Expediting Genetic Search with Dynamic Memory

Jason S. Byassee and Keith E. Mathias
TRW Systems
16201 E. Centretech Pkwy.
Aurora, CO 80011
jason.byassee, keith.mathias@auc.trw.com

Abstract

Exploitation of domain knowledge can expe-
dite the process of finding solutions to new
problems. This research is focused on a dis-
tributed memory system which maintains a
dynamic knowledge base, in the form of mem-
ory cells, that are employed to improve search
performance over time. Short-term and long-
term memory models are analyzed in the
context of the distributed memory system.
Results indicate that genetic search perfor-
mance is significantly impacted by the quan-
tity and quality of information that is main-
tained in memory.

1 Introduction

Many real-world optimization problems are time sen-
sitive, where unbounded time to find the optimal so-
lution is not practical. In these instances, execution
time can be expedited by leveraging domain knowl-
edge, providing a “starting point” for the search al-
gorithm. Extensive research has been performed in
the context of incorporating a-priori knowledge to im-
prove genetic search performance [4, 5]. However, it is
still unclear how the quantity and quality of informa-
tion that constitutes the knowledge base affect search
performance. This provides the motivation for exam-
ining the impact of short-term and long-term memory
on genetic search performance, in terms of both quan-
titative and qualitative metrics.

We have developed a distributed memory system
(DMS) that serves as the test environment for our
analysis. In this DMS, genetic search is employed as
the search mechanism on the system nodes. The nodes
operate independently and simultaneously, sampling
and solving different pattern matching problems from

a shared library. The DMS incorporates a dynamic
pool of memory cells that is shared between nodes.
However, information from any one cell is available at
only one node at a time. The memory cells evolve
with continuous feedback from each independent ge-
netic search. Each node in the DMS employs genetic
search to solve an independent problem as opposed to
all nodes working together to solve a single problem,
thereby differentiating this work from most parallel ge-
netic algorithm research.

A secondary goal for each search is to improve the
aggregate search performance of all nodes by sharing
information about problems that may be encountered
by other nodes over time. Our objective is to compare
genetic search performance when knowledge is shared
via short- or long-term memory (of limited size) for
initial seeding rather than random initialization.

2 Distributed Memory System

Simple bit-pattern recognition problems form the
bounded problem library for this work.! The system
is trained to recognize a set of bit string patterns in a
pattern library by evolving and maintaining dynamic
memory cells that may be shared between nodes via
communication. The memory cells (in the form of bit
string patterns) are evolved by local genetic search and
fed back into the system.

2.1 Operation

This DMS consists of two core operations. The first is
genetic search, taking place simultaneously and con-
tinuously on each node. The second involves mobile

!The GA may not be the best choice for simple pattern
matching problems. This application was selected so as to
focus on performance metrics in the context of exploiting
memory for subsequent search. We anticipate using this
system for complex pattern recognition tasks in the future.

agents that circulate the memory cells between inde-
pendent nodes. While the memory cells can travel
to any node in the system, a cell is only useful when
resident on a given node. The nodes perform pattern
matching continuously. Each node has access to a pat-
tern library, much like the immune library in Forrest,
et. al., [3]. Random samples from the pattern library
are taken at each node. The resident memory cells in
the input queue on each respective node are compared
against a selected bit string. If a match is found, a
new sample is taken and the process is repeated. If no
match is found, the resident memory cells are used as
the initial population for genetic search.

In this system, autonomous mobile agents circulate
the memory cells. From the perspective of each node,
agents continuously arrive, deposit memory cells, re-
trieve new memory cells and transport them to new
nodes (Figure 1). Meanwhile, bit strings are continu-
ously sampled from the pattern library. At the instant
that a sample is taken, the first 50 memory cells that
reside in the local input queue are removed, comprising
the initial population for genetic search. If the initial
population is less than 50, the memory cells that reside
in the local output queue are removed and added to
the initial population. Finally, random bit strings are
generated to satisfy any remaining discrepancy. With
a complete initial population, genetic search begins for
the string to match the sampled pattern.

mem Ury- cell
(hit string)

/"O s
~ooT.
~ o,

Figure 1: Agent transportation of memory cells.

