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Abstract

Several memetic algorithms (MAs) – evolu-
tionary algorithms incorporating local search
– have been proposed for the traveling sales-
man problem (TSP). Much effort has been
spent to develop recombination operators for
MAs which aim to exploit problem charac-
teristics to achieve a highly effective search.

In this paper, several recombination oper-
ators for the TSP are compared. For the
purpose of identifying the important prop-
erties of a recombination operator, a new
generic recombination operator (GX) is pro-
posed which is comprised of four phases.
These phases can be controlled by parame-
ters reflecting the most important properties
of recombination operators. It is shown that
GX recombination is superior to MPX and
DPX when all common edges are preserved
in the offspring.

1 INTRODUCTION

The traveling salesman problem (TSP) is one of the
best-known combinatorial optimization problems. It
can be stated as follows: Given n cities and the geo-
graphical distance between all pairs of these cities, the
task is to find the shortest closed tour in which each
city is visited exactly once. From a graph theoretical
point of view, this is equivalent to finding the shortest
Hamiltonian cycle in a complete graph.

The TSP has been widely used as a problem for test-
ing new heuristic algorithms and general purpose opti-
mization techniques. In particular, several evolution-
ary algorithms have been proposed to tackle this NP-
hard problem. Simple evolutionary algorithms have
been shown to be ineffective in finding near optimum

solutions [9]. Therefore, several researchers incorpo-
rated local search into an evolutionary framework such
that all individuals in the population are local optima,
leading to highly effective algorithms, known as genetic
local search or memetic algorithms (MAs)[23, 24].
Memetic algorithms have been shown to be among the
best heuristics for the TSP [18, 13, 17, 12, 10, 1]. Other
important aspects of MAs not covered in this paper
include spatial population structures [7], MA theory
[29], and self-adaptation [14].

In this paper, memetic algorithms for the TSP are
studied by concentrating on the most important part
of the evolutionary framework – the recombination of
solutions. A new generic greedy recombination opera-
tor is introduced to the study three important aspects
of TSP tour recombination: the inheritance of com-
mon edges to both parents, the insertion of new edges,
and the inheritance of edges found in just one of the
parents. The greedy operator can be controlled by
three parameters in respect to these aspects. Several
parameter settings of GX are compared with maxi-
mally preserving crossover (MPX) [25, 8] and distance
preserving crossover (DPX) [6, 18]. The experiments
show the importance of inheriting common edges and
provide a meaningful choice of the remaining two pa-
rameters. The effectiveness of the MA with GX is
demonstrated on several instances form TSPLIB [28].

The paper is organized as follows. In section 2, the
memetic algorithm framework used in this paper, as
well as the new greedy recombination operator is in-
troduced. In section 3, a comparison of memetic re-
combination operators is performed on selected TSP
instances. And results are presented of the MA us-
ing GX on 15 TSP instances. Section 4 concludes the
paper and outlines areas for future research.



2 MEMETIC ALGORITHMS FOR
THE TSP

Although there are other effective evolutionary algo-
rithms incorporating sophisticated problem dependent
procedures such as Nagata and Kobayashi’s [26] evolu-
tionary algorithm with edge assembly crossover, MAs
provide a general framework for hybrid algorithms that
can be applied to other combinatorial problems such
as the quadratic assignment problem [20], the binary
quadratic programming problem [19], and graph bi-
partitioning [21].

procedure MA;

begin
initialize population P ;
foreach i ∈ P do i := Local-Search(i);
repeat

for i := 1 to #recombinations do
select two parents ia, ib ∈ P randomly;
ic := Recombine(ia, ib);
ic := Local-Search(ic);
add individual ic to P ;

endfor;
for i := 1 to #mutations do

select parent ia ∈ P randomly;
ic := Mutate(ia);
ic := Local-Search(ic);
add individual ic to P ;

endfor;
P := select(P );
if P converged then

foreach i ∈ P\{best} do
i := Local-Search(Mutate(i));

endif
until terminate=true;

end;

