
Exploring a Two-Market Genetic Algorithm

Steven O. Kimbrough∗

Ming Lu
University of Pennsylvania

Operations & Information Man. Dept.
Philadelphia, PA 19104

David Harlan Wood
CIS Dept.

University of Delaware
Newark, DE 19716

D.J. Wu
LeBow College of Business

Drexel University
Philadelphia, PA 19104

Abstract

The ordinary genetic algorithm may be
thought of as conducting a single market in
which solutions compete for success, as mea-
sured by the fitness funtion. We introduce
a two-market genetic algorithm, consisting
of two phases, each of which is an ordinary
single-market genetic algorithm. The two-
market genetic algorithm has a natural inter-
pretation as a method of solving constrained
optimization problems. Phase 1 is optimality
improvement; it works on the problem with-
out regard to constraints. Phase 2 is feasi-
bility improvement; it works on the existing
population of solutions and drives it towards
feasibility. We tested this concept on 14 stan-
dard knapsack test problems for genetic al-
gorithms, with excellent results. The paper
concludes with discussions of why the two-
market genetic algorithm is successful and of
how this work can be extended.

1 Motivation & Experimental Setup

Genetic algorithms (GAs), and more generally evolu-
tionary computation, have much to recommend them
as heuristics for unconstrained optimization. These
problems are often otherwise intractable and experi-
ence has yielded broadly successful results. The case
of constrained optimization is more problematic for
evolutionary computation and GAs in particular. In
spite of considerable attention paid to the matter (see
[2, 5, 6] for excellent reviews), there is no clearly
best approach to encoding constrained optimization
problems as GAs. Techniques are available and used,
largely based on penalty functions. Still, this impor-
tant class of problems remains somewhat recalcitrant.

We explore a conceptually new approach to con-
strained optimization, at least in the GA context.1

We interpret a constrained optimization problem as
a market between two players adapting as GAs: the
objective function player and the constraint player.
We explore how their markets behave (and how good
the solutions are they find), compared to standard GA
approaches for handling constraints. We use 14 well-
studied knapsack test problems for our benchmarking
[8]. Although the knapsack is perhaps the simplest of
integer constrained optimization problems, it is NP-
complete. Thus, we may hope its lessons apply to
other problems of interest.

1.1 Penalty Functions & Fitness Evaluation

Given a solution, ~s, to a constrained optimization
problem, its absolute fitness, W (~s), in the presence of
penalties for constraint violation is commonly (“stan-
dardly”) measured as:

W (~s) = Z(~s)− P (~s) (1)

where Z(~s) is the objective function value produced
by ~s,2 and P (~s) is the total penalty (if any) associ-
ated with constraint violations by ~s. We employed
two widely-used penalty functions in our investiga-
tions. Both assume that constraint i has the form:∑n

j=1 ai,jxj ≤ bi. (The xjs are the decision variables.)

sum-of-violations. With the αis as weights P (~s) =∑m
i=1 αi max{0,

(∑n
j=1 ai,jxj − bi

)
} (We set αi = 1.)

violation-product. P (~s) = s · max{ci}, where s
is the number of violated constraints and max{ci} is
the largest objective function coefficient. This is the
method used by Khuri [4] and others.

1We note a certain analogy between large-scale de-
composition methods in optimization theory and our two-
market GA.

2Or a linear transformation for computational conve-
nience.

1.2 The Two-Market GA

In a GA the individuals in the population compete
for success in a single market, driven by the fitness
function and the consequences of the genetic opera-
tions. In our two-market GA (for constrained opti-
mization problems), two single-market GAs alternate
in acting upon a single (evolving) population of so-
lutions. A single two-market generation consists of a
phase 1 single-market treatment, “optimality improve-
ment”, followed by a phase 2 single-market treatment,
“feasibility improvement”.

