
Maintaining Population Diversity by Minimizing
Mutual Information

Yong Liu

The University of Aizu

Tsuruga, Ikki-machi

Aizu-Wakamatsu, Fukushima 965-8580, Japan

yliu@u-aizu.ac.jp

Xin Yao

School of Computer Science

The University of Birmingham

Edgbaston, Birmingham, U.K.

X.Yao@cs.bham.ac.uk

Abstract

Based on negative correlation learning [1]

and evolutionary learning, evolutionary en-

sembles with negative correlation learning

(EENCL) was proposed for learning and de-

signing of neural network ensembles [2]. The

idea of EENCL is to regard the population of

neural networks as an ensemble, and the evo-

lutionary process as the design of neural net-

work ensembles. EENCL used a �tness shar-

ing based on the covering set. Such �tness

sharing did not make accurate measurement

on the similarity in the population. In this

paper, a �tness sharing scheme based on mu-

tual information is introduced in EENCL to

evolve a diverse and cooperative population.

The e�ectiveness of such evolutionary learn-

ing approach was tested on two real-world

problems.

1 Introduction

Neural network ensembles adopt the divide-and-

conquer strategy. Instead of using a single network

to solve a task, an neural network ensemble combines

a set of neural networks which learn to subdivide the

task and thereby solve it more eÆciently and elegantly

[1]. However, designing neural network ensembles is a

very diÆcult task. It relies heavily on human experts

and prior knowledge about the problem. Based on neg-

ative correlation learning [3, 1] and evolutionary learn-

ing, evolutionary ensembles with negative correlation

learning (EENCL) was proposed for learning and de-

signing of neural network ensembles [2]. The idea of

EENCL is to regard the population of neural networks

as an ensemble, and the evolutionary process as the

design of neural network ensembles.

The negative correlation learning and �tness sharing

[4, 5] were adopted in EENCL to encourage the forma-

tion of species in the population. The idea of negative

correlation learning is to encourage di�erent individ-

ual networks in the ensemble to learn di�erent parts or

aspects of the training data, so that the ensemble can

better learn the entire training data. In negative cor-

relation learning, the individual networks are trained

simultaneously rather than independently or sequen-

tially. This provides an opportunity for the individual

networks to interact with each other and to specialize.

Fitness sharing refers to a class of speciation tech-

niques in evolutionary computation. The �tness shar-

ing used in EENCL was based on the idea of the cov-

ering set that consists of the same training patterns

correctly classi�ed by the shared individuals. This �t-

ness sharing cannot accurately measure the similarity

between two individuals. For example, even two indi-

viduals have the same covering set, the outputs of two

individuals can be quite di�erent. A more accurate

similarity measurement between two neural networks

in a population can be de�ned by the explicit mutual

information of output variables extracted by two neu-

ral networks. The mutual information between two

variables, output Fi of network i and output Fj of

network j, is given by

I(Fi;Fj) = h(Fi) + h(Fj)� h(Fi; Fj) (1)

where h(Fi) is the di�erential entropy of Fi, h(Fj)

is the di�erential entropy of Fj , and h(Fi; Fj) is the

joint di�erential entropy of Fi and Fj . The equation

shows that joint di�erential entropy can only have high

entropy if the mutual information between two vari-

ables is low, while each variable has high individual

entropy. That is, the lower mutual information two

variables have, the more di�erent they are. By min-

imizing the mutual information between variables ex-

tracted by two neural networks, two neural networks

are forced to convey di�erent information about some



features of their input.

This paper presents further results on how to evolve

a cooperative population of neural networks by min-

imizing mutual information [6]. Negative correlation

learning is �rstly analyzed in terms of minimization of

mutual information on a regression task. Secondly, a

�tness sharing based on mutual information is intro-

duced into EENCL. Through minimization of mutual

information, a diverse and cooperative population of

neural networks can be evolved by EENCL. The ef-

fectiveness of such evolutionary learning approach was

tested on two real-world problems.

The rest of this paper is organized as follows: Section 2

explores the connections between the mutual informa-

tion and the correlation coeÆcient, and explains how

negative correlation learning can be used to minimize

mutual information. Section 3 analyzes negative cor-

relation learning via the metrics of mutual information

on a regression task. Section 4 describes EENCL for

evolving a population of neural networks, and explores

the connections between �tness sharing and mutual in-

formation. Section 5 presents experimental results on

EENCL by minimizing mutual information. Finally,

Section 6 concludes with a summary of the paper.