Figure 1: The Memetic Algorithm

MAs for the TSP are similar to other evolutionary al-
gorithms: a population of locally optimal solutions
is evolved over time by applying evolutionary vari-
ation operators (mutation and recombination opera-
tors), and by selection of the best individuals from the
pool of parents and offspring. The pseudo code for the
MAs used in this contribution is shown in Fig. 1. To
ensure that the individuals in the population are local
optima, after each application an evolutionary varia-
tion operator, local search is applied. This includes
the initialization phase of the population in which so-
lutions are constructed from scratch: A local search
procedure is applied to these solutions so that even the
first generation consists exclusively of local optima.

The problem-specific parts of the algorithm comprise

initialization, local search, and the evolutionary varia-
tion operators: recombination and mutation. In com-
parison to other evolutionary algorithms, the role of
mutation and recombination is different. Firstly, mu-
tation and recombination are performed independently
from each other. Secondly, the phenotypic changes
caused by the variation operators must be large enough
to reach the basin of attraction of new local optima,
since local search is always applied after mutation or
recombination.

2.1 Initialization and Local Search

To initialize the population of the MA, TSP tours have
to be generated either randomly or by a randomized
tour construction heuristic such as nearest neighbor
or the greedy heuristic [11]. After the generation of
feasible tours, a local search is applied.

The most effective local search procedures for the TSP
are 2-opt, 3-opt, and the Lin-Kernighan (LK) heuristic
[15, 11]. These heuristics exchange 2, 3, or a variable
number of edges in each iteration, respectively. Gen-
erally, the stronger the local search used the better the
performance of the MA. Therefore, the Lin-Kernighan
heuristic has been used in [6, 5, 18].

2.2 Recombination Operators

During recombination, a new offspring is generated by
copying edges from the parents. However, the TSP
tour constraints have to be obeyed: each node (city) is
connected with exactly two other nodes via two edges
and the tour is required to have only one cycle. These
constraints are hard to obey, hence many proposed re-
combination operators introduce foreign edges which
are not contained in one of the parents to meet the
constraints. These foreign edges can be considered
as implicit mutations, and have a high impact on the
performance of EAs for the TSP [16], since they can
be very long, destroying the benefit of combining the
short edges from the parents.

2.2.1 Properties of Recombination Operators

The use of local search after the application of a re-
combination operator – as is the case in memetic al-
gorithms – can compensate for the disruptive effects
of implicit mutations. In some cases, implicit muta-
tions have a positive effect on the performance of the
local search, and in some situations they have not.
Thus, it is important that implicit mutations can be
controlled in some way. Besides the number of for-
eign edges introduced during recombination, another
aspect appears to be important: which edges are in-



herited from the parents and which are not. More
formally, recombination operators can be classified ac-
cording to Radcliffe and Surry [27] as

Respectful: The alleles that are identical in both
parents are preserved in the offspring, i.e. all
edges found in both parent tours (common edges)
are found in the offspring tour

Assorting: The offspring contain only alleles from ei-
ther one of the parents, i.e. all edges in the child
tour are found in at least one of the parent tours,
thus no implicit mutation occurs

While respectful recombination can be easily achieved
by a recombination operator for the TSP, assorting
recombination is hardly accomplished. Note, that for
binary representations a respectful recombination is
also assorting.

2.2.2 MPX and DPX

Although there are many recombination operators pro-
posed for the TSP, we concentrate on those especially
useful in combination with local search und thus in a
memetic framework. Other recombination operators
such as the edge recombination operator family [16, 3]
or the edge assembly crossover [26] are aimed at pre-
serving edges without additional local search. These
operators are inferior to other more disruptive opera-
tors if local search is used [3, 17].

In the MPX proposed in [8] a sub-path between two
randomly chosen crossover points is copied from the
first parent to the offspring. The first crossover point
is chosen to be at an edge not contained in the sec-
ond parent. The partial tour is extended by copying
edges from the second or first parent afterwards. If no
parental edge can be included a foreign edge is intro-
duced to maintain feasibility. To a high extent, edges
from the parents are retained. This operator does not
guarantee to be respectful.