2.2 Search Algorithm

The CHC adaptive search algorithm [1] is a genera-
tional genetic algorithm that has been shown to yield
very good performance in optimizing a wide variety of
test problems with little or no parameter tuning [6, 7].
Therefore, CHC is used as the genetic search com-
ponent of our DMS. CHC begins the search process
by generating 2 * N random samples and selecting the

best N samples, where N is the population size.? Each
of the individuals in the population is then randomly
paired to form potential mating pairs. The Hamming
distance between the potential mates is measured and
compared with an incest threshold. If the Hamming
distance is greater than the incest threshold the indi-
viduals are allowed to mate. When the mating process
is completed for the N/2 pairs, the offspring produced
compete for survival with the parent population. The
best N individuals survive.

Mating in CHC is typically performed using the HUX
crossover operator when a binary representation is em-
ployed. HUX is a highly disruptive crossover operator
which guarantees that the offspring produced will be
maximally distant (in Hamming space) from the par-
ents. Crossover is performed by exchanging exactly
half of the bits that differ between the two parents.

The incest threshold value is initially set to the ex-
pected difference between samples in the population
(i.e., L/2, where L is the string length). The incest
threshold is adaptively adjusted as search progresses.
Each generation that either: a) no offspring survive
or b) no matings are allowed, the incest threshold is
reduced. When the incest threshold goes below 0, cat-
aclysmic mutation is used to diverge the population.
Divergence is accomplished by making 2 * N copies of
the best individual in the population. Then 35% of
the bits in all but one individual are complemented
and search is restarted.

2.3 Parameters

In this DMS there are several operational parameters
that can be tuned to: 1) optimize the learning curve
(i.e., minimize the time to recognize the sampled pat-
terns) and 2) minimize the memory footprint (i.e., the
number of memory cells in the system). There are
four parameters (feedback percentage, feedback decre-
ment, direct decrement and survival threshold) in this
DMS that directly impact memory cell survival. There
are two additional parameters (number of agents and
agent wait time) that effect the circulation and overall
distribution of memory cells in the system.

To bound the size of the memory cell population in
this system we have introduced the notion of lifetime.
Memory cell lifetimes are associated with time-to-live
(TTL) values. All memory cells receive the same initial
TTL value when they are fed into the system. To
survive, a memory cell must maintain a TTL that is
greater than the survival threshold. Each time a cell

2The initial population in this DMS is seeded rather
than randomly generated, as explained in Section 2.1.

is moved from the input to the output queue on a
given node, its TTL is decremented. Figure 2 provides
an overview of the operations and parameters at each
node in the system. The six operational parameter
descriptions [and ranges] are as follows:

1. Number of Agents [1 - (100*numOfNodes)] -
the number of agents that exist in the system.

2. Agent Wait Time [100 ms - 2 sec] - the length of
time that an agent waits at a node for a memory
cell to become available before moving to a new
node “empty handed”.

3. Feedback Percentage [2% - 100%)] - the per-
centage of patterns fed to the survival test from
the final genetic population. String patterns are
taken in order of best score to worst.

4. Feedback Decrement [0 - 100] - decrement ap-
plied to a memory cell’s TTL when fed to the
survival test from the final genetic population.

5. Direct Decrement [0 - 100] - decrement applied
to a memory cell’s TTL when fed directly from
the input queue to the output queue.

6. Survival Threshold [1 - 100] - minimum TTL
value for a memory cell’s continued survival.

Pattern
deposit Input =)
wemory cellbit Queue ibrary
string
: Direct
agent |
Decrement— ™

whtizve Output J1, YES

memory cell bit Queue
string

T T
\ sanple
\ Feedback
Pacentage

Feedback
Decrement

Survival
Test

AN
Survival

Threshold

Figure 2: DMS operations and parameters.

In this DMS, the TTL parameter governs the persis-
tence of memory cells. Short-term memory (STM) is
modeled by unconditionally decrementing the TTL of
memory cells each time they are used. Each cell is
treated the same, regardless of its value to the system.
Long-term memory (LTM) is modeled by conditional
handling of the TTL value, rewarding “useful” mem-
ory cells. Upon arrival at a host, each memory cell is
scored against the current pattern sample. The TTL
of the memory cell is reset if its score is greater than
its current TTL. Thus, in the LTM model, survival de-
pends on possessing a high affinity (close in Hamming
space) for one or more members of the pattern library.