2 Minimizing Mutual Information by

Negative Correlation Learning

2.1 Minimization of Mutual Information

Suppose the output Fi of network i and the output

Fj of network j are Gaussian random variables. Their

variances are �2i and �2j , respectively. The mutual in-

formation between Fi and Fj can be de�ned by Eq.(1)

[7]. The di�erential entropy h(Fi) and h(Fj) are given

by

h(Fi) =
1

2
[1 + log(2��2i )] (2)

and

h(Fj) =
1

2
[1 + log(2��2j )] (3)

The joint di�erential entropy h(Fi; Fj) is given by

h(Fi; Fj) = 1 + log(2�) +
1

2
log jdet(�)j (4)

where � is the 2-by-2 covariance matrix of Fi and Fj .

The determinant of � is

det(�) = �2i �
2
i (1� �2ij) (5)

where �ij is the correlation coeÆcient of Fi and Fj

�ij =
E[(Fi �E[Fi])(Fj �E[Fj ])]

�2i �
2
j

(6)

where E indicates the expectation value. Using the

formula of Eq.(5), we get

h(Fi; Fj) = 1 + log(2�) +
1

2
log[�2i �

2
i (1� �2ij)] (7)

By substituting Eqs.(2),(3), and (7) in (1), we get

I(Fi;Fj) = �

1

2
log(1� �2ij) (8)

From Eq.(8), we may make the following statements:

1. If Fi and Fj are uncorrelated, the correlation co-

eÆcient �ij is reduced to zero, and the mutual

information I(Fi;Fj) becomes very small.

2. If Fi and Fj are highly positively correlated, the

correlation coeÆcient �ij is close to 1, and mutual

information I(Fi;Fj) becomes very large.

Both theoretical and experimental results [8] have in-

dicated that when individual networks in an ensem-

ble are unbiased, average procedures are most e�ec-

tive in combining them when errors in the individual

networks are negatively correlated and moderately ef-

fective when the errors are uncorrelated. There is little

to be gained from average procedures when the errors

are positively correlated. In order to create a popu-

lation of neural networks that are as uncorrelated as

possible, the mutual information between each individ-

ual neural network and the rest of population should

be minimized. Minimizing the mutual information be-

tween each individual neural network and the rest of

population is equivalent to minimizing the correlation

coeÆcient between them.

2.2 Negative Correlation Learning

We consider estimating y by forming an neu-

ral network ensemble whose output is a sim-

ple averaging of outputs Fi of a set of neural

networks by given the training data set D =

f(x(1); y(1)); � � � ; (x(N); y(N))g. All the individual

networks in the ensemble are trained on the same

training data set D

F (n) =
1

M
�M
i=1Fi(n) (9)

where Fi(n) is the output of individual network i on

the nth training pattern x(n), F (n) is the output of the

neural network ensemble on the nth training pattern,

and M is the number of individual networks in the

neural network ensemble.

The idea of negative correlation learning is to intro-

duce a correlation penalty term into the error function



of each individual network so that the mutual infor-

mation among the ensemble can be minimized. The

error function Ei for individual i on the training data

set D = f(x(1); y(1)); � � � ; (x(N); y(N))g in negative

correlation learning is de�ned by

Ei =
1

N
�N
n=1Ei(n)

=
1

N
�N
n=1

�
1

2
(Fi(n)� y(n))2 + �pi(n)

�
(10)

where N is the number of training patterns, Ei(n) is

the value of the error function of network i at presenta-

tion of the nth training pattern, and y(n) is the desired

output of the nth training pattern. The �rst term in

the right side of Eq.(10) is the mean-squared error of

individual network i. The second term pi is a correla-

tion penalty function. The purpose of minimizing pi
is to negatively correlate each individual's error with

errors for the rest of the ensemble. The parameter �

is used to adjust the strength of the penalty.

The penalty function pi has the form

pi(n) = �

1

2
(Fi(n)� F (n))2 (11)

The partial derivative of Ei with respect to the output

of individual i on the nth training pattern is

@Ei(n)

@Fi(n)
= Fi(n)� y(n)� �(Fi(n)� F (n))

= (1� �)(Fi(n)� y(n))

+�(F (n)� y(n)) (12)

where we have made use of the assumption that the

output of ensemble F (n) has constant value with re-

spect to Fi(n). The value of parameter � lies inside

the range 0 � � � 1 so that both (1� �) and � have

nonnegative values. The standard back-propagation

(BP) [9] algorithm has been used for weight adjust-

ments in the mode of pattern-by-pattern updating.

