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Abstract

LISYS is an artificial immune system frame-
work which is specialized for the problem of
network intrusion detection. LISYS learns to
detect abnormal packets by observing normal
network traffic. Because LISYS sees only a
partial sample of normal traffic, it must gen-
eralize from its observations in order to char-
acterize normal behavior correctly. A vari-
ation of the r-contiguous bits matching rule
is introduced, and its effect on coverage and
generalization is studied. The effect of rep-
resentation diversity on coverage and gener-
alization is also explored by studying permu-
tations in the order of bits in the representa-
tion.

1 Introduction

The natural immune system uses a variety of evolu-
tionary and adaptive mechanisms to protect organisms
from foreign pathogens and misbehaving cells in the
body. Artificial immune systems (AISs) seek to cap-
ture some aspects of the natural immune system in
a computational framework, either for the purpose of
modeling the natural immune system or for solving
engineering problems. In either form, the fundamen-
tal problem solved by most AISs can be thought of as
learning to discriminate between “self” (the normally
occurring patterns in the system being protected, e.g.,
the body) and “non-self” (foreign pathogens, such as
bacteria or viruses, or components of self that are
no longer functioning normally). Almost any set of
patterns that can be expressed as strings of symbols
can be placed into this framework, for example, the
set of normally occurring TCP connections in a local
area network (LAN) and the set of TCP connections
observed during a network attack [Hofmeyr, 1999,
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Kim and Bentley, 2001]. This is the example on which
we will focus in this paper.

We are interested in the question of representation—
how well a set of AIS detectors covers the set of nor-
mally occurring patterns (or conversely, how well it
can detect the set of abnormal patterns). Because AIS
detectors are typically generated on-line in a fluctuat-
ing environment, they are highly unlikely to be ex-
posed to every possible normal pattern during train-
ing. Consequently, it is important for detectors to gen-
eralize from the set of observed normal patterns to the
set of expected normal patterns. The generalization
properties of the AIS affect both false positives (mis-
takenly identifying normal patterns as abnormal) and
false negatives (mistakenly identifying abnormal pat-
terns as legitimate). These are known as Type I and
Type II errors respectively in the statistical decision
theory literature.

There are several components of the AIS that affect
how well it represents its environment and how well it
generalizes. The first of these is the mapping from the
domain to detectors, or what information is presented
to the AIS. Here we will use the 49-bit compressed
representation of TCP SYN packets, introduced by
Hofmeyr [Hofmeyr, 1999, Hofmeyr and Forrest, 1999,
Hofmeyr and Forrest, 2000]. In this representation
each detector is a 49-bit string. Detectors are matched
against the compressed 49-bit SYN packets (see Fig-
ure 1) using a partial matching rule which scores how
closely they match. Choosing an appropriate map-
ping for a given problem in the AIS context has all
the same complications as choosing a representation
for a genetic algorithms problem. Some representa-
tions are clearly better than others, but it is difficult
to formalize criteria by which one can choose a good
one in a particular instance. The 49-bit representation
chosen by Hofmeyr works surprisingly well, although
it contains a minimal amount of information and the
information is arranged in an arbitrary ordering.
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Figure 1: The 49-bit compression scheme used by
LISYS to represent TCP SYN packets. Strings are
compressed in two ways. First, it is assumed that one
of the TP addresses is always internal, so only the fi-
nal byte of this address needs to be stored. The port
number is also compressed from 16 bits to 8 bits by
re-mapping the ports into several different classes.

The second component is the match rule that is used
to assess how well an AIS detector matches a particu-
lar pattern. A perfect match between a detector and a
compressed SYN packet means that at each location in
the 49-bit string, the symbols are identical. However,
perfect matching (binding) is rare in the immune sys-
tem and improbable between strings of any significant
length. We use a matching rule known as r-contiguous
bits [Percus et al., 1993]. This rule looks for 7 contigu-
ous matches between symbols in corresponding posi-
tions. Thus, for any two strings = and y, we say that
match(z,y) is true if z and y agree (match) in at least
r contiguous locations. We also introduce a variant of
this rule which we refer to as r-contiguous templates,
or more simply, r-chunks. Both r-contiguous bits and
r-chunks are related to genetic algorithms and classi-
fier systems in interesting ways.

A third component is the permutation mask, also
introduced by Hofmeyr. Permutation masks are a
mechanism for introducing diversity of representation,
crudely analogous to MHC diversity in the natural im-
mune system. The idea behind this form of diversity
is that different representations will match different
patterns, and that the union of a set of different repre-
sentations will have greater detection ability than any
single representation. This insight is complicated by
the form of our problem, in which detecting more pat-
terns is not always better (because patterns detected in
error lead to false positives). Permutation masks sim-
ply store a different permutation of the 49-bit map-
ping, one permutation for each detector set'. This,
combined with r-contiguous bits matching, causes dif-
ferent permutations to discover different correlations
among bits in the representation.

'Permutation masks are one possible means of gener-
ating secondary representations. A variety of alternative
schemes are explored in [Hofmeyr, 1999].
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2 LISYS

The following summary of LISYS is largely drawn from
[Balthrop et al., 2002]. LISYS is situated in a local-
area broadcast network and used to protect the LAN
from network-based attacks. In contrast with switched
networks, broadcast LANs have the convenient prop-
erty that every location (computer) sees every packet
passing through the LAN. In this domain, self is de-
fined to be the set of normal pairwise connections (at
the TCP/IP level) between computers, and non-self
is the set of connections, which are not normally ob-
served on the LAN and are likely to be correlated with
network intrusions. A connection is defined in terms of
its “data-path triple”—the source IP address, the des-
tination IP address, and the service (or port) by which
the computers communicate [Mukherjee et al., 1994,
Heberlein et al., 1990].

LISYS consists of sets of detectors, where each detector
is a 49-bit string and a small amount of local state.
The detectors can be distributed across multiple hosts,
and they can perform their function with virtually no
communication. The detectors assigned to a particular
host are referred to as a detector set.

LISYS uses negative detection in the sense that valid
detectors are those that fail to match the normally
occurring behavior patterns in the network. LISYS
generates random detectors, censors them against self,
and eliminates those that match self (negative selec-
tion). The censoring process, known as the toleriza-
tion period, lasts for a few days during which time the
detector is matched against every SYN packet occur-
ring in the network. More efficient detector generation
algorithms are described in [D’haeseleer et al., 1996,
Wierzchon, 2000, Wierzchon, 2001]. However, when
generating detectors asynchronously for a dynamic self
set, such as the network setting, these methods are
not directly applicable and random generation seems
to work well.

Detectors in LISYS have a finite lifetime. The ex-
pected lifetime of a mature detector is a parameter of
the system. Detectors can die in several ways, through
negative selection, old age, or lack of co-stimulation
(see [Hofmeyr, 1999]). The finite lifetime of detectors,
when combined with detector re-generation and toler-
ization, results in rolling coverage of the self set.

Each independent detector set has its own permutation
mask, as described above. A permutation mask defines
a permutation of the bits in the string representation
of the network packets. Each detector set (network
host) has a different, randomly-generated permutation
mask. One feature of the negative-selection algorithm
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as originally implemented is that it can result in unde-
tectable patterns called holes [D’haeseleer et al., 1996,
D’haeseleer, 1996], or put more positively generaliza-
tions [Esponda and Forrest, 2002]. Holes can exist for
any symmetric, fixed-probability matching rule, but
permutation masks effectively change the match rule
and thus the distribution of holes. Using a different
permutation on each host allows us to control how
much the system generalizes in the vicinity of self, and
thus gives us more control over the undetectable holes
[Esponda and Forrest, 2002].

The original LISYS system uses several other mecha-
nisms, such as activation thresholds, sensitivity levels,
and co-stimulation to reduce false positives, and mem-
ory detectors to increase true positives. For details
on the full system, the reader is referred to [Hofmeyr,
1999, Hofmeyr and Forrest, 2000).

3 Data Set

The experiments reported in this paper use the data
set described in [Balthrop et al., 2002]. Our data col-
lection strategy was to control the data set as much as
possible while still collecting data in a realistic context.
The data set was collected from an internal restricted
network of computers in a small university research
group. The six internal computers in this network
connected to the Internet through a single Linux ma-
chine that acted as a firewall, router and masquerading
server for the internal machines. The internal network
was set up as a broadcast network, so we were able to
monitor the traffic of all the computers easily.

This scenario provided a data set that satisfied both
objectives. The internal restricted network was much
more controlled than the external university or depart-
mental networks. In this environment, we can under-
stand all of the connections that occur, and we can
be relatively certain that there were no attacks during
the normal training periods. Moreover, this environ-
ment is realistic. Many corporations have intranets
in which activity is somewhat restricted and external
connections must pass through a firewall. This en-
vironment could also model the increasingly common
home network that connects to the Internet through
a cable or DSL modem and has a single external IP
address. Attacks are a reality in environments such as
these, and the attack scenarios corresponded to plau-
sible occurrences in this class of environment.

2The programs used to generate the results in this paper
are available from http://www.cs.unm.edu/~immsec. The
programs are part of LISYS and are found in the LisysSim
directory of that package.

The normal network data in our data set consist of two
weeks of data collected in November, 2001. In these
data, there are a total of 22,329 TCP SYN packets,
and roughly 55% of this is web traffic. Thus, there
was an average of approximately 1600 packets per day
during the normal period. Because the network data
being produced is dependent on a small number of
users, two weeks seemed to be the shortest period of
time that could possibly give a reasonable character-
ization of self. Attack data were generated over the
course of two days near the end of the collection pe-
riod. The attacks took place about one week after the
normal period ended, and consisted of 76,179 TCP
SYN packets.

In [Hofmeyr, 1999], network connections to web servers
are removed from the data by filtering out all con-
nections to port 80. Instead of completely removing
web connections, the data set simulates the behavior
of a proxy server. All outgoing connections to port 80
(http) or port 443 (https) are re-mapped to port 3128
on the proxy machine. This is very close to what the
traffic would have been like if we were using the web
proxy cache SQUID.

All of the attacks, with the exception of the denial-
of-service attack, were performed using a laptop con-
nected to the internal network. The firewall machine
was configured as a DHCP server, so the laptop was
able to acquire a dynamic IP address because it had
a physical connection to the internal network. We
used the free security scanner Nessus to perform the
attacks. A total of eight attacks were run, includ-
ing denial of service (from an internal computer to an
external computer), a firewall attack against the fire-
wall/gateway machine, an ftp attack against an inter-
nal machine, an ssh probe against several internal ma-
chines, an attack probing for certain services, a TCP
SYN scan, an nmap tcp connect() scan against several
internal computers, and a full nmap port scan.

4 r-Chunks Matching

In this section we introduce a variant of the r-
contiguous bits matching rule, which we refer to as
“r-chunks.” We will show in section 7 that r-chunks
matching performs better than full-length r-contiguous
bits matching for our data set. However, r-chunks
matching also has the virtue of being more amenable
to mathematical analysis than full-length matching
[Esponda and Forrest, 2002]. r-Chunks matching is
reminiscent of the {1,0,#} matching rule for classi-
fier systems [Holland et al., 1986], with the additional
restrictions that all detectors have a constant number
of defined bits (the r parameter) and that all the de-



fined bits are located in contiguous positions. Match-
ing with both r-chunks and full-length detectors is re-
lated to the crossover operator in genetic algorithms
[Holland, 1975].

In r-chunks detectors, only r contiguous positions of
the detector are specified (known as the window of the
detector); the remaining bit positions can be thought
of as “don’t cares.” Alternatively, an r-chunks detec-
tor can be thought of as a string of r bits together
with a specification of the window to which it refers.
An r-chunks detector d is said to match a string « if all
the bits of d are equal to the r bits of z in the window
specified by d.

The relation between full-length detectors and r-
chunks is shown in the following figure for | = 4
and r = 2. A single full-length detector can be de-
composed into | —r + 1 (the number of windows) r-
chunks detectors. Let dy; be the full-length detector
and d.1,d.2,d.3 the r-chunks detectors into which it
can be decomposed:

dri:

der: [1]0]
dep: [0]1]
des:

An important difference between the two match rules
is in the number of undetectable strings they induce.
We refer to these strings as “holes” and the set of holes
for a given self set S as H. For full-length matching
there are two sources of holes: crossover holes and
length-limited holes.

Hence, a crossover hole is a string h not in S, for
which all windows in h are crossovers of adjacent win-
dows in S, according to the restricted crossover opera-
tion defined below. A crossover occurs in this context
between two adjacent windows W; = v;..v54,—1 and
Wit1 = Ujt1..Ui+r Whenever bits v; = u; V;:i4+1 <
j <i+r—1. There is an example of this type of hole
at the end of this section.

The second source of holes arises because in full-length
detectors, all the bit positions are specified. This can
induce holes h which are strings that have at least
one window of r bits not present in S, but for which
a detector still cannot be generated. For instance, let
S ={110,010},1 = 3, r = 2 and let h = 011 be a string
that has r contiguous bits not exhibited in any string
in S. A full-length detector for h must either start with
the pattern 01 and/or end with the pattern 11 but any
detector starting with 01 will match self and hence can
not be generated. Similarly, if a potential detector for
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h ends with pattern 11 the two possible strings 011 and
111 match a string in S as well, therefore a detector
for h cannot be generated.

r-Chunks detection does not induce length-limited
holes, because a detector can always be generated for a
pattern of length r which is not present in S. Thus, the
only holes induced by r-chunks matching are crossover
holes. This greatly simplifies the task of characterizing
and managing holes. For example, the generalization
of a set S, for r-chunks, can be depicted as a directed
acyclic graph (DAG) with as many nodes as there are
distinct bit patterns for each window (each node la-
belled as the bit pattern it represents) where two nodes
are connected together if the windows they refer to
crossover. Consider, for example, a self set S com-
prised of the following two strings S = {0001,1011}
with | =4, r = 2:

Following all the paths, starting from the left-
most nodes, yields the strings {0001,0011,1001,1011}
which constitute the generalization of the r-chunks
matching rule, out of which {0011, 1001} are crossover
holes. We refer to the holes plus the self strings that
induced them as the crossover-closure [Helman, 2002].

5 The Experimental Setup

In LISYS, new detectors are generated when the sys-
tem is initialized. Thereafter, new detectors are gener-
ated whenever another detector dies, usually through
negative selection or old-age. Detectors are generated,
trained, tested, and killed asynchronously throughout
a LISYS run. Consequently, different detectors are
tolerized at different times and are thus exposed to
different samples of self.

Although this rolling coverage is desirable for dynam-
ically changing self sets and to make evasion by an
adversary more difficult, it also complicates analysis.
Accordingly, for the experiments reported in this pa-
per, we trained all detectors on the identical set of self
strings (training set), and tested them subsequently
against the identical set of test strings. We did not kill
off detectors due to old age. In all of the experiments
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the initial tolerization period was set to 15,000 packets,
corresponding to approximately 8 days. Among these
15,000 initial packets, there were 131 unique strings to
which the immature detectors were exposed.

6 The Effect of Permutation Masks

The goal of the first experiment was to assess how
different permutations affect the performance of the
system. Because performance is measured in terms
of true and false positives, this experiment also tests
the effect of permutations on the system’s ability to
generalize (because low false positive rates correspond
to good generalization).

100 sets of detectors were tolerized using the 131
unique strings derived from the first 15,000 packets
in the data-set (the training set), and each detector
set was assigned a random permutation mask. Each
detector set had exactly 5,000 mature detectors at the
end of the tolerization period and an r-value of 10.
These numbers were chosen on the basis of previous
experiments [Balthrop et al., 2002] which showed that
5,000 detectors provide maximal coverage (i.e. adding
more detectors does not improve subsequent match-
ing) for this data set and r threshold.®> Each set of
detectors was then run against the remaining 7,329
normal packets, as well as against the simulated at-
tack data. In these data (the test sets), there are a
total of 476 unique 49-bit strings. Of these 476, 50
also occur in the training set and are thus undetectable
(because any detectors which would match them are
eliminated during negative selection). This leaves 426
potentially detectable strings, of which 26 come from
the normal test set and 400 are from the attack test
set. The maximal possible coverage by a detector set
is thus 426 unique matches.

An ideal detector set would achieve zero false positives
on the normal test data and a high number of true
positives on the attack data. Thus, a perfect detector
set would match the 400 unique attack strings, and
fail to match the 26 unique normal strings in the test
set, thus generalizing from the self observed during
training. Note that because network attacks rarely,
if ever, produce only a single anomalous packet, we

3The use of 5,000 detectors to protect 131 unique strings
is clearly a somewhat artificial situation. This arises from
the small size of our data set and the decision to provide
maximal coverage of non-self. In general, once the num-
ber of self strings increases above a certain threshold, the
number of detectors needed to cover non-self through nega-
tive detection becomes less than that required for positive
detection (see [Esponda and Forrest, 2002] for the exact
tradeoff). And, for most applications, complete coverage
of non-self is an overly strict requirement.
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Figure 2: LISYS performance under different permu-
tations. Each plotted point corresponds to a different
permutation, showing false positives (x-axis) and true
positives (y-axis). The inset shows a zoomed view of
the same data.

don’t need to achieve perfect true-positive rates at the
packet level in order to detect all attacks against the
system.

Figure 2 shows the results of this experiment. The
performance of each detector set is shown as a sep-
arate point on the graph. Each detector set has its
own randomly generated permutation of the 49 bits,
so each point shows the performance of a different per-
mutation. The numbers on the x-axis correspond to
the number of unique self-strings in the test set which
are matched by the detector set, i.e. the number of
false positives (up to a maximum of 26). The y-axis
plots the corresponding value with respect to the at-
tack data, i.e. the number of unique true positive
matches (up to a maximum of 400). The graph shows
that there is a large difference in the discrimination
ability of different permutations. Points in the up-
per left of the graph are the most desirable, i.e. they
correspond to permutations which minimize the num-
ber of false positives and maximize the number of true
positives; points toward the lower right corner of the
graph indicate higher false positives and/or lower true
positives.

Surprisingly, the performance of the original (unper-
muted) mapping is among the worst we found, suggest-
ing that the results reported in [Balthrop et al., 2002]
are a worst case in terms of true vs. false positives.
Almost any other random permutation we tried out-
performs the original mapping. Although we don’t yet
have definitive proof, we believe this behavior arises in
the following way.
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The LISYS design assumes that there are certain pre-
dictive bit-patterns that exhibit regularity in self, and
that these can be the basis of distinguishing self from
non-self. As it turns out, there are also deceptive bit-
patterns which exhibit regularity in the training set
(observed self), but the regularity does not generalize
to the rest of self (the normal part of the test set).
These patterns tend to cause false positives when self
strings that do not fit the predicted regularity occur.

We believe that the identity permutation is bad be-
cause the predictive bits are at the ends of the string,
while the deceptive region is in the middle. Under
such an arrangement, it is difficult to find a window
that covers many predictive bit positions without also
including deceptive ones. It is highly likely that a
random permutation will break up the deceptive re-
gion, and bring the predictive bits closer to the middle,
where they will appear in more windows.

7 r-Chunks vs. Full-Length Detectors

In this section we compare the performance of r-
chunks matching to that of r-contiguous bits match-
ing with full-length detectors on our data set. The
essential difference between full-length detectors and
r-chunks lies in the holes which they induce, as dis-
cussed earlier. Holes are desirable to the extent that
they prevent false positives (strings which are close to
self and represent legitimate but novel behavior of the
network)?; holes are undesirable to the extent which
they lead to false negatives (a failure to match strings
which correspond to attempted intrusions). Although
both representations are subject to crossover holes,
full-length detectors are additionally subject to length-
limited holes. Therefore, we are interested in knowing
if in practice length-limited holes generalize over true
positives or false positives.

For this experiment, we generated one set of r-chunks
detectors for each value of r, ranging from 1 to 12. Be-
cause there are only 2" x (I —r + 1) possible r-chunks
detectors, we generated all of them, and then elim-
inated through negative selection any detector that
matched a string in the training set. Full-length de-
tectors were generated according the the procedure de-
scribed in Section 5.

The results of this experiment are shown in Figure
3. As in the initial permutation-mask experiment,
the number of false positives is plotted on the z-axis
and the number of true positives on the y-axis. There
are two sets of points, each connected by lines. One

“This is the sense in which holes can be thought of as
generalizations.
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Figure 3: LISYS performance under different r-values.
For r-chunks we plotted » =1..12 and for full length
detectors we plotted r =8, 10 and 12 (the points for
r-chunks and those for full-length detectors are each
connected via a line to indicate the ordering in terms
of 7). Each point shows false positives (x-axis) and
true positives (y-axis).

set indicates the results obtained with r-chunks for
values of r ranging from 1 to 12. The second set,
shows the results of using full-length detectors for
r =8,10, and 12.

Section 4 tells us that for any self set, a given value of r
will always achieve equivalent-or-greater overall cover-
age (i.e. a greater sum-total of true and false positives)
when using r-chunks than with using full-length detec-
tors. This follows from the fact that there are no holes
induced by r-chunks which are not also induced using
full-length detectors. The experiment shows whether
or not this additional coverage is helpful. Figure 3
shows that for this data set r-chunks outperforms full-
length detectors. The greater coverage achieved by
r-chunks more often results in the detection of true
positives than false positives. In fact, for any value of
r shown using full-length detectors, there exists some
value of r for which r-chunks achieve a higher rate of
true positives while incurring an equal or lesser num-
ber of false positives.

Another property of r-chunks illustrated by the graph
is that for a given value of r, equivalent-or-greater
overall coverage will always be achieved using r + 1
rather than 7. This is because any string detected us-
ing r can be detected using r+1. For this reason, as we
increase r, while the number of true and/or false pos-
itives may increase or remain constant, neither value
can decrease.
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A surprising result is how well r-chunks performs as r
becomes low (e.g. even for r = 1). An explanation for
this phenomenon is discussed below. This is surprising
in part because of the difficulty reported by Kim and
Bentley [2001] in finding detectors using r-contiguous
bits and negative selection, a result explained in part
by their choice of a low value for r [Balthrop et al.,
2002).

7.1 r-Chunks and the Magic Bit

We were interested in how r-chunks could perform so
well, especially for r = 1. A closer examination of the
data revealed that the DHCP (Dynamic Host Configu-
ration Protocol) configuration on the internal network
was set up in such a way that dynamic IP addresses
were always assigned with the final byte in the range
128-254, while static IP addresses were always in the
range of 1-127 for the same byte. This is not an un-
usual DHCP configuration. As it happened, however,
no hosts connected to the network using DHCP during
the normal data collection period. When we ran the
attacks, the attacking laptop did use DHCP to con-
nect to the network, and the majority of the attacks
were launched from this laptop (the Denial-of-Service
attack is the only one that wasn’t).

As a consequence, the majority of our attack data had
the first bit of the 49-bit string (the internal IP is at
the start of the string) set to one, while none of the
normal data had this bit set. In other words, there
was a single “magic bit” that identified approximately
84% of the attack SYN packets. r-chunks was able to
detect this magic bit and take advantage of it. Thus,
even the smallest possible window » = 1 could take
advantage of the magic bit, and because r + 1 can
detect everything that r can detect, all of the other r
values can use the magic bit as well.

Although artifacts such as these are not unlikely oc-
currences in real data, we were curious to see what the
results would be without the presence of a magic bit.
Would r-chunks (and full-length detectors) still per-
form well? To answer this question we eliminated the
magic bit from our data by systematically changing
the internal address of the computer from which the
attacks originated to look like the address of another
internal computer. This scenario is also realistic, be-
cause the attacks could as easily have originated from
an internal computer as from a malicious laptop, and
such an internal attack might be more difficult to de-
tect.

We repeated the r-chunks experiments with this modi-
fied data set. The results are shown in Figure 4. From
this figure, we can see that r-chunks did not perform as

300

200

True Positives

100

L *—x r-chunk detectors i
A—A full length detectors

0 \ L \ \ \
0 5 10 15 20 25

False Positives

Figure 4: LISYS performance under different r-values
after the magic bit has been removed. For r-chunks we
plotted r =1..12 and for full length detectors we plot-
ted r =8, 10 and 12. Each point shows false positives
(x-axis) and true positives (y-axis).

well as before. In particular, the low r-values did not
yield results as dramatically positive as before. Re-
moving the magic bit also hurt the performance of
r-contiguous bits for » = 10 and r = 12, although
the effect was not as significant as for r-chunks. How-
ever, r-chunks without the “magic bit” still outper-
forms full-length detectors with the magic bit for all
the r-values we tested (r = 8,10,12).

8 Conclusions

In this paper we introduced a new matching rule, r-
chunks, and showed that it performs better than full-
length r-contiguous bits matching on one data set. r-
Chunks is appealing because it is easier to analyze
mathematically [Esponda and Forrest, 2002] and it
scales well as the length of [ increases (both in terms
of efficiency of matching and in terms of number of de-
tectors that are required for a given level of coverage).
This second property is essential if AIS frameworks
such as LISYS are to be used for real applications.
We also studied the effect of different permutations
on the ability of LISYS to generalize from an initial
sample self. This form of generalization is important
for controlling false positives. The results reported
here show that some permutations perform much bet-
ter than others, and we have given an informal expla-
nation for why that is true.

The r-chunks detection scheme is intriguing because
it solidifies the connection between r-contiguous bits
matching and crossover. Although we have shown that
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the crossover-closure is a good generalization for this
data set, we still don’t know whether it will carry over
to related problems. However, the connection is tanta-
lizing, and one that we plan to explore in future work.

It is important to emphasize that the results presented
here are empirical and are based on one small data
set. An important avenue for further work is to con-
duct experiments on other applications and to develop
a mathematical understanding of the properties of this
system. A second caveat concerns the simplified ver-
sion of LISYS used to conduct these experiments. In
the future, it will be important to confirm how well
permutations and r-chunks perform in the context of
the complete LISYS system.
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Abstract

This paper describes a racing procedure for find-
ing, in a limited amount of time, a configuration
of a metaheuristic that performs as good as pos-
sible on a given instance class of a combinatorial
optimization problem. Taking inspiration from
methods proposed in the machine learning litera-
ture for model selection through cross-validation,
we propose a procedure that empirically evalu-
ates a set of candidate configurations by discard-
ing bad ones as soon as statistically sufficient ev-
idence is gathered against them. We empirically
evaluate our procedure using as an example the
configuration of an ant colony optimization algo-
rithm applied to the traveling salesman problem.
The experimental results show that our procedure
is able to quickly reduce the number of candi-
dates, and allows to focus on the most promising
ones.

INTRODUCTION

Thomas Stitzle, Luis Paquete, and Klaus Varrentrapp

Intellektik/Informatik

Technische Universit Darmstadt

Darmstadt, Germany

by a mixture of rules of thumb. Most often this leads to
tedious and time consuming experiments. In addition, it
is very rare that a configuration is selected on the basis of
some well defined statistical procedure.

The aim of this work is to define an automatic hands-off
procedure for finding a good configuration through sta-
tistically guided experimental evaluations, while minimiz-
ing the number of experiments. The solution we pro-
pose is inspired by a class of methods proposed for solv-
ing the model selection problem in memory-based super-
vised learning (Maron and Moore, 1994; Moore and Lee,
1994). Following the terminology introduced by Maron
and Moore (1994), we callacing method for selection

a method that finds a good configuration (model) from
a given finite pool of alternatives through a sequence of
stepst As the computation proceeds, if sufficient evidence
is gathered that some candidate is inferior to at least another
one, such a candidate is dropped from the pool and the pro-
cedure is iterated over the remaining ones. The elimination
of inferior candidates, speeds up the procedure and allows
a more reliable evaluation of the promising ones.