The DPX proposed in [6, 5] is an operator that is only
useful in combination with local search. In contrast
to MPX or other recombination operators such as the
edge recombination operators [30], it forces the inclu-
sion of foreign edges in the offspring instead of pre-
venting it.

DPX tries to generate an offspring that has equal dis-
tance to both of its parents, i.e., its aim is to achieve
that the three distances between offspring and parent
1, offspring and parent 2, and parent 1 and parent 2
are identical. It works in two phases: (1) all common
edges are copied to the offspring, and (2) the tour frag-
ments present in the offspring are reconnected based

on a nearest neighbor algorithm where edges contained
in one of the parents are not considered.

2.2.3 The Generic Greedy Recombination
Operator

A new recombination operator is proposed in the fol-
lowing that utilizes the greedy construction scheme of
the greedy heuristic [11]. The generic greedy recombi-
nation operator (GX) consists of four phases:

Phase I: (common edges)
In the first phase, some or all edges contained in
both parents are copied to the offspring tour.

Phase II: (new edges)
In the second phase, new short edges are added
to the offspring that are not contained in one of
the parents. These edges are selected randomly
among the shortest edges emanating from each
node. These edges are with high probability con-
tained in (near) optimum solutions and are thus
good candidates for edges in improved tours.

Phase III: (non-common edges)
In a third phase, edges are copied from the par-
ents by making greedy choices. Edges are inserted
in order of increasing length, and only candidate
edges are considered, i.e., edges that violate the
TSP constraints.

Phase IV: (remaining edges)
In the fourth and last phase, further edges are
included in order of increasing length until the
child consists of n edges and is thus a feasible
TSP tour.

All greedy choices in the fourth step are randomized by
selected the shortest remaining edge with a probability
of 0.66 and the second shortest edge with a probability
of 0.33.

The GX operator has three parameters: the com-
mon edges inheritance rate (cRate) that determines
the probability that a common edge is added to the
child and is thus a control parameter for the first
phase. With a rate of 1.0, respectful recombination
is achieved, all other rates lead to disrespectful recom-
bination. The second phase is controlled by the new
edges insertion rate (nRate) that determines the num-
ber of new edges to include. A rate of 0.5, for example,
determines that half of the remaining edges to insert
after phase one are new edges that are short but not
contained in one of the parent solutions. The maxi-
mum number of edges to inherit from the parents is
determined by the inheritance rate (iRate). In the



last phase, allowed edges in increasing length are cho-
sen that may or may not be found in the parents. For
am more detailed explanation see [17].

2.3 The Mutation Operator

Simple mutation operators are not suited for use in
MAs, since subsequently applied local search proce-
dures will usually revert the changes made. For exam-
ple, the inversion operator randomly exchanging two
edges is ineffective when 2-opt, 3-opt or LK local search
is used. Therefore, in MAs alternative mutation oper-
ators are required.

The non-sequential four change (NS4) is an edge ex-
change involving four edges [15]. It is especially use-
ful in connection with the LK heuristic. Since LK
only performs sequential exchanges, it cannot reverse
a non-sequential four change in one iteration. The
NS4 is used in the iterated Lin-Kernighan heuristic
[11], which is known to be very effective.

2.4 Selection and Restarts

In this work, a single panmictic population structure
is used. Thus selection utilized in the memetic algo-
rithms is a global selection strategy and similar to the
selection in the (µ + λ)-ES (Evolution Strategy): The
new population is derived by selecting the best indi-
viduals out of the pool of parents and children. Dupli-
cates are eliminated such that a solution is contained
no more than once in the population.