That is, weight updating of all the individual net-

works is performed simultaneously using Eq.(12) after

the presentation of each training pattern. One com-

plete presentation of the entire training set during the

learning process is called an epoch. Negative correla-

tion learning from Eq.(12) is a simple extension to the

standard BP algorithm. In fact, the only modi�cation

that is needed is to calculate an extra term of the form

�(Fi(n)� F (n)) for the ith neural network.

From Eqs.(10), (11), and (12), we may make the fol-

lowing observations:

1. During the training process, all the individual

networks interact with each other through their

penalty terms in the error functions. Each net-

work Fi minimizes not only the di�erence be-

tween Fi(n) and y(n), but also the di�erence be-

tween F (n) and y(n). That is, negative correla-

tion learning considers errors what all other neu-

ral networks have learned while training an neural

network.

2. For � = 0:0, there are no correlation penalty

terms in the error functions of the individual

networks, and the individual networks are just

trained independently using BP. That is, indepen-

dent training using BP for the individual networks

is a special case of negative correlation learning.

3. For � = 1, from Eq.(12) we get

@Ei(n)

@Fi(n)
= F (n)� y(n) (13)

Note that the error of the ensemble for the nth

training pattern is de�ned by

Eensemble =
1

2
(
1

M
�M
i=1Fi(n)� y(n))2 (14)

The partial derivative of Eensemble with respect

to Fi on the nth training pattern is

@Eensemble

@Fi(n)
=

1

M
(
1

M
�M
i=1Fi(n)� y(n))

=
1

M
(F (n)� y(n)) (15)

In this case, we get

@Ei(n)

@Fi(n)
/

@Eensemble

@Fi(n)
(16)

The minimization of the error function of the en-

semble is achieved by minimizing the error func-

tions of the individual networks. From this point

of view, negative correlation learning provides a

novel way to decompose the learning task of the

ensemble into a number of subtasks for di�erent

individual networks.

3 Simulation Results

In order to understand how negative correlation learn-

ing minimizes mutual information, this section analy-

ses it through measuring mutual information on a re-

gression task in three cases: noise free condition, small

noise condition, and large noise condition.



3.1 Simulation Setup

The regression function investigated here is

f(x) =
1

13

�
10sin(�x1x2) + 20

�
x3 �

1

2

�2

+10x4 + 5x5

�
� 1 (17)

where x = [x1; : : : ; x5] is an input vector whose compo-

nents lie between zero and one. The value of f(x) lies

in the interval [�1; 1]. This regression task has been

used by Jacobs [10] to estimate the bias of mixture-of-

experts architectures and the variance and covariance

of experts' weighted outputs.

Twenty-�ve training sets, (x(k)(l); y(k)(l)), l =

1; � � � ; L, L = 500, k = 1; � � � ;K, K = 25, were created

at random. Each set consisted of 500 input-output

patterns in which the components of the input vectors

were independently sampled from a uniform distribu-

tion over the interval (0,1). In the noise free condition,

the target outputs were not corrupted by noise; in the

small noise condition, the target outputs were created

by adding noise sampled from a Gaussian distribution

with a mean of zero and a variance of �2 = 0:1 to the

function f(x); in the large noise condition, the target

outputs were created by adding noise sampled from a

Gaussian distribution with a mean of zero and a vari-

ance of �2 = 0:2 to the function f(x).

A testing set of 1024 input-output patterns,

(t(n); d(n)), n = 1; � � � ; N , N = 1024, was also gener-

ated. For this set, the components of the input vectors

were independently sampled from a uniform distribu-

tion over the interval (0,1), and the target outputs

were not corrupted by noise in all three conditions.

Each individual network in the ensemble is a multilayer

perceptron with one hidden layer. All the individual

networks have �ve hidden nodes in an ensemble archi-

tecture. The hidden node function is de�ned by the

logistic function

'(y) =
1

1 + exp (�y)
(18)

The network output is a linear combination of the out-

puts of the hidden nodes.

For each estimation of mutual information among an

ensemble, twenty-�ve simulations were conducted. In

each simulation, the ensemble was trained on a dif-

ferent training set from the same initial weights dis-

tributed inside a small range so that di�erent simu-

lations of an ensemble yielded di�erent performances

solely due to the use of di�erent training sets. Such

simulation setup follows the suggestions from Jacobs

[10].