Two are the main contributions of this paper. First, we give
a formal definition of the metaheuristic configuration prob-

A metaheuristic is a general algorithmic template whosd®M- Second, we show that a metaheuristic can be tuned

components need to be instantiated and properly tuned i

gfficiently and effectively by a racing procedure. Our re-

order to yield a fully functioning algorithm. The instan- sults confirm the general validity of the racing algorithms

tiation of such an algorithmic template requires to choos

&nd extend their area of applicability. On a more technical

among a set of different possible components and to assidﬁvel' left aside the specific application to metaheuristics,

specific values to all free parameters. We will refer to suc
an instantiation as aonfiguration Accordingly, we call
configuration problenthe problem of selecting the optima

configuration.

pwe give some contribution to the general class of racing

algorithms. In particular, our method adopts blocking de-

| sign (Dean and Voss, 1999) in a nonparametric setting. In

some sense, therefore, the method fills the gap between Ho-
effding race (Maron and Moore, 1994) and BRACE (Moore

Practitioners typically configure their metaheuristics in anand Lee, 1994): similarly to Hoeffding race it features a
iterative process on the basis of some runs of different connonparametric test, and similarly to BRACE it considers a

figurations that are felt as promising. Usually, such a pro
cess is heavily based on personal experience and is guide

d !Several metaheuristics involve continuous parameters. This

would actually lead to an infinite set of candidate configurations.

TThis research was carried out while MB was with Intellek- In practice, typically only a finite set of possible parameter values
tik, Technische Universitt Darmstadt.

are considered by discretizing the range of continuous parameters.
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blocking design. The occurrence of different instances can be conveniently
. . epresented as the result of random experiments governed
T_he rest of the Paper 1 structured as follows. _Se(_:tlon %y some unknown probability measure, 98y defined on
gives a formal definition of the problem of configuring a oo .
" . X . . tt&e class of the possible instances. In the example discussed
metaheuristic. Section 3 describes the general ideas behin o : :

. . . ) ere, it is reasonable to assume that different experiments
racing algorithms and introduces F-Race, a racing methog . "
specifically designed for matching the peculiar characteriss. < independent and all governed by the same probability
tigs of theymetaﬁeuristic confi ur%l'[ionp roblem. Section 4measure. In Section 2.3, we will briefly discuss how to pos-

'9 'p ' sibly tackle situations in which such assumptions appear
proposes some background information etd X~ MIN- unreasonable
Ant-System and on the traveling salesman problem (TSP), '
which are respectively the metaheuristic and the problenNow, our pizza delivery boy loves metaheuristics and uses
considered in this paper. In particular, the section gives @ne to find a shortest possible tour visiting all the cus-
description of the sub class of TSP instances, and of theomers. Being such a metaheuristic a general algorithmic
candidate configurations gfAX-MTIN-Ant-System that template, different configurations are possible (see Sec-
we consider in our experimental evaluation. Section 5 protion 4.2 for a more detailed example). In our setting, the
poses some experimental results, and Section 6 conclud@soblem that the delivery boy has to solve is to find the
the paper. configuration that is expected to yield the best solution to
the instances that hgpically faces. The concept dafpi-
cal instance used here informally, has to be understood in
relation to the probability measui;, and will receive a

) o ) clear mathematical meaning presently.
This section introduces and defines the general problem

of configuring a metaheuristic. Before proposing a formalSinceP; is unknown, the only information that can be used
definition, it is worth outlining briefly, with the help of an for finding the best configuration must be extracted from a
example, the type of problem setting to which our proce-sample of previously seen instances. By adopting the ter-
dure applies. Namely, our methodology is meant to be apminology used in machine learning, we will use the ex-
plied to repetitive problems, that is, problems where manypressiortraining instanceso denote the available previous
similar instances appear over time. instances. On the basis of such training instances, we will
look for the configuration that is expected to have the best
performance over thetholeclass of possible instances.

2 CONFIGURING A METAHEURISTIC

2.1 An Example: Delivering Pizza
The fact of extending results obtained on a usually small
The example we propose is admittedly simplistic and doegraining set to a possibly infinite set of instances is a
not cover all pOSSible aspects of the Configuration prOblemgenuinegenera|izatiom as intended in Supervised learn-
still it has the merit of hlghllghtlng those elements that areing (Mitche”, 1997) In the context of metaheuristics con-
essential for the discussion that follows. figuration, generalization is fully justified by the assump-
tion that the same probability measuPg governs the se-
lection of all the instances: both those used for training and
those that will be solved afterwards. The training instances
are in this sense representative of the whole set of instances.

Let us consider the followinpizza delivery problem. Or-
ders are collected for a (fixed) time period of, say, 30 min-
utes. At the end of the time period, a pizza delivery boy
has some limited amount of time for scheduling a reason
ably short tour that visits all the customers that have called

in the last 30 minutes. Then the boy leaves and deliver@.2 The Formal Statement

the pizzas following a chosen route. The time available for ) _

scheduling may be constant or may be expressed as a funi® orde_r to gvea formal d(_efmmon of the_general problt_em
tion of some characteristic of the instance itself, for exam-° configuring a metaheuristic, we consider the following
ple the size which in the pizza delivery problem might be OPI€Cts:

measured by the number of customers to visit.
_ ) _ e O is the finite set of candidate configurations.
In such a setting, every 30 minutes a new instance of an

optimization problem is given, and a solution as good as e I is the possibly infinite set of instances.
possible has to be found in a limited amount of time. It
is very likely that every instance will be different from alll
previous ones in the location of the customers that need
to be visited. Further, a certain variability in the instance
size, that is the number of customers to be served, is to be
expected, too. 2Since a probability measure is associated to (sub)sets and not

e P;is a probability measure over the datf instances:
With some abuse of notation, we indicate with(:)
the probability that the instandas selected for being
solved?
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e t: I — Ris a function associating to every instance 2.3 Further Considerations and Possible Extensions
the computation time that is allocated to it.
The formal configuration problem, as described in Sec-
e c(6,i) = c(6,i,(i)) is a random variable represent- tion 2.2, assumes that, as far as a given instance is con-
ing the cost of the best solution found by running con-cerned, no information on the performance of the various
figurationd on instance for ¢(i) seconds. candidate configurations can be obtained prior to their ac-
tual execution on the instance itself. In this sense, the in-

e C' C R is the range of, that is, the possible values Stances ara priori indistinguishable.

for the cost of the best solution found in a run of an many practical situations, it is knowan priori that var-
configuratiory) € T'heta on an instance € . ious types of instances with different characteristics may
arise. In such a situation all possible prior knowledge
e Pc is a probability measure over the get With the  should be used to cluster the instances into homogeneous

notatiorf Pc(c|6,7), we indicate the probability that classes and to find, for each class, the most suitable config-
c is the cost of the best solution found by running for yration.

t(i) seconds configuratichion instance. ) _ ) ) o
The case mentioned in Section 2.1, in which it is not rea-

o C(0) = C(0|0,1, Py, Po,t) is the criterion that needs sonable to accept that all instances are extracted indepen-
to be optimized with respect # In the most general dently and according to the same probability measure, can

case it measures in some sense the desirabilify of possibly be_handled in a similar way. Often, some temporal
correlation is observed among instances. In other words,

temporal patterns can be observed on previous instances
On the basis of these concepts, the problem of configuringnat bringa priori information on the characteristics of the
a metaheuristic can be formally described by the 6-tuple:yrrent instance. This phenomenon can be handled by as-
(©,1,Pr, Pc,t,C). The solution of this problem is the syming that the instances are generated by a process akin

configurationd” such that: to a time-series. Also in this case, different configuration
. problems should be formulated: Each class of instances to
0" = argminC(0). (1) be treated separately would be composed by instances that

follow in time a given pattern and that are therefore sup-
As far as the criteriod is concerned, different alternatives posed to share similar characteristics. The aim is again to
are possible. In this paper, we consider the optimizatiormatch the hypothesis af priori indistinguishability of in-
of the expected value of the cast?, ). Such a criterion  stances within each of the different configuration problems
is adopted in many different applications and, besides bei which the original one is reformulated.
ing quite natural, it is often very convenient from both the

theoretical and the practical point of view. Formally: 3 A RACING ALGORITHM
C(9) = ELC[c(Q,i)} = //c(e, i) dPc(c|f, 1) dPr (i), Before giving a definition of a racing algorithm for solv-
1Jc

@) ing the problem given in Equation 1, it is convenient to

|>criescribe a somewhat naiteute-forceapproach for high-
lighting some of the difficulties associated with the config-
uration problem.

where the expectation is considered with respect to bot
P; and Pg, and the integration is taken in the Lebesgue
sense (Billingsley, 1986).

A brute-force approach to the problem defined in Equa-

The measures’ anQPC are qsually not.expllcnly'avall- tion 1 consists in estimating the quantities defined in Equa-
able and the analytical solution of the integrals in Equa-

tion 2, one for each configuratiofy is not possible. In tion 2 by means of aufficiently largenumber of runs of

S . ) ach candidate on sufficiently largeset of training in-
order to overcome such a limitation, the integrals define : . 7 .
. : . . . . __stances. The candidate configuration with the smallest es-
in Equation 2 will be estimated in a Monte Carlo fashion

on the basis of a training set of instances, as it will be ex_umated quantity is then selected.

plained in Section 3. However, such arute-forceapproach presents some draw-
backs: First, the size of the training set must be defined
: . : . ; prior to any computation. A criterion is missing to avoid
notational abuse consists therefore in using the same symbol . - .
both for the element € 7, and for the singletorii} c 1. considering, on the one hand, too few instances, which
3n the following, for the sake of a lighter notation, the depen- €ould prevent from obtaining reliable estimates, and on the
dency ofc ont will be often implicit. other hand, too many instances, which would then require
“The same remark as in Note 2 applies here. a great deal of useless computation. Second, no criterion

to single elements, the correct notation should™é{i}). Our
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® c* of lengthk can be obtained from*~! by appending to
the latter the cost concerning theth instance in.

A racing algorithm tackles the optimization problem in
Equation 1 by generating a sequence of nested sets of can-
didate configurations:

020,202 ...,

starting fromO, = ©. The step from a seb;_; to O

is obtained by possibly discarding some configurations that
appear to be suboptimal on the basis of information avail-
Figure 1: A visual representation of the amount of com-able at stefk.

putation needed by the two methods. The surface of th
dashed rectangle represents the amount of computation f
brute-force, the shadowed area the one for racing.

At step k, when the set of candidates still in the race
I ©;_1, a new instance,, is considered. Each candidate
6 € ©_, is executed ofi,, and each observed cas¥, ;)

is appended to the respectige ! to form the different ar-

k. . . . .
is given for deciding how many runs of each configurationraysg (6, 2), one for eacly. Stepk terminates defining set

on each instance should be performed in order to cope Witﬁ)kbby drgpp'ng flro_m@hk_}_ tEe c]?nflguratlon_s t_halt appeir
the stochastic nature of metaheuristics. Finally, the sam P€ Su OEt'ma in 1 e,'?c t O" SOme Stﬁt's(;['ca test that
computational resources are allocated to each configura?—orm)a“aSt e arrays (9, ) forall ¢ € ©. The description

tion: manifestly poor configurations are thoroughly testedOf the test considered in this paper is given in Section 3.2.
to the same extent as the best ones are. It should be noticed here that, for afly each component

of the arrayc®(6,1), that is, any cost(6,4) of the best
solution found by a single run @f over one generié¢ ex-
3.1 Racing Algorithms: The Idea tracted according t&, is an estimate af(6), as defined in
_ ) ) ) Equation 2. The sampling averagedf(d, i) is therefore
Racing algorithms are designed to provide a better allocapself an estimate o€ () and can be used for comparing

tion of computational resources among candidate configuhe performance yielded by different configurations.
rations and therefore to overcome the last of the three above

described drawbacks of brute-force. At the same time, thd he above described procedure is iterated and stops ei-
racing framework indirectly allows for a clean solution to ther when all configurations but one are discarded, or
the first two problems of brute-force, that is the problemswhen some predefined total timi€ of computation is

of fixing the number of instances and the number of runs tdeached. That is, the procedure would stop before consid-
be considered. ering the(k + 1)-th instance iy, t(i,, 1) |€1] > T

To do so, racing algorithms sequentially evaluate candidat > ER
configurations and discard poor ones as soon as statistical%l -Race
sufficient evidence is gathered against them. The eI|m|—The racing algorithm we propose, F-Race in the following,

nation of inferior candidates speeds up the procedure anlx,j5 based on the Friedman test, a statistical method for hy-

gllows to evaluate th? promising conﬂggraﬂons on mor:pothesis testing also known as Friedman two-way analysis
instances and to obtain more reliable estimates of their be- .

. : . . . of variance by ranks (Conover, 1999).
havior. Figure 1 visualizes the two different ways of allo-
cating computational resources to candidate configurationsor giving a description of the test, let us assume that F-
that are adopted by brute-force and by racing algorithms. Race has reached stépandn = |©,_,| configurations

Let that d f training i are still in the race. The Friedman test assumes that the
€t us suppose that a random sequence ot fraining Ng,serveq costs are mutually independent-variate ran-
stancest is available, where the generieth term¢, is

. ; dom variablegc® (6, 4,), c*(62,4,), ..., c"(0,,4,)) called
drawn fromI according toPy, independently for each. blocks (Dean$5n((d lvals)s_ 1(9;9_)l)where_ éach_lt))?ock corre-
We assume thatcan be extended at will and at a negligi- !

ble cost, by sampling further from sponds to_the _computational results on iljstav_'r;der each

' configuration in the race at step Within each block
With the notationc® (6, ) we indicate an array of terms  the quantitie=* (6, 4,) are ranked from the smallest to the
whose generié¢-th one is the cost(6, 4;) of the best solu- largest. Average ranks are used in case of ties. For each
tion found by configuratiod on instance, in arun oft(s,) ~ configurationd; € ©,_1, let k;; be the rank ob; within
seconds. It is clear therefore that, for a giverthe array ~ blockl, andR; = ), R;; the sum of the ranks over all
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instanceg,;, with 1 <! < k. The Friedman test considers namely the normality of data: When the hypothesis of nor-

the following statistic (Conover, 1999): mality is not strictly met t-tesgracefullylooses power.
n k(n+1) 2 For what concerns the metaheuristics configuration prob-
(n—1) Z (Rj 2> lem, we are in a situation in which these arguments look
T — =1 _ suspicious. First, since we wish to reduce as soon as possi-
& 5 kn(n+1)2 ble the number of candidates, we deal with very small sam-
Z Z Ryj = -4 ples and it is exactly on these small samples, for which the
=1 j=1

central limit theorem cannot be advocated, that we wish to

Under the null hypothesis that all possible rankings of thehave the maximum power. Second, the computational costs
candidates within each block are equally likely,is ap- ~ are not really relevant since in any case they are negligible
proximativelyy? distributed withn — 1 degrees of freedom. compared to the computational cost of executing configura-
If the observed” exceeds thé — o quantile of such a dis- tions of the metaheuristic in order to enlarge the available
tribution, the null is rejected, at the approximate levein ~ Samples. Section 5 shows that the doubts expressed here
favor of the hypothesis that at least one candidate tends fnd some evidential support in our experiments.

yield a better performance than at least one other. A second role played by ranking in F-Race is to imple-

If the null is rejected, we are justified in performing pair- ment in a natural way a blocking design (Dean and Voss,
wise comparisons between individual candidates. Candil999). The variation in the observed costss due to dif-

datesd; andd), are considered different if ferent sources: Metaheuristics are intrinsically stochastic
' algorithms, the instances might be very different one from

|R; — Rp| St the other, and finally some configurations perform better

2k(1—k(+71))(zf:12?:13‘fj_w) —e/® than others. This last source of variation is the one that
k—D(n-1) is of interest in the configuration problem while the oth-

) ) ers might be considered as disturbing elements. Blocking
wheret;_,, is thel — a/2 quantile of the Student's  ig an effective way for normalizing the costs observed on
distribution (Conover, 1999). different instances. By focusing only on the ranking of
In F-Race, if at steps the null of the aggregate comparison the different configurations within each instance, blocking
is not rejected, all candidates @y,_; pass to®;. Onthe eliminates the risks that the variation due to the difference
other hand, if the null is rejected, pairwise comparisons ar@mong instances washes out the variation due to the differ-
executed between the best candidate and each other orféIce among configurations.

All ca_ndidates that re_sult significatively worse than the bestr o \vork proposed in this paper was openly and largely in-
are discarded and will not appearéy. spired by some algorithms proposed in the machine learn-
ing community (Maron and Moore, 1994; Moore and Lee,
3.3 Discussion on the Role of Ranking in F-Race 1994) but it is precisely in the adoption of a statistical test
based on ranking that it diverges from previously published
works. Maron and Moore (1994) proposed Hoeffding Race
Fnat adopts a nonparametric approach but does not consider
o . . (’blocking. In a following paper, Moore and Lee (1994) de-
analysis is th_at '.t dqes not require to fc_)rmulate_ hypOt_he'scribe BRACE that adopts blocking but discards the non-
ses on the _d|str|but|on of the observations. D'SCUSS'Onﬁarametric setting in favor of a Bayesian approach. Other
on the re_latlve pros and cons of the parametnc and NONZ,|evant work was proposed by Gratch et al. (1993) and by
parametric approaches can be found In most text.books %8hien et al. (1995) who consider blocking in a parametric
statistics (Larson, 1982). For an organic presentation of thgetting.
topic, we refer the reader, for example, to Conover (1999).
Here we limit ourselves to mention some widely acceptedThis paper, to the best of our knowledge, is the first work
facts about parametric and nonparametric hypothesis tesiqn which blocking is considered in a nonparametric set-
ing: When the hypotheses they formulate are met, parating. Further, in all the above mentioned works blocking
metric tests have a higher power than nonparametric onesas always implemented through multiple pairwise paired
and usually require much less computation. Further, whewomparisons (Hsu, 1996), and only in the more recent
a large amount of data is available the hypotheses for thene (Chien et al., 1995) correction for multiple tests is con-
application of parametric tests tend to be met in virtue ofsidered. F-Race is the first racing algorithm to implement
the central limit theorem. Finally, it is well known that the blocking through ranking and to adopt an aggregate test
t-test, the classical parametric test that is of interest heregver all candidates, to be performed prior to any pairwise
is robust against departure from some of its hypothesegest.

In F-Race, ranking plays an important two-fold role. The
first one is connected with the nonparametric nature of
test based on ranking. The main merit of honparametri
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4 MAX-MIN-ANT-SYSTEM FOR TSP procedure Ant Colony Optimization

Init pheromones, calculate heuristic
while(termination condition not metjo
p = ConstructSolutions(pheromones, heuristic
p = LocalSearch(p) % optional

In this paper we illustrate F-Race by using as an example
the configuration ofMAX-MZN-Ant-System MMAS)

(Stutzle and Hoos, 1997; 8izle and Hoos, 2000), a par- GlobalUpdateTrails (p)
ticular Ant Colony Optimization algorithm (Dorigo and Di end
Caro, 1999; Dorigo and Btzle, 2002), over a class of in- end Ant Colony Optimization

stances of the Traveling Salesman Problem (TSP).
Figure 2: Algorithmic skeleton of ACO for static
4.1 A Class of TSP Instances combinatorial optimization problems.

Given a complete grapyf = (N, A, d) with N being the
set ofn = |N| nodes A being the set of arcs fully connect-
ing the nodes, and being the weight function that assigns 4 tion choice rule. In particular, when being at gitgntk

each ardi, j) € A alengthd;;, the Traveling Salesman c,55e5 10 go to a yet unvisited cifyat thetth iteration
Problem (TSP) is the problem of finding a shortest closed, i, 5 probability of

tour visiting each node off once. We assume the TSP

is symmetric, that is, we haw§; = d;; for every pair of T (01 - [m;4]° o
nodesi and;. P (t) 75 (DI - i if j e N5 (3)

C Yiew [ra(®)]* - [na)?
The TSP is extensively studied in literature and that serves . o o
as a standard benchmark problem (Johnson and McGeocWheren;; = 1/d;; is ana priori available heuristic value,
1997, Lawler et a|_, 1985, Reine“:, 1994) For our StudyO{ andﬁ are two parameters which determine the relative
we random'y generate Euclidean TSP instances with a raﬁnﬂuence of the pheromone trail and the heuristic informa-
dom distribution of city coordinates and a random num-tion, and\* is the feasible neighborhood of atthat is,
ber of cities. Euclidean TSPs were chosen because sué¢he set oka|t|es which arit has not yet visited; iff ¢ N,
instances are used in a large number of experimental reve havep;(t) = 0.
searches on the TSP (Johnson and McGeoch, 1997; JohRgier 41| ants have constructed a solution, the pheromone
son et al., 2001). In our case, mt_y I(_)cat_lons_ are randomly,5iis are updated according to
chosen according to a uniform distribution in a square of
dimension10.000 x 10.090, and the resulting distqnce; are Ti;(t+1)=(1—p) 7;(t) + Argesf (4)
rounded to the nearest integer. The number of cities in each
!nstance |s_choser_1 as an mt_eger rgndomly sampled accorﬂ/hereAribeSt _ 1/Lbest if arc (i,4) € Thestand zero
ing to a uniform distribution in the intervg300, 500]. We J
generated a total number of 400 such instances for our e
periments reported in Section 5.

city. At each construction step, antpplies a probabilistic

Qptherwise. Her& €stis either theiteration-bestsolution
TP, or theglobal-bestsolution79° and LPeStis the cor-
responding tour length. Experimental results showed that
the best performance is obtained by gradually increasing
the frequency of choosir@gbfor the pheromone trail up-
date (Siitzle and Hoos, 2000).

4.2 MAX-MIN-Ant-System

Ant Colony Optimization (ACO) (Dorigo et al., 1999;
Dorigo and Di Caro, 1999; Dorigo anditle, 2002) isa In MMAS, lower and upper limitsij, and rmax on the
population-based approach inspired by the foraging behawossible pheromone strengths on any arc are imposed to
ior of ants for the solution of hard combinatorial optimiza- avoid search stagnation. The pheromone trail8AMAS

tion problems. In ACO, artificial ants implement stochasticare initialized to their upper pheromone trail limitgax
construction procedures that are biased by pheromone trailsading to an increased exploration of tours at the start of
and heuristic information on the problem being solved. Thethe algorithms.

solutions obtained by the ants may then be improved b¥n our experimental study, we have chosen a number
lyin me local rch routine. Al Igorithm - . . .
applying some local search routine. ACO algorithms typ of configurations that differ in particular parameter set-

ically follow the high-level procedure given in Figure 2. . -
MMAS (Sitzle and Hoos, 1996, 1997;ifizle and Hoos, "9 for MMAS. We focused on alternative settings for
_the main algorithm parameters as they were identified

2000) is currently one of the best performing ACO algo-. : : : ) .

fithms for the TSP. in earlier studies, in particular we considered values of
a € {1,1.25,1.5,2}, m € {1,5,10,25}, 5 € {0,1, 3,5},

MAX-MIN-Ant-System constructs tours as follows: Ini- p € {0.6,0.7,0.8,0.9}. Each possible combination of the

tially, each of them ants is put on some randomly chosen parameter settings leads to one particular algorithm config-
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uration, leading to a total numberok 4x4x4 = 256 con-  races respectively, where the three races were conducted on
figurations. In our experiments each solution is improvecdthe basis of the same pseudo-sample: We are therefore jus-

by a 2.5-opt local search procedure (Bentley, 1992). tified in using paired statistical tests when comparing the
three races among them.
5 EXPERIMENTAL RESULTS On the basis of a paired Wilcoxon test we can state that

F-Race is significatively better, at a significance level of
In this section we propose a Monte Carlo evaluation of5%, than both tn-Race and th-R&te.

F-R based ling techni Good, 2001). . : .
ace based on a resampling technique (Good, ) Some insight on this result can be obtained from the fol-

For comparison, we consider two other instances of racingowing observation. By early dropping the less interesting
algorithms both based on a paired t-test. They are thereforeandidates, F-Race is able to perform more experiments on
parametric, and they adopt a blocking design. We refethe more promising candidates. On the 1000 pseudo-trials
to them agn-Raceandtb-Race The first does not adopt considered, at the moment in which the computation time
any correction for multiple-tests, while the second adoptsvas up and a decision among the surviving candidate had
the Bonferroni correction and is therefonet unlikethe  to be taken, the set of survivors was on average composed
method described by Chien et al. (1995). by 7.9 candidates and such survivors had been tested on av-
erage orv7.9 instances. In the case of tn-Race, the average
size of the set of survivors upon expiration of computation
time was31.1, while the number of instances seen by such
survivors was on averagk8.2. For tb-Race the numbers
Each configuration was executed once on each of the 408re253.8 and5, respectively. In this sense, F-Race proved
instances fol0s on a CPU Athlon 1.4GHz with 512 MB to be the bravest of the three, while tb-Race appeared to
of RAM, for a total time of about 12 days to allow in a be extremely conservative and on average it dropped only
following phase the application of the resampling analysisslightly more thar2 candidates before the time limit.

The costs of the best solution found in each of these exper(-) the basis of Monte Carl luati i
iments were stored in a two-dimensioddl x 256 array. n the basis of our Monte L.arlo evaiuation, Some stronger

In the following, when saying that wein configuration; statement can be pronounced on the quality of the results
over instance, we will simply mean that we execute the obtained by F-Race. We have shown above that the perfor-

pseudo-experimetthat consists in reading the value in po- Manc® of F-Race was good imelativesense: F-Race pro-
sition (i, §) from the array of the results. _duced be_tter results than its _Competltors. We state now that,
in a precise sense to be defined presently, the performance
From the 400 instances, we extract 1000 pseudo-samples F-Race wasbsolutelygood. We compare F-Race with
each of which is obtained by re-ordering randomly the orig-Cheat a brute-force method that, rather unfairly, uses in
inal instances. Each pseudo-sample is used foseaido-  each pseudo-trial the same number of instances used by F-
trial, that is, for simulating a run of a racing algorithm: One Race and on these instances runs all the candidate config-
after the other the instances are considered and, on the barations. In doing so, Cheat allows itself an enormously
sis of the results of pseudo-experiments, configurations arrge amount of computation time. In our experiments,
progressively discarded. Each algorithm stops after executCheat has performed on average abdf90 experiments
ing 5 x 256 pseudo-experiments.Upon time expiration,  per trial which is equivalent to aboti hours of computa-
the best candidate in the pseudo-trial is selected and it ifon against thé.5 hour available to F-Race. The selection
tested on 10 instances that wergt used during the selec- operated by Cheat is tlogtimumthat can be obtained from
tion itself. The results obtained on these previously unseethe fixed set of training instances, and considering only one
instances are recorded and are used for comparing the thregn of each configuration on each instance. F-Race can be
racing methods. To summarize, after 1000 pseudo-trials geen as an approximation of Cheat: The set of experiment
vector of 10 x 1000 components is obtained for each of performed by F-Race is@roper subsebf the experiments
F-Race, tn-Race, and tb-Race. It is important to note thaperformed by Cheat.
the three algorithms face the same pseudo-samples and that . - . .
the candidates selected in each pseudo-trial by each aIgB‘-OW’ in the statistical gnalyas of the resuits obtamedl by
rithm are tested on the same unseen instances. The gene%r Monte Carlo experiments, we were not gble to reject
i-th components of the thra@ x 1000 vectors refers there- the null that F-Race and Cheat produce equivalent results.

fore to the results obtained by the champions of the thre@‘ISO in th|_s case, we have worked at the significance level
- of 5%: neither Wilcoxon test nor t-test were able to show

®In such a time, by definition, brute-force would be able to significance.
test the 256 candidates on only 5 instances. ¥he256 pseudo- __~—
experiments simulate 3.5 hours of actual computation on the com- ®The same conclusion can be drawn on the basis of a paired
puter used for producing the results proposed here. t-test.