In evaluating the STM and LTM models, we examine
memory efficiency, defined in terms of: 1) minimizing

the average trials to match the sample patterns (sys-
tem learning curve), and 2) minimizing the memory
cell count at the end of the simulation (memory foot-
print). Ideally, the DMS should quickly reduce the
number of trials required to match sampled patterns,
while limiting the growth of memory cells (Figure 3).

system
learning
curve

4 /

ME 0Ty
footprint

Figure 3: Model DMS behavior.

The performance of this DMS was known to depend
on the values assigned to the six parameters govern-
ing the system behaviors. To fairly compare the two
memory models in this DMS, we used a meta-GA to
search for the best operational parameter sets for each
model (Section 3). The respective parameter sets are
then employed to compare the STM and LTM models.
Section 4 describes the DMS simulations and provides
an analysis of simulation results. Analysis of the re-
sults leads to a question of long-term stability (Section
5), where the meta-GA is again employed to search for
a new DMS parameter set using new evaluation con-
ditions. Section 6 provides insight into the effects of
the STM and LTM models on genetic search, with an
emphasis on the role of random genetic material.

3 Optimizing DMS Parameters Using
a Meta-GA

Each evaluation for the search simulates the DMS
using the operational parameters as specified by the
meta-GA genes (Figure 4). The DMS is simulated for
a fixed number of cycles on all nodes, where each cycle
constitutes the search for a sampled pattern. Due to
the stochastic nature of genetic search and the non-
deterministic behavior in a multi-threaded environ-
ment, a complete DMS simulation is executed three
times for each evaluation, reporting the average as the
evaluation value. The evaluation function used to min-
imize the system learning curve and memory size is:

i=3
2(1.5 x MemCells) + avgTrials| /3 (1)
i=0

fz) =

The STM and LTM meta-GA searches were performed
using a pattern library with 10, 64-bit strings. Two

DM S Operational Parameter Set

A&7 2D

DMS
Simulation

Meta-GA
Search

DMS
Simulation

=4V

Score

Figure 4: Meta-GA search for DMS parameter sets.

DMS nodes were concurrently simulated for 100 cy-
cles each. For the STM model, the memory cell TTL
was never reset. For the LTM model, the memory cell
TTL was reset if the memory cell pattern scored higher
against the current sample. The initial TTL was set
to 100 for the simulations of both models.

3.1 Meta-GA Search Results

Table 1 shows the operational parameter sets discov-
ered by the meta-GA searches for the two memory
models. Each search was run for 8,000 trials (i.e.,
24,000 simulations).®> Both meta-GA searches discov-
ered that a feedback rate of 2% was best for each of
the two memory models. This results in a single indi-
vidual being fed back to the memory cell population
for each completed pattern matching cycle. The op-
erational parameter set discovered for the LTM model
specifies more agents to transport information in the
DMS than does the parameter set discovered for the
STM model. More agents may be required in the LTM
simulations, since the agent wait time is considerably
longer than the wait time specified for the STM model.

The feedback decrement values discovered for the two
DMSs are similar and the direct decrement is exactly
the same. However, the values discovered for the sur-
vival threshold in the two searches were dramatically
different. The meta-GA search discovered a survival
threshold of 50 for the DMS using a LTM model and
a 12 for the STM model. The memory cells in the
LTM model must be useful to the system (i.e., match
a pattern sample) frequently to remain alive. A sur-

3Due to the evaluation time required for each simula-
tion, only a single meta-GA search was performed for each
of the memory models proposed. Therefore, parameter sen-
sitivity tests (i.e., varying one parameter at a time while
holding the others constant) were employed to evaluate the
solutions. No better solutions were discovered, indicating
that the operational parameter sets at least represent local
optima.

Memory Model
DMS Parameter STM LTM
Number of Agents 1 9
Agent Wait Time 338 ms | 1170 ms
Feedback Rate 2% 2%
Feedback Decr. 1 0
Direct Decr. 3 3
Survival Threshold 12 50

Table 1: Parameter sets discovered by meta-GA
search. Each simulation was run for 100 cycles.

vival threshold of 50 quickly eliminates memory cells
with random strings and, when combined with a di-
rect decrement value of 3, will also eliminate memory
cells with patterns that are not sampled for more than
16 cycles. The lifetime of a memory cell in the DMS
using the STM model is not determined by its value
to the system. Thus, a survival threshold of 12, when
combined with a direct decrement of 3, allows STM
cells to be exploited for ~29 cycles.