Due to small population sizes and the use of local
search in memetic algorithms, the problem of prema-
ture convergence arises. Therefore, the restart tech-
nique proposed by Eshelman [4] is employed. Dur-
ing the run, it is checked whether the search has con-
verged. If so, the whole population is mutated except
for the best individual. The mutation used here ex-
changes k edges with k being high compared to the
mutation operator described above.

3 EXPERIMENTAL RESULTS

Several experiments have been conducted to evaluate
the performance of MAs for the TSP. All experiments
described in the following were conducted on a PC
with Pentium III Processor (500 MHz) under Linux
2.2. All algorithms were implemented in C++. For
details of the algorithms see [17].

3.1 Comparison of Recombination Operators

In a first set of experiments, several recombination op-
erators for the TSP were tested under the same con-
ditions on three selected TSP instances contained in
TSPLIB: att532, pr1002, and fl1577. To get a clear
picture of the operator effectiveness, no additional mu-
tation was performed and the restart mechanism was
disabled during the runs. Furthermore, a fast 2-opt lo-
cal search was used in the MAs that is not as effective
as 3-opt local search or the Lin-Kernighan heuristic to
reduce the strong influence of the (sophisticated) lo-
cal search. The recombination operators MPX, DPX,
and the generic greedy recombination operator were
studied with various parameter settings. The popula-
tion was set to P = 100 in all runs, and the variation
operator application rate was set to 0.5, i.e., 50 off-
spring were generated per generation. The results of
the experiments are summarized in Table 1. For each
instance/operator, the average number of generations,
the shortest tour length found, and the percentage ex-
cess over the optimum solution value is provided. For
the GX operator, the values for cRate, nRate and iRate
are provided in the form cRate/nRate/iRate. For ex-
ample, a parameter setting of 1/0.25/0.75 means that
the common inheritance rate cRate was set to 1.0, the
new edges insertion rate nRate was set to 0.25, and
the inheritance rate iRate was set to 0.75. The dot in
each column block indicates the best result within this
block.

For all three instances, MPX and DPX are outper-
formed by GX for some of the parameter settings: all
GX variants with a common inheritance rate of 1.0
and a new edge introduction rate of 0.25 perform bet-
ter than MPX and DPX. However, the best parameter
setting for GX is for each of the instances a different
one implying that there is no “golden rule” leading to
the best recombination strategy for all TSP instances!
For example, the best setting for fl1577 is 1/0/0.75 but
all other combinations with nRate set to 0.0 do not
perform as well as the GX variants with nRate set to
0.25. Furthermore, it becomes apparent that respect-
fulness is a very important property of recombination
operators since all GX versions with a common in-
heritance rate less than 1 perform significantly worse
than the respectful greedy recombination operators.
However, choosing a high inheritance rate can com-
pensate the phenomenon to an extent since the com-
mon edges of the parents have a chance to be included
in the offspring in the third phase of the generic re-
combination. Additionally, iterated 2-opt local search
(ILS) and a MA with the non-sequential four-change
mutation (NS4) and no recombination has been ap-
plied to the three instances. The mutation based al-



Table 1: Comparison of MA Recombination Strategies for the TSP (2-opt)

Operator att532 pr1002 fl1577
DPX 1565 27793.0 - 0.386% 664 266240.5 - 2.778% 653 22314.0 - 0.292%
MPX 2691 27772.0 - 0.311% 3404 261695.5 - 1.023% 1240 22347.8 - 0.444%