The goal is to select aas good as possibleonfigura-
tion out of the 256 configurations of thelAX~MZN-Ant-
System described in Section 4.2.
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6 CONCLUSIONS Dean, A. and Voss, D. (1999)Design and Analysis of Experi-
ments Springer Verlag, New York, NY, USA.

The paper has given a formal definition of the problem ofDorigo, M. and Di Caro, G. (1999). The Ant Colony Optimization

configuring a metaheuristic and has presented F-Race, an Meta-heuristic. In Corne, D., Dorigo, M., and Glover, F., ed-

algorithm belonging to the class of racing algorithms pro- Egrnsd(l)\lnevm?eas in Optimizatigpages 11-32. McGraw Hill

posed in the machine learning community for solving the L

. Dorigo, M., Di Caro, G., and Gambardella, L. M. (1999). Ant
model selection problem (Maron and Moore, 1994). algorithms for discrete optimizatiorArtificial Life, 5(2):137—

In giving a formal definition of the configuration problem, 172,

we have stressed the important role played by the probabilPorigo, M. and Sitzle, T. (2002). The ant colony optimiza-

ity measure defined on the class of the instances. Without tion metaheuristic: Algorithms, applications and advances. In
h itis i ible to i ing to th Metaheuristics Handbookluwer Academic Publishers. In

suc al_cor:[\.cep, it is m:Eots_sy e lp '?IVE a meamfpg ot. € press.

generalization process that is implicit when a configuration _ _

] . . L ood, P. I. (2001). Resampling MethodsBirkhauser, Boston,

is selected on the basis of its performance on a limited se MA. USA. second edition.

f instances. . .
otinstances Gratch, J., Chien, S., and DeJong, G. (1993). Learning search

F-Race, the a|gorithm we propose in this paper, is the spe- contro_l knOWIedge for deep spa(_:e networ_k schedulinglnm
cialization of the generic class of racing algorithms to the ternational Conference on Machine Learnimges 135-142.
configuration of metaheuristics. The adoption of the Fried-Hsu, J. (1996).Multiple Comparisons Chapman & Hall/CRC,
man test, which is nonparametric and two-way, matches B0ca Raton, Fl, USA.

indeed the specificities of the configuration problem. AsJohnson, D. S. and McGeoch, L. A. (1997). The travelling sales-
shown by the experimental results proposed in Section 5, Man problem: A case study in 'OC?' Opt'”;]'?at'on' In Aa”.s’IE'
F-Race obtains better results than its competitors that adopt H. L. and Lenstra, J. K., editorspeal Search in Combinatoria

! . "M% Optimization pages 215-310. John Wiley & Sons, Chichester,
a parametric approach. This better performance can be in- yk.

deed explained by the ability of discarding inferior candi- 55p0son D S. McGeoch. L. A. Rego, C., and Glover
dates earlier and faster than the competitors. Still, we do F. (2001). gth DIMACS implementation challenge.
not feel like using these results for claiming a generat http://www.research.att.com/ ~ dsj/chtsp/

sumedsuperiority of F-Race against its fellow racing algo- Larson, H. (1982)Introduction to Probability Theory and Statis-
rithms. Rather, we wish to stress the appeal of the racing tical Inference John Wiley & Sons, New York, NY, USA.

idea in itself, and we want to interpret our results as an evit awler, E. L., Lenstra, J. K., Kan, A. H. G. R., and Shmoys, D. B.
dence that this idea is extremely promising for configuring (1985).The Travelling Salesman Probledohn Wiley & Sons,
metaheuristics and should be further investigated. Chichester, UK.

Maron, O. and Moore, A. W. (1994). Hoeffding races: Accel-
erating model selection search for classification and function
approximation. In Cowan, J. D., Tesauro, G., and Alspector, J.,
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Abstract

Two novel particle swarm optimization (PSO)
algorithms are used to track and optimize a 3-
dimensional parabolic benchmark function
where the optimum location changes randomly
and with high severity. The new algorithms are
based on an analogy of electrostatic energy with
charged particles. For comparison, the same
experiment is performed with a conventional
PSO algorithm. It is found that the best strategy
for this particular problem involves a
combination of neutral and charged particles.

1 INTRODUCTION

Particle Swarm Optimization (PSO) is a population based
evolutionary technique applied to optimization problems.
It differs from other population approaches such as
genetic algorithms, by the inclusion of a solution (or
particle) velocity, which moves the position of the
solution in the space of all possible solutions, rather than
relying on recombination of existing solutions. Linear
spring forces govern the dynamics of the population (or
swarm); each particle is attracted to its previous best
position, and to the global best position attained by the
swarm, where fitness is quantified by the value of a
function at that position. These swarms have proven to be
very successful in finding global optima in various static
contexts such as the optimization of certain benchmark
functions (Eberhart and Shi 2001a).

The real world is rarely static, however, and many
systems will require frequent re-optimization due to
system and/or environmental change. The problem of re-
scheduling system resources is an important example of
this. One important and implicit constraint is the
requirement to balance the desired error of the solution
with the need to be prepared to respond rapidly to change.
For example, to achieve a low error will require a large
number of iterations/generations, and will leave the
evolutionary population well adapted to that situation. But

P. J. Bentley

Department of Computer Science
University College London
Gower Street,

London, UK
P.Bentley@cs.ucl.ac.uk

system and environment change may occur on short time-
scales and may be large enough to leave the population
ill-adapted to the new problem, so that a solution
considered good enough may be hard to find within this
time-scale.

This work addresses these issues with the use of two
novel swarm algorithms. These algorithms are tested and
compared with the conventional PSO algorithm for an
extreme search problem wherein the optimum location
(solution) is randomized within a box representing the
entire dynamic range.

2 BACKGROUND

Eberhart and Shi (2001b) have applied the conventional
PSO algorithm to some dynamic search and optimization
problems. In their experiments, they use a time-scale of
100 iterations, and choose as a benchmark the (3-
dimensional) parabolic function and the sphere function
in 10-dimensions. The optimum location of these
functions was moved along a line by increments of 0.2%
and 1% of the dynamic range, with each change occurring
at 100 iterations. It was found that, under these
conditions, the PSO algorithm performed at least as well
as other evolutionary techniques (Angeline 1997, Bick
1998).

One drawback noted by Eberhart and Shi is the lack of a
strategy for dealing with a wide variety of change. One
possibility is to randomize the swarm when a change is
detected. In their work (2001b), the particle positions are
retained, but the personal and global best positions are
calculated with respect to the new optimum location.
Another possibility would be to randomize the swarm
when a change is detected. In general, a good strategy is
needed that can account for chaotic rather than linear
change, and for change that is commensurate with the
entire range of the dynamic variables, and not just limited
to one per cent of this range.

This work investigates the capabilities of two novel
swarm algorithms to overcome an extreme problem of
this type. The two new algorithms were originated by the
authors in quite a different context: the problem of
artificial improvised music (Blackwell and Bentley
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2002a). It was demonstrated that particle swarms can, if
suitably interpreted as music, generate interesting
melodies. Moreover, they can also interact with an
external musician. External audio events are interpreted
and placed in the search space, and become targets or
attractors for the swarm. These targets may change on
very small time-scales, and by large amounts. It was
found in this work that inter-particle repulsion or
“collision-avoidance” balances the target attractions and
leads to an extended swarm that follows this change well.
Various features of the algorithm have been reported in a
subsequent paper and the suggestion made that they may
have relevance to optimization problems (Blackwell and
Bentley, 2002b).

The particular form of the repulsive force we have
introduced is identical to the familiar electrostatic inverse
square law between identically charged particles. In this
paper we consider two different swarms: the first is
composed entirely of identically charged particles, and the
second has an equal number of charged and ‘neutral’
particles. Neutral particles do not experience the repulsive
force. (Within this electrostatic analogy, it could be said
that conventional PSO algorithms concern only neutral
particles.) The idea is that the neutral particles will gather
around the global best position (as if in a nucleus) whilst
the charged particles will continue to explore the solution
space as they orbit the nucleus. Hence there will be a
balance between exploration and exploitation. This type
of swarm could be termed ‘atomic’ since it has much in
common with models of the atom. As such, it moves
away from the original idea of an insect swarm or avian
flock which inspired much of the early work on particle
swarms.

3 THE PROBLEM

The dynamic problem investigated in this work is to find
the global minimum f(0) of some function f(x-x,,;) where
Xopt i the optimum location. For dynamic search, X, =
Xopi(t), Where t is an iteration counter although it could be
a time variable as determined by the actual dynamic
environment. Eberhart and Shi (2001b) hold x, fixed for
100 iterations at a time, and X,y varies in increments of
s1, where 1 is the unit vector in n-dimensions (linear
change) for s = 0.1 and s = 0.5. The dynamic range of the
variables is [-50, 50] in each dimension.

4 PARTICLE DYNAMICS

Within the PSO methodology, the particle dynamics are
determined by an update rule which modifies particle
velocities. New positions are then found by adding the
updated velocity to the current position. The particle
update algorithm used in this work is given by the
application of three simple steps:

Vi <= WV; + i1 (Xppi — Xi) T Cora(Xgb-Xi) (1)
if( |Vi| > Vmax) Vi (Vmax/ |Vi| ) Vi (2)

X; < X; T vj (3)

In these rules, i is a particle label and each particle has a
position x and a velocity v (n-dimensional vectors). The
inertia weight w, and spring constants ¢; and ¢, are the
adjustable parameters of the algorithm. r; and r, are
random numbers drawn from the unit interval, rj, r, €
[0,1]. Xy is the best position attained by particle i and
the global best location x,, is the best position attained by
any particle.

Rule (1) adds the particle accelerations from the spring
forces to a damped velocity wv;. Rule (2) clamps the
velocity to the dynamic range [-Viax, Vimax], Which serves
to limit the position increment applied in Rule (3). Notice
that our rule (2) implements spherically symmetric
velocity clamping, whereas other PSO algorithms clamp
the velocity to a box. Since the following experiments
involve qualitative observations on the spatial distribution
of particles at any iteration, it is necessary to preserve
spherical symmetry in the update rules.

Table 1: Search algorithm

Initialize a swarm {x;, v}, i =1,...M, with x; €[0, Xyax]"
and Vi € ['Vmaxa Vmax]n

Set all personal best positions to X to X;
t«—0
do:
fori=1toM
i (X5 -Xopt) < f(Xpb.i ~Xopt)
then x;, ;< x;
if f(Xpp,i ~Xopt) < f(Xgo=Xopt)
then Xgp— X ;
endfor
if (t%100 = 0)
then Xoy € [(Xmax/2)-L/2, (Xmax/2)+L/2]°
fori=1toM
Apply particle update algorithm (1) — (3)
endfor
te—t+1

until stopping criterion is met

This clamping is a constraint on global exploration. The
balance between this and local exploitation of good
solutions is given by the inertial weight. In the non-
dynamic case it is advantageous to reduce w from 1 down
to near zero during the course of training run, since this
allows full exploitation of possible good solutions
(Eberhart and Shi 2001a). However, in the dynamic case
it cannot be predicted whether exploration or exploitation
is needed at any given time. With these factors in mind,
Eberhart and Shi (2001b) used a value of 1.494 for the
spring constants and a random inertia weight w € [0.5,
1]. These values were chosen to agree, on the average,
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with Clerc’s analysis for convergence (Clerc 1999), and
to provide a balance between exploration and
exploitation.

The PSO algorithm for the dynamic problem investigated
here is given in table 1.

In order to introduce the notion of charge — and hence
collision avoidance — all that needs to be done is to
modify the rule for particle accelerations, rule (1). The
grounds for this extension, and a full description of the
effects of the various parameters on particle motion, are
given in (Blackwell, 2001) and (Blackwell and Bentley,
2002b). In those studies, an additional acceleration
towards the swarm centre was also implemented, but this
is not used here.

The necessary amendment to the particle update
algorithm is an extra particle acceleration a; given by

N T T 4)

j# 1jj

where r;j = X; — Xj , rjj = | X; — Xj| and each particle has a
charge of magnitude Q;. Neutral particles are assigned a
charge Q; = 0 and so will not contribute to the sum in (4).
A charged particle 1 will have Q; > 0 and will experience
the repulsive effects from all other charged particles j # i.
Repulsion is only experienced for separations within the
shell peore < 1jj < p. The lower cut-off p.,. is a safeguard
against the singularity of the inverse square law. The
upper cut off p is a tunable parameter allowing the
domain of influence of the repulsion to be controlled.

The charged particle update algorithm, which replaces the
particle update algorithm within the search algorithm
(Table 1), is given by replacing rule (1) with:

Vi — WV; + Ci11 (Xppi — Xi) + Cola(Xgp-Xi) +2; (1)

It is worth noting that since the particles are updated in
turn (i.e. from i = 1 to i = M), contributions to a; can
involve non-updated particle positions (j > i) as well as
updated positions (j < i). This was found to give better
avoidance in earlier experiments.

S EXPERIMENTS

The experiments were conducted on the parabolic
function in n = 3 dimensions, f(X-Xgp) = (X-Xopt) * (X-Xopt)-

The task is made dynamic by placing X, in a cube of side
L and then randomly re-positioning it to another point in
this cube every 100 iterations. The severity s therefore
varies randomly from zero up to (V3)L. With L set to
2Vimax» this gives a severity of up to 2V3 times the dynamic
range. The parameter X,,x solely determines the initial
distribution of the particle velocities and positions and
plays no part in subsequent updates after the first jump in
Xope. The values of the spatial parameters set out in Table

Table 2: Spatial parameters

L Xmax Vmax M
64 128 32 20

The values of the electrostatic parameters peoe, p and Q
are set out in Table 3.

Table 3: Electrostatic parameters

Peore p Q
1 V3X ax 16

The values of the PSO parameters w, ¢, and c, are those
used by Eberhart and Shi (2001b). The inertia weight w
varies randomly between 0.5 and 1.0, so that the mean
0.75 is close to the Clerc constriction factor 0.729 (Clerc
1999). The spring constants ¢, and c, are set to 1.494, also
in accordance with Clerc’s analysis.

In all these experiments, 50 optimum jumps are made, (or
5000 iterations of the system). In addition to the
numerical data produced by these experiments, a three
dimensional animation was set up which enabled a
qualitative assessment of the three swarms.

For comparison, four experiments were performed:
I Neutral swarm.

The first experiment uses the conventional PSO
algorithm, which is implemented by setting the charge on
all 20 particles to zero (i.e. each particle is neutral).

II Charged swarm.

In the second experiment, all 20 particles carry the same
charge, Q. In other words, all particles experience
repulsive forces from the other particles.

III Atomic swarm.

The third experiment evaluates the atomic swarm, where
10 particles have charge Q and the remaining half are
neutral.

IV Neutral swarm, one optimum jump.

The fourth experiment is identical to Experiment 1 except
that just 200 iterations were allowed. The positions and
velocities of the particles were saved to file for analysis of
individual particle motion.
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6 RESULTS

The results for the experiments on the neutral, charged
and atomic swarms are shown in Figures 1 to 6. In each
case, two graphs have been prepared, plotted as a function
of iteration number t: the best value found by the swarm,
f(Xg - Xop), and the average best value over the 50
problem optimum jumps (i.e., average best per 100
iterations, from optimum jump to the iteration before the
next optimum jump).

6.1 EXPERIMENT I: NEUTRAL SWARM

The best value attained after 100 iterations, i.e. just before
the first optimum jump, is of the order of 10®. This is at
least two orders of magnitude lower than the best value
obtained in the first 100 iterations of an equivalent
experiment (Eberhart and Shi 2001b figure 1, p98),
although comparable to the best values obtained in
subsequent optimum positions. The discrepancy is
presumably due to initial conditions, although the
spherically symmetric clamping rule may play a part.

However, the results depart significantly at the first
optimum jump, due to the increased severity. The
remarkable feature of Figure 1 is the small spikes at the
optimum jump followed by a leveling of the graph for
some tens of iterations, after a short fall. This plateau in
best values sometimes then drops before the next
optimum jump, but often does not. For example, there is a
run from t = 2100 to 2500 where the initial short fall is
not improved upon. The plot of the averages over the 50
optimum jumps shows an average best of 125 at 100
iterations. The slope at this point is -3.2, indicating only a
slow improvement (3% per iteration) with increasing
iteration.

The 3D animations showed a very unusual feature. For
the first 100 iterations, the particles were clumped very
closely around the optimum. At the optimum jump,
however, the particles moved along a line in the general
direction of the new optimum, and then began to oscillate
along this line about a point close, but not adjacent to the
new optimum. After some tens of iterations the
oscillations would cease and the particles would begin to
swarm towards the new optimum, although they might
not reach it before the next jump. This behavior was
repeated invariably at each optimum jump, and in repeats
of this experiment.

6.2 EXPERIMENT II: CHARGED SWARM

Figure 3 shows the best values over the 5000 iterations.
By comparison with Figure 1, the spikes are now long,
showing an improved best value by a factor of 10° after
just a few iterations at each jump. The leveling out now
occurs at a much smaller best value, a feature illustrated
in Figure 4 which shows the average best values. In
Figure 4, the lowest average best value obtained is 0.226,
and the slope at this point is -2.10x10” showing an
improvement of 1% per iteration at this point.

The animations revealed typical swarming behavior: at
each optimum jump the swarm moved towards the new
optimum, with irregular motion about the swarm centre.
After a few iterations the swarm centre was coincident
with the optimum and the particle motion continued to be
chaotic and spherically symmetric about this point, with
particles amplitudes of some tens of units. These pictures
agreed with previous swarm experiments (Blackwell and
Bentley, 2001b).

6.3 EXPERIMENT III: ATOMIC SWARM.

Once more, the plot of best values, Figure 5, shows spikes
at each optimum jump, but the spikes drop to a much
lower best value, in the range 10 to 10™ in 49 of the 50
jumps. The figure does not show the plateaus that are a
feature of Figures 1 and 3. The plot of average best
values, Figure 6, shows a much improved average best at
100 iterations of 1.12x10™, with a slope of -1.21 x 107 or
11% of the best value per iteration at this point. The
average global best just before the next optimum jump is
at least 6 orders of magnitude better than the neutral
swarm and about 2000 times better than the charged
swarm.

In order to distinguish charged from neutral particles for
the purposes of the animation, the particles were colored
red (charged) and blue (neutral). At each optimum jump,
the animations displayed the particles moving in an
irregular swarming motion towards the optimum,
followed by a long period where the blue neutral particles
clumped around the optimum, moving ever slower with
very small amplitude, surrounded with a ‘cloud’ of
charged red particles, moving much like the charged
swarm described in II. The picture was very reminiscent
of representations of an atomic nucleus surrounded by an
electron cloud.

6.4 EXPERIMENT IV: NEUTRAL SWARM, ONE
OPTIMUM JUMP.

A further experiment was conducted on the neutral swarm
to give greater insight on the linear non-swarming
behavior of the particles just after the optimum jump, as
observed in the animation. Just two hundred iterations
were completed, allowing a single optimum jump to
occur.

At t =100, the 20 particles were clumped very tightly
around X,, and moving slowly. Between t = 100 and t =
120, all the particles followed a very similar trajectory.
For this reason, some results for just a single particle,
particle 0, will be presented. Table 4 shows x, y and z
components of the optimum location, global best location
and position and velocity of particle 0 at iteration 99, just
before the effects of the optimum jump have influenced
the particle dynamics.
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Figure 9: Position of particle 0 for t = 110 to t = 140

Table 4: Opt., best & particle 0 components at t = 99.

Xopt( 100) | Xg(100) | x0(100) | v(100)

X | 95.71089 | 95.710884 | 95.5921 0.61443764

y | 65.98201 | 65.98204 | 65.87358 | 0.52882737

56.992935 | 56.992916 | 57.107887 | -0.58677804

Figure 7 shows the positions of particle 0 (circles) and the
global best (+’s) for iterations t = 100 to t = 120. The
optimum location is depicted with a triangle. Figure 8
shows just two snapshots at t = 114 and t = 115. Finally,
Figure 9 shows the position of particle 0 and global best
between iterations 110 and 140. For the purpose of the
subsequent analysis, a line showing the stable trajectory
and its end point has been marked on the figure.

7 ANALYSIS

The strange behavior of the neutral swarm just after the
optimum jump is the crucial difference between
Experiments I and II. This analysis section will start with
a possible explanation for this phenomenon.

The situation for the neutral swarm just at and after the
optimum jump must be studied, and the optimum jump of
Experiment IV is a good place to start. At t = 100, the
closest particle, k, to the new optimum location will now
be at the new global best. Particle k will at this stage
experience no acceleration, and therefore its next location
is xx(100) = x, (99) + wv(99). Notice that the velocity
vi(99) is unlikely to be pointing towards X,u(100).
However, if vi(99) has some component that lies along
Xopt(100) — x,(99) then the new position x(100) will
improve upon the previous position and may even be the
new global best when the updates at this iteration are
completed. Suppose this is so. Then, by a similar
argument, X,(101) will lie along the same trajectory x
(100) - x(99). Meanwhile the other particles, which were
at their personal bests at t = 99, will experience
accelerations towards xi (99) of magnitude c; ;| x,(99) —
xi(99) |. This will not be a large acceleration, but it will
give the new velocity vector v;(100), an additional
component along the trajectory defined by x (100) - xi
(99). At the next iteration, if the above scenario is played
out, velocity components along the trajectory of particle k
will again be reinforced.

Of course there may well be some jostling for leadership,
but occasionally a leader will be found whose trajectory
defines a line of global bests. The remaining particle
velocities are pulled ever more in the direction of this
trajectory and the accelerations place them ever closer to
positions along this trajectory. The result is collinear
motion along a line that is closing on X, but is not
necessarily coincident with x.,. The leadership may then
be exchanged, but motion along this line will always be
reinforced until a final global best position is found which
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is near to the point of closest approach between the
trajectory — the ‘end-point” - and X,y Animations of many
runs of the swarm provide empirical evidence that this
scenario invariably occurs.

The stable trajectory is clearly seen in Figure 7. Figure 8
shows two snapshots that illustrate the attraction of the
particles to the trajectory. At t = 114, particle 0 is
displaced from the global best position. The acceleration
is sufficient to place it very close to Xq,(114) at t = 115,
but the global best has now moved along the stable
trajectory to Xg,(115).

Consider now what happens when the global best is near
to the end-point. Velocities perpendicular to the stable
trajectory will be very small so that accelerations towards
Xope(100) will also be correspondently small. Moreover,
the dissipative effects of the inertia weight will also be
progressively slowing particle motion down. The result is
that it may take a long time for the swarm to move away
from the end of the stable trajectory, and the global best
will hardly improve in the remaining iterations before the
next optimum jump. The particle motion is now a spring-
like oscillation along the stable trajectory, centered on the
end-point. The stable trajectory and end-point are
depicted in Figure 9 which shows the position of particle
0 and global best between iterations 110 and 140.

This analysis can be applied to the results of Experiment 1
(Figure 1). The plateau show that the global best scarcely
improves over some tens of iterations. This is due to the
collinear motion followed by oscillation about the end-
point of the stable trajectory. In fact, there is a particularly
bad run between iterations 2100 and 2500 when the
particles never improve on their global best, which
corresponds to an optimum value of 1000. This is 11
orders of magnitude from the best that the swarm is
capable of finding (10™). It is these high values that push
up the average best value found (Figure 2).

The charged swarm is less affected by this pathology
since the collision avoiding acceleration will push
particles away from the stable trajectory. In fact
animations never show linear collapse; instead, the swarm
maintains a near spherical shape, much more reminiscent
of an insect swarm. However, this also has its drawbacks.
Figure 3 does show some horizontal portions, for global
bests in the range 10" to 1. The repulsions now work
against exploitation so that better solutions than this are
found in only 7 of the 50 optimum jumps.

The atomic swarm also does not suffer from the
pathology of the neutral swarm. The charged particles
allow for fast targeting, after which the neutral particles
can continue searching the solution space in the near
vicinity of the global best. Indeed, at the 100th iteration,
the rate of improvement of best value is 11%, which
shows that significant improvement can still occur. The
corresponding rates for the neutral swarm and the charged
swarm are 3% and 1%, indicating only slow progress is
possible.

8 CONCLUSIONS

This work presents a new particle swarm algorithm based
on an analogy of electrostatic energy. In addition, a
dynamic search problem has been formulated that is more
representative of real-world problems. The experiments
considered here suggest that atomic particle swarms may
offer a good strategy for dealing with such severe
dynamic optimization over short time scales. Certainly
this has been the case for the dynamic three dimensional
parabolic function considered here, where the average
best value obtained over 50 optimum jumps was, by the
100th iteration, 1.12x10™. This compares very well with
the equivalent figure of 125 for the conventional PSO
algorithm.

The poor behavior of the conventional (i.e., neutral)
particle swarm seems to be due to a curious pathology of
‘linear collapse’, just after problem optimum jump. This
was observed in animations and analysis suggests that the
cause is the establishment of a linear trajectory that links
global best positions and serves as an attractor for the
swarm. At the end of this stable trajectory is a stable
global best position, which can be some way from the
optimum location, and from which the swarm has
difficulty improving upon.

The charged particle swarm has the advantage that the
particle trajectories are always around an extended swarm
shape, allowing good global search. The maintenance of
an extended swarm was the reason for the use of collision
avoidance in the earlier work on improvised music
(Blackwell and Bentley 2002a,b). In this context, it is
desirable to have a very fast swarm response to a
changing audio input, yet undesirable for the swarm to
cluster too closely around a target — this would lead to
dull melodies and parody. The downside is that the
particle repulsions prevent detailed exploration of the
search space.

However, experiments suggest that a swarm of neutral
and charged particles (reminiscent to representations of
the atom) does not suffer from linear collapse, and always
allows for detailed exploitation. The advantage of an
atomic swarm over randomizing strategies (e.g., where
the particle positions are randomized when an problem
optimum shift is noticed) is one of simplicity. No further
analysis is needed to tell just when a change has occurred,
and how the swarm should respond to this change.
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Abstract

In this paper we deal with an NP-hard
combinatorial optimization problem, the k-
cardinality tree problem in edge-weighted
graphs. This problem has several applica-
tions in practice, which justify the need for
efficient methods to obtain good solutions.
Metaheuristic applications have already been
shown to be successful in tackling the k-
cardinality tree problem in the past. In
this paper we propose an ACO algorithm for
the edge-weighted k-cardinality tree problem
based on the Hyper-Cube Framework for Ant
Colony Optimization. We investigate the
usefulness of a higher order pheromone rep-
resentation in contrast to the standard first
order pheromone representation and compare
our algorithms to a multi-start local search
and a heuristic developed to tackle the prob-
lem.