During phase 1 of the two-market GA, a single-market
(standard) GA is conducted using only the uncon-
strained objective function, Z, as the fitness func-
tion. Upon completion of phase 1, phase 2 commences.
Phase 2 feasibility improvement uses a single-market
GA whose fitness function is a penalized version of the
problem’s constraint set. All solutions meeting the
constraint set are given an absolute fitness of 0. Any
solution, ~s, violating one or more constraints receives
an absolute fitness of −P (~s), where P is the penalty
function in use. In our experiments we investigated
two such functions, as indicated above: (a) sum-of-
violations (b) violation-product.3

In our experiments, one two-market generation con-
sists of one optimality improvement generation fol-
lowed by one feasibility improvement generation.4

Specifically, our experiments ran for 500 generations.
Our two-market GAs ran 250 phase 1 generations and
250 phase 2 generations. In contrast, we ran stan-
dard GAs (used for comparison) for the full 500 gen-
erations. Thus, the number of fitness evaluations were
equal between our experimental two-market GAs and
the standard GAs.

1.3 Benchmark Problems

We investigated 14 knapsack test problems from a
standard GA source site [8]. The problems and their
basic characteristics are indicated in Tables 1 and 2.
We conducted experiments on the 14 knapsack test
problems with 5 GAs: ksR, ks, ks2, ksc, and ksc2. ksR
is a standard, one-market GA, using a repair approach
to the 14 knapsack problems; it is present mainly for
comparison purposes. The remaining four cover the

3Clearly, many variants, indeed convex combinations,
of this two-market approach are possible and worth inves-
tigating. Each phase might take into account some con-
straints, the constraint set might be parcelled out to several
phases, and so on.

4It would be interesting to investigate whether it pays to
run more than one one-market generation per two-market
generation.

Problem Number of Number of Optimal
Name Variables Constraints Value
hp2 35 4 3186
pb6 40 30 776
pb7 37 30 1035
pet7 50 5 16537
sento1 60 30 7772
sento2 60 30 8722
weing7 105 2 1095445
weing8 105 2 624319
weish12 50 5 6339
weish17 60 5 8633
weish21 70 5 9074
weish22 80 5 8947
weish25 80 5 9939
weish29 90 5 9410

Table 1: Test Problems

four combinations of one- vs. two-market GA, and
sum-of-violations vs. violation-product penalties, as
follows:

sum-of-violations violation-product
one-market ks ksc
two-market ks2 ksc2

Thus, the ks-ks2 and ksc-ksc2 pairs are directly com-
parable because they use the same penalty functions.

We experimented with population sizes of 50, 500,
and 5000. Results were comparable; we focus here
on population size 5000. The number of generations
was 250×2 for the two-market GAs, and 500×1 for the
standard one-market GAs (which are used for compar-
ison). Single-point crossover was used with a rate of
0.6, and the mutation rate was 0.1. (Sensitivity runs
did not raise any anomalies.)

1.4 Initialization of Populations

We did use an innovative approach to initializing the
populations. Commonly, populations are initialized
with 1s and 0s by picking a probability that a site is
a 1 and drawing random numbers to make the spe-
cific assignments. Khuri et al. [12] call this the biased
approach to initialization. One has to wonder how
the choice of that probability affects the outcomes, es-
pecially when different methods are being compared.
We note that in the weing8 problem, Khuri et al. [12]
have to use a biased random initialization of the pop-
ulation such that the probability of a zero at a site
is 0.95. This allows, they discovered empirically, the
initial population to have enough feasible solutions for

their algorithm to work. The feasible region in this
problem is extremely sparse. This biased approach in-
troduces two concerns. First, the biased population
may favor searching only initially and may lead to a
sub-optimal solution. A second concern is that choos-
ing the right probability is not trivial.

We introduce an alternate, non-empirical method of
randomly initializing a GA’s population. Khuri et al.
claim the purpose of the biased initial population is to
make sure the initial population has feasible solutions.
Our alternative method for population initialization is
very likely to have feasible solutions with large popu-
lation size.5 Our non-empirical procedure to generate
the initial population is given in Figure 0.

Set incr, popsize; Prob=0; popsofar=0;
Do until popsofar==popsize {

Produce one solution based on Prob;
Put the solution into the population;
popsofar++; Prob=Prob+incr;
If Prob > 1, Prob=incr;

}//End of Do until we reach the population size

Figure 0: Procedure to generate an initial population.
Prob, probability of a 1 bit in a solution; incr, small
number to increment Prob for each solution; popsize,
total size of population; popsofar, number of solu-
tions generated. In our experiments, incr = (# of
variables)−1.