GX-Params
1/1/1 650 27738.7 - 0.190% 307 268183.5 - 3.528% 554 22295.6 - 0.210%
1/1/0.75 708 27744.7 - 0.212% 354 268072.9 - 3.485% 592 22306.7 - 0.259%
1/1/0.5 725 27740.0 - 0.195% 415 267033.1 - 3.084% 585 22304.0 - 0.247%
1/1/0.25 669 27772.0 - 0.311% 304 268487.4 - 3.645% 580 22296.5 - 0.213%
1/0.5/1 868 27729.8 - 0.158% 759 260907.8 - 0.719% 624 22294.8 - 0.206%
1/0.5/0.75 929 27727.0 - 0.148% 733 261981.0 - 1.133% 713 22294.6 - 0.205%
1/0.5/0.5 923 27725.2 - 0.142% 808 261121.2 - 0.801% 682 22296.7 - 0.214%
1/0.5/0.25 892 27723.9 - 0.137% 832 260723.4 - 0.648% 641 22303.5 - 0.245%
1/0.25/0 928 27724.5 - 0.139% 1223 260671.2 - 0.628% 690 22304.5 - 0.250%
1/0.25/0.75 1091 • 27719.2 - 0.120% 1430 260683.9 - 0.633% 769 22294.8 - 0.206%
1/0.25/0.5 1065 27722.4 - 0.131% 1422 260585.9 - 0.595% 684 22311.7 - 0.282%
1/0.25/0.25 998 27723.3 - 0.135% 1334 • 260508.6 - 0.565% 696 22307.0 - 0.261%
1/0/1 956 27763.5 - 0.280% 1321 261379.9 - 0.901% 736 22323.4 - 0.335%
1/0/0.75 1071 27728.0 - 0.152% 1481 260894.8 - 0.714% 735 • 22287.8 - 0.174%
1/0/0.5 1035 27725.4 - 0.142% 1434 260949.5 - 0.735% 744 22312.0 - 0.283%
1/0/0.25 1006 27737.7 - 0.186% 1412 260984.0 - 0.749% 719 22326.2 - 0.347%
0.75/0.5/1 201 28429.8 - 2.686% 226 269423.5 - 4.007% 212 22725.8 - 2.143%
0.75/0.5/0.75 224 28435.5 - 2.707% 254 269423.5 - 4.007% 230 22725.8 - 2.143%
0.75/0.5/0.5 215 28435.5 - 2.707% 243 269423.5 - 4.007% 225 22725.8 - 2.143%
0.75/0.5/0.25 206 28434.8 - 2.705% 232 269423.5 - 4.007% 219 22725.8 - 2.143%
0.75/0.25/0 233 27986.0 - 1.084% 229 269271.2 - 3.948% 227 22679.0 - 1.932%
0.75/0.25/0.75 269 28230.8 - 1.968% 288 269423.5 - 4.007% 269 22671.2 - 1.897%
0.75/0.25/0.5 254 28063.3 - 1.363% 258 269335.2 - 3.972% 254 22657.9 - 1.838%
0.75/0.25/0.25 243 27976.5 - 1.049% 240 269384.7 - 3.991% 239 22649.5 - 1.800%
0.75/0/1 407 27869.0 - 0.661% 422 263536.0 - 1.734% 270 22583.3 - 1.503%
0.75/0/0.75 517 27771.5 - 0.309% 705 • 261696.8 - 1.024% 620 • 22319.3 - 0.316%
0.75/0/0.5 457 • 27747.2 - 0.221% 558 262236.0 - 1.232% 398 22415.2 - 0.747%
0.75/0/0.25 415 27750.5 - 0.233% 435 262634.5 - 1.386% 298 22492.2 - 1.093%
0.5/0.25/0 156 28394.2 - 2.558% 179 269400.0 - 3.998% 161 22725.8 - 2.143%
0.5/0.25/0.75 191 28433.2 - 2.699% 224 269423.5 - 4.007% 187 22725.8 - 2.143%
0.5/0.25/0.5 172 28414.0 - 2.630% 201 269423.5 - 4.007% 178 22724.8 - 2.139%
0.5/0.25/0.25 162 28373.5 - 2.483% 187 269423.5 - 4.007% 170 22725.8 - 2.143%
0.5/0/1 195 28041.8 - 1.285% 216 266696.7 - 2.954% 174 22693.8 - 1.999%
0.5/0/0.75 403 27870.7 - 0.667% 455 • 263020.8 - 1.535% 363 • 22416.0 - 0.751%
0.5/0/0.5 293 • 27838.5 - 0.551% 316 263258.8 - 1.627% 242 22530.1 - 1.263%
0.5/0/0.25 220 27894.7 - 0.754% 227 265673.8 - 2.559% 192 22628.6 - 1.706%