1 Introduction

The k-cardinality tree problem is a combinatorial op-
timization problem which generalizes the well known
minimum weight spanning tree problem. It consists in
finding in a node- or edge-weighted graph G = (V, E) a
subtree with exactly k edges, such that the sum of the
weights is minimal. Due to various applications, e.g.
in oil-field leasing [23], facility layout [18], quorum-cast
routing [9] and telecommunications [21] it has gained
considerable interest in recent years. In this paper we
will deal with the k-cardinality tree problem in edge-
weighted graphs. The problem can be formally defined
as follows. Let G = (V, E) be a graph with a weight
function w : E — IN on the edges. We denote by T
the set of all k-cardinality trees in G. Then the edge-
weighted problem (G,w, k) is to find a k-cardinality
tree Ty € T which minimizes

W(Ti) = Y epr,) w(e)- (1)

Several authors have proved independently that the
edge-weighted k-cardinality tree problem (1) is NP-
hard, see [17, 26]. In [26] it has been shown that it
is still NP-hard if w(e) € {1,2,3} for all edges e and
G = K, but polynomially solvable if there are only
two distinct weights. Several authors have considered
special types of graphs. One of the results is that the
problem is polynomially solvable if G is a tree (see
[25]). The edge-weighted problem is NP-complete for
planar graphs and for points in the plane, when edge
weights correspond to distances between the points
(see [26]). In the same paper polynomial algorithms for
decomposable graphs and graphs with bounded tree-
width have been given. There is also a polynomial
algorithm for the case when all points lie on the bound-
ary of a convex region. In [14], the authors have fo-
cused on properties of the distance matrix. They have
assumed that G = K,, and have proved several results
(both NP-completeness and polynomial time solvabil-
ity) on the complexity of the problem with graded dis-
tance matrices.

Concerning methodology, both exact and heuristic al-
gorithms have been developed, with a general focus on
approximation algorithms. We first note that integer
programming formulations have been presented in [17]
and later in [20]. Based on detailed studies of the as-
sociated polyhedron in the former paper a Branch and
Cut algorithm has been developed and implemented
in [19]. The code and also implementations of most of
the heuristics in [16] are documented in [15]. A Branch
and Bound method is described in [9]. The heuris-
tics mentioned are based on greedy and dual greedy
strategies and also make use of dynamic programming
approaches. Other constructive heuristics have been
presented in [9].

More recently, authors successfully applied meta-
heuristic methods to the k-cardinality tree problem
(see Tab. 1 for an overview). Metaheuristics! in-
clude but are not restricted to Simulated Annealing
(SA), Evolutionary Computation (EC) with its most
famous representative the Genetic Algorithm (GA),

!See [5] for an overview on metaheuristics.
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Table 1: An overview of metaheuristic approaches to tackle the k-cardinality tree problem.

| Publication | Problem-type | Metaheuristic |
M.J. Blesa and F. Xhafa [2], 2000 edge-weighted TS
M.J. Blesa, P. Moscato and F. Xhafa [1], 2001 edge-weighted Memetic Algorithm
C. Blum [3], 1998 node-weighted TS and EC
C. Blum and M. Ehrgott [4], 2001
F. Catanas [8], 1997 node-weighted + edge-weighted TS and EC
K. Jornsten and A. Lokketangen [24], 1997 edge-weighted TS
N. Mladenovic [27], 2001 edge-weighted VNS

Tabu Search (TS), explorative search methods such
as Iterated Local Search (ILS), and Ant Colony Opti-
mization (ACO). Among the metaheuristics applied to
the k-cardinality tree problem are Evolutionary Com-
putation, Tabu Search, and Variable Neighborhood
Search (VNS) (see Tab. 1). The aim of this paper is
to show how Ant Colony Optimization can be success-
fully applied to the edge-weighted k-cardinality tree
problem. We investigate the usefulness of a higher or-
der pheromone representation in contrast to the stan-
dard first order representation and compare the re-
sults obtained by our algorithms to a multi-start local
search and a heuristic developed to tackle the problem.
The remainder of the paper is organized as follows. In
Sec. 2 we briefly outline the concepts of Ant Colony
Optimization and a particular way of implementing
ACO algorithms, called the Hyper-Cube Framework.
In Sec. 3 we present the framework and the com-
ponents of the ACO algorithm to tackle the edge-
weighted k-cardinality tree problem. In Sec. 4 we
present results and finally in Sec. 5 we draw some con-
clusions and give an outlook to future work.

2 Ant Colony Optimization

Ant Colony Optimization (ACO) [10, 13, 11] is a re-
cently proposed metaheuristic approach for solving
hard combinatorial optimization problems. The in-
spiring source of ACO is the foraging behavior of real
ants. This behavior enables them to find shortest
paths between food sources and their nest. While
walking from food sources to the nest and vice versa,
ants deposit a substance called pheromone on the
ground. When they decide about a direction to go
they choose, in probability, paths marked by strong
pheromone concentrations. This basic behavior is the
basis for a cooperative interaction which leads to the
emergence of shortest paths.

In ACO algorithms, an artificial ant incrementally con-
structs a solution by adding opportunely defined so-
lution components to a partial solution under con-
sideration?. For doing that, artificial ants perform

2Therefore, the ACO metaheuristic can be applied to
any combinatorial optimization problem for which a con-

randomized walks on a completely connected graph
G. = (C,L£) whose vertices are the solution compo-
nents C and the set £ are the connections. This graph
is commonly called construction graph. The problem
constraints 2 are built into the ants’ constructive pro-
cedure in a way such that in every step of the construc-
tion process only feasible solution components are per-
mitted to be added to the current partial solution. In
ACO algorithms we work with a set of pheromone val-
ues T and also with a set of heuristic values n. These
values are used by the ants’ heuristic rule to make
probabilistic decisions on how to move on the con-
struction graph. The probabilities involved in moving
on the construction graph are commonly called tran-
sition probabilities.

The first ACO algorithm proposed was Ant System
(AS) [13]. Although AS is important, because it was
the first ACO algorithm proposed, in the last few years
some changes and extensions of AS have been pro-
posed, e.g. Ant Colony System (ACS) [12] and M.AX-
MIN Ant System (MMAS) [29]. In general, ACO
algorithms have been proven to be a very effective — for
some problems like the QAP even the state-of-the-art —
metaheuristic method for combinatorial optimization
problem solving.

2.1 The Hyper-Cube Framework

The Hyper-Cube Framework — recently proposed by
Blum et al. [6] - is a certain way of implementing
ACO algorithms. This way of implementing ACO al-
gorithms comes with several benefits. Maybe the most
important one is the property of scaling objective func-
tion values.

To a set of pheromone values 7 = {1, ..., 7, } in ACO
algorithms usually a pheromone updating rule of the
following kind is applied.

re (L=p) -1+ X0, AV, (2)
where

i — f(s) if s7contributes to 7;
A'mi { 0 otherwise . (3)

structive heuristic can be defined.
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AJr1; is the contribution of a solution s/ to the up-
date for pheromone value 7; (ns is the number of solu-
tions used for updating the pheromone values), p is the
evaporation rate (a small positive constant), and f is
a function which is monotone in the quality of the so-
lution (for minimization problems it usually maps the
quality of a solution to its inverse). In the Hyper-Cube
Framework a normalization of the contribution of ev-
ery solution used for updating the pheromone values
is done in the following way.

e (op) e S A
where
Ar, = % if s7contributes to 7 5)
0 otherwise

where we multiply the sum of normalized contribu-
tions with the evaporation rate p. This formula can
be reformulated as:

T T s (S5 f(9) -6(s9,m) = ) (6)

where

; 1.0 if s7contributes to 7;
J . — i

o, mi) { 0.0 otherwise (7)
This leads to a scaling of the objective function values
and the pheromone values are implicitly limited to the
interval [0, 1] (see [6] for a more detailed description).

3 ACO for the k-cardinality tree
problem

In this section we outline the framework of our ACO al-
gorithm for the edge-weighted k-cardinality tree prob-
lem. The basic framework of our algorithm is shown in
Alg. 1. In Alg. 1, 7 = {1, ..., 7, } is & set of pheromone
values, n, is the number of ants used in every itera-
tion, T}’ are solutions to the problem, cf is a numeri-
cal value which we called the convergence factor, T}™
is the iteration best solution, T"® is the restart best
solution and T},9" is the best solution found from the
start of the algorithm.

InitializePheromoneValues(7): In every version of our
algorithm we initialize all the pheromone values to
0.5.

ConstructSolution(7): To tackle the k-cardinality tree
problem with an ACO algorithm we have to define
the constructive heuristic to be used in a probabilis-
tic manner to construct solutions to the problem. In
ACO algorithms artificial ants construct a solution by
building a path on a construction graph G = (C, L)
where the elements of the set C (called components)

Algorithm 1 ACO for the k-cardinality tree problem
input: a problem instance (G, w, k)
T,,9° + NULL
T,"* + NULL
cf+ 0
InitializePheromoneValues(7)
while termination conditions not met do
for j =1ton, do
T}’ «+ ConstructSolution(7)
LocalSearch(7}”)
end for
T « argmin(w(Ti'), ..., w(Tp™))
ApplyPheromoneUpdate(cf, 7,13 T Ti.?)
Update(Tkib,Tkgb,Tka)
c¢f < ComputeConvergenceFactor(r, Tk“’)
if algorithm converged then
ResetPheromoneValues(7)
T,"" = NULL
end if
end while
output: 739"

and the elements of the set £ (called links) are given
for the k-cardinality tree problem as follows:

c =
L =

E(G) U{csource; Csink }

{(ei,ej) | eirej € E(G),ei # e}
U {(csource;€) | € € E(G)}

U {(e,csink) | € € E(G)}

Note that all links in £ are directed. This graph G is
fully connecting the edges of G (which are the compo-
nents of G) plus a source component Cgpyree (and arcs
from the source component to every component of G)
and a sink component ¢, (and arcs from every com-
ponent in G to the sink component).

To build a solution an ant starts from the source com-
ponent Cgpuree Of the construction graph and does k
construction steps as shown in Alg. 2. In every step

Algorithm 2 Ant construction phase

Ant is placed on cgource

Ji ={e=1[vr,vs] | e €C}

for t =1to k do
Choose e* = [v;,v;] € J; to probability p(e*|T})
Ant moves to the component associated with e*
E(T;) = E(T;) U e*
V(Ty) = V(T) U {vi, v}
Jir1 = {e = [v,v5] | e ¢ E(T%), either v, €
V(Ti) or vy € V(1) }

end for

Ant moves to cgink

of the ant construction phase we can only add an
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edge e = [v;,v;] to the partial k-cardinality tree Ty
(t € {1,k—1}) if exactly one of the two nodes incident
with this edge (v;, or v;) is already in the node set
V(T:) of Ti. The generation of the transition prob-
abilities p(e|T}) for all e € J; is dependent on the
pheromone representation to be explained in the fol-
lowing.

There are a number of design decisions to be made
when developing an ACO algorithm to tackle a com-
binatorial optimization problem. One of the most cru-
cial decisions is the choice of a pheromone model. For
the TSP for example it is a fairly obvious choice to
put a pheromone value on every link between a pair of
cities. For other combinatorial optimization problems
the choice is not as obvious as for the TSP (see [28]
for MAX-SAT, or [7] for FOP Shop scheduling). Often
this problem can be stated as the problem of assigning
pheromone values to the decision variables themselves
(first order pheromone values) or to subsets of decision
variables (higher order pheromone values). In the fol-
lowing we present two different pheromone representa-
tions (models) for the edge-weighted k-cardinality tree
problem.

1) Pheromone values on decision variables: This
first pheromone model (called PHigtorder further on)
is the most simple choice of a pheromone represen-
tation for the edge-weighted k-cardinality tree prob-
lem. To every edge e¢; € E(G)? we have associated
a pheromone value 7.,. Therefore, if |E(G)| = m we
have m pheromone values. The probabilities p(e;|T})
for the edges in set J; of the ant construction phase
to be chosen by the ant (called transition probabili-
ties) are determined as follows. If ¢ = 1 the transition
probabilities are
——i— . ife; €]
p(eilT1) :{ OZ”E“ o o (8)

otherwise

where .J; is the set of operations allowed to be sched-
uled next (see Alg. 2). As a good edge (an edge with a
low weight) is not necessarily a good starting point for
building a low weight k-cardinality tree, we decided
not to use any heuristic information in this formula.
This is different for the next k — 1 construction steps.
For t > 1 the transition probabilities are

1
Tei wiep

~ 1 if e; € Jt
ZelEJt Ter wiepn)
0

pleilTt) = 9)

otherwise

This means that for the second and consecutive steps
the distribution given by the pheromone values is in-
fluenced by the weights of the edges. Low edge weights
result in a higher probability to be chosen by the ants

3We consider the edges of graph G to be the decision
variables of the problem.

and the other way around. With this pheromone repre-
sentation the algorithm tries to learn for every edge the
desirability of having it in a solution. This pheromone
model doesn’t take into account any dependencies be-
tween decision variables.

2) Pheromone values on pairs of decision vari-
ables: This pheromone model (called PHandorder fur-
ther on) takes into account dependencies between deci-
sion variables. To every pair < e;, e; > (where e; # e;)
of edges in E(G) we have associated a pheromone value
T<eie;> (Where T, ;> and 7., ¢;> are the same).
We also use the pheromone values of the pheromone
model PHigorder for the first construction step (when
t = 1). Therefore, in this model we have m+ (m? —m)
pheromone values. If ¢ = 1 the transition probabilities
p(e;|T1) are generated as shown in equation (8). If
t > 1 the transition probabilities p(e;|T},t) are gener-
ated as follows:

1
(ZejEE(Tt) T<ej'ei>) “wie;)
1
ZelEJt (Zej EE(Ty) T<ej'el>) "wiep)
0

ife; € J

otherwise
(10)
where J; is as described above. With this pheromone
representation the algorithm tries to learn for every
pair of edges the desirability of having them together in
a solution. As we have pheromones on pairs of edges,
this pheromone model takes into account all first order
dependencies between decision variables.

LocalSearch(T”): The most important ingredient of
a local search method is the neighborhood function.
Let T} be a k-cardinality tree. The neighborhood
Nswap(Tk) of a k-cardinality tree T} consists of all
k-cardinality trees which can be generated from T} by
cutting off one of the leaf edges e from T} and adding
one edge from the neighborhood of T}, \ e. This neigh-
borhood function has the advantage to be easy to com-
pute, but it is probably coming with the disadvantage
of quite a few low quality local minima. However we
decided to use this simple neighborhood function in
a steepest descent local search (best improvement) in
order not to spend a too high percentage of the com-
putation time on the local search.

ApplyPheromoneUpdate(cf,r, T3 T},"® T ?®): For up-
dating the pheromone values we are using a so-called
online delayed pheromone update rule. We always use
3 different solutions for updating the pheromone val-
ues*, the best solution found in the current iteration
Tkib, the restart best solution Tkrb and the best solu-
tion found since the start of the algorithm 7;°. In
contrast to the usual updating rule of the Hyper-Cube
Framework as shown in equation (6), in our updating
rule the influence of each on of these 3 solutions is de-
pendent one the state of convergence of the algorithm

“Note that a similar scheme was used in [29].
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(given by the convergence factor ¢f) rather than by
the quality of the solutions themselves. First we com-
pute an update value &, for every edge e € E(G) in
the following way.

e — k0 (Tk™, €) + k0 (T3, €) + kgpd (T1"e) (11)

where ;3 is the influence weight of T3, Ky the influ-
ence weight of T}, kgp the influence weight of T,,9°
and kg + Krp + £gp = 1.0. The é-function is defined as
follows.

_ [ 10 ife; € E(Ty)
5(Tkaei) - {0.0 otherwise

To the pheromone values 7., of pheromone model
PHigtorder we then apply the following update rule.

(12)

Te; € Te; +p- (fei - Tei) (13)

To the pheromone values 7, ¢;~ of the pheromone
model PHangorder we apply basically the same
pheromone update rule. We compute for every or-
dered pair of edges < ej,e; > the value {<¢; ;> by
using in equation (11) the following d-function.

_ 1.0 ife;e; € E(Ty)
6(Tk’7—<e"’eﬂ'>) B { 0.0 otherwise (14)
Then for updating the pheromone values we use the
following rule.

T<eiej> «— T<eiej> +p- (£<€i,€j> - T<€i,€j>) (15)

Depending on the convergence factor cf the influence
of every one of these 3 solutions on the pheromone
update is determined. The convergence factor cf is a
value providing an estimate about the state of conver-
gence of the system. The convergence factor is com-
puted in the following way.

ib
D) O(Te""e) (1.0-7c)

of = . (16)

where we use the d-function defined in equation (12).
As by using the Hyper-Cube Framework for updating
the pheromone values, the pheromone values can only
assume values between 0.0 and 1.0 (see [6]) it obviously
holds that cf also only can assume values between 0.0
and 1.0. It is also clear that if ¢f is close to 0.0 the
system is in a state where the probability to produce
solution T;% is close to 1 and therefore the probabil-
ity to produce a solution different to T, is close to
0. This is what we informally call the state of conver-
gence for our systerm.

From experience gathered with the algorithm we chose
the schedule of settings for values p,k, £rp and Kgp
as shown in Tab. 2. In the following we give an inter-
pretation of the choice of parameters shown in Tab. 2.

At the beginning of the search process the evapora-
tion rate (which is in the Hyper-Cube Framework more
appropriately called learning rate) is set to the value
0.15, because at the beginning of the search there is no
need to be very careful. The algorithm should rather
drift around in the search space to get a kind of global
perspective. Also the influence of the best solution
found in an iteration is quite high, which also sup-
ports the algorithm drifting through the search space.
Once the algorithm starts converging (cf falls below
0.3) we decrease the learning rate (in order to perform
a more careful search) and increase the influence of the
best solution found since the restart of the algorithm.
Once the algorithm is near to the state of convergence
only the restart best solution is used to update the
pheromone values and we decrease the learning rate
even more in the hope to find a better solution near
the restart best solution. Before the algorithm is com-
pletely converged we use the best solution found since
the start of the algorithm to update the pheromone
values. This action basically results in a shift of the
probability distribution given by the pheromone val-
ues toward the best solution found. The reason behind
that is the hope to find a better solution in-between
two good solutions which are the restart best and the
overall best solution in this case. This idea is very
similar to ideas we can find in Path Relinking [22] for
example.

Update (T3 7" T},%%): In this procedure we replace
the old solution T}"" with Tp™ if w(Tx™) < w(T}"™).
We do the same for T},

ComputeConvergenceFactor(r, T;,"*): The convergence
factor c¢f is re-computed in every iteration according
to equation (16).

ResetPheromoneValues(7): In this procedure we reset
all pheromone values 7, to the start value 0.5.

4 Test results

We chose three different problem instances for a pre-
liminary testing of our algorithms. Two of them are
complete grid graphs® with 10 rows and 10 columns
which sums up to 100 nodes and 180 edges. These
graphs are called 10x10_1.gg and 10x102.gg in the fol-
lowing. The weights of the nodes were randomly gen-
erated using a uniform distribution on the integers be-
tween 1 and 100. There are two motivations for choos-
ing grid graphs for testing our algorithms. Problems
in practice are often modeled as grid graphs (e.g., the
oil-field leasing problem in [23]). Also, it was observed
in earlier publications (see [3]) that the problem is con-
siderably harder to solve in grid graphs compared to
unstructured graphs. Additionally we chose one of the

®No edges or nodes are missing in the grid.
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Table 2: The schedule used for values p,k;p, k7 and kg, depending on the value of the convergence factor cf.

| [cf>03 ] ¢f <03, cf >0.05 [ ¢f <0.05, ¢f > 0.025 | ¢f < 0.025 |

p 0.15 0.1 0.05 0.1
Kb 2/3 /3 0 0
For 1/3 2/3 ) 0
Fogb 0 0 0 T

graphs with 400 nodes and 800 edges used by Jornsten
and Lokketangen in [24] to test their algorithm. This
graph is called g400-4-01.dat. We applied the following
four different algorithms to these three graphs:

e Alg. 1 using pheromone model PHygorder, further
on called ACO1.

e Alg. 1 using pheromone model PHapgorger, further
on called ACO2.

e Alg. 1 using pheromone model PHygtorder, without
updating the pheromone values. This is resulting
basically in a multi—start local search, further on
called MSLS.

e A heuristic based on greedy strategies developed
in [16], which is called KCP.

The results are shown in Tables 3-5 (best results in
bold). We started the algorithms for a range of car-
dinalities between 2 and |V (G)|. On each graph, each
algorithm was applied 20 times for each cardinality.
The results are reported for every algorithm (except
for KCP) on every problem instance in four columns.
The first column (titled “Obj.”) contains the average
of the best found solutions out of 20 runs. The second
column (titled \/o) contains the standard deviation of
these best found solutions. The third column (titled
“time”) contains the average of the times (in seconds)
when the best solution of a run was found. Finally
the fourth column (titled /o) contains the standard
deviation of these times. The stopping criterion for all
the algorithms (except KCP) was a maximum amount
of running time. We allowed the same amount of run-
ning time to all the algorithms. This amount of run-
ning time is dependent on the cardinality, and given
in seconds by 1+ kVIG)|

From the results in Tables 3-5 we can draw several
conclusions. ACOL1 is among the tested algorithms
clearly the best one. Except for very high cardinal-
ities — where the heuristic KCP is likely to produce the
optimal solution — it clearly beats the other algorithms
in average quality, in standard deviation of the quality,
and in average time the best solution was found. This
superiority is especially obvious for cardinalities in the
middle of the cardinality range where the problem is
harder to solve than at the beginning or the end of the
cardinality range. The difference between ACO1 and

MSLS points out, that the usage of pheromone values
for the k-cardinality tree problem seems very fruitful.
At first sight it seems surprising that ACO2 doesn’t
reach the quality of ACO1, because ACO2 is taking
into account first order dependencies between decision
variables compared to no dependencies in ACO1. How-
ever, if we consider the quadratic increase in complex-
ity of the algorithm®, the outcome of the experimental
results become understandable. Due to the consid-
erably increased complexity, ACO2 needs much more
time to find good solutions. This is getting more ob-
vious with growing graph size. Therefore the “use of
more information” seems not to be very promising in
ACO algorithms for the k-cardinality tree problem.

5 Conclusions and outlook to the
future

In this work we presented an ACO algorithm for the
edge-weighted k-cardinality tree problem. We pre-
sented two different pheromone models, the first of
them not taking into account any dependencies be-
tween decision variables, the second one taking into
account first order dependencies between decision vari-
ables. It turned out, that for the k-cardinality tree
problem it doesn’t seem beneficial to take into account
dependencies between decision variables, because the
increased complexity slows the algorithm considerably
down. In the future we plan to improve the efficiency
of our algorithm in order to compare it to state-of-the-
art metaheuristics for the k-cardinality tree problem.
We also plan to investigate the usefulness of diversifi-
cation schemes for our algorithm.
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Abstract

Giving positive feedback to good solutions
is a common base technique in model-based
search algorithms, such as Ant Colony Op-
timization, Estimation of Distribution Algo-
rithms, or Neural Networks. In particular,
the reinforcement of components of good so-
lutions by positive feedback is known as a
successful technique in tackling hard combi-
natorial optimization problems. We show by
a simple model-based search algorithm for
the node-weighted k-cardinality tree prob-
lem that this strategy doesn’t guarantee
steadily increasing performance of the algo-
rithm in general. It is rather possible that for
some “problem”-”probabilistic model” com-
binations the average performance of the sys-
tem is decreasing and even the average proba-
bility of sampling good solutions is decreasing
over time. The result is proven analytically
and the consequences are studied in some em-
pirical case studies.

1 Introduction

Model-based search (MBS) [10] algorithms are increas-
ingly popular methods for solving combinatorial opti-
mization problems. In MBS algorithms, such as Ant
Colony Optimization (ACO) [2] or Estimation of Dis-
tribution Algorithms (EDAs)! [7, 8], candidate solu-
tions are generated using a parametrized probabilistic
model that is updated using the previously seen solu-
tions in such a way that the search will concentrate in
the regions of the search space containing high qual-
ity solutions. In particular, reinforcment of solution
components depending on the solution quality is an

* Corresponding author
!EDAs are covering several algorithms emerging from
the field of Evolutionary Computation.

Mark Zlochin
Department of Computer Science
Technion — Israel Institute of Technology,
Haifa, Israel

e-mail: zmark@cs.technion.ac.il
tel: (972) 4 829 4948

important factor in the development of heuristics to
tackle hard combinatorial optimization problems. It
is assumed that good solutions don’t occur sporadi-
cally, but consist of good solution components. To
learn which components contribute to good solutions
can help to assemble them to better solutions. In gen-
eral, a model-based search approach attempts to solve
an optimization problem by repeating the following
two steps:

e Candidate solutions are constructed using some
parametrized probabilistic model, that is, a
parametrized probability distribution over the so-
lution space.

e The candidate solutions are used to modify the
model in a way that is deemed to bias future sam-
pling toward low cost solutions.

Often it is implicitly assumed that the average per-
formace of model-based algorithms is increasing over
time. However, during empirical investigations of an
Ant Colony Optimization Algorithm for the Group
Shop scheduling problem? we observed that for some
of the probabiltistic models chosen the performance
of the system was decreasing over time. This trig-
gered us to explore “problem”-"probabilistic model”
combinations where the expected performance of a
model-based search algorithm decreases over time. As
a test case we chose the node-weighted k-cardinality
tree problem, an NP-hard combinatorial optimization
problem.

The paper is organized as follows. In Sec. 2 we briefly
present the node-weighted k-cardinality tree problem.
In Sec. 3 we outline a simple model-based search al-
gorithm for the k-cardinality tree problem. Section 4
contains the analytical analysis of the system for a

2Group Shop scheduling is a general formulation of
scheduling problems covering Job Shop scheduling and
Open Shop scheduling
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small problem instance. Section 5 deals with empiri-
cal results and Sec. 6 finally offers conclusions and an
outlook to the future.

2 The node-weighted k-cardinality
tree problem

The k-cardinality tree problem is a combinatorial op-
timization problem that generalizes the well-known
minimum weight spanning tree problem. It consists
in finding in a node- or edge-weighted graph a subtree
with exactly k edges, such that the sum of the weights
is minimal. Due to various applications, such as oil-
field leasing [6], facility layout [4], quorum-cast routing
[1] and telecommunications [5], it has gained consid-
erable interest in recent years. In this paper we deal
with the k-cardinality tree problem in node-weighted
graphs. The problem can be formally defined as fol-
lows. Let G = (V, E) be a graph (where |V| = n and
|E| = m) with a weight function w : V' — IN on the
nodes. We denote the set of all k-cardinality trees in
G by Ti. Then the node-weighted problem (G, w, k) is
to find a k-cardinality tree T} € T; that minimizes

w(Tk) = Xvev(zy) wv)- (1)

The general problem is NP-hard, and in [9] NP-
completeness results have been obtained for grid and
split graphs.

