An-

4A one-max problem is equivalent to finding a match-
ing bit-string using an evaluation score that reports the
number (or percentage) of bits matching another pattern.

tibodies fed back to the system must meet or exceed
a feedback threshold of five bits.

In searching for strings to match samples from the anti-
gen library, each node contributes strings to the sys-
tem antibody competition that have a large number
of bits in common with the base antigen. This may
or may not be sufficient for a given antibody to sur-
vive the feedback competition and be propagated to
other nodes. However, those strings that are close to
the base antigen string in Hamming distance will also
likely score well against other antigens, if kept in the
system antibody population. This causes the system
antibody population to accumulate alleles in common
with the base antigen string. When the antibody pop-
ulation is viewed as a probability vector that repre-
sents the percentage of 0- or 1-bits at each locus over
the strings in the antibody population, this vector will
approximate the base antigen string more accurately
over time.

Eventually, an antibody matching the base antigen is
a by-product of a search for another antigen library
sample. Antibody copies of the base antigen string
will likely perform well in the feedback competitions
at each node, and chances of survival in the system
will be better than average. After surviving in the an-
tibody population for several cycles, the age weighting
guarantees future survival.

The base string is very rarely useful in exactly match-
ing any string in the antigen library (a 1 in 320 chance),
yet this string serves as a good seed string for the ge-
netic search. The discovery of the base string may or
may not be an optimal system-wide strategy for learn-
ing how best to reduce the number of trials required
to evolve an antibody that matches an antigen sam-
ple. For example, the discovery of four antibodies that
divide the antigen library into equally sized attraction
basins, based on Hamming distance, might work as
well as, or better than, a single generalist. Regardless,
the discovery of the base string is an interesting exam-
ple of local behavior that facilitates emergent global
behavior.

The best performances shown in Table 2 generally cor-
respond with complete saturation (Table 3), yet there
is not a perfect correlation. For example, the load bal-
ancing/random migration implementation performs
quite well, but does not exhibit complete saturation.
Therefore, saturation of the antibody population with
the base antigen must not be the only factor in obtain-
ing good performance.



4.2 Propagation of Information

To further explore the correlation between the propa-
gation of quality information and the efficiency of dis-
covering antibody/antigen matches, we measured the
average number of cycles required to: 1) discover the
base string, 2) propagate the base string to all nodes
after it has been discovered, and 3) saturate the sys-
tem after a copy of the base string has been seen at all
nodes. Table 4 shows these results.5

Comm. Migration Strategy
Behavior Random Directed Cyclic

Avg. Cycles to Discover Base String
Always 138.4 (24.5) 234.4 (51.7) 123.4 (19.9)

JIT 147.2 (23.6) 153.0 (26.6) 182.3 (35.7)
Load Bal 195.4 (37.2) 153.6 (32.4) 123.5 (20.9)
Avg. Additional Cycles to Circulate Base String to All Nodes
Always 36.4 (12.4) 60.4 (22.1) 818.7 ( 77.7)

JIT 35.6 (12.4) 58.8 (17.8) 1018.9 (135.1)
Load Bal 19.4 ( 4.3) 89.4 (31.5) 1278.1 (130.3)

Avg. Additional Cycles to Saturate With Base String
Always 1083.9 (154.4) 1106.6 (178.0) *3906 (0)

JIT 865.1 ( 86.8) 973.2 (107.4) *3798.5 (831.5)
Load Bal *2944.5(410.3) *2943.4 (378.5) *2013 (0)

Table 4: Average Cycles (SEM) to Discover, Circulate
and Saturate the Antibody Population.

ANOVA testing shows that there is no significant main
effect in the time taken to discover the base antigen
by any of the strategy/behavior combinations. Sur-
prisingly, the average cycles for the experimental runs
using a cyclic agent migration strategy and the always
and load-balancing communication behaviors are bet-
ter than the other strategies at discovering the base
string (but not significantly so in most cases, due to
large SEM values). The no agent strategy required, an
average of 163 cycles (SEM=19) to discover the base
string. This is comparable with most cells in Table 4.

There is a significant main effect seen in the num-
ber of cycles required to propagate the base string
to all of the nodes after it has been discovered. In
fact, it is at this stage of the simulation that those
strategy/behavior combinations that incorporate the
cyclic agent migration strategy experience a signifi-
cant disadvantage, as compared to the other strat-
egy/behavior combinations. In fact, the number of
cycles needed by the cyclic agent migration strategy
to propagate the base string to all other nodes after
discovery is comparable with having no agents in the
system. On average, the SDM runs where no agents
are employed require 1158 cycles (SEM=102) after the

5The * indicates that all 30 runs did not saturate. Av-
erage cycles reported, include only those runs that did
saturate.

initial discovery of the base string, until all nodes have
independently discovered the base string.