2 Results

Our results for populations of 5000 are summarized
in Table 2. These data are qualitatively similar to
those we got for populations of 50 and 500, except that
there is a general trend, as expected, towards better
solutions with larger populations.

We draw the reader’s attention to Table 2 as follows.
Column 1 reports the results of ksR, a single-market
(standard) GA using repair to maintain a population
of feasible solutions. ksR is useful for comparison pur-
poses, but its computational cost was at least an order
of magnitude greater than the other 4 methods.

We shall focus on columns 2-5. Columns 2 and 3 are
directly comparable, as are columns 4 and 5. Columns

5Our procedure generates an all-0 solution, which is cer-
tain to be feasible in the case of knapsack. The larger point
is that if initializing a population with a constant value
for Prob will yield feasible solutions in the neighborhood
of some felicitous value, then our procedure will automati-
cally produce some initial solutions with Prob set near that
value. Further research is required to ascertain the value of
our method; it certainly worked well in the present cases.

2 and 3 report means and standard deviations for runs
using a penalty function based on the sum of the vio-
lations of the constraints. Column 2 is the standard,
single-market GA; column 3 is the two-market GA.
Columns 4 and 5 report means and standard devia-
tions for runs using a penalty function based on the
number of constraint violations times the maximum
objective function coefficient. The means and stan-
dard deviations are for the best feasible solution in
the 500th generation, across 5 runs using differently-
seeded random number streams.

Examination of Table 2 reveals a general pattern: As
we move from columns 2 to 3, and from 4 to 5, the
means increase and the standard deviations decrease.
That is, the two-market GAs typically find (on aver-
age, across 5 runs) a better feasible solution and do
so with a lower variance. (A standard deviation of 0
indicates that in all 5 runs the best solution in the last
generation was the same.) The comparison is summa-
rized in column 0, with the +/-/M notation. Of the
14 problems, in just two cases—pb6 and pb7—the two
two-market GAs did (slightly) worse than the two one-
market GAs. In one case—weing7—the results were
mixed: on one regime of constraint violation the two-
market GA did better and on the other it did worse,
albeit just slightly so. (We also note that in hp2, ksc
and ksc2 both find the optimal solution. Since ks2 does
significantly better than ks, we award the two-market
GA the +.) Finally, in 5 of 14 cases the two-market GA
did substantially better (++) than the one-market.

Even though it is not possible to have a random sam-
ple of knapsack problems, statistical-style reasoning
nonetheless offers some insight.6 We can take the null
hypothesis as stating that the two-market GA should
get a + as often as the one-market GA. Charitably,
we credit the M to the one-market GA, giving it a to-
tal of 3 victories in 14 trials. If the null hypothesis is
true, the probability of getting 3 or fewer successes in

14 trials is
∑3

x=0

(
14
x

) (
1
2

)14 = 0.029 which is bet-

ter than the generally accepted standard of 5%. That
there should be 5 of 14 cases highly favorable to the
two-market GA and 0 of 14 similarly favorable to the
one-market GA is highly improbable, if the null hy-
pothesis is true.

We note further that there are 3 smaller problems—
hp2, pb6 and pb7—having 35, 40 and 37 variables re-
spectively. These are the ones on which the one-market
GA did generally better, although the differences in
its favor are not great. The other 11 problems had

6For the record, we are not censoring any of our results.
We examined all and only the 14 problems reported here.

between 50 and 105 variables. Among these problems,
the two-market GAs did substantially better on 5, and
clearly better on 5. On one, there was a tie.7

Thus, for these knapsack problems it appears that the
two two-market GA is definitely superior to its two
one-market analogs.8 We do want to note, however,
that four problems stand out in having larger num-
bers of constraints. On two of these—pb6 and pb7—
the standard one-market GA did better, and on two—
sento1 and sento2—the two-market GA did better.
One explanation (cf. discussion below) is that what
matters is how tightly the problem is constrained, not
how many constraints it has. Perhaps it is easy to
find feasible solutions for pb6 and pb7, and harder for
sento1 and sento2. At this point, conjecture would
be premature. We leave the issue for future research.