3 A simple MBS algorithm for the
k-cardinality tree problem

In this section we briefly outline a simple model-based
search algorithm based on positive feedback for the
k-cardinality tree problem. It is constructed in a
straight-forward manner and it is representative for
the class of model-based algorithms. The pseudo-code
for this algorithm is shown in Alg. 1. In Alg. 1, T}

Algorithm 1 A model-based algorithm for the node-
weighted k-cardinality tree problem

input: A problem instance (G,w, k)
InitializeModelParameters(7)
while termination conditions not met do
fori=1,....,ns do
T} « ConstructSolution(7)
end for
ApplyModelParameterUpdate(r,T},..., T}'*)
end while
output: A k-cardinality tree TP¢st

denotes the ith solution constructed in the current it-
eration, ny > 1 is the total number of solutions con-
structed in every iteration, and 7 = {7,,,..., 7y, } IS

a set of model parameters. After initialization of the
model parameters, in every step of the algorithm ng
solutions are constructed using the current values of
the model parameters. These solutions are then used
to update the model parameters which are defined as
follows: To every node v € V(G) we have associated a
model parameter 7,. The components of Alg. 1 are to
be explained in more detail in the following.

InitializeModelParameters(7): At the beginning of the
algorithm, the model parameters 7, are all initialized
to the same small numerical value ¢ > 0.

ConstructSolution(7): In order to construct solutions
to the problem we have to formalize how to use the
model parameter values to construct solutions®. For
constructing a solution, k£ + 1 construction steps are
done as shown in Alg. 2. In every step of the construc-

Algorithm 2 Solution construction

V(To) + 0 and E(Tp) < 0

Choose v* € Jy with probability p(v* | To){See eqn.

2)}

V(To) — V(To) Uov*

for t=1to k do
Jr {’U € V(G) \ V(Tt_l)
E(G) with v € V(thl)}
Choose v* € J; with probability p(v* | T¢)
Find an edge e connecting v* with T}
E(T}) « E(Ti-1) U {e}
V(Ty) « V(Ti—1) U {v*}

end for

| Jefvr,v] €

tion phase, we can only add a node v to the partial
k-cardinality tree Ty (¢t € {1,...,k — 1}) if there is an
edge e € E(G) that connects one of the nodes in T}
with v. The probabilities p(v; | T;) for all v; € J; are
then defined in the following way.
—— if v €,
p(vi | T2) :{ OZ " T (2)

otherwise

where .J; is the set of nodes allowed to be added next
to the partial k-cardinality tree T} (see Alg. 2).

ApplyModelParameterUpdate(r,T},. .. T}**): Once
all solutions of an iteration are constructed, a rule up-
dating the model parameters is applied. For the set

of model parameters {7,,,...,7y, } this update rule is
defined as:

To, < (L= p) T, + n% ) Z?;l ATz{,— (3)

3We have to define a method of using the model to
sample the search space.
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where

. L if v; € T
At = {W(Té) e (4)

0 otherwise .

In (4), TV is the jth solution produced in the cur-
rent iteration, w(7T7) is the quality of solution 77 and
0 < p < 1lis a parameter supporting the intensification
of the search (a similar parameter in ACO algorithms
is called evaporation rate). This update rule is simi-
lar to update rules used in Ant Colony Optimization
and some other population-based methods from the
field of Evolutionary Computation. It should lead to
an increase of model parameter values associated with
solution components which have been found in better
quality solutions compared with other solution com-
ponents, hence increasing the expected performanc of
the algorithm over time. In the following section we
will prove that this expectation is not always met in
practice.

4 A counterexample: Decreasing
average performance of a MBS
algorithm over time

In this section we choose a small problem instance
of the k-cardinality tree problem and we show that
the expected performance of Alg. 1 is decreasing.
The problem instance under consideration is shown
in Fig. 1. It shows an undirected graph G = (V, E)
formally defined as follows.

V(G) {'Ul; V2, Vs, ’U4} (5)
E(G) = {€v)v2)Cu5,055Cv5,04} (6)
w(v;)) = w; >0, fori=1,...,4 (7)

For the weights we choose
Wa, w3 > Wi, Wy, (8)
and for the sake of simplicity we choose
wi = wgand wey = w3 . (9)

In graph G we want to solve the 1-cardinality tree
problem with the model-based search algorithm out-
lined in the last section. In G we can find 3 different
1-cardinality trees:

T with V(
= w(T?)

T with V(T?)

= w(T®) =wy +ws
(T°)
(T°)

N

ay =

—~

U17U2}:E(Ta) = {evlvv2}

T¢ with V
=  w(T*

Because of (8) and (9) it holds that
w(T?) = w(T°) < w(T?). (10)

Therefore T* and T° are both optimal solutions of
this problem instance and T? is the worst solution.
With model parameter values 7, (t), ..., 7y, (t) at dis-
crete time steps ¢ = 0,1, ..., the probabilities p,(t),
py(t) and p.(t) to construct solutions 7%, T® and T
are the following:

vy (1)

o (T _ )
g ( ) Zj:1 v, (1)
TV N0
ST 0 @@ (11)
— Tus () ) Tog (1)
) = ?:12"%(0 T”l(t)i_TU3(t)
Tug () - Tog (1)
! Z?: To; (1) vz (t)irv4 ) (12)
Tuy (1)
) = —ral®
Pe(t) 23:1 s
Ta(t) | Tus(®)
! Zj:j Ty () Tv4 (t)j_Tuz ) (13)

We use the notation p,, for the probability of node v;
to be found in a solution constructed. These probabil-
ities are obviously the following ones.

P (2) Pa(t) (14)
Pos(t) = pa(t) +pult (15)
Pos(t) = po(t) +pe(t (16)
Pus(t) = pe(t) (17)

Let us now examine the evolution of the model param-
eter values over time.

Evolution of 7,, over time: After every construc-
tion step there are two possibilities. Either v; is a
part of the constructed solution, or it is not. Then the
expected value of 7,, at time ¢ + 1 is the following.

Blr(t+1) = ((1=p) () + 5t ) -pu ()

okt ok

Figure 1: The problem instance consists of four nodes
v1, U2, v and vy, connected by three edges. The node
weights of the nodes v; are indicated by w;.
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+ (1=p) 70, () (1= po, (1))

= T, (O)pv, (t) — pTo, (D)o, (2)

+ mpm (t) + 7o, (1) — 7o, (D)Poy ()
= pTu (t) + pTo, (D)po, (1)

= Ty (t) + (m pvl() PTv, (t))

As py, (t) = pa(t) we get

E(ry, (t+1) = 70, () + (5

w1 +wsz

Evolution of 7,, over time: After every construc-
tion step there is — as above for 7,, — the possibility
that v is a part of the solution constructed. But there
are also two different solutions vs can be part of. In
the following p,4+p will stand for p, + pp, wi42 will
stand for w; + ws, and ways will stand for wy + ws.

E(r,(t+1) =

a t
((1 — p) * Tyo (t) + pp+5,()t) w11+2 + pf_l:_E,()t) w:+3) * Pus (t)
(L =p) - T, (t) - (1 = o, (1))

As py, = Patb We get

E(ry(t+1)) = (1= p) 7,(t)  pays(t) + 222

+ pu(t) + (]_ — p) Tus (t) (]. _pa+b( ))

W243

= Tyt )Pa+b( ) PTvz (t)Pa+b(t)
+ fual—(fi w2+3 + TUZ( )
= Tuo ()Patb(t) — pTo, (1)

+ T (O)pa+b(t) -

Therefore we get

E(Tv2(t+1)) = Tv2(t) +( a(t) + p(t)

balt) 4 220 (1))
(19)
For the evolution of 7,,and 7,, the computations are

the same as for 7,, and 7, respectively. Consequently

E(ro,(t+1)) = 7, (£) + (3;(3 + 20 ,m,s(t))
(20)
and
B(ruy(t+1) = 7 (0 + (557 - pel) = prus (1))

(21)
It is common practice in Genetic Algorithm research
to analyse the bahaviour of the algorithm with infinite
population size. Therefore, in the following we con-
sider the limit case of ny; — 0o. In this case the law of
large number says that the actual value of 7,,(t) con-
verges in probability to the expected value. Therefore

we use Ty, (t) instead of E(ry,(t)) in the following.
The algorithm at time ¢ = 0 starts with 7,,(0) =
Tuy (0) = 74, (0) = 7,,(0) = ¢ > 0. With (9), (11)
and (13) it follows that p,(0) = p.(0). With (18) and
(21) it follows that 7, (1) = 7, (1) and with (19) and
(20) it follows that 7,, (1) = 7, (1). In turn this implies
with (9) that p,(1) = p.(1). By induction it follows
that for t > 0

Ty () = Tou(t)  and 7y, (t) = 7y, (1) (22)

Pa (t) = pc(t) - (23)

This means that the evolution of 7, (t) is equal to the
evolution of 7,,(t), the evolution of 7,,(t) is equal to
the evolution of 7,,(t) and the probability to produce
tree 1% is equal to the probability to produce tree 7°°.
This allows us to simplify equations (11), (12) and
(13) expressing everything in terms of 7, (t) and 7, (¢).
Substituting 7, (t) by 7y, (t) and 7, (t) by 7y, (¢) in
equations (11), (12) and (13) results in

_ _ Tuq (t) Tus (t)
Pa(t) = pe(t) = e, D) Frog (D) (1 + Tul(t)sz(t))
(24)
Tuy (E Tu, (E
w(t) = witenm T (25)

Tuy (£)+705(2)

Theorem 1 In the settings described above the fol-
lowing holds. The probability py(t) to produce T® (the
worst 1-cardinality tree to be found in graph G as de-
fined in equations (5)—(9)) is increasing from the first
step of Alg. 1 onward as long as

po(t) 1oy > g Pa(t) (Tuy — Tuy) - (26)

w2+3 w1+2

Proof: In the following we will write 7,44, (t) for
Toy (t) + 7o, (t). Then

po(t +1) > py(t)
&
(et ) )
Toytvg (0 (2L 4+ 2 (7, 40y (1))
> -
( Tus (1) )2
Tvy+ve (t)
& (taking the square root)
(roa () + (22 + 29— pr(8))) - (7uy 0 (1)

2

Wi+2 Ww2+3
>
Tus ()« (Forea(®) + (2222 + 29 — (1,0, (1)) )
=
Tos (70, (8) + (10 (8)* + 227, (1) + 22U ()
+ 207 () + 2, (1) = pros (87, () — p (70, (1))
>
Tua (070, (1) + (72 (0)? + 222l (1) 4 22007 ()
=T (7w () = p (s (1))
-~
w2+3pb(t) “Tor > s “Pa(t) (Toy — Tvy) -
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As in the first iteration of Alg. 1 all model parame-
ter values are equal and greater than 0, it holds that

po(1) > py(0). qed

Remark 1 With (22) it is now also clear that in the
case py(t + 1) > py(t) it holds that

—~

pa(t+1) < pa

pe(t+1) < p
Pa(t +1) = pa(t)
pe(t+1) —pc(t)

Q
~

= N[~

If we now measure the performance P(t) of Alg. 1 as
the expected average quality of a solution produced at
any time ¢t > 0 as

P(t) = wit2 pa(t) +wats - po(t) + wata - pe(t), (31)

then it is clear that for py(t + 1) > ps(t) the expected
performance of the system is decreasing from time ¢
to time t + 1. Using Theorem 1 it follows that the ex-
pected performance of Alg. 1 is decreasing from ¢t = 0
to an unknown time ¢4, > 0 which may be finite or in-
finite. To summarize, we have shown that it is possible
to find circumstances where the expected performance
— as formalized in (31) — of Alg. 1 is decreasing. In the
next section we will confirm the outcomes outlined in
this section empirically.

5 Analytical curves and empirical
confirmation

In this section we present analytical and empirical re-
sults for Alg. 1 on two different weight settings for the
k-cardinality tree problem instance defined in equa-
tions (5)—(9). The first setting of the weights is

W, = Wg = 1.0 and Wy = W3 = 2.0 (32)

further on referred to as problem instance 1. The sec-
ond setting is

wy = wyg = 1.0 and Wy = W3 = 100.0 (33)

further on referred to as problem instance 2. We
used the formulas derived in the last section* to pro-
duce the analytical curves showing (i) the performance
of the system as defined in (31), and (ii) the evolu-
tion of the four model parameter values over time.
We also run Alg. 1 with 10000 solution constructions
per iteration for four different values for parameter
p € {0.5,0.1,0.05,0.01} on both problem instances to
see the empirical behavior of the system. The results
are shown in Fig. 3-5. In Fig. 3 and Fig. 4, we observe

*Formulas (18)-(21) for the evolution of model param-

eter values, and formulas (11)-(13) for the evolution of the
probabilities to produce the different solutions.

perturbation of parameter rho, rho = 0.05

3.6

35

3.4

33

average solution quality

32

no perturbation
0.1% perturbation -------

1% perturbation --------
10% perturbation

3

0 200 400 600 800 1000 1200 1400 1600

iteration

Figure 2: This graph shows four different empirically
obtained performance curves for problem instance 1,
p = 0.05 (averaged over 100 experiments). The curve
labeled “no perturbation” is the curve for the system
starting with model parameter values 7,, = 7,, =
Tys = Tw, = ¢, where c is the starting value for the
model parameters. The other curves show the perfor-
mance of the system when there is a random pertur-
bation on the starting model parameters. 0.1% per-
turbation for example means that for every model pa-
rameter value we were tossing a coin: this means that
to equal probability we either added = - ¢ to 7,, or

1000

we subtracted 155 - ¢ from 7,,. We did that for each

of the four model parameter values independently.

that the performance of the system in the analytical
and also in the empirical case decreases quite drasti-
cally in the first couple of hundred iterations. Then,
the analytic curves seem to converge (with still de-
creasing performance) to a fixed point of the system
(not being one of the solutions). This fixed point is im-
plicitly defined by equation (26)°>. On the other hand,
the empirically obtained curves show even a slightly
higher decrease in performance at the beginning, but
then near the equilibrium the sensitivity to sampling
errors seems to increase rapidly. As a result, the sys-
tem converges to one of the two optimal solutions (7,
or T). For problem instance 2, the number of itera-
tions needed for both, the analytical and the empirical
curves, to reach there limits is lower than for prob-
lem instance 1. Qualitatively the results are the same
for the two different weight settings. This is in accor-
dance with the results of the last section, which are not
dependent on the relative difference between weights
w; = wy and we = ws.

5This claim is supported by the fact that if we take the
analytically obtained convergence values (exact up to four
decimal digits) for the four model parameter values and
substitute them in equations (24), (25) and (26) we get
equality in (26) for up to decimal digits.
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We also compared the evolution of the four model pa-
rameter values over time, analytically as well as empir-
ically. The graphs are shown in Fig. 5. In the analytic
case, the evolution of model parameter values 7,, and
Tus (r€Sp. Ty, and 7y,) is the same whereas in the em-
pirical case the evolution is the same at the beginning,
until the system nearly reaches the equilibrium and
then, due to the sampling error, begins to drift toward
one of the two optimal solutions.

The last set of experiments we performed was to in-
vestigate the influence of perturbations of the starting
model parameter values. To perturb the model param-
eter values (initially set to a constant c), a value L - ¢
was either added or substracted to equal probability.
For z we considered values 10, 100 and 1000. The re-
sults are shown in Fig. 2. With x = 1000 (just a slight
perturbation) the convergence of the system seems to
be slightly slowed down, but at the end it is reaching
the state of convergence slightly faster than the system
without perturbation. With the choice of z = 100, we
notice a bigger advantage in convergence speed in all
phases. The choice of = 10 (which corresponds to a
strong perturbation) shows a much higher convergence
speed until about 1000 iterations at which point the
speed of convergence gets really slow and the system
does not even converge before the 1500 iteration limit.
These results suggest that a slight perturbation of the
initial model parameter values is useful (but it must
neither be too low nor too high).

6 Conclusions and outlook to the
future

In this paper we showed that — unlike what is usually
expected — the expected performance of model-based
search algorithms using positive feedback can decrease
over time in certain settings. We want to make clear at
this point, that the results presented in this paper have
not uncovered a general weak point of learning systems
based on positive feedback as such. We believe that
it is rather in the nature of algorithms such as Ant
System [3] and related algorithms such as Population
Based Incremental Learning (PBIL) and Estimation of
Distribution algorithms (EDAs) that such phenomena
can occur when applied to a certain kind of problem or
problem instances with a certain kind of structure. In
the case of the problem and problem instance chosen
in this paper we have a structure of two equally good
solutions competing in the system and a bad solution
taking profit from that. We also point out that the
update rule is a crucial component of a model-based
search algorithm. If we chose a different update rule in
the example presented — for instance a rule only using
the best solution found since the start of the algorithm
for updating the model parameter values — the algo-

rithm wouldn’t show a decreasing performance. In the
future we intend to investigate into the interactions
between parameter model and model parameter up-
date rule in order to improve the understanding about
phenomena related to the one presented.
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Figure 3: Performance curves for problem instance 1. The graph in the upper left corner shows the analytic
curves for four different values for p € {0.5,0.1,0.05,0.01}. In contrast to that the graph in the right upper corner
shows the empirically obtained curves for 10000 solution constructions per iteration (the curves are averaged
over 100 experiments). The other four graphs show the comparison of the analytic and the empirical curve for
every one of the four settings for p.
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Figure 4: Performance curves for problem instance 2 (higher weights on vs and v3). The graph on the left shows
the analytic curves for four different values for p € {0.5,0.1,0.05,0.01}. In contrast, the graph on the right shows
the empirically obtained curves for 10000 solution constructions per iteration (the curves are averaged over 100
experiments).
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Figure 5: The three graphs show the evolution of the four model parameter values exemplary for problem instance
1, p = 0.05. The top graph shows the analytic curves (there are just two curves visible, because the curves for
To, and 7, (74, and 7,, respectively) are exactly the same). In contrast, the two lower graphs show the evolution
of model parameter values empirically obtained. In the graph on the left the system is converging to solution
T,, and in the graph on the right to the solution 7.
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Abstract

This paper gives an algorithm for the graph
bisection problem using the Ant System (AS)
technique. The ant algorithm given in this
paper differs from the usual ant algorithms
in that the individual ant in the system does
not construct a solution to the problem nor
a component, of the solution directly. Rather
the collective behavior of the two species of
ants in the system induces a solution to the
problem. The algorithm also incorporates lo-
cal optimization algorithms to speed up the
convergence rate and to improve the quality
of the solutions. The results achieved by this
algorithm on several classes of graphs equal
the best known results for the majority of
graphs tested, and are very close to the best
known results for the remainder.

1 Introduction

Let G = (V,E) be a graph on n vertices, where n
is even. A bisection of GG is a partition of the vertex
set V' into two disjoint sets A, B of equal size, i.e.,
AUB =V,ANB =), and |4| = | B|. Such a bisection
is denoted by (A, B). The cut size of a bisection (A, B)
is the number of edges that have one endpoint in A and
the other endpoint in B. The graph bisection problem
is the problem of finding a bisection of minimum cut
size for a given graph. The graph bisection problem is
well-known to be N'P-hard [13]. It arises in a wide va-
riety of problems including VLSI placement and rout-
ing, sparse matrix computation, and processor alloca-
tion [6][7][16]. Since the problem is N'P-hard, efforts
have been concentrated on designing efficient approx-
imation algorithms and heuristics for solving it. In
this paper we use ideas from Ant System (AS) [11] to
design an algorithm for the graph bisection problem.

Lisa C. Strite
Dept. of Computer Science
Penn State Harrisburg
Middletown, PA 17057

Our algorithm incorporates several AS features as well
as local optimization techniques and graph preprocess-
ing. The algorithm was tested on five classes of graphs
ranging in size from 500 to 5,252 vertices with average
degrees from 2 to 36. The results were compared with
the best known results for each graph as well as re-
sults from several other heuristic algorithms. For the
majority of graphs tested, the algorithm produced the
best known results. For the remaining graphs the re-
sults produced by the algorithm are very close to the
best known solutions. A major advantage of this al-
gorithm compared to other existing algorithms for the
graph bisection problem is that our algorithm is very
amenable to parallelization.

The rest of the paper is organized as follows. In Sec-
tion 2 we provide some background information on the
graph bisection problem and AS. We describe our algo-
rithm in Section 3. The performance of the algorithms
on the test graphs is described in Section 4 and con-
clusions are given Section 5.

2 Preliminaries

2.1 The Graph Bisection Problem

As mentioned above the graph bisection problem is
NP-hard and thus we do not expect to have a polyno-
mial time algorithm for solving it. For special types of
graphs there are polynomial time algorithms for solv-
ing it exactly, e.g., k-outerplanar graphs, for fixed k,
or planar graphs whose optimal bisection is of size
O(logn) [8]. However, the complexity of the problem
on planar graphs remains an open question.

One approach to NP-hard problems is to find efficient
approximation algorithms. Currently, the best known
polynomial time approximation algorithm for bisecting
graphs can find a solution that is within O(y/nlogn) of
the optimal [12]. It has been shown that it is A/P-hard
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to find a bisection that is within an additive factor of
O(n'/?7¢) of the optimal, for any ¢ > 0 [5].

Since the best approximation algorithm still has a
rather large approximation ratio and is rather compli-
cated to implement, heuristics are often used for the
graph bisection problem in practice. Heuristics are
algorithms that do not have performance guarantee
as approximation algorithms do. However, they usu-
ally are fast and produce solutions that are very good.
Generally, one can classify the heuristic algorithms for
bisecting graphs into two main groups: local meth-
ods and global methods. Local methods include the
greedy algorithm, Kernighan-Lin, simulated annealing
and multi-level algorithms [14][15][16]. Global meth-
ods include spectral algorithms, flow based algorithms
and genetic algorithms [4][7][19]. The Kernighan-Lin
algorithm is one of the first efficient algorithms for
the graph bisection problem. We briefly describe the
Kernighan-Lin algorithm here since we use it in our
algorithm later on.

2.2 The Kernighan-Lin Algorithm

Kernighan-Lin is a local optimization algorithm for the
graph bisection problem [16]. The algorithm starts
with a bisection (A, B), either created randomly or
as the result of some other algorithm. The algorithm
consists of a number of passes. During one pass of the
algorithm it interchanges equal sized subsets of A and
B. The subsets to be interchanged are selected by first
ordering the vertices of A and B, say a,...,a,/; and
bi,...,by/2. The algorithm then selects k such that
swapping aq, ..., ax with by ..., by will give the great-
est reduction in the size of the current bisection over
all choices of k. This constitutes one pass of the al-
gorithm. The bisection produced by this pass is then
used as input to the next pass. The algorithm may
run for a fixed number of passes or until no more im-
provement can be made from the current bisection.

2.3 Ant System

Ant System (AS) is a heuristic technique that seeks to
imitate the behavior of a colony of ants and their abil-
ity to collectively solve a problem. For example, it has
been observed that a colony of ants is able to find the
shortest path to a food source by marking their trails
with a chemical substance called pheromone[3][11].

The Traveling Salesman problem was the first problem
to which the Ant System (AS) technique was applied
[2] [11]. Other problems that have been the focus of AS
as well as Ant Colony Optimization (ACO) [10] work
include the quadratic assignment, network routing, ve-

hicle routing, frequency assignment, graph coloring,
shortest common supersequence, machine scheduling,
multiple knapsack and sequential ordering problems
[18] [3].

In addition to the idea of finding shortest paths, the
idea of territorial colonization and swarm intelligence
can also be utilized in ant algorithms. Kuntz and Sny-
ers applied these concepts to a graph clustering prob-
lem [17]. The organisms are called animats, reflect-
ing the fact that the system draws ideas from several
sources, not just ant colonies.

We combine these two ideas of animats following paths
and forming colonies, together with the use of graph
preprocessing and local optimization to develop an
Ant System algorithm for the graph bisection prob-
lem, which we call ASGB. Our algorithm is described
in the next section.

3 Ant System Algorithm for Graph
Bisection

3.1 Main Ideas

The basic foundation of the algorithm is to consider
each vertex in the graph as a location that can hold
any number of animats. The animats can move around
the graph by moving across edges to reach a new ver-
tex. Each animat belongs to one of two species (called
species A and B). However, animats of both species
follow the same rules. Since movement of animats from
vertices to vertices is an important part of the algo-
rithm, the first step in the algorithm is to add edges,
called free edges, to the input graph to make it con-
nected if it is not. This is accomplished in two steps
as follows.

First, we add the necessary free edges to connect all
disconnected subgraphs. This is done by randomly
selected a starting vertex and performing a depth first
search until no new vertices can be reached. If any
vertices were not reached, an edge is randomly placed
between a vertex that was found in the search and
a vertex that was not found. The depth first search
then continues again and the process is repeated until
all vertices have been joined to the graph.

Next, we add free edges between a number of vertices
to improve the animats’ ability to move and explore.
The number of free edges added in this step is pro-
portional to the number of vertices in the graph, but
inversely proportional to the average degree. Thus a
graph with a large number of vertices and a very low
average degree will have the most free edges added
while a graph with few vertices and a high average de-
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gree will have the least free edges added. To select the
locations of the free edges, a pool of possible pairs of
vertices are randomly selected. The number of pairs
in the pool is 7 times the number of pairs that will
actually be chosen. The distance between each pair is
determined, in terms of the minimum number of steps
needed to move from one vertex to the other, up to a
certain maximum distance. Then pairs of vertices are
selected randomly from the pool but in proportion to
the distance between them. In other words, a pair of
vertices that is furthest apart has the greatest chance
of being selected.

Once the free edges are added, the animats consider
them in the same manner as regular edges in selecting
moves. However, when the cut size of a partition is
calculated, the free edges are ignored.

The algorithm now starts by distributing o animats
on the graph. (Note that the values of all parameters
used in the description of the algorithm are given in
Table 1.) Their species and location are chosen ran-
domly. At any point throughout the algorithm, the
configuration of animats on the graph constitutes a
partition of the graph in the following way. Each ver-
tex is considered to be colonized by one species. At
a given time, it is said to be colonized by whichever
species that has the greater number of animats on it.
Ties are broken in a random order by assigning the
vertex to the species that results in a lower cut size.
The set of all vertices colonized by each species, called
colony, makes up one half of the partition. This par-
tition is not necessarily a bisection, since one colony
may contain more vertices than the other. Thus, other
techniques are used at certain points in the algorithm
to ensure that the final solution is a bisection.

In addition, each vertex can hold pheromone. The
two species produce separate types of pheromone, so
each vertex has an amount of A pheromone and B
pheromone.

The idea of the algorithm is for each species of animats
to form a colony consisting of a set of vertices that are
highly connected to each other but highly disconnected
from the other colony. The result should be two sets of
vertices that are highly connected amongst themselves,
but have few edges going between the two sets.

The ASGB algorithm is divided up into o sets each
comprised of « iterations. In each iteration a percent-
age of animats are activated. When an animat is acti-
vated, it adds an amount of pheromone to the vertex
it is currently at based on conditions at the vertex. It
then may die with a certain probability or it may re-
produce with a certain probability and then moves to

a new vertex. In each iteration, these activations are
performed in parallel. After each iteration, the graph
is updated with the new information.

