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Abstract

A novel approach to obtaining a tight link-
age between genes in a genetic algorithm is
described, and a new system based on that
approach, LINKGAUGE, is proposed. Ex-
periments presented draw a comparison be-
tween the standard messy genetic algorithm
and LINKGAUGE, and show that the latter
avoids deceptive traps and early convergence,
with minimal computational cost. The scal-
ability potential of the new approach is il-
lustrated with results for two hard deceptive
problems.

1 INTRODUCTION

Since they were �rst introduced, genetic algorithms
(Holland, 1975; Goldberg, 1989) have been considered
good all-round general problem solvers, and have since
been applied to a variety of problems, which show their

exibility and adaptability. In the standard approach,
each individual consists of a sequence of values, and
operators are provided to exchange and combine those
values, so that building blocks (short, highly �t se-
quences of values) are constructed, and later combined
to form correct solutions. However, there is no mech-
anism to ensure a tight linkage between the values of
those sequences (Goldberg, Deb, Korb, 1991); when
applying standard genetic operators, this leads to an
easy disruption of building blocks, rather than their
maintenance (Harik, 1997), and therefore to an inabil-
ity to scale-up to more diÆcult problems. Further-
more, an individual's genes are position dependent,
in that a given locus on the genome always codes for
the corresponding bit position in the phenotype. This
can make crossover even less likely to maintain useful
building blocks, especially if they represent geograph-
ically distant positions in the phenotype.

According to (Goldberg, Deb, Thierens, 1993), a suc-
cessful algorithm should not only concentrate on the
production of building blocks, but also on their preser-
vation and exchange between individuals.

In recent years, much work has been done on achieving
a tighter linkage between genes, and a family of algo-
rithms called competent GAs has emerged (Goldberg,

2001); these are mostly based on the idea of genes cod-
ing both the position and the value of each element of
an individual. These algorithms have proven to be
successful when applied to hard problems, such as de-
ceptive linkage problems (Goldberg, Korb, Deb, 1989;
Goldberg, Deb, Kargupta, Harik, 1993; Harik, 1997;
Pelikan, Goldberg, Cant�u-Paz, 1999).

In this paper, we present a new system, LINKGAUGE,
which tackles the class of deceptive linkage problems
by using a simple yet e�ective algorithm. This sys-
tem is an extension of GAUGE (Genetic Algorithms
Using Grammatical Evolution), a system described in
(Ryan, Nicolau, O'Neill, 2002) and based on the idea
of encoding a position/value couple on each gene, to
create a position-independent algorithm; GAUGE, in
turn, employs many of the ideas behind Grammati-
cal Evolution (Ryan, Collins, O'Neill, 1998; O'Neill,
Ryan, 2001; O'Neill, 2001). So far, GAUGE has been
successfully applied to both standard and deceptive
ordering problems.

Our aim when running the experiments described in
this paper was to test the aptitude of LINKGAUGE
to solve linkage problems, and its scalability when pre-
sented with more diÆcult problems; to do so, we ap-
plied the system to two hard deceptive linkage prob-
lems, and compare its performance to the standard
messy Genetic Algorithm (Deb, Goldberg, 1991). By
extending GAUGE's mapping mechanism, we have
built a new 
exible approach to this kind of prob-
lem; our results show by comparison that it �nds a
solution faster, scales better to harder versions of the



problem, and requires far less hardware resources than
the messy GA1.

This paper is organized as follows: we start by brie
y
introducing Grammatical Evolution in section 2, fol-
lowed by an explanation of how GAUGE works (sec-
tion 3) and its extension into LINKGAUGE (section
4). In section 5 we present the problems used for our
experiments, and in section 6 we present our results.

Finally an analysis of those results is made and con-
clusions are drawn in section 7, followed by the outline
of some future directions of research in section 8.

2 GRAMMATICAL EVOLUTION

GAUGE is based upon many of the techniques imple-
mented in Grammatical Evolution, so we start with an
introduction to this system, to highlight the similari-
ties and di�erences between the two systems.

Grammatical Evolution (GE) is an evolutionary al-
gorithm approach to automatic program generation,
which evolves strings of binary values, and uses a BNF
(Backus-Naur Form) grammar to map the strings into
programs. This mapping involves transforming the bi-
nary individual into a string of integer values, and then
using those values to choose transformations from the
given grammar, so that a start symbol is mapped into
a syntactically correct program.

This process is based on the idea of a genotype to phe-
notype mapping: an individual comprised of binary
values (genotype) is evolved, and, before being eval-
uated, is subjected to a mapping process to create a
program (phenotype), which is then evaluated by the
�tness function. This creates two distinct spaces, a
search space and a solution space.