ILS 61365 27777.7 - 0.331% 126457 260683.6 - 0.633% 150797 22369.2 - 0.540%
NS4 744 27860.2 - 0.629% 1438 261922.0 - 1.111% 1633 22304.0 - 0.247%

Time: 60 sec. 120 sec. 200 sec.

gorithms perform relatively well but can not compete
with the greedy recombination MAs. For the instance
fl1577, the MA with NS4 performs much better than
ILS indicating that for this type of landscape search
from multiple points (population-based search) is more
promising.

In the second experiment, we replaced the fast 2-opt
local search with the Lin-Kernighan heuristic. The
population size was set to 40, the variation operator
application rate was set to 0.5, i.e., 20 offspring were
generated per generation, and restarts were enabled
with a diversification rate of 0.3 (0.3 × n edges were

randomly exchanged with n denoting the number of
cities). The results obtained from experiments with
MAs using DPX, MPX, respectful GX, non-sequential-
four-change mutation (denoted NS4) in comparison
to the iterated Lin-Kernighan heuristic (ILK) are dis-
played in Table 2. For each instance/operator pair, the
average number of generations, and the percentage ex-
cess over the optimum solution value is provided. For
the GX operator, the values for nRate and iRate are
provided in the form nRate/iRate. cRate was set to
1.0 in all experiments. The dot in each row indicates
the best result for an instance.



Table 2: Comparison of MA Recombination Strategies for the TSP (LK)

Operator att532 rat783 pr1002 fl1577 pr2392 pcb3038

DPX 0.030 % 0.004 % 0.023 % • 0.028 % 0.068 % 0.113 %
MPX • 0.021 % • 0.001 % 0.169 % 0.142 % 0.054 % 0.128 %
GX 1.0/1.0 0.030 % 0.007 % 0.036 % 0.055 % 0.042 % 0.132 %
GX 1.0/0.75 0.035 % 0.026 % 0.022 % 0.058 % 0.053 % 0.211 %
GX 1.0/0.5 0.040 % 0.008 % 0.011 % 0.045 % 0.050 % 0.171 %
GX 1.0/0.25 0.043 % 0.006 % 0.013 % 0.051 % 0.047 % 0.146 %
GX 0.5/0.5 0.033 % 0.006 % 0.009 % 0.042 % 0.037 % 0.112 %
GX 0.5/0.75 0.031 % 0.007 % 0.031 % 0.048 % 0.055 % 0.175 %
GX 0.5/0.5 0.035 % 0.008 % 0.005 % 0.046 % 0.051 % 0.143 %
GX 0.5/0.25 0.037 % 0.009 % 0.011 % 0.037 % 0.044 % 0.136 %
GX 0.25/0 0.026 % 0.002 % 0.017 % 0.044 % 0.022 % 0.125 %
GX 0.25/0.75 0.038 % 0.012 % 0.003 % 0.041 % 0.031 % 0.151 %
GX 0.25/0.5 0.035 % 0.006 % 0.002 % 0.036 % 0.025 % 0.111 %
GX 0.25/0.25 0.041 % 0.005 % 0.002 % 0.040 % 0.023 % • 0.111 %
GX 0.0/1.0 0.045 % 0.008 % 0.006 % 0.052 % • 0.020 % 0.123 %
GX 0.0/0.75 0.036 % 0.003 % • 0.000 % 0.043 % 0.027 % 0.115 %
GX 0.0/0.5 0.034 % 0.011 % 0.008 % 0.052 % 0.029 % 0.122 %
GX 0.0/0.25 0.037 % 0.004 % 0.002 % 0.050 % 0.035 % 0.123 %

ILK 0.046 % 0.018 % 0.065 % 0.158 % 0.215 % 0.135 %
NS4 0.055 % 0.010 % 0.020 % 0.181 % 0.119 % 0.171 %

Time: 60 sec. 80 sec. 200 sec. 300 sec. 400 sec. 800 sec.