After each set, the configuration of the graph is forced
into a bisection using a greedy algorithm and a local
optimization algorithm is run to help speed up the con-
vergence rate. During each set, the parameters, which
include probabilities for activation, death, reproduc-
tion and birth are varied. The parameters are varied
in such a way that at the beginning of the set, the
colonies change a great deal and by the end of the set
the colonies have converged to a stable configuration.
The next set begins at the state where the previous
set ended. However, if the animats follow their usual
rules immediately, they will not be able to move away
from the local optimum that has been reached. So,
for all but the initial set, a jolt is performed for a cer-
tain number of the first iterations to help move the
configuration, or distribution of animats on the ver-
tices, away from the local optimal solution to which
it had converged. The jolt allows animats to select
moves randomly instead of following the normal rules
for movement. The length of the jolt is changed during
the algorithm. The first jolt lasts for v iterations and
for subsequent jolts the length decreases linearly until
the last set where there is no jolt. The idea is that
with each successive set, the bisection should come
closer to the optimal bisection, and thus shorter and
shorter jolts are needed.

After o sets have been completed, the solution is the
best bisection that has been achieved. This is usually
the bisection found by the last set; however, occasion-
ally the best bisection is found earlier.

In the following subsections we will describe in detail
what occurs in one iteration, what occurs when an
animat is activated and what occurs between sets. The
full ASGB algorithm is given in Figure 1.

3.2 Iteration

An iteration of the algorithm consists of a percentage
of the animats being activated and then performing
the necessary operations in parallel. The probability
of an animat being activated changes during the set.
At the beginning of the set, more animats are acti-
vated during each iteration. By the end of the set,
only a small percentage of the animats are activated
in each iteration. The actual probability of activation
is a sigmoid-like function. The function starts at a
maximum of 7, max and ends at 7 min-

After the activations of animats have been completed,
€ percent of the pheromone on each vertex is evap-
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Figure 1: An Ant System algorithm for graph bisec-
tion

Preprocess the graph to make it connected
Randomly add « animats to graph
For set=1 to o
For time=1 to vy
For each animat do (in parallel):
Activate animat with probability a(time)
If activated
Add p(animat,time) pheromone to
the animat’s location
Die with probability w4
If not dead
If animat meets reproduction criteria
Then reproduce with probability m,
If {tme is in a jolt period
Then select move randomly
Else select move based on pheromone
and connectivity
Endif
Endif
Endfor antmat
Evaporate € percent of the pheromone from
each vertex
Endfor time
Convert configuration to a bisection with
a greedy algorithm
Run Kernighan-Lin local optimization
Reduce total number of animats
Equalize number of animats in each species
Endfor set
Return best bisection found

orated. This prevents pheromone from building up
too much and highly populated vertices from being
overemphasized, which in turn prevents the algorithm
from converging prematurely.

3.3 Activation of an Animat

When an animat is activated, it deposits pheromone
on its current vertex, dies with a certain probability or
reproduces with a certain probability, and then moves
to another vertex. These operations are performed by
the animat by using local information to make deci-
sions.

3.3.1 Pheromone

The purpose of pheromone is to allow the algorithm
to retain a “memory” of good configurations that have
been found in the past. The formula for the amount
of pheromone to be deposited is:

Geol i

pla,i) =
( ’ ) Qtotal 7Y

Table 1: Parameter values

Param. Value | Description

o 1000 Number of iterations per set
o 10 Number of sets

v 50 Maximum jolt length

« 10000 | Initial number of animats

Ta max 0.8 Maximum activation probability

Ta min 0.2 Minimum activation probability

T4 0.035 Death probability

Binit 4 Expected number of animats born
in first iteration

Bfinal 2 Expected number of animats born

in final iteration

Brange | 50% Percentage range from average

number of animats born

T 0.01 Reproduction probability

n 10 Max number of offspring per ani-
mat

B 5 Number of moves needed before an-
imat can reproduce

Vstay 20% Percentage of offspring that stay on
old location when not colonized by
animat’s species

Wpmin 0 Minimum pheromone weight

Wpmaw 1 Maximum pheromone weight

Wemin 250 Minimum connection weight

Wemax 500 Maximum connection weight

Tmin 0.1 Minimum probability for moving to
a vertex

p 0.9 Reduction factor for returning to
previous location

Vswap 75% Percentage of vertices needed for
swap

Vmaj 90% Percentage of animats needed for
majority

€ 0.2 Evaporation rate

A 1000 Pheromone limit

T 50 Free edge factor

where a is the animat, ¢ is the iteration number, a.q; is
the number of vertices adjacent to the animat’s current
location which are colonized by the animat’s species,
and agotq; 18 the total number of vertices adjacent to
the animat’s current location. The idea here is for
an animat to deposit more pheromone at a vertex if
that vertex is highly connected to vertices colonized
by its own species. Also, less pheromone is used in
early iterations to allow for more exploration and more
pheromone is used later on to emphasize exploitation.
Even though the number of neighbors of a seems to
relate more directly to the cut size, the amount of
pheromone deposited is made proportional to the frac-
tion a.q; / Qtotal, 1O prevent the amount of pheromone
at any vertex from growing out of control, even with
evaporation.

There is also a limit to the amount of pheromone of
each species that can be stored on a vertex. The limit
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for a vertex is the product of the degree of that ver-
tex and the pheromone limit parameter (A). This al-
lows densely connected vertices to accumulate more
pheromone. The more highly connected a vertex is,
the more essential it is that it is colonized by the right
species. This is because a mistake on a highly con-
nected vertex will mean a much greater cut size.

3.3.2 Death

Next, the animat may be selected to die. The an-
imat die with probability mg, which is fixed through-
out the algorithm. However, the activation probability
changes throughout the set, so that early in the set,
more animats are activated, and therefore more ani-
mats die early in the set. The purpose of this is to
have shorter life spans in the beginning, which allows
more turnover and change in the configuration. Later
in the set, the animats live longer and thus there is
less change and the solution is able to converge.

3.3.3 Reproduction

If the animat is not selected for death, the algorithm
proceeds to the reproduction step. The animat is se-
lected for reproduction with fixed probability 7,.. How-
ever, the number of new animats that are produced
depends on time. In the first iteration of a set, the av-
erage number of animats born is 3;,;+ and it decreases
linearly over time to Bfinq; in the last iteration. The
changing birth rate serves to allow more change in ear-
lier iterations, in which animats live for shorter lengths
of time. In later iterations, fewer animats are born, but
they live longer. The actual number of animats born is
selected uniformly at random over a range centered on
the average birth rate for the iteration. The number
of animats born can be up to B,4nge more or less than
the specified average.

If the vertex on which the parent is located is colonized
by its own species, the offspring animats are all placed
on that vertex. However, if the vertex is colonized by
the opposite species, only ¥4y percent of the offspring
animats are placed there. The remaining new animats
will be placed on the vertex to which the parent animat
moves in the next step. The rationale is that if the
parent animat is already in its own colony but moves to
another vertex, it should leave its offspring behind to
help maintain the majority on that vertex. However,
if the parent’s species is not in majority, it should take
most of its children to the new vertex in which it is
trying to create a colony. The parent leaves some of
its offspring behind however, so that some of its species
remain at the vertex (in case that vertex really should

be part of their colony).

There are two other constraints on reproduction.
First, there is a limit to how many offspring an an-
imat can produce during its lifetime (n). This value
is fixed throughout the algorithm and is the same for
each animat. Once the limit is reached, the animat
can no longer reproduce. This serves to prevent one
species from taking over the graph and forcing the
other species into extinction.

To prevent a species from overemphasizing a vertex
through reproduction, the animats are not allowed to
reproduce until they have made a set minimum num-
ber of moves (). This ensures that the graph is ex-
plored and that new configurations are created by the
reproduction and movement rather than being inhib-
ited by these operations.

3.3.4 Movement

An animat can move to any vertex which is connected
to its current location by an edge. There are two fac-
tors used to select a move from the set of possible
moves. For each vertex to which the animat could
move, the connectivity to other vertices is examined.
The animat should move to a vertex that is highly con-
nected to other vertices colonized by its own species.
This factor gives an indication of the current configura-
tion of the graph. In addition, the animat should learn
from the past and take into account the pheromone
that other animats have deposited. Throughout the
course of a set, these two factors are weighted differ-
ently. Initially, the pheromone is weighted at wpmin
with the weight increasing linearly to wpmaz. Con-
versely, the connectivity is weighted at wemazr to be-
gin and decreases linearly to wemin. In this way, the
configuration of the colonies changes greatly in early
iterations and over time learning is incorporated into
the algorithm. These basic factors drive the animats
to create colonies of highly connected vertices which
are highly disconnected from the vertices colonized by
the opposing species.

These factors are the basis of move selection. The
probability of moving to an adjacent vertex is propor-
tional to the two combined factors. Specifically, the
factors are combined as follows to create a “probabil-
ity” of moving to a specific vertex v:

pr(v) = cve + PUp + Tmin

where v, is the number of vertices adjacent to v that
are colonized by the animat’s own species, ¢ is the
connectivity weight and wemin < ¢ < Wemae, Up 18
the amount of pheromone of the animat’s species on
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vertex v, p is the pheromone weight and wpmim < p <
Wpmaz, and Tpipn is a fixed amount added to prevent
any probabilities from being zero.

In addition, one more factor is considered in selecting a
move. To encourage the animats to explore more of the
graph in the early sets, the probability of selecting the
move which would result in the animat returning to its
previous location is reduced. The factor it is reduced
by starts at p and decreases linearly after each set until
it reaches zero in the final set. Then the probability
of moving to a connected vertex is the resulting value
divided by the sum of values over all possible moves.

3.4 Between Sets

After each set of iterations, several other operations
are performed. They help nudge the configuration into
a bisection, improve the bisection through local opti-
mization and then prepare the configuration for the
next set.

First, the algorithm looks for “mistakes” the animats
have made. Here the algorithm looks for vertices in
which a very high percentage (¥swap) of the adjacent
vertices are colonized by the opposite species. In these
cases, the vertex is swapped to the other colony. This
is achieved by changing the species of animats on the
vertex until the new species attains 1,,,,; percent of the
animats. In most cases, few such vertices are found.

Next the colonies are manipulated to produce a bi-
section. As was discussed earlier, any given configu-
ration of animats on the graph does not necessarily
induce a bisection. Therefore, if one species is colo-
nizing more vertices than the other, some vertices will
have to be swapped to the other species. The vertices
to be swapped are selected from the set of fringe ver-
tices, that is, vertices that are adjacent to a vertex of
the opposite colony. By only changing the colonizing
species on fringe vertices, the algorithm continues in
the direction the animats were heading. Vertices are
selected to be swapped by making the greedy choice
from amongst the fringe vertices.

Using the bisection produced by this greedy optimiza-
tion, a weak version of the Kernighan-Lin algorithm is
run. Since the quality of the result produced by the
Kernighan-Lin algorithm depends largely on the qual-
ity of the bisection used as input, it produces little if
any improvement in early sets. However, in later sets,
after the animats have begun to converge upon a good
solution, it usually improves the solution slightly.

Even though we now have a bisection, the number of
animats on the graph may differ from the initial num-

ber of animats of both species. To prevent the animat
population from growing unchecked the algorithm re-
moves animats at random until the population size
reaches its initial value. This may disrupt the colonies,
however, this is not a problem since each new set be-
gins with a jolt anyway.

Finally, to prevent one species from dominating the
graph, the number of animats in the two species is
equalized. This is done by adding animats to equalize
the number of animats in each species. Usually this
is a very small number and thus is not problematic
in consideration of the previous operation (reducing
the number of animats to the initial number). The
new animats are added only to vertices where their
own species is already in majority. Thus, this opera-
tion does not significantly alter the configuration of the
colonies; it merely gives added strength to the colonies
in which animats are added.

Following this operation, a new set is begun. Again,
the time is initialized to 0 and all probabilities relating
to time are reset. Thus, as the animats have converged
on a possible solution, starting a new set allows the an-
imats to move away from that solution in expectation
of finding a better solution in case this solution was a
local optimum. After o sets have been completed, the
solution is the bisection with minimum cut size.

4 Results

Using the parameter values listed in Table 1, the algo-
rithm was tested on a total of forty graphs of five dif-
ferent types to determine its behavior on a wide selec-
tion of inputs. These graphs are used as a benchmark
as they have been used to test a number of different
graph bisection algorithms [1][7]. Thus the results can
be compared with other algorithms. The graphs range
in size from 500 to 5,252 vertices and have average de-
grees from 2 to 36. The algorithm was implemented in
C++ and run on a Pentium IIT 800MHz with 256 MB
RAM. For each graph, the algorithm was run for 100
trials. These results are given in Table 2 which also
gives average running time in seconds for one trial of
each graph. In this section, the five graph types are
described and the results for different graph types are
discussed.

4.1 Graphs Types

In [14], Johnson et al. described two classes of graphs
that we use to test our algorithm. The first type, Gn.p,
is a random graph on n vertices where an edge is placed
between two vertices with probability p, independent
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of all other edges. The expected vertex degree is then
p(n — 1). These graphs are a good test case as they
have large optimal bisections. The second type, Un.d,
is a random geometric graph on n vertices with ex-
pected vertex degree d. It is generated by selecting n
points within the unit square which represent the ver-
tices. An edge is placed between two vertices if their
Euclidean distance does not exceed . It can be shown
that the expected vertex degree is d = nnt?. This
type of graph is highly clustered so it provides a very
different test case than the previous class of graphs.

Three other graph types were proposed by Bui et al. in
[4]. They defined the class of random regular graphs,
Bregn.b, on n vertices with degree 3 having an optimal
cut size b with probability 1 —o(1). These graphs pro-
vide an interesting test case because of they are sparse
and have a provable unique optimal bisection with high
probability. A grid graph, Gridn.b, on n vertices is a
grid with known optimal cut size b. A variation of this
type is W-Gridn.b in which the grid boundaries are
wrapped around. This class of graphs is highly struc-
tured with good connectivity. The last class of graphs
used is the caterpillar graph, Cat.n, on n vertices with
an optimal cut size of 1. It is constructed by starting
with a spine, which is a straight line in which all ver-
tices except the two ends have degree 2. Then to each
vertex on the spine, called a node, we add six legs each
of which consist of adding a vertex and connecting it
to the node on the spine. If the number of nodes on
the spine is even, the optimal cut size of 1 is found
by dividing the spine in half. In addition, RCat.n is a
caterpillar graph in which each node on the spine has
degree y/n. Caterpillar graphs seem simple but are
difficult for local bisection algorithms.

4.2 Comparison with other algorithms

The results of the ASGB algorithm are compared with
results from three other algorithms in Table 2. The
table compares the best result achieved by each algo-
rithm in a fixed number of trials. For the ASGB algo-
rithm, 100 trials were run for each graph with either
10 or 25 sets depending on the difficulty of the graph
for the algorithm. Results for other algorithms reflect
1,000 trials as this was the data that was available
from the sources. The last three columns of Table 2
contain the average and the standard deviation of the
solutions returned by ASGB in 100 trials, as well as
the average running time.

Battitti and Bertossi gave a Reactive and Ran-
domized Tabu Search (RRTS) in [1]. The Multi-
Start Kernighan-Lin (KL) consists of running the
Kernighan-Lin algorithm 65 times on a new random

bisection each time. The final result is the minimum
cut size of the 65 results. Since the results of KL are
greatly affected by the quality of input, it is neces-
sary to run it many more times to achieve good re-
sults since random bisections usually have poor cut
sizes. This allows us to compare KL with other al-
gorithms which normally would outperform it. The
results for Multi-Start KL, Simulated Annealing (SA)
and the best known results are taken from [7]. The
sources provide results for most graphs in the bench-
mark set, however, when the results for a graph are
not provided by the source, the corresponding entry is
left blank.

Overall, ASGB got the best known solution for 27
of the 40 graphs tested. When the best known so-
lution is not 1, the best solution returned by ASGB
is less than 5% away from the optimal, usually much
less. Generally, ASGB performed best when the in-
put graphs have some clustering structure and enough
connectivity that allow the animats to discover a good
bisection, e.g., Un.d, Bregn.b and grid graphs. The
caterpillar graphs have regular structure, but they do
not have enough connectivity to allow the animats to
explore the graph easily. The effect of random free
edges added in the preprocessing step is not enough to
overcome this deficiency. We did observe that if the
number of sets is increased to 30 ASGB returns the
optimal answer for almost all caterpillar graphs. It
seems that the larger the caterpillar graphs, the more
sets are required to get the optimal solution. For the
class Gn.p, ASGB either produced the best known so-
lution or solutions that are within at most 5% of the
best known.

Generally, we can see from Table 2 that ASGB is bet-
ter than Multi-Start KL and SA and is very compet-
itive with RRTS, noting that the data from these al-
gorithms are from 1,000 trials for each graph.

5 Conclusion

An algorithm, called ASGB, using Ant System tech-
niques with local optimization and graph preprocess-
ing was developed for solving the graph bisection prob-
lem. Animats from two different species are placed on
a graph and follow a set of local rules. The emergent
behavior of the population following these rules, cou-
pled with a local optimization, results in a bisection
of the graph with low cut size. The results achieved
were equal or very close to the best known results for
the set of benchmark graphs. Even though the results
achieved by ASGB were not always as good as the re-
sults of RRTS it seems that ASGB is more amenable
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Table 2: Comparison of ASGB results with other algorithms

Graph Best known || ASGB | RRTS | Multi-Start KL | SA ASGB Avg S.D. Time
G500.005 49 51 51 52 52 57.52 2.38 | 139.36
G500.017 218 218 218 220 219 225.29 3.51 | 412.72
G500.02 626 626 626 627 628 633.62 3.19 | 139.47
G500.04 1744 1744 1744 1744 1744 1752.98 3.56 | 197.14
(G1000.0025* 95 97 96 101 102 103.82 3.57 | 426.96
G1000.005* 445 450 447 457 451 459.25 4.03 | 460.04
G1000.01* 1362 1367 1362 1376 1367 1377.51 3.89 | 542.38
G1000.02 3382 3385 3382 3390 3389 3399.88 7.63 | 222.83
U500.05* 2 2 2 5 4 14.28 5.75 | 462.01
U500.10" 26 26 26 26 26 61.66 16.93 | 494.16
U500.20 178 178 178 178 178 209.75 28.92 | 207.72
U500.40 412 412 412 412 412 461.43 54.13 | 297.55
U1000.05* 1 3 1 15 3 21.76 6.56 | 395.02
U1000.10 39 39 39 39 39 116.59 31.74 | 172.45
U1000.20 222 222 222 222 222 293.48 58.87 | 249.92
U1000.40 737 737 737 737 737 873.58 145.31 | 333.40
Breg500.0 0 0 0 0 - 0.00 0.00 | 132.48
Breg500.12 12 12 12 12 - 13.36 8.06 | 123.39
Breg500.16 16 16 16 16 - 16.68 4.82 | 138.87
Breg500.20 20 20 20 20 - 20.00 0.00 | 123.20
Breg5000.0 0 0 0 0 - 0.00 0.00 | 323.28
Breg5000.4 4 4 4 4 - 4.00 0.00 | 324.84
Breg5000.8 8 8 8 8 - 8.00 0.00 | 309.73
Breg5000.16 16 16 16 16 - 16.00 0.00 | 328.04
Grid100.10 10 10 10 10 - 10.06 0.45 | 137.39
Grid1000.20 20 20 20 20 - 23.64 8.69 | 135.74
Grid500.21 21 21 21 21 - 23.00 4.62 | 120.69
Grid5000.50 50 50 50 50 - 53.98 12.84 | 394.90
W-Grid100.20 20 20 20 20 - 20.00 0.00 | 120.37
W-Grid1000.40 40 40 40 40 - 43.98 13.76 | 143.98
W-Grid500.42 42 42 42 42 - 44.50 4.31 | 128.36
W-Grid5000.100 100 100 100 100 - 104.64 16.98 | 368.78
Cat.352 1 3 1 3 - 6.08 1.64 | 139.03
Cat.702 3 1 13 - 10.18 2.54 18.82
Cat.1052 1 7 1 25 - 13.14 3.01 | 155.51
Cat.5252 1 14 - 165 - 31.30 4.21 | 382.69
RCat.134 1 1 1 1 - 2.68 0.97 | 150.03
RCat.554 1 3 1 1 - 7.00 1.61 | 194.23
RCat.994 1 5 1 3 - 9.42 1.91 | 210.48
RCat.5114 1 7 - 17 - 14.50 2.81 | 528.28

* graph is run with 25 sets instead of 10

to parallelization than the RRTS algorithm. [2] E. Bonabeau, M. Dorigo and G. Theraulaz,
Swarm Intelligence, Oxford University Press,
1999.
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Abstract

Neural plasticity in humans is well known to
be age dependent, with ‘critical periods’ for
the learning of many tasks. It is reasonable to
hypothesise that this has some intrinsic ad-
vantage over constant plasticity, and that it
has arisen as the result of evolution by nat-
ural selection. If this is true, then it may
also prove useful for building more efficient
artificial systems that are required to learn
how to perform appropriately. In this paper
I explore these ideas with a series of explicit
evolutionary simulations of some simplified
control systems.

1 INTRODUCTION

Evolutionary algorithms have shown much promise for
generating artificial neural networks with performance
superior to those formulated directly by human re-
searchers. Factors such as network architecture, learn-
ing rules and connection weights have all been suc-
cessfully optimised by evolution (e.g., Yao, 1999). A
similar approach can equally well be applied to opti-
mising the adjustable parameters and learning rates
in other systems that learn, such as traditional adapt-
able controllers (e.g., Levine, 1996; Bullinaria, 2001).
In this paper I take this work one stage further by
considering how an evolutionary approach might lead
to more efficient systems by allowing the emergence of
non-constant learning rates.

It is well known that human neural plasticity varies
considerably with age, and that there are “critical peri-
ods” during which learning must take place if the given
task is to be mastered successfully (Julesz & Kovacs,
1995). The idea of variable neural plasticity is also
quite common in the field of artificial neural networks

where modellers have found it beneficial to vary their
network learning rates during the course of training
(Jacobs, 1988). For example, near the end of training
it may be useful to decrease the learning rates to min-
imise the weight variations seen after each sample in
online training, or to increase them to speed the satu-
ration of sigmoids as the errors become small. Alter-
natively, if the performance of a task depends crucially
on some lower level of processing, it may be sensible
to delay the learning of that task until the lower level
processes have fully developed. It is not clear to what
extent factors such as these have been responsible for
the evolution of the patterns of plasticity found in hu-
mans, or if it has been more a matter of minimizing
the physical overheads of the plasticity. In this paper
I shall present a series of explicit simulations of the
evolution of some simple adaptable control systems.
The evolutionary processes will result in efficient pat-
terns of variable learning rates for these artificial sys-
tems that can then be used to develop better learning
strategies for real world applications, and perhaps also
provide some constraints on our explanations of the
critical learning periods found in humans. The overall
aim will be to see which learning strategies evolve nat-
urally, and to explore how different strategies evolve
under different circumstances.

2 THE CONTROL MODEL

The control system that will form the basis of the cur-
rent investigation is shown in Figure 1. It is actually
a simplified version of the part of the oculomotor con-
trol system that focuses and rotates the human eye
(Schor et al., 1992), though similar systems can be ap-
plied quite generally (Levine, 1996). The input is a se-
quence of target responses and a feedback loop allows
the determination of an error signal. This signal then
feeds into standard simple integral and proportional
controllers, the outputs of which are added to bias and
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Figure 1: A simplified control model with four learnable parameters: WC, WP, WT, WB.

tonic signals, and fed into the plant to produce the re-
sponse. The unit bias provides an appropriate resting
state, and the leaky integrator tonic allows short time-
scale adaptation of the resting state during periods of
constant demand. In the human eye focusing system,
for example, we would have blur being processed to
generate signals for the ciliary muscles in the eye ap-
propriate for the distance of the visual target. The
system can equally well be regarded as a traditional
control system (Levine, 1996), or as a fully dynamical
network of leaky integrator neurons.

Simulating the evolution will involve working with
a large number of copies of this model, each
with four adjustable parameters/connection weights
W) = {WC(t),WP(t), WT(t),WB(t)} where t
is the time/age of the individual model measured
in simulated years. These are learned by a sim-
ple on-line gradient descent algorithm that mini-
mizes a cost function consisting of response error
and regularization (smoothing) components which
would be readily available to the system (Bullinaria
& Riddell, 2001). Corresponding to the learnable
weights, then, each instantiation of the model will
have four variable learning rates/plasticities P(t) =
{PC(t),PP(t), PT(t),PB(t)}. The model will also
have various other parameters (time constants, plant
characteristics, feedback time delay, and so on) which
we take to be the same for all instantiations, with val-
ues appropriate for human oculomotor control (Schor
et al., 1992). Such a system that has evolved/learned a
good set of weights will produce appropriate damped
responses to arbitrary discontinuous output require-
ments such as steps, and smooth pursuit of arbitrary
continuous output changes such as ramps (Bullinaria
& Riddell, 2001).

For the purposes of this paper, I shall assume that all
the learning rates in a given model vary with age in
the same manner, and that this variation depends only
on the genotype (innate parameters) of the individual,
and not on the environment that the individual finds

itself in. Naturally, it will be important to relax this
condition in the future, but this means that we can
write P(t) = s(¢).P(0), where P(0) are the four ini-
tial learning rates, and s(t) is a simple age dependent
scaling factor. Clearly, if there is no plasticity varia-
tion, s(t) = 1 for all £. A convenient parameterization
is simply to take s(t) to be piecewise linear with pa-
rameters S = {s(t) : t = 1,...,N}. The part of the
model’s genotype that varies between individuals thus
represents the 8 + N parameters {W(0),P(0),S}.

3 EVOLVING THE MODEL

Simulating an evolutionary process for our model in-
volves taking a whole population of individual instan-
tiations and allowing them to learn, procreate and die
in a manner approximating these processes in real (liv-
ing) systems. The genotype of each new individual will
depend only on the genotypes of its two parents and
random mutation. Then during their life each indi-
vidual will learn from their environment how best to
adjust their weights to perform most effectively. Even-
tually, perhaps after producing a number of children,
each individual dies. Obviously, in nature, the ability
of an individual to survive or reproduce will depend on
a number of factors that are related in a complicated
manner to that individual’s performance on a range of
related and unrelated tasks (food gathering, fighting,
running, and so on). For the purposes of our simplified
model, however, I shall consider it to be a sufficiently
good approximation to assume a simple linear relation
between our single task fitness function and the sur-
vival or procreation fitness. In fact, any monotonic
relation should result in similar evolutionary trends,
but it is easy to lose weak effects in the noise of the
rather coarse simulations forced upon us by limited
computational resources.