3 Discussion

What might explain why the two-market GA does so
much better than the standard GAs, especially on the
more complex problems (at least those with a higher
number of variables)? A full answer requires both an-
alytic and empirical work, which we are conducting. A
conjecture, however, is worth discussing. The intuition
may be explained as follows.

Recall from Expression (1) that given a solution, ~s, to
a constrained optimization problem, its absolute fit-
ness, W (~s), in the presence of penalties for constraint
violation is: W (~s) = Z(~s) − P (~s), where Z(~s) is the
objective function value produced by ~s, and P (~s) is
the total penalty (if any) associated with constraint
violation by ~s.

We discuss three cases. They are distinguished by their
positions with regard to what we shall call the (feasi-
ble) frontier. This is the border in fitness space be-
tween the feasible and infeasible regions.

7Even there, ks2 does better than ks (cf. the standard
deviations), while the mean for ksc2 divided by the mean
for ksc is: 1094409

1094677
= 0.999755. Perhaps we are too generous

in crediting the one-market GA with a victory.
8We note that Khuri et al. [4], using a penalty regime

comparable to ksc, report results for sento1, sento2 and
weing7 that are very close to those we report in Table 2.
Their result for weing8 is 613383. They were forced to re-
sort to a biased initialization to achieve this, however. “In
the case of the [weing8] problem a biased random initializa-
tion of the population . . . is used such that the probability
to generate a zero bit is 0.95. This simple but elegant so-
lution makes the problem more amenable to our genetic
algorithm approach.” And even simpler and more elegant
would be to consult an Oracle for the right answer.

3.1 Case 1: Feasible and Far from Frontier

First, all members of our population are feasible and
far from the (feasible) frontier. Here, all penalties will
be zero and a GA will favor—in the special case of the
knapsack—adding items to the knapsack having high
objective function coefficients, regardless of how much
of the constrained resources they consume. (The point
is generally valid, beyond just the knapsack problem.)
In this situation, the penalty functions do not come
into play; the standard GA (with penalties) becomes
simply a GA; and the two-market GA becomes a slower
version of the standard GA. (On the last point, recall
that for comparison purposes we do 1

2 generation of
two-market GA per generation of standard GA.) Thus,
when all (or most) solutions are feasible and far from
incurring penalties, we would expect the standard GA
to outperform the two-market GA.

3.2 Case 2: Population Infeasible

The second case to consider is when all (or most) mem-
bers of our population are infeasible. Let us assume
(without, we think, any real loss of generality) that fit-
ness proportional selection is being used and is roughly
correct; i.e., assume we agree that fitness proportional
selection is approximately correct in setting the incen-
tives to the GA for its search. Keeping the example
simple (but again, without essential loss of general-
ity), consider a population with just two solutions, ~s1

and ~s2. Let’s say that ~s1 is twice as good as ~s2, i.e.,
Z(~s1) = 2Z(~s2). When the penalties are zero (case 1),
the relative fitnesses, are:

F (~s1) =
Z(~s1)

(Z(~s1) + Z(~s2))
=

2
3

(2)

and F (~s2) = 1−F (~s1) = 1
3 . What if both solutions are

infeasible? Let us assume both solutions are equally
infeasible, so that their penalties are identical (again,
with essential loss of generality). Note that penalties,
however they are set, need to be relatively large in
order to drive the search towards feasible solutions. In
general, if P (~s) > 0 (that is, if there is any constraint
violation at all by ~s) then P (~s) � Z(~s). Thus, with
penalties kicking in, F (~s1) =

(Z(~s1)− P (~s1))
((Z(~s1)− P (~s1)) + (Z(~s2)− P (~s2)))

≈ 1
2
. (3)

The large P values overwhelm the Z values, greatly
reducing the relative fitness differences between infea-
sible solutions. Penalty functions may be excellent at
distinguishing feasible from infeasible solutions, but
at the price of obfuscating the differences between in-
feasible solutions. Note a numerical example. Let:

0 1 2 3 4 5
Problem ksR ks ks2 ksc ksc2
hp2 3186 2948.6 3114.8 3186 3186
+ (0) (16.772) (14.307) (0) (0)
pb6 776 740.8 646.2 776 730.2
- (0) (19.176) (45.252) (0) (17.283)
pb7 1034.8 994.2 966 1034.4 1033
- (0.447) (11.946) (23.292) (0.894) (4.472)
pet7 16483.2 15811.8 16452 16457 16486.6
+ (20.969) (169.428) (11.726) (38.085) (21.984)
sento1 7743.2 7732.2 7758.2 7739.2 7769.8
+ (27.905) (23.626) (11.987) (27.563) (4.919)
sento2 8672.4 8669.2 8720.4 8671.4 8703.2
+ (20.379) (19.690) (3.050) (16.410) (3.701)
weing7 1089914 1084623 1094727 1094677 1094409
M (268.319) (3168.344) (398.92) (385.755) (407.547)
weing8 619925 342959 611820.2 321133.8 623627.8
++ (1461.077) (56711.01) (6930.155) (44832.01) (867.579)
weish12 6339 6009.2 6338.8 5689.4 6339
+ (0) (435.119) (0.447) (242.683) (0)
weish17 8624.2 8630.6 8633 7692.6 8633
+ (4.919) (5.366) (0) (522.115) (0)
weish21 9053 8538 9013.4 5369.4 9074
++ (7.969) (424.229) (21.686) (354.420) (0)
weish22 8921.4 5575 8891.4 5451.2 8939.8
++ (22.03) (436.584) (20.403) (189.254) (9.859)
weish25 9904 9758.4 9903.6 6083 9939
++ (16.325) (214.057) (30.411) (291.32) (0)
weish29 9383.2 5425 9203.2 5068 7530.2
++ (9.859) (215.431) (116.154) (267.685) (315.906)

Table 2: ksR = one market GA (repair). ks = standard GA, penalty based on sum of violations. ks2 = 2 market
GA, penalty based on sum of violations. ksc= standard GA, penalty based on number of violations × max
coefficient. ksc2= 2 market GA, penalty based on number of violations × max coefficient.
The problem names are key to their original sources: hp2, pb6, and pb7 [3]; pet7 [7]; sento* [9]; weing* [12];
and weish* [10]. (In virtue of being knapsack problems, all 14 are maximization problems.)
Key: mean , (standard deviation); for best solution after 500 generations, population size 5000, five runs.
+ two-market GAs did better. ++ two-market GAs did much better. - two-market GAs did worse. M mixed.

Z(~s1) = 1, Z(~s2) = 0.5, P = 2.25. Then the rel-
ative fitnesses are F (~s1) = 1 − 0.417 = 0.583 and
F (~s2) = 1−0.583 = 0.417 (switching signs for compar-
ison purposes) compared to 0.667 and 0.333 without
penalties. Even a small P value noticeably blurs the
differences.

The two-market GA in its phase 1 (optimality im-
provement) sees the Z values of the solutions, unen-
cumbered by the fog of penalties. Phase 2 of the two-
market GA (feasibility improvement) edits the popula-
tion in favor of feasibility. The process drives towards
feasible optimality. The advantage of the two-market
GA lies in its ability to respond more usefully to infea-
sible solutions. If you are going to have a population
with a large number of infeasible solutions, the two-
market GA is the GA for you.9

3.3 Case 3: Population on the Frontier

Finally, consider a third case: the solutions in the pop-
ulation are all (precisely) on the frontier (and thus
feasible). In the case of the knapsack this means that
setting any 0 to 1 (indeed increasing the value of any
variable) will turn a feasible solution infeasible.

The standard GA sees the relative fitnesses clearly as
in equation (2). The more optimal solutions (with
higher Z values) will contribute proportionately more
to the next generation. Since the GA operators (e.g.,
mutation and crossing over) are blind, a large percent-
age of the products of these operations will be infeasi-
ble, and receive very low fitness in the next generation.
If the operations find a better schema (setting values
higher for certain variables), the solution will be infea-
sible unless the values of other variables are reduced
sufficiently to ensure feasibility. Often it will be the
case that this does not happen; and the better schema
has no real chance to be tried in the population.