4 Comparing DMS Performance for
STM and LTM Models

As mentioned previously, the behavior of this DMS is
stochastic in nature. Therefore, the performance of the
DMS using the two memory models were compared by
executing 30 independent, 100-cycle simulations, using
the operational parameter sets found by the meta-GA
and listed in Table 1. The results of the 30 independent
simulations enabled statistical comparisons. For each
simulation we measured:

1. Final Memory Cell Count - the total number
of memory cells in the system at completion.

2. Average Trials - the average number of trials

required to match the pattern library samples.

Evaluation Value - as given in Equation 1.

4. Hit Rate - the percentage of cycles where the
sampled pattern was matched in the initial popu-
lation (i.e., at least one memory cell used to seed
the initial population matched the sample, elimi-
nating the need for genetic search).

5. Pattern Match Rate - the percentage of mem-
ory cells in the system at completion that match
one of the pattern library samples.

6. Restarts/Simulation - the number of cy-
cles/simulation (pattern library samples) where
the GA experienced at least one restart (see Sec-
tion 2.2) while searching for a sampled pattern.

@

Table 2 gives the average values and standard error
of the mean (SEM) for each of these six performance

measurements. Not surprisingly, the DMS learns to
recognize patterns much faster when starting with
populations seeded with memory cells than when start-
ing from random populations (i.e., no memory).

Metric No Memory STM LTM
Cell count 0 87.27 (0.69) 120.33 (1.79)
Avg trials 900.78 (7.24) | 177.81 (2.24) | 230.22 (3.06)
Hit rate(%) 0 | 84.68 (0.25) | 79.83 (0.27)
Match rate(%) N/A | 69.87 (0.55) | 89.35 (1.29)
Restarts/Sim 0 0.06 (0.04) 2.16 (0.35)

Table 2: Average performance values and SEM (for 30
runs) using the parameter sets found by the meta-GA
(Table 1). Each run equals a 100-cycle simulation.

4.1 The Value of Short-term Memory

Performance, as measured by the evaluation value,
memory cell count, and average trials, is significantly
better for the DMS implementing the STM model as
opposed to the LTM model. This might be unexpected
since traditional memory models tend to reinforce use-
ful memory recall events (i.e., reset TTL) and delete
memory cells that have not been useful for long peri-
ods of time. However, the direct feedback that allows
this DMS to learn also replenishes memory cells that
are of value. For example, if a memory cell contains
a string that matches the pattern sampled at a given
cycle, and that memory cell is used to seed the initial
population for the search, the string will be duplicated
in the feedback process. This propagates useful infor-
mation in the DMS without resetting the TTL.

The design of this DMS does not provide for dynam-
ically discontinuing feedback (in which case, resetting
the TTL would be critical). In future work, this DMS
could respond to a dynamic pattern library, making
continuous feedback critical. The emergence of a dy-
namically maintained distribution of patterns (repre-
sented by the memory cell population) that promotes
recall at all nodes in the DMS is important.

More insight into these memory models can be gained
by examining the behavior of individual DMS simula-
tions. Figure 5-a shows the trials to match each pat-
tern sampled during a DMS simulation of 100 cycles
for the STM model, as well as, the memory cell count.
Figure 5-b shows the same information for a DMS sim-
ulation using the LTM model. Cycles are shown on the
X-axis. The solid line shows the number of trials to
discover the pattern (Y-axis on left). The dashed line
shows the memory cell count (Y-axis on the right).*

4The information on these graphs reflects the experience
at a single node in the DMS system.

For both simulations, the searches usually expend
~900 trials to discover the pattern to match the sam-
ple for the first ~15 cycles. After this learning period,
the system often contains a match for the sampled pat-
tern in the seeded initial population. Cycles where the
pattern is matched in the initial population (i.e., a hit)
require only 50 trials.® The peaks in trials indicate ge-
netic search was required to discover the pattern (i.e.,
no match was found in the initial population).

Matching a sampled pattern in the initial population
has a significant impact on the average trials to find a
pattern. Thus, the higher average hit rate observed for
the STM DMS in Table 2 results in significantly better
performance than in the LTM DMS implementation.

Figure 5-a also shows that the memory cell count grows
for a period of ~40 cycles and reaches a high of ~100
memory cells. However, in the DMS using the LTM
model (Figure 5-b) the memory cell count only grows
for about half as long and peaks out at a much lower
number (~70). The shorter initial growth period and
smaller memory cell count peak exhibited by the DMS
using the LTM model would seem to be advantageous,
but actually results in worse performance when com-
pared with the DMS using the STM model. The mem-
ory cell count in the DMS using the STM model ap-
pears to become stable after a large number of cells
expire (~40 cycles). The DMS using the LTM model
never seems to become stable and the memory cell
count appears to be growing somewhat toward the end
of the simulation (i.e., 100 cycles).