3.2 Measurement of Mutual Information

The average outputs of the ensemble and the individ-

ual network i on the nth pattern in the testing set,

(t(n); d(n)), n = 1; � � � ; N , are denoted respectively by

F (t(n)) and F i(t(n)), which are given by

F (t(n)) =
1

K
�K
k=1F

(k)(t(n)) (19)

and

F i(t(n)) =
1

K
�K
k=1F

(k)
i (t(n)) (20)

where F (k)(t(n)) and F
(k)

i (t(n)) are the outputs of the

ensemble and the individual network i on the nth pat-

tern in the testing set from the kth simulation, respec-

tively, and K = 25 is the number of simulations. The

correlation coeÆcient between network i and network

j is given by

�ij =
�N
n=1�

K
k=1

�
F
(k)
i (t(n))� F i(t(n))

�
r
�N
n=1�

K
k=1

�
F
(k)
i (t(n))� F i(t(n))

�2 �
�
F
(k)
j (t(n)) � F j(t(n))

�
r
�N
n=1�

K
k=1

�
F
(k)
j (t(n))� F j(t(n))

�2 (21)

From Eq.(6), the integrated mutual information

among the ensembles can be de�ned by

Emi = �

1

2
�M
i=1�

M
j=1;j 6=ilog(1� �2ij) (22)

We may also de�ne the integrated mean-squared error

(MSE) on the testing set as

Etest mse =
1

N
�N
n=1

1

K
�K
k=1

�
F (k)(t(n)) � d(n)

�2
(23)

The integrated mean-squared errorEtrain on the train-

ing set is given by

Etrain mse =
1

L
�L
l=1

1

K
�K
k=1

�
F (k)(x(k)(l))� y(k)(l)

�2
(24)

3.3 Results in the Noise Free Condition

The results of negative correlation learning in the noise

free condition for the di�erent values of � at epoch

2000 are given in Table 1. The results suggest that



Table 1: The Results of Negative Correlation Learning

in the Noise Free Condition for Di�erent � Values at

Epoch 2000.

� Emi Etest mse Etrain mse

0 0.3706 0.0016 0.0013

0.25 0.1478 0.0013 0.0010

0.5 0.1038 0.0011 0.0008

0.75 0.1704 0.0007 0.0005

1 0.6308 0.0002 0.0001

Table 2: The Results of Negative Correlation Learning

in the Small Noise Condition for Di�erent � Values at

Epoch 2000.

� Emi Etest mse Etrain mse

0 6.5495 0.0137 0.0962

0.25 3.8761 0.0128 0.0940

0.5 1.4547 0.0124 0.0915

0.75 0.3877 0.0126 0.0873

1 0.2431 0.0290 0.0778

both Etrain mse and Etest mse appeared to decrease

with increasing value of �. The mutual information

Emi among the ensemble decreased as the value of

� increased when 0 � � � 0:5. However, when �

increased further to 0:75 and 1, the mutual information

Emi had larger values. The reason of having larger

mutual information at � = 0:75 and � = 1 is that

some correlation coeÆcients had negative values and

the mutual information depends on the absolute values

of correlation coeÆcients.

In order to �nd out why Etrain mse decreased with

increasing value of �, the concept of capability of a

trained ensemble is introduced. The capability of a

trained ensemble is measured by its ability of produc-

ing correct input-output mapping on the training set

used, speci�cally, by its integrated mean-squared error

Etrain mse on the training set. The smaller Etrain mse

is, the larger capability the trained ensemble has.

3.3.1 Results in the Noise Conditions

Table 2 and Table 3 compare the performance of neg-

ative correlation learning for di�erent strength param-

eters in both small noise (variance �2 = 0:1) and large

noise (variance �2 = 0:2) conditions. The results show

that there were same trends for Emi, Etest mse, and

Etrain mse in both noise free and noise conditions when

� � 0:5. That is, Emi, Etest mse, and Etrain mse ap-

peared to decrease with increasing value of �. How-

ever, Etest mse appeared to decrease �rst and then in-

Table 3: The Results of Negative Correlation Learning

in the Large Noise Condition for Di�erent � Values at

Epoch 2000.