Given that, initially at least, we are aiming to repli-
cate an effect that arises in human evolution, it seems
appropriate here to follow a more natural approach to
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procreation, mutation and survival than has been used
in many evolutionary simulations in the past (e.g. in
Belew & Mitchell, 1996). Rather than training each
member of the whole population for a fixed time and
picking the fittest to breed and form the next genera-
tion, our populations contain competing learning indi-
viduals of all ages, each with the potential for dying or
procreation at each stage. During each simulated year,
every individual learns from their own experience with
a new randomly generated common environment (i.e.
set of training/testing data) and has its fitness mea-
sured. Random pairs of individuals are then forced to
compete, with the least fit dying (i.e. being removed
from the population). Additionally, a random sub-
set of the oldest individuals die of old age. The dead
are replaced by children, each having one parent who
is the fittest of a randomly chosen pair from the re-
maining population, who randomly chooses their mate
from the rest of whole population. Each child inherits
characteristics from both parents such that each in-
nate free parameter is chosen at random somewhere
between the values of its parents, with sufficient noise
(or mutation) that there is a reasonable possibility of
the parameter falling outside the range spanned by
the parents. Ultimately, our simulations might benefit
from more realistic encodings of the parameters, con-
cepts such as recessive and dominant genes, learning
and procreation costs, different inheritance and muta-
tion details, different survival and procreation criteria,
more restrictive mate selection regimes, offspring pro-
tection, different learning algorithms and fitness func-
tions, and so on, but for the purposes of this paper,
our simplified approach seems adequate.

4 SIMULATION RESULTS

A previous study (Bullinaria, 2001), employing a
slightly more complex control system and a slightly
simpler evolutionary regime, has already explored the
Baldwin Effect, i.e. the interaction of learning and
evolution (Baldwin, 1896; Belew & Mitchell, 1996),
in models of the type considered here. This demon-
strated explicitly how genetic assimilation of learned
behaviour (i.e. learned parameter values) will occur
automatically, without Lamarckian inheritance, to re-
duce the inherent costs of learning (e.g. periods of poor
performance). However, even when a good set of in-
nate parameters have evolved, a control system will
still benefit from being plastic since that will allow
it to fine tune its performance after a noisy procre-
ation process and/or being born into an unpredictable
environment. Many biological systems will also need
plasticity to compensate for the changes (e.g. grow-
ing size) that naturally take place during their own

maturation period. For the current study, such a mat-
uration process was simulated by a simple output scale
factor that varies linearly from 0.5 to 1.0 over the first
ten years of life for each individual. (It turns out that
the precise details of this variation are not crucial.) In
humans this maturation might correspond to changes
in inter-pupilliary distance for the eye rotation sys-
tem, or changes in arm length for reaching or point-
ing. The important consequence is that the appro-
priate innate/newborn weights will not be the same
as the adult values. The pattern of plasticities that
evolve will allow the system to learn most efficiently
how to optimize its weights throughout its life.

Unfortunately, limited computational resources al-
lowed only a rather coarse simulation of the evolution-
ary process, but for an initial study it proved sufficient
to have a fixed population size of only 100, with around
10 deaths per year due to competition, and around 4
individuals over 30 years old dying each year due to
old age. (Such a system coded in C typically simulated
around 20,000 years per CPU day on an average UNIX
workstation.) The procreation and mutation param-
eters were chosen to speed the evolution as much as
possible without introducing too much noise into the
process. These evolutionary details were kept constant,
across all the simulations I shall now present.

Figure 2 shows the simulation results for a typical run
of the basic system described above. First we see that
the population means of the initial weights W(0) and
learning rates P(0) quickly evolve to take on appro-
priate values. (Note the large variation between the
learning rates that emerge for the different weights.)
These lead to good values for the weights throughout
the individuals’ life. All the weights will need an initial
fine tuning to remove the noise in the procreation pro-
cess, then some weights (WC and W P) need to adjust
during the maturation period, while others (WT and
W B) need little further change. The plots of WC'(t)
and WT(t) for a typical evolved population show this
quite clearly. The plots of the mean weights W (t) for
the whole population show how they differ in magni-
tude and noise from the initial weights W(0). Finally,
we see how the plasticity scale factor s(t) varies with
age t. In particular, we see that the plasticity falls
drastically between birth and the end of the matura-
tion period, thus confirming that critical periods for
learning will arise as a natural consequence of evolu-
tion.

The results from the basic system naturally lead to
the question of what happens if an individual needs to
adapt or learn later in life, after the standard learn-
ing period is over. There is a traditional saying that
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Figure 2: Evolution and learning in a typical simulation of the basic system. Individuals in the evolved population
have plasticities that fall rapidly between birth and the end of their maturation period.
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Figure 3: Evolution and learning in a typical simulation when late life adaptation is required. Individuals in the
evolved population have plasticities appropriate for the learning or adaptation that is forced upon them.
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4. The basic patterns are the same, but considerably noisier.

“old dogs cannot learn new tricks”, but it seems un-
likely that evolution would allow the plasticities to de-
cay away to small values in situations where late life
adaptation is regularly required. To introduce such
a requirement, the basic model was modified so that
there was a sudden step in the output scale factor from
1.0 to 0.75 at the age of 20. (Again it turns out that
the precise details of this variation are not crucial.)
There is no need to specify whether this variation cor-
responds to an internal factor (e.g. compensation for
system damage or deterioration) or an external factor
(e.g. adaptation to changes in the operating environ-
ment), as they will have the same effect. Obviously,
the need for real late life adaptation will rarely be so
predictable, but the consequences for our model will
be similar, and the simplification makes it easier to
interpret the results.

Figure 3 shows how this changes the simulation re-
sults from those of the basic model in Figure 2. The
most obvious difference is in the plot of WC'(t) where
we see the required step change at age 20 has been
learned successfully. The plot of s(t) shows the initial
fall as before, but then a sharp rise to give the re-
quired increased plasticity at the age of 20. This gives
us confidence that our evolutionary simulations really
are picking up the requirement for plasticity, and not
some confounding factor.

A final situation to consider, that regularly arises in
human development, is when one level of processing re-
lies on signals from another system. If the sub-system
supplying those signals is not fully developed, it might
be sensible to wait until it is before beginning to learn

how to use the signals. For example, the adult eye ro-
tation (vergence) system uses an image disparity sig-
nal, and humans have to wait until 12-16 weeks of age
before this signal relatively suddenly becomes avail-
able. To simulate such an effect in our basic model,
the error signal was replaced by low level noise for each
individual until they reached three years of age.

Figure 4 shows how this affects the standard results
of Figure 2. The changes here are rather clear. First,
the initial/innate weights WC', WP and WT all drop
to very low values, leaving the system with an appro-
priate constant output driven by the bias W B, and
no interference from the noisy input signal. Naturally,
the initial learning rates are also all very low, because
learning from noise is not a good strategy, but they
quickly rise to coincide with the onset of the input sig-
nal at the age of three. By the age of seven, the system
has caught up with the performance levels of Figure 2.
Once again our simplified evolutionary approach leads
to a sensible pattern of plasticity variations.

5 SCALE FACTOR MUTATIONS

As with all modelling endeavours, it is important to
test the robustness of the results with respect to the
implementational details. Naturally, in this case it is
the encoding of the plasticity scale factor s(t) that we
need to be particularly careful about. If each point
{s(t) : t = 1,...,N} defining the piece-wise linear
function were simply allowed to evolve in isolation in
the same manner as the weights and learning rates,
we would actually end up with the rather noisy results
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shown in Figure 5.

The individual performance advantages that would
keep the curves smooth, and reduce any unnecessary
plasticity, are rather weak and get lost in the noise of
our coarse simulations. This is particularly apparent
after the age of about 10. The weakness is partly due
to the error signals being relatively low after the mat-
uration period is complete, and partly because it will
be relatively unimportant if the fitness starts decreas-
ing again after a number of children have already been
produced, or if the majority of individuals normally
die before reaching that age.

Fortunately, we can compensate for these limitations
by variations of the plasticity scale factor mutations.
First, we can prevent unnecessary plasticity (which
will surely have an intrinsic cost in real systems) by
allowing mutations which set random points s(n) to
zero. Then, it is unlikely in real systems to be efficient
to have s(t) varying wildly with age, so it is reasonable
to encourage smoothness of s(t) by allowing mutations
which swap the values of random adjacent points s(n)
and s(n+1). It was these simple variations that turned
the noisy and inefficient results of Figure 5 into the
smooth and efficient results of Figures 2, 3 and 4.

6 CONCLUSIONS

By simulating evolving populations of simple adapt-
able control systems we have seen that there is a natu-
ral propensity for the evolution of plasticities that vary
sensibly with age, quite independently of any physical
overheads of the plasticity. This is consistent with the
well known “critical periods” of human brain devel-
opment (Julesz & Kovacs, 1995). It is reasonable to
expect that such an evolutionary approach will also
be a profitable strategy for obtaining improved per-
formance in adaptable systems for real world applica-
tions.

There are two competing effects at play. In order to
survive in competition with fitter adults and/or a hos-
tile environment, a newborn needs to adapt as quickly
as possible to its environment. It also needs to adapt
efficiently to its own maturation. Large plasticities
will be beneficial for both. In adults, however, large
plasticities can lead to an unstable learning system,
in which unusual/extreme experiences can potentially
result in a large shift of the systems’ parameters with
a serious reduction in overall fitness. Lower learn-
ing rates in this situation will allow smoother optimal
parameter estimation and more consistently good re-
sponses in a varied environment. In this paper it has
been demonstrated how a process of evolution by nat-

ural selection can result in a population of individual
systems that deal with these conflicting requirements
by having plasticities that vary appropriately with age
under normal maturation, when late life adaptation
is required, and when there is a dependence on the
prior development of other sub-systems. We have also
seen how appropriate changes to the implementational
details (e.g. the plasticity scale factor mutations) can
lead to vastly superior results.

In complex systems, such as the human brain, we can
expect each of the various sub-systems to evolve appro-
priately for its own requirements, so there may well be
no single global behaviour. The next stage of this work
will be to develop and test larger scale and more re-
alistic simulations of specific human sub-systems, and
to explore explicitly how these ideas could be applied
to the formulation of more efficient artificial adaptable
systems for particular real world engineering applica-
tions.
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Abstract

Process changes, such as flow disturbances
and sensor noise, are common in the chemical
and metallurgical industries. To maintain
optimal performance, the controlling system
has to adapt continuously to these changes.
This is a difficult problem because the
controller also has to perform well while it is
adapting. The Adaptive Neural Swarming
(ANS) method introduced in this paper
satisfies these goals. Using an existing neural
network controller as a starting point, ANS
modifies the network weights through Particle
Swarm Optimisation. The ANS method was
tested in a real-world task of controlling a
simulated non-linear bioreactor. ANS was
able to adapt to process changes while
simultaneously avoiding hard operating
constraints. This way, ANS balances the need
to adapt with the need to preserve
generalisation, and constitutes a general tool
for adapting neural network controllers on-
line.

1. INTRODUCTION

The chemical and metallurgical industries face constant
demands for greater economic return that requires
increased production and greater product purity. Also,
environmental concerns call for the use of minimal
resources. By addressing these issues, intelligent
control techniques add economic value to process
plants.

A process' operating point (i.e., the process state)
determines the product purity and production rate. The
operating point thus has an intrinsic economic value.
Control engineers select fixed operating points (i.e., set
points) based on their economic value. Process
changes, due to process disturbances and drifting
dynamics, cause deviations from the set points,
requiring corrective action. Optimal set points and
effective corrective actions yield greater economic
return. Typically, linear controllers (e.g., PID
controllers) maintain the set points and provide
corrective action to process changes (Seborg et al.,
1989).
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For example, a chemical reactor has an optimal
operating temperature. This temperature determines the
production rate that directly impacts on the economic
return from the reactor. The control engineer selects
this optimal temperature as a set point. A PID
controller responds to process disturbances that affect
the reactor temperature, by increasing or decreasing the
cooling water flow rate, thereby maintaining the set
point

PID controllers typically utilise both set points and
fixed controller parameters. The PID controller
parameters govern the corrective action (i.e., the
control response) to process changes. There are three
PID controller parameters: gain, integral and
derivative. PID control's linear control structure is the
industry standard, though not suited to non-linear
processes.

Non-linear processes are common in the process
industries. In such cases, PID controller parameters are
optimal only over a limited operating region. Process
changes may cause the operating point to stray far from
the set point, whereupon PID controllers may
implement sub-optimal corrective actions. Sub-optimal
performance may be avoided only by adapting the
controller parameters. As the set points largely
determine the economic return, the set points must also
adapt in response to process changes. Tracking the
economic optimum therefore requires adapting both the
controller parameters and the set points (Hrycej, 1997).

Effective generalisation and adaptability during process
changes are essential to tracking a process' economic

optimum. Generalisation tools, such as neural
networks, are invaluable in creating non-linear
controllers for non-linear processes. Non-linear

controllers are near optimal over wider operating
regions than possible with PID control (Conradie,
2000). Near optimal performance may be further
improved by on-line adaptation of the neural network
weights in response to process changes. Robust search
techniques are required for effective on-line adaptation
of neurocontroller weights.

This paper introduces an adaptive neurocontrol
strategy, Adaptive Neural Swarming (ANS). A highly
non-linear bioreactor benchmark is used in the control
simulation. The bioreactor's dynamic behaviour is



changed continuously, which shifts the operating point
with maximum economic return. ANS adapts an
existing neurocontroller's weights to reap greater
economic return from the changing bioreactor process.
ANS emerges as an effective tool for adapting existing
neural network strategies, resulting in enhanced
performance.

Section 2 outlines basic notions in conventional
adaptive control, which remain relevant to an advanced
scheme such as ANS. Section 3 describes Adaptive
Neural Swarming (ANS). Section 4 outlines the
bioreactor case study. The paper concludes with an
explanation of ANS' mechanism.

2. ADAPTIVE CONTROL METHODS

Control design requires a dynamic process model.
Optimal control design is possible only if the process
model is accurate. However, the model and the actual
process are invariably mismatched. Also, exact
knowledge of possible process changes is seldom
available for control design purposes. Despite these
shortcomings, robust control remains a control
requirement. Generalisation is the ability of a controller
to deliver near optimal performance, despite limited
process knowledge during its design.

Generalisation may provide robust control, but optimal
control is rarely ensured during the control design
process. The designed controller frequently requires
on-line refinements to the controller parameters and set
points. Improved generalisation is difficult to impart
on-line, as it involves reconciling past (i.e., design) and
current process information into a single control
strategy. For example, catalyst decay may cause the
optimal temperature of a reactor to change over time.
In contrast, adaptation changes controller parameters
giving precedence to on-line process information.
However, degraded performance may result should
past process conditions return. A balance must thus be
maintained between retaining generalisation imparted
during design, while allowing adaptation to exploit
changes in the process conditions (Hrycej, 1997).

On-line process information contains inaccuracies due
to sensor noise and short-lived disturbances. Adapting
controller parameters based on imperfect process
information involves operational risk. The process may
become unstable. On-line adaptation to control
parameters faces numerous challenges: (1) Balancing
the use of past and present process information, (2)
Supervising process stability, (3) Implementing
emergency procedures should the process become
unsafe, due to on-line adaptation (Hrycej, 1997).

The following two sub-sections illustrate the aims of
conventional methods for adapting controller
parameters (section 2.1) and process set points (section
2.2). ANS has the same aims, though its methodology
is dissimilar.
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Figure 1: Objective of linear adaptive control. An
oscillatory control response around the set point (a) is
changed to a specified control response (b). The
specified response settles sooner on the set point.

2.1 CONVENTIONAL ADAPTIVE CONTROL

An adaptive linear controller maintains a specified
control response (i.e., corrective action) around a set
point during process changes. For non-linear processes,
a set of PID controller parameters can only maintain
the specified control response for a limited range of
process conditions. Process changes in non-linear
processes may cause the control response to become
oscillatory around the set point, as illustrated in figure
la. Adaptive linear control tunes the PID controller
parameters, which corrects the oscillatory response in
figure la to the specified response in figure 1b.
Conventional adaptive control relies on on-line process
modelling (i.e., Model Reference Adaptive Control)
and heuristic methods (i.e., Ziegler-Nichols) for
adapting controller parameters (Ghanadan, 1990). ANS
must also ensure that a specified control response is
maintained.

2.2 EVOLUTIONARY OPERATION

Adaptive control does not change the set points that
largely determine the economic return. Set points are
selected during design based on an optimisation of
dynamic model equations. The optimisation considers
both economic return and controllability. However,
process changes during operation may make the current
set points economically sub-optimal.

Evolutionary operation (EVOP) challenges the use of
constant set points in a continuously changing process.
EVOP monitors the process and improves operation by
changing the set points towards the economic optimum.
EVOP makes a number of small set point changes that
do not disrupt production. However, the set point
changes need to be sufficiently large to discover
potential improvements in the operating point. EVOP
uses an experimental design to determine the number
of set point change experiments. Pattern search
methods use the experimental results to determine
whether and in which direction the set points should be
changed (Walters, 1991).

Consider figure 2, which graphs the economic return of
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Figure 2: EVOP for a process with two process

variables. The current set point (circular marker) is

moved along the arrow's trajectory based on the

economic return of each set point experiment (square

markers). The process operation is thus improved.

a process that has two process variables. The contour
lines represent operating points with similar economic
returns. The circular marker represents the current set
point, which is economically sub-optimal. The set
points for both process variables should be reduced for
optimal economic return. EVOP conducts a number of
set point change experiments (represented by square
markers) in the neighbourhood of the current set point.
The economic return for each set point experiment is
determined. In figure 2, three experiments have greater
economic return than the current set point. EVOP
adjusts the current set point in the direction of greater
economic return. The process is repeated until optimal
set points are found (Walters, 1991).

EVOP does not adapt the PID controller parameters for
each of the set point experiments. As discussed in
section 2.1, using the same controller parameters for all
the set point experiments may give oscillatory
responses. Poor control responses impact negatively
the accurate determination of economic returns.

Adaptive control and EVOP may be combined in a
two-step methodology to track a changing economic
optimum. EVOP selects a number of set point
experiments. An adaptive control method establishes a

specified control response for each set point
experiment. The economic evaluations for each
experiment will consequently be comparable,

whereupon EVOP adjusts the current set point. This
cumbersome two-step process is repeated until the
optimal set point is found. Ideally, a single on-line
experiment (evaluation) should provide information on
both the economic return and the control response.

3. ADAPTIVE NEURAL SWARMING

This section describes Adaptive Neural Swarming
(ANS), which combines adaptive control and EVOP
into a single comprehensive step. In ANS, both the
economic return and the control response are combined
into a single feedback signal. A local PSO uses this
sparse reinforcement information to adapt the weights

of existing neural network controllers towards greater
economic return in response to a changing process.

3.1 NEURAL NETWORK STRUCTURES

Neurocontrollers may originate from various sources.
Neural networks may be trained to mimic the control
actions of existing PID controllers, thereby distributing
the PID functionality over several neurons. Existing
fuzzy logic systems may be converted to equivalent
neural network architectures (Jong & Sun, 1993).
Neurocontrollers are also developed utilising
evolutionary  reinforcement learning techniques
(Conradie et al., 2000). Neural networks possess
characteristics that are beneficial to an adaptive
scheme, such as generalisation and graceful
degradation.

Once a PID controller is adapted, the small number of
control parameters prohibits effective generalisation to
past process conditions. Neural network controllers are
collections of neurons, with each neuron specifying the
weights from the input layer (process states) to output
layer (control actions). Neurocontroller parameters are
the neural network weights. A neurocontroller that is
equivalent to a PID controller, has additional degrees
of freedom, owing to a larger number of controller
parameters. During adaptation, a neural network's
distributed functionality preserves greater
generalisation to past process conditions. The need for
effective generalisation justifies the use of neural
networks.

Neural networks also exhibit graceful degradation.
Graceful degradation allows small changes to the
weights, without causing catastrophic control
performance loss (S'euim & Clay, 1990). Process
stability is preserved during adaptation.

These neural network characteristics are relied upon in
a reinforcement learning framework, described below,
to provide process stability and continued
generalisation.

3.2 REINFORCEMENT LEARNING

Reinforcement learning (RL) automates the acquisition
of on-line performance (i.e., feedback) information and
the adaptation process. RL uses on-line performance
evaluations to guide adaptation. RL improves
controller performance without a need to specify how
the control objectives should be reached (Kaelbling et
al., 1996).

ANS  maintains a  population of possible
neurocontroller solutions that serve as RL evaluations,
similar to EVOP experiments. Each neurocontroller is
evaluated individually over a number of sensor sample
periods while interacting with a dynamic process as in
figure 3. Initially, the process may be at an arbitrary
operating point (state, s,). The neurocontroller observes
the current process operating point at sample, ¢, and
selects a control action, a,. The control action changes
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Figure 3: Reinforcement learning framework. A
neurocontroller interacts with a dynamic process to
learn an optimal control policy from -cause-effect
relationships.

the operating point to s,..;. A reward, r, is assigned
based on the economic value of this new operating
point. The objective is to maximise the total reward
over a series of control actions, while maintaining a
specified control response. An optimisation algorithm
adapts the neural network weights based the reward
feedback from each evaluations.

ANS treats the population of neurocontrollers as a
swarm, using a local particle swarm optimisation for
adapting the weights of each neurocontroller.

3.3 PARTICLE SWARM OPTIMISATION

PSO is loosely based on the social behaviour of flocks
of birds. A population of individuals is updated based
on feedback evaluations, gathered from the collective
experience of the swarm individuals (Shi & Eberhart,
1999). Equations 1 and 2 determine the velocity and
position of the swarm in the solution space:

Vig = Vig + ¢ -rand()- (pig — Xig )+
cp -rand()-(pgq = xia) ey
Xid =Xid + Vid 2

where each particle, i, moves through the solution
space with dimension, d. Each particles velocity vector,
via» 18 dynamically adjusted according to the particle's
own best experience, p;s, and that of the current best
particle, pgs in the swarm. These two knowledge
components are blended with each particle's current
velocity vector to determine the next position of the
particle as per equation 2 (Shi and Eberhart, 1999).

The best swarm particle is a beacon to a region of the
solution space that may contain better optimisation
solutions. Each particle searches the solution space
along its unique trajectory for better solutions. Should a
better solution be found, the new best swarm particle
moves the swarm in a new direction. The momentum in
each particle's current velocity provides some
protection against convergence to a local optimum (Shi
and Eberhart, 1999).

PSO has been utilised in tracking changing optima in
function optimisation problems (Carlisle and Dozier,
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2001; Angeline, 1997). PSO's success in these artificial
domains motivates its use in complex real-world
problems.

3.4 ON-LINE OPTIMISATION

ANS uses a local PSO search as the optimisation
algorithm within a reinforcement learning framework.
ANS thereby tracks the shifting economic optimum
resulting from a changing process. Practical
considerations for on-line use relate to the selection of
swarm size, swarm initialisation, appropriate PSO
parameters and duration of an RL evaluation.

Each on-line experiment is time and resource intensive,
since no control improvements are possible during the
evaluation phase. The number of reinforcement
learning evaluations per PSO adaptation must therefore
be minimal. However, the dimensionality of the control
task constrains the minimum number of evaluations.
More process information (i.e., more evaluations) is
required during the evaluation phase, as the
dimensionality of the control task increases. Otherwise,
effective adaptation based on on-line feedback is not
possible. Each neuron in a neurocontroller represents a
partial solution to the control task. The number of
neuron weights reflects the dimensionality of such
partial solutions. For example, to effectively adapt
neurons with 12 weights, an absolute minimum of 12
evaluations is required. The number of swarm
neurocontrollers (n) is thereby selected based on the
dimensionality of the control task, as reflected by the
number of neuron weights.

In ANS, each swarm particle is an altered version of an
existing neurocontroller. The initial swarm consists of
the original (i.e., existing) neurocontroller and (n-1)
altered neurocontrollers. Each altered neurocontroller is
initialised with a small gaussian deviation from the
existing neurocontroller weights. The maximum weight
deviation is 3% from the each original weight, thereby
altering the control policy only marginally. A
neurocontroller swarm is thus initialised in a local
region of the network weight solution space. This slight
weight alteration determines the direction in which the
swarm should move, without negatively effecting
production and inducing process instability. On-line
evaluation (experimentation) is thus limited to
neighbouring solutions of an existing solution.

Each swarm neurocontroller is evaluated on-line for a
limited number of sensor samples. A process' time
constant is defined as the process response time to a
step change in a control action. The process' time
constant determines the number of sensor samples used
in each evaluation. Equation 3 is the fitness evaluation
that serves as feedback of each swarm neurocontroller's
economic return:

2}

Fitness = -‘-t -P(t)-dt — Penalty  (3)

,1

where the evaluation is conducted for the number of

63



64

ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION

O current particle position
O  best particle position

3rd weight

2nd weight 120

1st weight

Figure 4: Possible adaptation trajectories of a weight
vector based on the swarm's experience. The possible
final position after adaptation lies in the plane formed
by the arrow lines. The limited trajectories make the
search exploitative.

samples between #; and 7, and P(?) is the instantaneous
profit at time 7.

A higher P(#) for each sample reflects a higher
economic return, which increases the fitness value.
ANS thus searches for improved economic return.
Equation 3 also dictates the specified control response.
An ITAE (integral-time-absolute-error)  control
response has minimal oscillation, which is suited to
numerous process control applications. Maximising the
integral results in an ITAE control response. The
fitness evaluation thus contains information regarding
both the economic return and the control response.
Also, should hard operating constraints exist for the
process, a penalty is assigned should such operating
constraints be approached during adaptation. This
penalty reduces the fitness and solutions are therefore
pursued only within the search boundaries.

An exploitative search preserves generalisation and
reduces the risk of inducing process instability. A local
(i.e., exploitative) PSO search is implemented by
selecting a small inertia weight (® = 0.4) and the
parameters ¢; and ¢, equal to 0.5 (conventionally 2.0)
in equation 1. Each neurocontroller, i, adapts each
weight, x;,, at position d in accordance with equation 2.

A neurocontroller may move only in a limited number
of trajectories based on the swarm's experience.
Consider a neurocontroller comprised of one neuron
with 3 weights with no initial velocity. In figure 4, the
circular marker represents the current weight vector.
The dashed arrow lines illustrate the possible
adaptation  trajectories. These trajectories are
determined by the global best neurocontroller (square
marker) and the neurocontroller's own best experience
(diamond marker). These limited trajectories make the
search exploitative and are relevant to the optimisation
objectives, since the directions are determined by the
swarm's collective experience (Shi and Eberhart,
1999).

Previous best New best

neurocontroller x5 oller
/ /
Initialise Evaluate each /
Move each

neurocontroller =¥ neurocontroller —»
: neurocontroller
swarm n swarm

Figure 5: Adaptive neural swarming flow diagram. An
effective neurocontroller is initialised into a swarm and
adapted based on the evaluation of the swarm.

The local PSO search is run for five iterations, as
illustrated in figure 5. The swarm is then re-initialised
around the new best neurocontroller. Re-initialisation
starts a new search in the neighbouring solution space
of the new best neurocontroller. The search thus
continues outside the space of the prior initialisations.

ANS was tested in a real-world bioreactor case study.
The case study illustrates ANS' ability to adapt the
neurocontroller weights towards greater economic
return.

4. BIOREACTOR CASE STUDY

4.1 BIOREACTOR CONTROL PROBLEM

A bioreactor is a continuous stirred tank fermenter. It
contains a biomass of micro-organisms that grow by
consuming a nutrient substrate. The liquid substrate is
fed continuously into the reactor, which also
determines the reactor's liquid level (i.e., hold-up). The
biomass is sold as the product. The bioreactor's
dynamic behaviour is highly complex, non-linear and
varies unpredictably. Also, the bioreactor process is
difficult to quantify, due to unreliable biosensors and
long sampling periods (Brengel and Seider, 1992).