The degenerate genetic code employed in GE also plays
a role in the performance of the system, as seen in
(O'Neill, Ryan, 1999); by using the mod function to
normalize each integer to a �nite number of produc-
tion rules, di�erent integer values can be used to select
the same rule. The genotype can therefore be modi-
�ed without necessarily a�ecting the phenotype, in a
process known as neutral mutations (Kimura, 1983;
Banzhaf, 1994).

Finally, the functionality of the values in the integer
string is dependent on the values preceding it, as those
determine which non-terminal symbols remain to be
mapped. This creates a linkage between each gene

1Due to its variable length nature, some messy GA
runs required over 1GB of memory to store a popula-
tion, comparing to less than 1MB for the most demanding
LINKGAUGE runs.
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Figure 1: Genotype to Phenotype mapping

on the chromosome and all those which precede it,
and helps the individual in preserving good building
blocks during the evolution process, where it is sub-
jected to the harsh e�ects of operators like crossover.
This has been termed the \Ripple E�ect" (Keijzer,
Ryan, O'Neill, Cattolico, Babovic, 2001).

3 GAUGE

GAUGE is based on many of the same ideas behind
the implementation of GE. It uses a genotype to phe-
notype mapping in much the same fashion: an indi-
vidual is composed of a binary sequence (genotype)
which, once ready for evaluation, is mapped onto a
string of integer values, which are decoded as a col-
lection of (position, value) pairs to �nally build a new

binary string (the phenotype), ready to be evaluated.
Figure 1 illustrates this process, and compares it to
GE's analogy to molecular biology.

Another feature of GE upon which GAUGE is based is
that the function of a gene in an individual depends on
the value of the genes preceding it; this creates a tight
linkage between adjacent genes in that individual.

Since the position and value of each bit of the pheno-
type string are expressed on each gene, geographically
disparate values of the phenotype can be grouped to-
gether on the genotype. This leads to the creation of
tight building blocks at the start of the genome that
can be gradually grown by the evolutionary process,
in a process we call competitive building blocks.



Work by Bean (Bean, 1994) with the Random Keys
Genetic Algorithm (RKGA) hinted that a tight link-
age between genes would result in both a smoother

transition between parents and o�spring when genetic
operators are applied, and an error-free mapping to a
sequence of ordinal numbers.

3.1 EXAMPLE GAUGE MAPPING

In this subsection we take a look at how an individual
is created and evaluated using GAUGE. Let us take as
an example individual the following binary sequence:

0110 0111 0001 0100 0111 1001 0010 0011

The �rst step is to map it onto an integer string. For
the purpose of brevity, we will use four bits to encode
each integer (rather than the standard eight used in
the actual GAUGE code), and therefore end up with:

6 7 1 4 7 9 2 3

This string will be evaluated as a sequence of four
(position, value) pairs, and will be used to �ll in a
string of four bits. We therefore take the �rst position,
6, and map it onto the number of available positions in
the �nal string (i.e., 4), by calculating the remainder
of the division of 6 by 4 (6 % 4), giving the value 2

(i.e., the third position in the phenotype string). We
use the same mapping process to transform the value
for that position, 7, into a binary value: 7 % 2 = 1.
This is the state of the �nal array after the above
steps are executed:

? ? 1 ?

By taking the next pair, (1,4), we again map the
position onto the number of available positions, in
this case 3, which gives us 1 % 3 = 1 (second free
position), and normalize the value 4 onto a binary
value, which gives us 4 % 2 = 0 :

? 0 1 ?

With the next pair, (7,9), we map the position 7 onto
the number of available positions, 2, by calculating
7 % 2 = 1 (second free position, which is the last
position in the string), and the value 9 onto a binary
value, 9 % 2 = 1:

? 0 1 1

Finally, with the last pair, we map the position
2 onto the number of remaining places, in this

case 1, giving the value 2 % 1 = 0, and place the
value 3 % 2 = 1 in it. Note that the last position
will always be mapped onto value 0, since there

is only one free position left in the �nal individual.
Our phenotype, now ready for evaluation, is the string:

1 0 1 1

3.2 EARLY RESULTS

In (Ryan, Nicolau, O'Neill, 2002), GAUGE was ap-
plied to both a standard genetic algorithm problem
and a deceptive ordering problem. On the former,
its performance was as good as that of a simple ge-
netic algorithm, showing that its overhead processing
(namely its mapping process) does not re
ect in a loss
of performance in simple problems, while on the latter,
its (position,value) speci�cation was shown to provide
the 
exibility of swapping elements in a solution, help-
ing the system to avoid local optima. The interested
reader is referred to the mentioned paper.