5 Stability Analysis of the LTM
Model

The trend exhibited by the DMS using the LTM model
(Figure 5-b) indicates that the memory cell count
would likely continue to grow in longer simulations.
To test this hypothesis, DMS simulations for the two
memory models were run for 300 cycles, using the same
operational parameter sets (see Table 1) used to pro-
duce Figures 5-a and 5-b. Figure 5-c shows the trials
to match a sample pattern at each cycle for the DMS
using the STM model over 300 cycles. Not only does
the memory cell count remain stable (i.e., no growth)
past the initial 100 cycles, but the peaks, indicating
where genetic search is needed to discover the sam-
pled pattern, are sparse after the first ~30 cycles. The
300-cycle simulation for the STM model is consistent
with the behavior observed in 100-cycle simulations.

®The entire initial population is tested regardless of
which of the initial patterns match.

2000

1500 - | 4

1000 F

Trials

500 - u

2000

1500 /1]

/
1000 ~

Trials

R T Rt VXU Sl W28 =AM = Al =
T VR e = =]
1 | | 1 |

f 1) ! \ ! i |

500 B

(o] 50 100 150 200 250 300
Cycles

()

Figure 5-d shows that the memory cell count contin-
ues to grow after 100 cycles for the DMS using the
LTM model, as predicted. Also, the frequency of peaks
(indicating that genetic search was performed) is con-
siderably greater than observed for the STM model
simulation (Figure 5-c). This behavior indicates that
the operational parameters found by the meta-GA for
the DMS using the LTM model do not perform well
past 100 cycles (i.e., termination point of simulations
during the meta-GA search evaluations).

5.1 Meta-GA Revisited

To determine if a parameter set resulting in more sta-
ble behavior could be discovered for the DMS using the
LTM model, a third meta-GA search was performed
using additional cycles/simulation during evaluation.
The third search was performed using the same param-
eters, conditions and evaluation function described in
Section 3, except that each simulation was run for 300
cycles instead of the original 100 cycles.

Table 3 lists the best parameters discovered after
8,000 trials for the 300 cycles/simulation evaluations

100
= -1 75
o €
P . 5
e \ - o
.- \ . 8
- | =N\ - [/ =
L IO N Ul I 1850 8
N Y =
S
1S
S
=
i -1 25
N h . N
o 20 40 60 80 100
100
, 4
/1y/\u// v
L , 75
€
>
N I3
e , A o
o oo A =
! \,/4’ ! l‘,’/ \‘rrw'/\vm,/ 50 O
=
S
£
[
=
25
| n | n 0
o] 50 100 200 250 300

(d)

Figure 5: Trials to match sampled patterns and memory cell count at a node for a DMS simulation.

Memory Model
DMS Parameter STM-100 | LTM-100 | LTM-300
Number of Agents 1 9 5
Agent Wait Time 338 ms 1170 ms 1880 ms
Feedback Rate 2% 2% 2%
Feedback Decr. 1 0 0
Direct Decr. 3 3 6
Survival Threshold 12 50 41

Table 3: Parameter sets discovered by meta-GA. The
STM-100 and LTM-100 parameters sets result from
the 100 cycles/simulation (Table 1) and the LTM-300
parameters result from 300 cycles/simulation.

(LTM-300). Table 3 also lists the parameter sets
discovered for the STM and LTM models using 100
cycles/simulation during evaluation (from Table 1).
The parameter sets from Table 1 are referred to as
STM-100 and LTM-100 to indicate the number of cy-
cles/simulation used during meta-search evaluations.

The LTM-300 operational parameter values discovered
by the meta-GA differed in several respects from the
LTM-100 parameter set. Perhaps the most critical dif-
ference is in the parameters that affect memory cell

survival. The LTM-100 parameter set included a sur-
vival threshold of 50 and a direct decrement of 3. Thus,
memory cells must be useful at least every ~16 cycles
to survive. In contrast, the LTM-300 parameter set
has a survival threshold of 41 and direct decrement of
6. In this case, memory cells will only be tolerated for
~10 cycles if they are not useful. This suggests that a
smaller population of memory cells will be maintained.