� Emi Etest mse Etrain mse

0 6.7503 0.0249 0.1895

0.25 3.9652 0.0235 0.1863

0.5 1.6957 0.0228 0.1813

0.75 0.4341 0.0248 0.1721

1 0.2030 0.0633 0.1512

crease with increasing value of �.

In order to �nd out why Etest mse showed di�er-

ent trends in noise free and noise conditions when

� = 0:75 and � = 1, the integrated mean-squared

error Etrain mse on the training set was also shown

in Tables 1, 2, and 3. When � = 0, the neural net-

work ensemble trained had relatively large Etrain mse.

It indicated that the capability of the neural network

ensemble trained was not big enough to produce cor-

rect input-output mapping (i.e., it was under�tting)

for this regression task. When � = 1, the neural

network ensemble trained learned too many speci�c

input-output relations (i.e., it was over�tting), and it

might memorize the training data and therefore be less

able to generalize between similar input-output pat-

terns. Although the over�tting was not observed for

the neural network ensemble used in noise free con-

dition, too large capability of the neural network en-

semble will lead to over�tting for both noise free and

noise conditions because of the ill-posedness of any �-

nite training set [11].

Choosing a proper value of � is important, and also

problem dependent. For the noise conditions used for

this regression task and the ensemble architectured

used, the performance of the ensemble was optimal

for � = 0:5 among the tested values of � in the sense

of minimizing the MSE on the testing set.

4 Evolving Neural Network

Ensembles

In EENCL [2], an evolutionary algorithm based on

evolutionary programming [12] has been used to search

for a population of diverse individual neural networks

that solve a problem together. Two major issues were

addressed in EENCL, including exploitation of the in-

teraction between individual neural design and combi-

nation, and automatic determination of the number of

individual neural networks in an ensemble. The major

steps of EENCL are given as follows [4]:



1. Generate an initial population of M neural net-

works, and set k = 1. The number of hidden

nodes for each neural network, nh, is speci�ed

by the user. The random initial weights are dis-

tributed uniformly inside a small range.

2. Train each neural network in the initial popula-

tion on the training set for a certain number of

epochs using negative correlation learning. The

number of epochs, ne, is speci�ed by the user.

3. Randomly choose a group of nb neural networks

as parents to create nb o�spring neural networks

by Gaussian mutation.

4. Add the nb o�spring neural networks to the pop-

ulation and train the o�spring neural networks

using negative correlation learning while the re-

maining neural networks' weights are frozen.

5. Calculate the �tness of M + nb neural networks

in the population and prune the population to the

M �ttest neural networks.

6. Go to the next step if the maximum number of

generations has been reached. Otherwise, k =

k + 1 and go to Step 3.

7. Form species using the k-means algorithm.

8. Combining species to form the ensembles.

There are two levels of adaptation in EENCL: neg-

ative correlation learning at the individual level and

evolutionary learning based on evolutionary Forming

species by using the k-means algorithm in EENCL [2]

is not considered in this paper.

Fitness sharing used in EENCL is based on the idea

of covering the same training patterns by shared in-

dividuals. The procedure of calculating shared �tness

is carried out pattern-by-pattern over the training set.

If one training pattern is learned correctly by p indi-

viduals in the population, each of these p individuals

receives �tness 1=p, and the rest of the individuals in

the population receive zero �tness. Otherwise, all the

individuals in the population receive zero �tness. The

�tness is summed over all training patterns.

Rather than using the �tness sharing based on the cov-

ering set, a �tness sharing based on the minimization

of mutual information was introduced in EENCL [6].

In order to create a population of neural networks that

are as uncorrelated as possible, the mutual information

between each individual neural network and the rest

of population should be minimized. The �tness fi of

individual network i in the population can therefore

be evaluated by the mutual information:

fi =
1P

j 6=i I(Fi; Fj)
(25)

Minimization of mutual information has the similar

motivations as �tness sharing. Both of them try to

generate individuals that are di�erent from others,

though overlaps are allowed.

5 Experimental Studies

This section investigates EENCL with minimization of

mutual information on two benchmark problems: the

Australian credit card assessment problem and the di-

abetes problem. Both data sets were obtained from the

UCI machine learning benchmark repository. They are

available by anonymous ftp at ics.uci.edu (128.195.1.1)

in directory /pub/machine-learning-databases.

The Australian credit card assessment problem is to

assess applications for credit cards based on a number

of attributes. There are 690 patterns in total. The

output has two classes. The 14 attributes include 6

numeric values and 8 discrete ones, the latter having

from 2 to 14 possible values.