4 LINKGAUGE

In this section the LINKGAUGE system is presented.
The idea is to extend the tight linkage between the
gene positions, as seen in GAUGE, to the gene values
themselves. This is achieved by extending GAUGE's
mapping process: every time a value is to be placed on
the phenotype string, it is calculated by adding all the
previous value �elds in each (position, value) pair and
then normalizing the result over the range of accepted
values. The value each gene will provide can therefore
be calculated by the formula

(

nX

i=0

xi)%v

where

n = order of the gene (i.e. gene 0, gene 1, etc)
xi = number in value �eld for gene i

v = value to normalize (for binary strings, 2 is used)

It should be noted that, theoretically, any function
could be used to introduce dependency between the
values; the suitability of other functions will be the
subject of further research.

4.1 EXAMPLE LINKGAUGE MAPPING

Following the GAUGE mapping example, the pair
(6,7) will generate the same string as before:

? ? 1 ?



In the next pair, however, the value is calculated by
(7+4) % 2 (i.e., the cumulative total of the previous
value �elds normalized over the range of binary num-

bers), giving the value 1. The position calculation is
the same as before (1 % 3 = 1), so we end up with
the string:

? 1 1 ?

In the next pair, the value will be calculated by
(7+4+9) % 1, giving the value 0, and the �nal value
is calculated by (7+4+9+3) % 1 = 1. The �nal string
will be:

1 1 1 0

The objective of this mapping is to create a tight link-
age between the value of the genes. The previously
mentioned "Ripple E�ect" is therefore extended to the
values within the genes themselves.

5 DECEPTIVE PROBLEMS

In this section we introduce the two deceptive prob-
lems which we used on our experiments. These were
used to test the performance of LINKGAUGE, and to
compare it to the messy GA, using the mGA code
available in the IlliGAL web site and described in
(Deb, Goldberg, 1991). We chose to compare our
system to the messy GA as the latter is the origin
of most modern competent GAs, introducing the con-
cepts of primordial and juxtapositional phases, over-
and under-speci�cation, and competitive templates.
Future work should include comparisons to other more
recent competent GAs.

5.1 ORDER-THREE DECEPTIVE

PROBLEM

The order-three deceptive problem was the �rst prob-
lem reported using the original mGA, in (Goldberg,
Korb, Deb, 1989). In the original problem, ten order-
three deceptive sub-functions are concatenated to-
gether to form a 30-bit length problem. We have ex-
tended the problem, and used lengths of 30, 45, 60, 75,
90 and 105 bits.

Each sub-function has a global optimum (000) and
a deceptive local optimum (111). The objective is
to create a series of local optima that will attempt
to keep the systems from reaching the one and only
global optimum; on the 105-bit problem, this means
there are 2105 (4.05e+31) possible solutions, with 235

(3.44e+10) optima (local and global optimum com-
binations within each of the sub-functions), of which
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Figure 2: Order-Five Deceptive Problem Unitation
Graph.

only one is the global solution for the entire string.
Table 1 shows the function values for every 3-bit com-
bination.

Table 1: Order-Three Sub-function Values.

String Value String Value

000 28 100 14
001 26 101 0
010 22 110 0
011 0 111 30

5.2 ORDER-FIVE DECEPTIVE PROBLEM

In (Goldberg, Deb, Kargupta, Harik, 1993), a
performance comparison between the original messy
GA and the Fast Messy Genetic Algorithm is made, by
using both the order-three sub-function and an order-
�ve sub-function; we used the same problems in our
tests.

In this problem, substrings of �ve bits are con-
catenated together, with the global optimum being

(11111) and the local optimum (00000). Figure 2
shows this problem in terms of a unitation graph, i.e.
the number of 1s in a sub-function determines its �t-
ness. This function is fully deceptive, as can be seen
in (Deb, Goldberg, 1994).

6 EXPERIMENTS

In this section we present the results obtained on the
two described problems, using both LINKGAUGE and
the original messy GA. We start by describing the ex-
perimental setup used on each system, follow with an
overview of the results obtained in our experiments,
and conclude this section with a discussion of those
results.
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Figure 3: Order-Three Results For MessyGA; No Re-
sults Were Obtained With String Lengths Over 60
Bits.

6.1 EXPERIMENTAL SETUP

We used a standard con�guration with LINKGAUGE
for this problem. With a population of 800 individ-
uals, the replacement strategy used was steady-state,
and the selection routine was roulette-wheel; proba-
bility of crossover was set to 0.9, and mutation was
set to 0.01, which are the standard Genetic Program-
ming (Koza, 1992) values used in GE; no attempt was
made to optimize these values. The maximum number
of �tness function calls was set to 1.6e+04, on both
systems.

Table 2: Tested combinations of settings for the messy
GA algorithm.

Parameters Set 1 Set 2 Set 3 Set 4

Maximum era 3 3 4 3
Prob. cut 0.02 0.02 0.02 0.02

Prob. splice 1.0 1.0 1.0 1.0
Prob. allelic mut. 0.0 0.0 0.0 0.0
Prob. genic mut. 0.0 0.0 0.0 0.0

Thresholding no yes yes yes
Tie-breaking no yes yes yes

Reduced popsize no yes yes yes
Extra members no no no no

Copies 5,1,1 5,1,1 5,1,1,1 5,1,1
Total generations 20 20 15 100
Juxtapos. popsize 250 250 250 100
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Figure 4: Order-Three Results For LINKGAUGE.