There is also a weak main effect that indicates that
the load-balancing behavior is slower at propagating
the base string to all nodes after discovery than either
the always or JIT communication behaviors. However,
this trend is to be treated carefully, as there is an ob-
vious exception. The random migration strategy that
incorporates the load-balancing behavior appears to
be considerably faster at propagating the base string
among all of the nodes. We performed several repeti-
tions of the complete factorial design and this was the
only occurrence of this rapid propagation of informa-
tion (while all other trends were verified).

The ANOVA tests could not be performed for the av-
erage number of cycles between complete circulation
and saturation due to the fact that all 30 experimental
runs for every strategy/behavior combination did not
saturate. However, it can be observed that the random
and directed strategies that use the load-balancing be-
havior do not propagate the base string nearly as well
as when the always and JIT communication behaviors
were employed.

4.3 Performance at Various Stages of the
Simulation

There is an obvious difference in the ability of the
strategy/behavior combinations to propagate informa-
tion (although that information does not always ap-
pear to expedite search speed). It seemed prudent
to test the hypothesis that the discovery of the base
string does in fact affect the number of trials to match
an antigen. Table 5 shows the average number of trials
(and SEM) required to match an antigen during the
stages relative to: 1) discovering the base string, 2)
propagating the base string to all nodes after the first
discovery, 3) between circulating the base to all nodes
and saturation occurring, and 4) after saturation.5

ANOVA tests show that there is indeed a significant
main effect where the discovery of the base antigen re-
duces the average number of trials required to match
a sampled antigen. This holds true for all strat-
egy/behavior combinations but could not be confirmed
for the final two stages of simulation (i.e., after cir-
culation and after saturation), since all runs did not
saturate. The cyclic migration strategies performed
consistently worse than the random and directed mi-
gration strategies, although it is not statistically sig-
nificant. Therefore, the average cycles for the cyclic
agent migration strategy between base string circula-
tion among all nodes and population saturation (Ta-
ble 4) must account for the significant performance



Comm. Migration Strategy
Behavior Random Directed Cyclic

Stage 1 - Prior to Base String Discovery
Always 380.0 (5.46) 371.8 (3.96) 392.5 (9.34)

JIT 375.1 (4.60) 381.8 (4.79) 373.7 (2.67)
Load Bal 371.5 (2.98) 390.0 (9.98) 385.7 (5.63)
Stage 2 - Between Base String Discovery & Circulation
Always 346.7 (2.71) 344.6 (2.59) 338.8 (2.51)

JIT 350.6 (2.95) 355.9 (3.19) 337.9 (2.60)
Load Bal 346.3 (2.72) 353.4 (3.18) 339.2 (2.19)
Stage 3 - Between Base String Circulation & Saturation
Always *291.5 (2.70) 291.0 (2.77) *278.3 (0.0)

JIT 290.5 (1.92) 292.7 (2.20) *279.1 (0.7)
Load Bal *282.4 (2.66) *284.1 (1.33) *282.1 (0.0)

Stage 4 - After Saturation
Always *278.2 (0.33) 278.3 (0.29) N/A

JIT 280.8 (0.28) 280.2 (0.30) N/A
Load Bal *276.0 (0.47) *275.3 (0.61) *274.6 (0.0)

Table 5: Average Trials to Match Antigen Samples
During Critical Stages of Simulation.

differences observed in Table 5. This is also consistent
with the infrequent saturation rates exhibited by the
cyclic migration strategy.

Figure 4 shows the number of trials required to match
an antigen for the first 1,500 samples of the 5,000 cy-
cle simulation at one of the four nodes for a single
representative run. Trials are shown on the Y-axis
while cycles are shown on the X-axis. The open cir-
cles indicate the trials required to match an antigen
during a particular cycle, and the black line represents
the running average (lag = 100). The base string is
first discovered at cycle 259. The trials to discover a
match for the antigen samples begins to decrease at
this point. The running average reaches a low of ap-
proximately 250 trials by cycle 410, where the system
antibody population saturates with the base string.