To compare the performance of the DMS using the
LTM-300 parameter set to that of the DMS using the
STM-100 and LTM-100 parameter sets, 30 indepen-
dent simulations were executed using each parame-
ter set and the corresponding memory model. All
simulations were run to 300 cycles (regardless of the
cycles/simulation used during meta-search). Table 4
shows the average values and SEM for the final mem-
ory cell count, average trials to match a pattern, aver-
age evaluation value, hit rate, final match rate, and av-
erage restarts/simulation for the 30 independent runs
of each of the three parameter sets.

The final memory cell count, average trials to match a
pattern, evaluation value, and hit rate performance
values are significantly better for the DMS simula-
tions using the STM-100 parameter set than for the
DMS simulation using either the LTM-100 or LTM-
300 parameter set. The LTM-300 parameter set re-
sults in only marginally better performance than the
LTM-100 parameter set, despite the extra 200 cy-
cles/simulation considered by the meta-GA. The in-
ability to discover a parameter set resulting in bet-
ter performance for the LTM model, regardless of the
number of cycles/simulation, indicates the superiority
of the STM model for this DMS.

Figure 6 shows the trials to find pattern matches and
the memory count using the LTM-300 parameter set.
The memory cell count still fluctuates after 250 cycles.
However, the smaller value for the survival threshold
used in the LTM-300 parameter set than the value in
the LTM-100 set does in fact result in a smaller mem-
ory cell count. The average final memory cell count is
significantly smaller when the LTM-300 parameter set
is used rather than the LTM-100 set (Table 4).

Metric STM-100 TLTM-100 T TM-300
Mem cells | 100.50 (0.16) | 190.70 (7.90) | 128.03 (6.67)
Avg trials | 117.08 (1.04) | 205.56 (5.99) | 276.20 (6.81)
Eval value | 267.83 (1.08) | 491.61 (12.95) | 468.24 (15.12)
Hit rate 91.98 (0.10) 86.06 (0.38) 76.95 (0.44)
Match rate | 60.50 (0.12) 92.08 (0.85) 69.44 (2.82)
Restarts 0.27 (0.10) 26.40 (2.56) 22.3 (4.70)

Table 4: Averages for 30 independent runs using the
STM-100, LTM-100 and LTM-300 parameter sets. All
simulations are run to 300 cycles.

2000 100
1500 175
€
AN >
25N o
° / .\ AL 2
= T TR OTRSRY KNS A VURVAY Y
= 1000 \,A',/\\’ M\‘” ,,’,yr ‘\w“"r\‘,/\’,‘“l A oy ATV “,‘ V5 50 %
! £
[}
=
500 4 25
UL
0 I h N N I 0
0o 50 100 150 200 250 300
Cycles

Figure 6: Trials to match patterns and memory cell
count at a node for a 300 cycle DMS simulation using
the LTM-300 parameter set (Table 3).

While the average final memory cell count using the
LTM-300 parameters is smaller than that using the
LTM-100 parameters, the average number of trials to
find a matching string is significantly worse when using
the LTM-300 parameter set. As previously noted, the
hit rate is the most important factor in lowering the
average trials required to match a sample pattern. The
hit rate when using the LTM-100 parameter set is sig-
nificantly higher than for the LTM-300 parameter sets.
In addition, the hit rate for both of the LTM models
is significantly lower than when using the STM-100
parameter set.

It is also surprising that the match rate of the final
memory cell population does not correlate better with
the hit rate. In fact, these two measures are inversely
correlated (i.e., a high hit rate yields a lower match
rate). This is due to a non-uniformly distributed mem-
ory cell population, where most of the cells match only
a small fraction of the pattern library.

6 Hit Or Miss: The Role of Random
Genetic Material

A side effect of the high match rate exhibited by the
DMS using the LTM models (Table 4) is the occur-
rence of cycles where pattern samples are difficult to
match. This is reflected in the large number of trials
(>1200) to match a pattern (Figures 5-c¢, 5-d, and
6). In these instances the trials required to match a
pattern are 2 to 3 times as many as when the GA
uses a random initial population (i.e., no memory, Ta-~
ble 2). The average number of restarts/simulation for
each parameter set tested is listed in Tables 2 and 4.