The diabetes data set is a two-class problem that has

500 examples of class 1 and 268 of class 2. There

are 8 attributes for each example. The data set is

rather diÆcult to classify. The so-called \class" value

is really a binarized form of another attribute that is

itself highly indicative of certain types of diabetes but

does not have a one-to-one correspondence with the

medical condition of being diabetic.

In order to tell the di�erence between EENCL and

EENCL with minimization of mutual information. We

name the later approach as EENCLMI. The experi-

mental setup is the same as the previous experimental

setup described in [13, 2]. The n-fold cross-validation

technique [14] was used to divide the data randomly

into n mutually exclusive data groups of equal size. In

each train-and-test process, one data group is selected

as the testing set, and the other (n�1) groups become

the training set. The estimated error rate is the aver-

age error rate from these n groups. In this way, the

error rate is estimated eÆciently and in an unbiased

way. The parameter n was set to be 10 for the Aus-

tralian credit card data set, and 12 for the diabetes

data set, respectively.

All parameters used in EENCLMI except for the num-

ber of training epochs were set to be the same for both

problems: the population size M (25), the number of



Table 4: Comparison of Accuracy Rates between EENCLMI and EENCL for the Australian Credit Card Data

Set. The Results Are Averaged on 10-Fold Cross-Validation. Mean and SD Indicate the Mean Value and

Standard Deviation, Respectively.

Simple Averaging Majority Voting Winner-Takes-All

Methods Mean SD Mean SD Mean SD

EENCLMI 0.864 0.038 0.870 0.040 0.868 0.039

EENCL 0.855 0.039 0.857 0.039 0.865 0.028

Table 5: Comparison of Accuracy Rates between EENCLMI and EENCL for the Diabetes Data Set. The Results

Are Averaged on 12-Fold Cross-Validation. Mean and SD Indicate the Mean Value and Standard Deviation,

Respectively.

Simple Averaging Majority Voting Winner-Takes-All

Methods Mean SD Mean SD Mean SD

EENCLMI 0.771 0.049 0.777 0.046 0.773 0.051

EENCL 0.766 0.039 0.764 0.042 0.779 0.045

generations (200), the reproduction block size nb (2),

the strength parameter � (0.5), the minimum number

of cluster sets (3), and the maximum number of clus-

ter sets (25). The number of training epochs ne was

set to 3 for the Australian credit card data set, and 15

for the diabetes data set. The used neural networks

in the population are multilayer perceptrons with one

hidden layer and �ve hidden nodes. These parame-

ters were selected after some preliminary experiments.

They were not meant to be optimal.

5.1 Experimental Results

Tables 4{5 show the results of EENCLMI for the two

data sets, where the ensembles were constructed by the

whole population in the last generation. Three com-

bination methods for determining the output of the

ensemble have been investigated in EENCLMI. The

�rst is simple averaging. The output of the ensem-

ble is formed by a simple averaging of output of in-

dividual neural networks in the ensemble. The sec-

ond is majority voting. The output of the greatest

number of individual neural networks will be the out-

put of the ensemble. If there is a tie, the output of

the ensemble is rejected. The third is winner-takes-

all. For each pattern of the testing set, the output of

the ensemble is only decided by the individual neu-

ral network whose output has the highest activation.

The accuracy rate refers to the percentage of correct

classi�cations produced by EENCLMI. In comparison

with the accuracy rates obtained by three combination

methods, majority voting and winner-takes-all outper-

formed simple averaging on both problems. Simple av-

eraging is more suitable to the regression type of tasks.

Because both problems studied in this paper are clas-

si�cation tasks, majority voting and winner-takes-all

are better choices.

Tables 4{5 compare the results produced EENCLMI

and EENCL using three combination methods. Ma-

jority voting supports EENCLMI, while winner-takes-

all favors EENCL. Since the only di�erence between

EENCLMI and EENCL is the �tness sharing scheme

used, the results suggest that combination methods

and �tness sharing are closely related to each other.

Further studies are needed to probe the relationship

of these two.

200

300

400

500

600

700

800

900

0 50 100 150 200

Mutual Information among Population

Figure 1: The Evolution of the Mean of Sum of the

Mutual Information among the Population for the

Australian Credit Card Data Set. The Mean Is Av-

eraged on 10-fold Cross-Validation. The Vertical Axis

Is the Mutual Information Value and the Horizontal

Axis Is the Number of Generations.