4.3.1 The Effects of Seeding Genetic Search
in the SDM Simulation

An unusual behavior observed in Figure 4 is the occur-
rence of searches that expend two to three times the
normal number of trials to find an antibody/antigen
match. This is indicative of seeding the initial popu-
lation for the CHC search in a biased manner, risking
the incidence where the correct allele is not present
in any member of the initial population. Since CHC
does not employ mutation, except at divergences, the
search will converge to an antibody string that does
not match the antigen sample, and hence cataclysmic
mutation will be performed to restart the search. Such
an event can significantly impact the number of trials
necessary to find the matching string.
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Figure 4: Search Profile At A Single Node For First
1,500 Cycles.

This phenomenon occurs here due to the seeding pro-
cedure. Each genetic search is started by seeding the
population with three-bit mutations of the antibod-
ies available in the input queue, where each antibody
in the input queue seeds an equal fraction of the ge-
netic population. The expected difference between the
base string and an antigen sample is five bits. Hence,
the expected difference between antibodies that are fed
back from the genetic search (i.e., at least Hamming
distance five from the antigen just matched) and a
another antigen sample is ten bits. Therefore, the oc-
currence of restarts is not unexpected. It is important
then, that genetic meta-search was used to discover
the seeded mutation value (i.e., three bits) as opposed
to arbitrary determination.

5 Conclusions

Evidence from this study illustrates that seeding the
initial population with a single “generalist” pattern
can expedite genetic search for other related patterns.
In this context, a generalist pattern can form an ef-
fective sparse representation for a library of patterns.
This SDM learns that a good strategy for reducing
the work necessary to match antigen library samples
is to evolve and propagate antibodies matching the
base antigen string. Performance analysis reveals that
providing feedback from the final population used in
genetic search is sufficient to discover such a general-
ist, even when the genetic material does not contain
precise matches for the antigen samples.

It is clear that the use of mobile agents to circulate ge-
netic material between nodes expedites the discovery
and propagation of the base antigen string. Without
agents to circulate the information, each node must



discover the base string independently. The number
of trials required to match an antigen is significantly
reduced when the base antigen is discovered and its
representation (antibody copies) is shared in the sys-
tem via mobile agents. This is evident from com-
paring the performances of the simulations using ran-
dom and directed migration strategies with the perfor-
mances of simulations implementing cyclic migration,
where communication is hindered, or those containing
no agents, where communication is non-existent. Sim-
ulations using the cyclic agent migration strategy are
unable to propagate the base string throughout the
system and do not consistently saturate the antibody
population.

Additional analysis of system behavior provides insight
into the operational dynamics of each agent commu-
nication behavior. Although not impacting total tri-
als, the load balancing behavior did not saturate the
population in all instances. The relatively large num-
ber of cycles required for this communication behav-
ior to saturate the population with copies of the anti-
body matching the base antigen (Table 4) gives rise to
the hypothesis that agents implementing this behav-
ior may be hiding quality material while “looking” for
non-busy nodes.

On average, the JIT communication behavior provides
more antibodies to begin each search. This behavior
did in fact expedite the antibody population satura-
tion, as evident from the number of cycles to satu-
rate the population with the base string (Table 4),
although it did not seem to significantly impact the
performance metric used in the experiments. Exam-
ining metrics beyond total average trials suggests that
additional experiments run with different performance
criteria (such as reducing the number of cycles per
node) could very well serve as a significant discrimina-
tor among communication behaviors.

The directed agent migration strategy was designed to
promote maximum antibody diversity in the system.
This objective was not realized with respect to im-
proved genetic search performance (Table 2). In fact,
directed migration did not perform quite as well as ran-
dom migration during several simulation stages (Ta-
bles 4 and 5). We surmise that near real-time knowl-
edge (as opposed to real-time) contained in the most
recently sent queue mitigates the anticipated advan-
tage of antibody diversity promotion. This is a result
of the decentralized implementation, where an instan-
taneous global snapshot of node state is not available.

Thorough study of agent behaviors and migration
strategies is a valuable performance analysis exercise.
This investigation illustrates that various communica-

tion implementations can yield surprising results. A
restrictive agent strategy (cyclic migration), conducive
to uneven visitation, performed worse than simulations
using no agents. Agent implementations employing
more complex strategies and behaviors (such as those
that are based on current system state or require coor-
dination) are not always performance leaders. Our re-
sults indicate that a greater degree of agent autonomy,
where agents make simple, independent decisions, fa-
cilitates expedited genetic search that improves sparse
distributed memory performance.
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