In the messy GA, a range of di�erent sets of param-
eters were tried as seen in Table 2; a detailed expla-
nation of these settings can be found in (Goldberg,
Korb, Deb, 1989; Goldberg, Deb, Korb, 1991). Set-
tings 1 (the standard messy GA values) and 2 behaved
well with the 30-bit string problem, but gave very poor
results with longer string lengths, and were therefore
discarded; settings 3 and 4 gave the improved results,
with setting 3 achieving the best performance on the
harder problems, and so was chosen for our compari-
son.

6.2 RESULTS

Both systems were applied to each of the problems
over 100 runs, and the graphs presented here show the
cumulative number of successful runs plotted against
the number of �tness evaluations required.

6.2.1 Order-Three Problem

Results for the order-three problem, shown in Fig-
ures 3 and 4, show the messy GA achieving a su-
perior performance with small string lengths. How-
ever, as the string length gets longer, it can be seen
that LINKGAUGE scales better to the problem; with
lengths of 75-bit, 90-bit and 105-bit, all messy GA
runs failed to �nd one instance of the global optimum
(a string composed of all 1s), and therefore they are
not plotted in the graph presented.
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Figure 5: Order-Five Results for LINKGAUGE.

6.2.2 Order-Five Problem

According to results published in (Goldberg, Deb,
Kargupta, Harik, 1993), the original messy GA with
standard parameter settings would need a number
close to 1e+08 function evaluations to �nd an instance
of a global solution for the order-�ve problem, with
a 50-bit string. It is therefore no wonder that in our
tests, the messy GA failed to �nd any instance of the
global solution over 1.6e+04 �tness function calls2.

The results obtained with LINKGAUGE (shown in
Figure 5) are, however, similar to those obtained in
the order-three problem, which suggests that the extra
deceptiveness of order-�ve problems doesn't have as
strong an impact on its performance as one might ex-
pect. Over the allowed number of �tness evaluations,

only in the 105-bit problem did LINKGAUGE not �nd
any solution. It should be mentioned, however, that in
this class of problem LINKGAUGE worked better with
a population size of 1600 individuals using the same
number of �tness function calls (and indeed found solu-
tions for the 105-bit problem), which tends to suggest
that a better trade-o� between number of generations
versus population size can be found; this could, how-
ever, be looked upon as parameter optimization, and
therefore those results are not reported here in detail.

2It also increased its hardware requirements exponen-
tially; on one speci�c run, to specify the contents of a 30-bit
string, the average length of an individual was over 22000
genes.

6.3 ANALYSIS

On the standard order-three problem, a direct compar-
ison with the messy GA shows LINKGAUGE's ability
to adapt to an increasing problem diÆculty; although
with smaller strings the messy GA is faster at �nding
a solution (with any of the parameter sets tested), it
does not present the scalability of LINKGAUGE when
the problem gets harder.

On the order-�ve deceptive problem, the lack of re-
sults for the messy GA, and the only slight loss of
performance of LINKGAUGE, underline the scale-up
properties of the latter. Results obtained (but not re-
ported, for the sake of clarity) have shown that with
larger population sizes and the same number of �tness
evaluations, LINKGAUGE's performance in this prob-
lem increased, which leads to some optimism as to the
system's ability to avoid early convergence.

7 CONCLUSIONS

We have presented a new genetic algorithm based sys-
tem, LINKGAUGE, for the purpose of solving hard
deceptive linkage problems. The results reported show
an interesting scale-up property for our system, which
is remarkable given that it is based on a simple genetic
algorithm; no speci�c genetic operators have been in-
troduced, and parameters such as crossover and mu-
tation rate have been set to standard values. This is
not the case of the system compared to, messy GA,
which has a speci�c implementation that slightly di-
verges from the original implementation ideas of ge-
netic algorithms: although a good approach in itself,
this does make the algorithm harder to use and under-
stand, and parameter tuning was required to achieve
a good performance. It should also be mentioned that
LINKGAUGE's �xed-length, �xed-population size na-
ture results in an algorithm that has very little hard-
ware and over-head processing requirements, espe-
cially when compared to the original messy GA.

8 FUTURE WORK

Future lines of research include numerical and sta-
tistical analysis of the data presented, to e�ectively
measure the performance and the degree of scala-
bility of the system. Also, a rigorous comparison
should be made between the system presented and
other more recent linkage learning genetic algorithms
(Goldberg, Deb, Kargupta, Harik, 1993; Harik, 1997),
to highlight similarities and di�erences, and advan-
tages/disadvantages.
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