Suppose instead that we are in case three, with solu-
tions all on the frontier, and we are also in phase 2 of
the two-market GA. Because the population is entirely
feasible, the GA here sees each solution as equally fit.
A new population is accordingly formed after applica-
tion of the genetic operators. Again, suppose that the
genetic operations find a better schema. Phase 1 will
recognize it and with fitness proportional selection try
it out in relatively more solutions in the new popula-

9We suspect that the problem of finding optimal penalty
functions for incenting a standard GA cannot be solved a
priori, that the information is not available prior to under-
taking exploratory computations. Further, the two-market
GA can be thought of as circumventing this problem by
loosening the link between Z and P . These ideas require
further space than is available here for their exposition.

tion it sends to phase 2. This mechanism (probabilisti-
cally) gives the better schemas more chances to locate
themselves in feasible solutions. If it does, phase 2 will
let it pass and the schema stands a chance of surviving.

The considerations of this section lead us to conjecture
that the two-market GA will be superior to the stan-
dard, penalty-function GAs (on constrained optimiza-
tion problems), when feasible solutions are hard to find
and the GA must process many infeasible solutions.
(Compare cases 1 and 2 above.) Further, we conjec-
ture (case 3) that the two-market GA has a superior
“end-game” performance. Given a population on the
(feasible) frontier, the two-market GA provides a bet-
ter opportunity for trying out advantageous schemas.

Table 2 provides some evidence in favor of the case 3
factor. Note that ksR, a one-market GA using a repair
approach, maintains (at great computational expense)
a feasible population. The GA will drive this popu-
lation to the frontier. Because ksR keeps generating
solutions to maintain a feasible population, it does not
have the case 3 problem that the standard (penalty
function) GA has in not being able to explore with
new schemas once it gets to the frontier. For case
3, neglecting computational costs, we expect ksR and
the two-market GA to perform similarly. We note in
this regard that in, and only in, the five cases in which
the two-market GA performs substantially better than
the standard GA (++ in table 2), ksR also performs
substantially better than the standard GA.

Suggestive evidence is also available in Figures 1
through 6, comparing the progress over generations of
the 5 knapsack algorithms (ksR, ks, ks2, ksc, and ks2)
as they work on weish17 and weing8. The Figures
show typical runs. weish17 is a problem on which the
two-market GA does slightly better. We see in the Fig-
ures ksc quickly reaches a plateau of 80% of optimality
and gets stuck. ks does better and quickly reaches a
plateau close to optimality, but not as quickly as ks2.
weing8 is a problem on which the two-market GA does
substantially better than the standard GA. We see in
the Figures that the two-market GAs level off near
optimality by about 150 generations, while ksc and ks
level off immediately at less than 60% of optimality
and never improve. This suggests a case 3 situation.

On extensions to these ideas, we are particularly in-
trigued with the prospect of applying these results to
non-standard computational regimes, especially DNA
computing. Genetic Algorithms seem particularly
suited to implementation in DNA Computing [11, 1].
An originating impetus for this work was our formula-
tion of a bargaining problem as a two-market GA for
DNA computing. In DNA computing, it is awkward

to make computations that combine both the objective
functions and the penalty functions—thus the incen-
tive for a two-market approach. Happily, this paper
reflects advantages of the two-market approach beyond
its convenience for DNA computing. In turn, DNA is
quite suitable for two-market GAs; the results here are
encouraging.

DNA computing features massively parallel process-
ing of huge populations of candidate solutions. Thus,
our work has an interesting sidelight in that there was
a clear benefit of increasing population size. We per-
formed runs with population sizes of 50, 500, and 5000.
The results for 50 and 500 were qualitatively like those
in Table 2, except that the general quality of the solu-
tions increased with population size. For example, for
ksc2 and averaging across all 14 problems, the mean
solution was 1.1% higher at 500 generations than it
was at 50 generations, and 3.2% higher at 5000 gen-
erations than it was at 50 generations. For the two-
market GAs, excellent results were obtained in much
less than 500 generations.

This has been an exploratory study. Much remains
to be done by way of testing our conjectures and in-
vestigating the two-market GA, including: study of
more knapsack problems, extension to other kinds of
constrained optimization problems, deepening and re-
fining mathematically the intuitions behind the three
cases, extending the 2-market case to N-markets, and
looking carefully at the GA histories. Finally, we re-
mark that all this is most encouraging for DNA com-
puting. Indeed, the results suggest many avenues of
fruitful exploration.