These events represent a restart by CHC while search-
ing for the pattern. These restarts occur when CHC
has converged on a solution that does not match the
sampled pattern. This occurs when the initial popu-
lation is seeded from memory cells where at least one
allele in all of the seed strings disagrees with the allele
at the corresponding locus of the sampled pattern. For
example, if all of the seed strings have a 0 in locus 3
and the pattern sampled has a 1 in that position, the
initial population will not contain the genetic material
to solve the problem. CHC does not use mutation ex-
cept during restarts, so the search will converge to a
solution that does not match the sampled pattern. A
restart will be required to find the pattern [2].

This type of “biased” seeding occurs when a large per-
centage of the memory cells contain strings matching
patterns in the library and very few contain random
strings. This condition is a result of the consider-
able impact of the hit rate on fitness. Memory cells
containing random strings do not survive long in the
DMS when the LTM model is used while memory cells
with strings that match library patterns rapidly in-
crease their representation as seen by the final match
rate metric in Tables 2 and 4. In contrast, the STM
model simulations contain a higher percentage of ran-
dom strings in the memory cell population (i.e., sig-
nificantly lower match rate). Including this random
material in the initial population helps provide genetic
diversity in all loci and avoids restarts more reliably.

7 Conclusions

This investigation provides an analysis of two memory
models in the context of a distributed memory sys-
tem. We have examined the performance impact of
knowledge preservation and exploitation with respect
to genetic search using CHC.

The LTM model was designed to promote and preserve
high quality information, with the expectation that
seeding the genetic search with this material would
yield the best results. Although this model performed
as expected (i.e., a high concentration of quality ma-
terial is maintained), it was surprising to find that the
DMS using the STM model performed significantly
better with respect to average trials and memory cell
count. This is due to the fact that on occasion, the
LTM model causes the genetic search to be initialized
with material that is not representative of the prob-
lem set (i.e., a non-uniform distribution). In these
instances, the initial population is comprised of many
“good” seeds, with respect to alternate pattern library
samples, but not the current sample. Hence, an ini-
tial match is not available and the genetic search must

discover the pattern. Even worse, there is a higher
probability of a restart event, which results in perfor-
mance that is significantly worse than starting with a
random initial population (i.e., no memory).

The random information kept by some memory cells
in the STM model actually mitigates the potential
of seeding the initial population with an incorrect
bias. Essentially, there exists a memory quality bound-
ary, where highly concentrated (yet unevenly sampled)
knowledge can penalize performance. This is evident
from the significantly higher hit rate and better perfor-
mance exhibited in simulations using the STM model.
Given this behavior, we can conclude that the constant
feedback mechanism in the STM model, equivalent to
short term memory with reproduction, is the better of
the two memory models tested for this DMS.

This research demonstrates that the exploitation of
domain knowledge, or memory in this instance, can
significantly expedite search performance. The STM
model improved genetic search performance by a fac-
tor of five over random initialization (i.e., no memory),
with respect to the number of trials needed to match
a pattern. The LTM model, although performing con-
siderably worse than STM, nevertheless demonstrated
a four-fold improvement in performance over genetic
search with random initialization.

References

[1] Larry Eshelman. The CHC Adaptive Search Algo-
rithm. How to Have Safe Search When Engaging in
Nontraditional Genetic Recombination. In FOGA,
pages 265—283. Morgan Kaufmann, 1991.

[2] Larry Eshelman. Personal Communication, 2001.

[3] Stephanie Forrest, Robert Smith, Brenda Javornik, and
Alan Perelson. Using genetic algorithms to explore pat-
tern recognition in the immune system. Journal of Evo-
lutionary Computation, 1(3):191-211, 1993.

[4] Sushil J. Louis and Li Gong. Augmenting Genetic Algo-
rithms with Memory to Solve Traveling Salesman Prob-
lems. In Joint Conference on Information Sciences,
pages 109-111. Duke University, 1997.

[5] Sushil J. Louis and Fang Zhao. Domain Knowledge for
Genetic Algorithms. International Journal of Expert
Systems, 8(3):195-212, 1995.

[6] Keith E. Mathias and L. Darrell Whitley. Changing
Representations During Search: A Comparative Study
of Delta Coding. Journal of Evolutionary Computation,
2(3):249-278, 1994,

[7] Darrell Whitley, Keith Mathias, Soraya Rana, and
John Dzubera. Building Better Test Functions. In
L. Eshelman, editor, ICGA-6. Morgan Kaufmann,
1995.