Here, the performance differences of the MAs are in
most cases not significant. For the problems att532,
rat783, and pr1002 all algorithms perform well with
only small differences, except for the MA with MPX
recombination in case of pr1002. Surprisingly, this MA
performs significantly worse than the other algorithms.
For fl1577, the MAs with DPX and GX outperform
all other competitors, with the MA using DPX be-
ing the best. For pr2392, all recombination based al-
gorithms perform similarly, but the MAs with muta-
tion and ILK perform significantly worse. In case of
pcb3038, the largest instance considered, all results lie
close together. The MAs with DPX and MPX out-
perform ILK and the MA with NS4. In the greedy
recombination MAs, high differences can be observed.
The best results are obtained with a new edge inser-
tion rate of 0.25. The results show no clear tendency,
and often the values lie too close together to be signifi-
cantly different. However, in none of the cases, ILK or
the MA with mutation is able to outperform the MA
using DPX or the best greedy recombination. The
performance differences between mutation and recom-
bination operators have become more apparent using
2-opt local search. For larger instances, this may be
also observed for MAs with the LK heuristic.

3.2 DPX vs. GX Recombination

Using a NS4 mutation application rate of m = 0.1,
the MAs have been run on a variety of problem in-
stances contained in TSPLIB, to show the robustness

and scalability of the memetic approach. In Table 3,
the results are shown for five instances up to a problem
size of 1002. The population size was set to P = 40 in
all runs, the recombination application rate was set to
0.5, and the diversification rate to 0.1. Two MAs were
run on each instance, the first one with DPX recombi-
nation and the second one with GX recombination. In
the latter, cRate was set to 1.0, nRate was set to 0.1
which appears to be a good compromise between 0.25
and 0.0, and iRate was set to 0.5. The programs were

Table 3: Average Running Times of two MAs to find
the Optimum

Instance Op gen quality Nopt t in s

DPX 19 42029 30/30 8
lin318 GX 13 0.00% 30/30 8

DPX 824 50778 30/30 147
pcb442 GX 286 0.00% 30/30 68

DPX 560 27686 30/30 127
att532 GX 289 0.00% 30/30 106

DPX 122 8806 30/30 26
rat783 GX 136 0.00% 30/30 35

DPX 333 259045 30/30 112
pr1002 GX 182 0.00% 30/30 98

terminated as soon as they reached an optimum solu-
tion. In the table, the average number of generations
(gen) and the average running time of the algorithms
(t in s) in seconds is provided. In 30 out of 30 runs, the
optimum could be found for all instances in less than
two minutes. The average running time for rat783 is



much lower than for att532 due to the structure of
the fitness landscapes (see [22] for details): In most
cases, the MA with greedy recombination appears to
be slightly superior to the MA with DPX.

Additional experiments have been performed on
TSPLIB instances up to a problem size of 85900. Due
to the limited number of pages in this contribution,
the results are not displayed here. They can be found
in [22].

4 Conclusions

In an extensive study, several recombination operators
including a newly proposed generic greedy recombina-
tion operator (GX) are compared in a MA framework.
The MAs show significant performance differences if a
simple fast 2-opt local search is employed. For MAs
with the sophisticated Lin-Kernighan local search, the
results lie much closer together. The study has shown
that respectfulness is the most important property of a
recombination operator. Furthermore, we have shown
that the MA with the newly proposed greedy recombi-
nation operator outperforms all its competitors: MAs
with DPX or MPX recombination, MAs with non-
sequential four change mutation, and iterated local
search.

MAs with DPX and GX recombination and mutation
have been applied to various instances contained in
TSPLIB to show robustness and scalability of the ap-
proach. For problems with up to 1000 cities the op-
timum could be found in all runs in an average time
of less than two minutes on a personal computer with
500 MHz.
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