Acknowledgments

This material is based upon work supported by, or
in part by, DARPA contract DASW01 97 K 0007.
GA202.

References

[1] Junghuei Chen and David Harlan Wood. Com-
putation with biomolecules. Proceedings of the
National Academy of Sciences, USA, 97(4):1328–
1330, 2000. Commentary.

[2] Carlos Artemio Coello Coello. A survey
of constraint handling techniques used with
evolutionary algorithms. technical report
Lania-RI-99-04, Laboratorio Nacional de In-
formática Avanzada, Veracruz, México, 1999.
http://www.lania.mx/˜ccoello/constraint.html.

[3] A. Freville and G. Plateau. Hard 0-1 multiknap-
sack test problems for size reduction methods. In-
vestigation Operativa, 1:251–270, 1990.

[4] Sami Khuri, Thomas Bäck, and Jörg Heitkötter.
The zero/one multiple knapsack problem and ge-
netic algorithms. In Proc. of the ACM Symp. of
Applied Comp. (SAC’94). ACM Press, 1993.

[5] Zbigniew Michalewicz. A survey of constraint
handling techniques in evolutionary computa-
tion methods. In Proceedings of the 4th An-
nual Conference on Evolutionary Programming,
pages 135–155, Cambridge, MA, 1995. MIT Press.
http://www.coe.uncc.edu/˜zbyszek/papers.html.

[6] Zbigniew Michalewicz. Genetic Algorithms +
Data Structures = Evolution Programs. Springer,
Berlin, Germany, third edition, 1996.

[7] C. C. Petersen. Computational experience with
variants of the Balas algorithm applied to the se-
lection of R&D projects. Management Science,
13:736–750, 1967.

[8] CMU Artificial Intelligence Repository. SAC94
Suite: Collection of multiple knapsack problems.
World Wide Web, Accessed January 2002.
http://www-2.cs.cmu.edu/afs/cs/project/ai-
repository/ai/areas/genetic/ga/test/sac/.

[9] S. Senyu and Y. Toyada. An approach to lin-
ear programming with 0-1 variables. Management
Science, 15:B196–B207, 1967.

[10] W. Shi. A branch and bound method for the mul-
ticonstraint zero one knapsack problem. J. Opl.
Res. Soc., 30:369–378, 1979.

[11] Willem P. C. Stemmer. The evolution of molecu-
lar computation. Science, 270:1510–1510, Decem-
ber 1, 1995.

[12] H. M. Weingartner and D. N. Ness. Methods for
the solution of the multi-dimensional 0/1 knap-
sack problem. Operations Research, 15:83–103,
1967.

/* $Header: exploring-two-market-ga.tex,v 1.9

2002/03/22 16:46:52 sok Exp $ */ ga202.tex.

Performance by generation for
weish17

0.75

0.8

0.85

0.9

0.95

1

1.05

0 100 200 300 400

generation

be
st
fin
d/
op
tim
al

ksc

ksc2

Performance by generation for
weish17

0.75

0.8

0.85

0.9

0.95

1

1.05

0 100 200 300 400

generation

be
st
fin
d/
op
tim
al

ks

ks2

Figure 1: ksc vs. ksc2 for weish17 Figure 2: ks vs. ks2 for weish17

Performance by generation for weing8

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400

generation

be
st
fin
d/
op
tim
al

ksc

ksc2

Performance by generation for weing8

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400

generation

be
st
fin
d/
op
tim
al

ks

ks2

Figure 3: ksc vs. ksc2 for weing8 Figure 4: ks vs. ks2 for weing8

Performance by generation for
weish17

0.75

0.8

0.85

0.9

0.95

1

1.05

0 100 200 300 400

generation

be
st
fin
d/
op
tim
al

ks2

ksc2

ksR

Performance by generation for weing8

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400

generation

be
st
fin
d/
op
tim
al

ks2

ksc2

ksR

Figure 5: ks2 and ksc2 vs. ksR for weish17 Figure 6: ks2 and ksc2 vs. ksR for weing8