In order to observe the evolutionary process of the mu-

tual information among the population in EENCLMI,

Figure 1 show the evolution of the mean of sum of the

mutual information among the population for the Aus-

tralian credit card data set. The sum of the mutual

information among the population is calculated by

Ipopulation =
1

2

MX
i=1

MX
j=1;j 6=i

I(Fi; Fj) (26)

where Fi is the vector formed by the output of network

i on the training set, and Fj is the vector formed by the

output of network j on the training set. The mean of

Ipopulation is averaged on 10-fold cross-validation. The

evolutionary processes clearly shows that the value of

mutual information among the population steadily de-

creased through the whole evolution.

6 Conclusions

Minimization of mutual information has been intro-

duced as a �tness sharing scheme in EENCL. Com-

pared with the �tness sharing based on the covering

set originally used in EENCL [2], mutual information

provides more accurate measurement on the similarity.

By minimizing mutual information, a diverse popula-

tion can be evolved.

This paper has also analyzed negative correlation

learning in terms of mutual information on a regression

task in the di�erent noise conditions. Unlike indepen-

dent training which creates larger mutual information

among the ensemble, negative correlation learning can

produce smaller mutual information among the ensem-

ble.

References

[1] Y. Liu and X. Yao. Simultaneous training of neg-

atively correlated neural networks in an ensemble.

IEEE Trans. on Systems, Man, and Cybernetics,

Part B: Cybernetics, 29(6):716{725, 1999.

[2] Y. Liu, X. Yao, and T. Higuchi. Evolution-

ary ensembles with negative correlation learn-

ing. IEEE Transactions on Evolutionary Com-

putation, 4(4):380{387, 2000.

[3] Y. Liu and X. Yao. Negatively correlated neural

networks can produce best ensembles. Australian

Journal of Intelligent Information Processing Sys-

tems, 4:176{185, 1998.

[4] X. Yao, Y. Liu, and P. Darwen. How to make

best use of evolutionary learning. In R. Stocker,

H. Jelinek, and B. Durnota, editors, Complex Sys-

tems: From Local Interactions to Global Phenom-

ena, pages 229{242. IOS Press, Amsterdam, 1996.

[5] Y. Liu and X. Yao. Towards designing neural

network ensembles by evolution. In Parallel Prob-

lem Solving from Nature | PPSN V: Proc. of the

Fifth International Conference on Parallel Prob-

lem Solving from Nature, volume 1498 of Lec-

ture Notes in Computer Science, pages 623{632.

Springer-Verlag, Berlin, 1998.

[6] Y. Liu, Q. Zhao X. Yao, and T. Higuchi. Evolving

a cooperative population of neural networks by

minimizing mutual information. In Proc. of the

2001 Conference on Evolutionary Computation,

pages 384{389. IEEE Press, 2001.

[7] J. C. A. van der Lubbe. Information The-

ory. Prentice-Hall International, Inc., 2nd edition,

1999.

[8] R. T. Clemen and R. .L Winkler. Limits for the

precision and value of information from depen-

dent sources. Operations Research, 33:427{442,

1985.

[9] D. E. Rumelhart, G. E. Hinton, and R. J.

Williams. Learning internal representations by

error propagation. In D. E. Rumelhart and J. L.

McClelland, editors, Parallel Distributed Process-

ing: Explorations in the Microstructures of Cog-

nition, Vol. I, pages 318{362. MIT Press, Cam-

bridge, MA, 1986.

[10] R. A. Jacobs. Bias/variance analyses of mixture-

of-experts architectures. Neural Computation,

9:369{383, 1997.

[11] J. H. Friedman. An overview of predic-

tive learning and function approximation. In

V. Cherkassky, J. H. Friedman, and H. Wech-

sler, editors, From Statistics to Neural Net-

works: Theory and Pattern Recognition Appli-

cations, pages 1{61. Springer-Verlag, Heidelberg,

Germany, 1994.

[12] D. B. Fogel. Evolutionary Computation: Towards

a New Philosophy of Machine Intelligence. IEEE

Press, New York, NY, 1995.

[13] D. Michie, D. J. Spiegelhalter, and C. C. Taylor.

Machine Learning, Neural and Statistical Classi-

�cation. Ellis Horwood Limited, London, 1994.

[14] M. Stone. Cross-validatory choice and assessment

of statistical predictions. Journal of the Royal

Statistical Society, 36:111{147, 1974.