Furthermore, the maximum bioreactor liquid level is a
hard operating constraint. Should operation exceed the
maximum level, the bioreactor is shut down and must
then be restarted at great operational cost. However, the
maximum instantaneous profit increases as operation
approaches the hard level constraint. A trade-off
between safety and the maximum economic return is
required (Brengel and Seider, 1992).

The operating objective is to maximise the venture
profit of the process on-line in response to process
changes. This entails tracking the operating point with
the maximum venture profit and ensuring acceptable
control responses. The bioreactor may be simulated
accurately and as such constitutes a benchmark for
testing new adaptive methodologies without risking
unsafe operation.

4.2 EXPERIMENTAL SET-UP

Typical process changes were simulated to mimic real-
world bioreactor operation. The bioreactor's model was
changed significantly by reducing the cell mass growth
K (figure 6a) and increasing the substrate feed
concentration Sy. The increased (i.e., off-set) Sy is also
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Figure 6: Process changes to the bioreactor. The arrows
show the changes from the nominal process conditions
(dashed line) for the growth parameter (a) and the
substrate feed (b). The process is changed significantly.

disturbed with a gaussian distribution (figure 6b). In
addition, the biosensors were inaccurate with a
gaussian distribution around the correct reading.

Process search limits ensured that the process operation
did not exceed the operation constraints. An adaptation
scheme should never induce process shutdown by
searching for operating points that are unsafe. The
reactor level must remain below a high level alarm,
which is a safety margin before bioreactor shutdown is
initiated. The high level alarm was set at 5.95 [m] and
bioreactor shutdown at 6.2 [m].

An optimal neurocontroller, with 12 neurons comprised
of 7 weights each, was developed for the nominal
process conditions using methods developed in prior
work (Conradie et al, 2000). As discussed in section
3.4, ANS utilised this original neurocontroller to
initialise a swarm of 10 neurocontrollers and each
swarm neurocontroller was evaluated on-line over 20
sample periods. The inaccurate sensors and randomly
changing process conditions make obtaining accurate
feedback (i.e., evaluations) for ANS difficult. The ten
evaluations, though not based on precise information,
determined the direction and velocity of the
neurocontroller swarm.

4.3 RESULTS

4.3.1 Adaptation efficiency of ANS

Figure 7 presents the instantaneous profit (IP) for the
original neurocontroller and the ANS neurocontroller
over a hundred day operating period. Figure 7
illustrates the effect of the process changes on the IP.
The average instantaneous profit for the original
neurocontroller was 55 [$/min]. As shown in table 1,
this is well below the optimal profit of 96 [$/min]
expected during design for the nominal process
conditions. The original neurocontroller's IP is reduced
due to sub-optimal generalisation to the process
changes, though it was able to keep the process stable.
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Figure 7: Instantaneous profit for the original and ANS
neurocontrollers over 100 days of on-line operation.
The adaptive neurocontroller garners greater economic
return from the changing process than the original

neurocontroller.

Table 1: Maximum IP for changing process conditions

Process condition Maximum
profit[$/min]

Nominal process conditions 96

K reduced, Off-set Sg 106

K reduced, Minimum Sg deviation 69

K reduced, Maximum S deviation 130

The original neurocontroller incurs an economic
opportunity cost. Improved performance over 55
[$/min] is attainable with ANS. The average increase in
Sg (i.e. off-set) presents an opportunity for greater
venture profit. ANS achieves a substantially increased
average profit of 94 [$/min] (figure 7), which is only
slightly below the attainable 106 [$/min] possible for
the increased Sk (table 1).

As seen in figure 7, the ANS neurocontroller has a
larger IP standard deviation than the original
neurocontroller. ANS tracks the optimal IP that is due
to the gaussian disturbance in Sg. For high Sg values
over extended periods (figure 6b, between samples
2000-2250), an IP of 120 [$/min] was attained, though
a maximum of 130 [$/min] is attainable (table 1). For
unusually low Sg values over extended periods, the
swarm attained a minimal profit of 60 [$/min]. The
optimal profit for this unfavourable process condition
is 69 [$/min] (table 1). ANS thus approximates the
changing optimal IP. A small difference remains,
because Sg changes substantially over time periods that
are too short for the swarm to adapt completely. The
swarm is thus essentially tracking the moving average
of Sg. Nevertheless, the IP for ANS control exceeds the
highest IP for the original neurocontroller at all times
(figure 7). ANS offers considerable benefits over the
generalisation offered by the original neurocontroller.

4.3.2 Avoiding Hard Process Constraints

Figure 8 illustrates the swarm's ability to avoid the
process search limits. Recall that the IP increases as the
bioreactor level increases. The swarm neurocontrollers
thus searched for control policies that increased the
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Figure 8: Avoiding the hard level constraint. The trend
line (solid) illustrates the swarm moving away from
high level alarm set at 5.95 [m]. Process shutdown is
thereby avoided.

bioreactor level. Consequently, the swarm moved
towards the high level alarm during on-line operation.
The high level alarm of 5.95 [m] should never be
exceeded; preserving the safety margin before
bioreactor shutdown. A neurocontroller's fitness was
penalised severely for exceeding the high level alarm.
Such a penalised fitness was always lower than the
fitness of a neurocontrol policy that remained within
the search boundaries. Neurocontrollers, with a
penalised fitness, no longer guided the swarm and the
swarm moved away from the high level alarm. In
Figure 8 at 3000 sample periods, the trend line
indicates a move away from the high level alarm.
Shutdown at a reactor level of 6.2 [m] was thus safely
avoided in ANS' on-line search.

4.3.3 Neuron Weight Adaptations

Each neuron in a neurocontroller has a particular
functionality that is a partial solution to the control
task. A neuron's weight vector determines its
functionality. The changes to a neuron's weight vector
during adaptation, provides insight into how its
functionality changed in response to the changing
process conditions. Principal component analysis
allows visualisation of neuron weight vectors and
therefore neuron functionality.

Figure 9 is a principal component plot of the weight
vector of each neuron in the swarm's current best
neurocontroller. After each adaptation, all the neuron
weight vectors for the best swarm neurocontroller were
plotted in figure 9 as circular markers. The markers
thus represent the history of adapted neuron
functionalities.

In figure 9, the clusters indicate the different neuron
functionalities that solve the control task. A cluster
that is distributed over a larger region of the neuron
weight space, had undergone a greater degree of on-
line adaptation to its functionality. The extent of each
neuron's adaptation is determined by the reigning
process changes.

Principal Component 3

Principal Component 2 -5 -10

Principal Component 1

Figure 9: Principle component analysis of neuron
functionality (85% variance explained). Circular
markers represent neuron weight vectors. Each cluster
represents the change in neuron functionality due to
adaptation. The extent of each neuron's adaptation is
determined by the reigning process changes.

5. DISCUSSION AND FUTURE WORK

ANS' exploitative search preserves the existing
neurocontroller's generalisation. For the bioreactor,
adaptation failure (i.e., shutdown) never occurs during
extensive implementation. Also, instability is never
induced in the control response. The bounded nature of
each neuron cluster in figure 9 provides insight into
how  ANS  preserves generalisation. Each
neurocontroller retains memory of its best position (eq.
1) during the five iterations between initialisations. As
the fitness landscape changes, the fitness value of a
neurocontroller's best position is no longer valid. A
neurocontroller's best position rather serves as an
example of where previous good solutions have been
found. Memory of past neurocontroller positions biases
the search in the direction of good past solutions. This
memory function preserves generalisation by
considering both past and current process information
in the search. Re-initialisation, which clears the
swarm's memory, limits prolonged bias to past
solutions. Without limiting memory of past solutions, a
drifting optimum would be difficult to track.

ANS' search for optimal control policies in a changing
process works as follows. Process changes affect each
neuron's functionality differently. Some neurons
consequently no longer contribute to optimal economic
return. The functionality of such a neuron needs to be
updated, while retaining information in its weight
structure that is still valid.

Consider a neuron weight that is optimal once adapted
to a fixed value, despite continued process changes.
Such fixed weights correspond to process conditions
that remain constant (e.g., fixed growth parameter). As
described in section 3.4, the possible directions for
adaptation are limited to the positional experiences of
all the swarm neurocontrollers. In ANS, the swarm
neurocontrollers align along such a fixed weight,
preventing (as per eq. 1) the swarm from moving along
that particular weight dimension. After several ANS
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Figure 10: Arrow lines indicate the trajectories of
neuron functionalities in response to common (re-
occurring) process changes such as Sg. ANS implicitly
takes advantage of common process changes, which
facilitates effective adaptation.

iterations, only weights still relevant to improving the
IP are implicitly changed. Re-occurring process
changes (e.g., Sp) govern which specific neuron
weights are continuously changed to track the
economic return. The dimensionality of the search is
thus somewhat reduced. Figure 10 is a copy of figure 9,
except that adaptation trajectories are emphasised by
drawing arrow lines through the clusters. Each neuron
functionality (cluster) moves along a fixed trajectory in
response to re-occurring process changes. ANS
establishes these trajectories implicitly and exploits this
swarm knowledge for greater economic return.

Future work will explicitly identify neuron
functionalities that require adaptation. Such explicit
knowledge may be used to further speed adaptation
using fewer on-line evaluations. As ANS is a robust
means for adapting neurocontrollers, it will be tested in
other complex domains such as robotics and gaming.

6. CONCLUSIONS

Although neurocontrollers generalise their control
actions in a changing process, such generalisation
(though robust) may be economically sub-optimal.
Adaptive Neural Swarming augments neurocontroller
weights on-line, thereby garnering greater economic
return from the changing process. ANS balances the
need to adapt with the need to preserve generalisation.
ANS also effectively avoids hard operating constraints
during its on-line search. ANS implicitly identifies re-
occurring process changes and uses this knowledge to
speed adaptation. ANS is therefore a robust general
tool for adapting of neural network controllers on-line.
The greater economic return for the bioreactor case
study suggests that the process industries would benefit

significantly by implementing Adaptive Neural
Swarming.
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Abstract

The Particle Swarm Optimization method has
proven quite successful in treating a variety of
applied problems. Here we further test its
capabilities by studying its behavior when
applied to a challenging problem, namely the
search for energy conformations of atomic
clusters. In its simplest form this is known as the
Lennard-Jones Problem. Results are compared
with those achieved using simple Genetic
Algorithms.

1 INTRODUCTION

The problem of minimizing the potential energy function
of clusters of atoms is generally known as the molecular
conformation problem. Cluster sizes can range from a
few atoms up to several hundred atoms. Physical and
chemical characteristics vary with size. The determination
of the global minima or ground states of these energy
functions is of particular interest to researchers in
chemistry, biology, physics and optimization methods.
One particular class of these problems in molecular
conformation is that where the interaction potential is the
pure Lennard-Jones potential function. This turns out to
be a very difficult problem to solve since the number of
local minima has been estimated to increase exponentially
with the number of atoms N (Tsai and Jordan, 1993;
Stillinger, 1999). Studies have shown that at N = 13
there are 988 local minima, and for N = 98 the number
grows to the order of 10%. In spite of this formidable
hurdle, success has been found in locating what are
believed to be the global minima (ground states) for
systems with N as large as 250 (Hartke, 1993 and 2001).

While Genetic Algorithms (GA) have played an
important role in treating this problem (Barron et al. 1999;
Deaven and Ho, 1995; Zeiri, 1995), the generic GA has
not proven to be very successful beyond small numbers of
atoms, requiring a large number of generations in order to
locate the global minima. In place of it, modifications to

the GA operations of crossover, and mutation have had to
be made in order to bring about more rapidly converging
sequences. These variations have been based on physical
insight into the problem (Hartke, 2001) incorporating
crossover and mutation procedures based on the physical
geometry of the clusters. In addition, improvements have
been achieved by incorporating local search algorithms
into the GA as well (Deaven et al., 1996; Doye et al.,
1999; Neisse & Mayne, 1996; Radcliffe and Surry, 1995;
Wales and Doye, 1997). These investigations have shown
that the problem can be treated using problem-specific
GAs.

Here we investigate and compare the success of the
Particle Swarm Optimization (PSO) method with a fairly
generic GA when applied to the Lennard-Jones problem.
There has already been some discussion of the similarities
and differences between the PSO method and genetic
algorithms (Eberhart and Shi, 1998; Angeline, 1998).
The PSO method has proven to be successful in a variety
of applications (Kennedy and Eberhart, 2001). Our
objective is to see how well it can handle quite a
challenging function in order to better understand its
capabilities. Certainly the success achieved using special
treatments tailored to the cluster problem will not be
achieved using a simple approach such as the PSO.
However, it’s ability to seek out the global minimum in a
function with a large number of local minima will be
severely tested. If it can accomplish this test as well if not
better than simple generic genetic algorithms, then it
should merit recognition as a valuable tool for treating
other global optimization problems.

2 THE LENNARD-JONES PROBLEM

The Lennard-Jones problem is concerned with
determining the lowest-energy configuration of a cluster
of neutral atoms interacting via the Lennard-Jones
potential. The function to be minimized is the total
energy (in reduced units) of the Lennard-Jones cluster as
computed from

N-1 N
-12 -6
> 2 (-

i=1 j=i+l
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where N is the number of atoms in the cluster, and r;
represents the distance separating atom i and atom j. This
problem has a long history (Hoare, 1979; Leary, 1997). It
has served as a test-bed for a wide variety of optimization
algorithms, primarily due to the exponentially increasing
number of local minima. It is significant in the field of
chemical physics for the insight gained by studying the
structure of the clusters as the size increases. It also
serves as a reasonably accurate mathematical model of a
real physical system, namely that of low-temperature
microclusters of heavy rare-gas atoms such as argon,
krypton and xenon.

Much of the foundation for the study of the Lennard-
Jones problem was laid by the well-known results of
Northby (1987). He established multilayer icosahedral
conformations as the dominant structural motif for the
optimal microclusters and produced global optima for all
N < 147. Other authors (e.g. Xue, 1994; Deaven et al.
1996; Leary & Doye, 1999) have since found new
configurations having lower energies than those of
Northby for some values of N. Many of these studies
employed hybrid genetic algorithms with local search.
More recently (Hartke, 2001) the PHENIX method, also
based on a GA, has extended the values of N successfully
treated up to 250. It is believed that the lowest-energy
configurations have now been determined for all N < 250.

3 PARTICLE SWARM OPTIMIZATION

The Particle Swarm Optimization (PSO) method has
evolved from a purely qualitative social optimization
scheme to a truly numeric optimization scheme (Kennedy
and Eberhart, 1995; Eberhart and Kennedy 1995). In its
most applied form, the algorithm is designed to search for
global optima in an n-dimensional search space of real
numbers. An excellent review of the background and
philosophy behind this method can be found in a recently
published book (Kennedy and Eberhart 2001).

As in the more common Genetic Algorithm, a population
of individuals is formed. Each individual in the PSO
method is considered as a “particle” which is free to move
about the search space. In the case of the Lennard-Jones
problem each particle of the population is characterized
by a set of 3N real numbers corresponding to the (x,y,z)
positions of each atom. The fitness of a particle
corresponds to the energy of the collection of N atoms,
with the objective to make this energy as small as
possible. In practice this energy is negative,
corresponding to a ‘bound’ set of N atoms.

If particle i in the population, at time t, is represented as
the vector X, (t) , then the change of position as the
particle goes from one time step to the next is defined to
be its velocity,

How this velocity changes at each time step is determined
by the history of the particles past motion as well as that
of its neighbours. This information is encapsulated in two
parameters, the previous best position [71. for this
individual particle, and the previous best position p_ for
all those particles in the neighbourhood of this particular
particle. We will define this neighbourhood later. The
formulas to adjust the particle’s velocity and position are
then given by

5,(1) = w7, (1=1)+ 0, (5,5 (1))
+(p2(13g—7¢,,(t—1))

for the velocity, and

X-i(t)zxi(t_l)—}_vi(t)

for the position. Here w is a weighting factor which is set
to 0.9 at the beginning of the process, and decreases
linearly to 0.4 at the end of the specified number of time
steps (Shi and Eberhart 1998). The other two parameters,
@, and are positive random numbers with upper
bounds ¢, and @, .

The other constraint on the system requires that the
velocity is limited within a certain range so that all the
particles will not escape from the search area. This is
defined by limiting each velocity to v __ . Finally, the
neighbourhood of each particle, mentioned above, refers
to those particles which are adjacent in the population.
For example a neighbourhood of 2 particles means that
the particle in question has one neighbour on either side
of it. A neighbourhood of 4 means that there are 2
particles on either side. It is understood that the
population is considered to be a loop with the first and
last particles in the population connected. The algorithm
is then reasonably straightforward.

begin PSO
g := 0 (generation counter)
Initialize population P(g)
Evaluate population P(g) (i.e. the cluster
energy)
while not done do
gi=g+1
Evaluate new velocities
Evaluate new positions
Determine local and global best
Evaluate new population P(g)
end while
end PSO
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4 GENETIC ALGORITHMS

In order to do some sort of a comparison we have also
carried out a number of calculations of the Lennard-Jones
energies using a basic generic genetic algorithm, as well
as a slightly more involved one. The first GA we refer to
as BasicGA, which is described by the pseudocode shown
below:

begin BasicGA
g := 0 (generation counter)
Initialize population P(g)
Evaluate population P(g)

while not done do
g =g+l
Select P(g) from P(g-1)
Crossover P(g)
Mutate P(g)
Evaluate P(g)

end while

end BasicGA

This algorithm employed Roulette wheel selection,
single-point crossover, and the mutation consisted of
randomly modifying one parameter. The crossover
probability was 0.8 and the mutation probability was 0.15.

In addition we ran a more general genetic algorithm based
on the Genetic Algorithm Optimization Toolbox (GAOT)
(Houck) which incorporated three different kinds of
crossover functions and also three different mutation
operators. Geometric selection was used, the crossover
methods used were simple, arithmetic, and heuristic, and
the mutation operators were boundary, uniform, and non-
uniform (Michaleweiz 1992). In each generation two sets
of parents were chosen for each crossover method, and
four individuals were chosen for each of the mutation
methods. Hence each generation is able to provide a
wider search of the parameter space than in the case of the
BasicGA above.

S CALCULATIONS

In order to initially investigate the effect of the various
parameters in the PSO calculation for the Lennard-Jones
problem, we have focussed on a fairly simple case, that of
the 8-atom cluster. As the best energies for clusters
having up to 250 atoms are well known, we have
examined the convergence of the iterations to the best
known energy for this case (-19.82). Hence in the first
part of this study we allow the iterations to proceed until
the energy of the cluster (the best energy in the swarm) is
within a small distance of the known value. Here we have

required the value of this energy to converge to 4
significant figures.

The first calculations examined the effect of the
neighbourhood size on the rate of convergence. We
varied the size of the neighbourhood from 0 (meaning that
all particles were in the neighbourhood) up to 14. The
size of the swarm was kept at 30 particles. The maximum
velocity was set at 0.2 and the bounds for @™ and
@, were both set at 2.0. If the swarm did not converge
after 10,000 iterations, it was terminated. We repeated
the runs 100 times and recorded the number of failures
(i.e. the number of times that convergence was not
achieved in the maximum allowed number of iterations),
as well as the average of the number of iterations required
for those cases where convergence was achieved. Figure
1 shows the behaviour of these two measures as a
function of the neighbourhood size

N=8
L — 6000
& 40 " 3000
L
° N 1 2000
g 20 1 1000
P-4
0 0

0 5 10 15
Neighborhood Size

Figure 1: Variation with the neighbourhood size

The solid line in Figure 1 represents the number of
failures, and the dashed line the average number of
iterations. Here we see that the average number of
iterations for the runs which converged did not vary

N =8 atoms

Number of Failures

Ln(MaxV)

Figure 2: Variation with the log of Max V.
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significantly from around 5,000. However there is a clear
minimum for the number of failures when the
neighbourhood size was either 2 or 4.

We proceeded next to investigate the effect of varying the
value of the maximum velocity (MaxV).

The neighbourhood size was set to 4, and all other
parameters were as above. The maximum velocity was
varied between 0.003 and 2.5. With such a large range,
we plotted the results as a function of the logarithm of the
maximum velocity. The same two measures were used as
above, and are shown in Figure 2.

The solid line, showing the number of failures for the 100
trials, shows a broad minimum with the number of
failures to converge being less than or equal to 20 for
MaxV in the range from 0.1 to 0.8. The number of
average iterations has a minimum when MaxV equals
0.01. Hence again there is no common minimum.
However, with the primary objective of achieving
convergence, we have tended to focus more on the
number of failures as opposed to the average number of
iterations. The latter quantity does not vary over a large
range. Selecting a maximum velocity anywhere in the
range from 0.1 to 0.8 does not significantly affect the
number of iterations to convergence. Hence for the next
computation, we chose to select a value of 0.1 for MaxV.

The other variables which we looked at were those for the
bounds @™ and @, . Once again for the 8-atom
cluster we took the neighbourhood size as 4, and the
maximum velocity was set at 0.1. Setting the two bounds
to be equal to each other, we obtained the results shown in

Figure 3.

The value of 2.0 gives the best results in the sense that the
number of failures is the least and the average number of
iterations appears to increase with increasing @, .

While we recognize that there could be some dependence
on the number of atoms and the nature of the energy
surface in determining these results, we took these best
parameters and ran calculations of cluster sizes for N
varying from 4 to 15. We wanted to test the ability of the

120 12000
"]
$ 100 | 10000
3 a0 - / 8000
e 60 | e 6000
5 40 %\: // 4000
S 20'||'"" o 2000
0+ ‘ ‘ ‘ ‘ 0
15 17 19 21 23 25
Phi(Max)

Figure 3: Variation with @

PSO to achieve convergence over this range, and compare
the results with fairly simple Genetic Algorithms applied
to the same problem. In addition to looking for
convergence, we also kept track of the number of function
evaluations required for each run. In all cases we took the
number of particles to be 30 and ran for 20,000 iterations.
100 trials were run for each value of N and the iterations
were terminated if the energy matched the best known
value for that value of N, up to 4 significant figures. If

Table 1.
PSO GA
Cluster No. Of Av. No. | Av. No. No. Of | Av. No. Av. No. Best
N Energy Failures iterations Function Failures | Generations | Function Energy
Evaluations Evaluations | (GA)

4 -6 2500 75008 57 11634 150016

5 -9.104 5982 179487 95 16464 212581

6 -12.71 96 7439 223177 100 20000 257500 -12.69
7 -16.51 52 8547 256424 100 20000 256720 -16.49
8 -19.82 29 9346 280388 100 20000 257482 -19.76
9 -24.11 67 10143 304293 100 20000 258916 -23.99
10 -28.42 91 9428 282846 100 20000 256877 -28.16
11 -32.77 95 11309 339294 100 20000 257706 -30.68
12 -37.97 96 10728 321855 100 20000 258336 -36.89
13 -44.33 100 20000 600000 100 20000 256950 -41.94
14 -47.84 99 16704 501120 100 20000 258426 -42.95
15 -52.32 97 16885 506550 100 20000 258444 -48.92
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the run did not converge to this limit under the 20,000
iteration limit, then the run was counted as a failure.

Table 1 provides a summary of these results for N = 4 to
15. The second column is the known lowest energy for
each of these cluster sizes (Leary, 1997). The next three
columns show the PSO results: the number of failures to
converge out of the 100 total trials; the average number of
iterations required for those trials which did converge;
and the average number of function evaluations used in
the converged runs. The number of failures to converge
is also graphed in Figure 4 as a function of N. Here two
plots are shown, the solid line shows runs which were
terminated after 10,000 iterations if convergence was not
achieved, whereas the dashed line shows the same results
for 20,000 iterations. It can be seen that there is not a
great deal of difference between these two results.

120
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Fig. 4. Failures vs N

Table 1 also shows the results of runs using the modified
GA. The basic GA was not successful in the sense that
after 500,000 generations, convergence could not be
achieved even for N = 4 atoms. Limiting the runs to
20,000 generations and using a population size of 30, the
modified GA did find the known energies for N=4 and
N=5, but was unsuccessful in 100 trials for the other
values of N. The best energies achieved are shown in the
table, and for the smaller values of N are relatively close
to the known energies, indicating that allowing the GA to
continue would likely achieve convergence.

The PSO method was able to achieve convergence in at
least one of the trials for all values of N studied here,
except for N = 13. In many cases only a few of the trials
converged, seeming to indicate that the particle “swarm”
could not get close enough to the fixed point in the set
number of iterations.

6 SUMMARY AND CONCLUSIONS

The Particle Swarm Optimization method has been
applied to a variety of areas since its introduction only a
few years ago. As far as we are aware this is the first time
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that it has been applied to the energy conformation
problem for atomic clusters. There has also been some
other work on comparing the PSO with genetic algorithms
(Eberhart and Shi 1998; Angeline 1998).

Genetic algorithms incorporate selection, crossover and
mutation schemes in order to search the parameter space.
In the PSO there is no specific selection process, however
each individual carries with it a copy of its personal best
value, which serves a somewhat similar role to that of a
parent. The offspring of an individual is a function of this
best value. The PSO is the only evolutionary algorithm
that does not incorporate selection of the fittest.

The role of the crossover function in the GA is to select
information from parents (usually two) to create
offspring. In the PSO the influence on one particle by the
others comes only in the value of the best position of the
particles in the defined neighbourhood.

Mutations are an important aspect of the GA process in
that they help to break out of the genetic sequence
generated by the parents and offspring. However a
common limitation of the GA is that as the population
converges, the average fitness value becomes high so that
mutations will usually result in a low-fitness chromosome
which will be rejected by the selection process. The
result is that the process may converge to a local optimum
instead of finding the global one. There are variations
which try to circumvent this, including the incorporation
of local optimization methods.

Particle swarm uses a highly directional mutation
operation as each individual’s velocity vector is modified
using a vector whose direction lies between the personal
best and the neighbourhood best. As a consequence the
PSO may have difficulties when the average local
gradients point away from the global optima or are
constantly changing.

Our calculations here have shown that the PSO is indeed
an effective optimization method. Significantly better
results have been found for the location of the global
optimum energy value for a cluster of atoms interacting
via the Lennard-Jones potential than for the case of a
relatively generic GA. The potential energy surfaces for
these problems are known to contain large numbers of
local minima, often very close to the global minima for
certain values of N. Hence it is not unexpected to find
that many of the runs converge to one of these local
minima.

The use of a low value of the maximum velocity in our
calculations undoubtedly resulted in slow convergence in
most cases, however it was somewhat necessary in the
sense that the parameter values for the sizes of clusters
studied here are in the range [-1, 1]. Small variations in
these parameter values can shift the energy significantly,
so that it is important to search over a relatively fine
mesh.

The runs with the genetic algorithms quickly converged to
a limit, and then tended to stay near that value for most of
the subsequent generations. Here it would help to have
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more flexible mutation and selection schemes to prevent
this from happening.

Future work will focus on studying possible variations to
the PSO which can help improve the success rate for this
type of problem.
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Abstract

For the valuation of American put options ex-
act pricing formulas haven’t as yet been de-
rived We therefore determine analytical ap-
proximations for pricing such options by in-
troducing the Generalized Ant Programming
(GAP) approach applicable to all problems
in which the search space of feasible solu-
tions consists of computer programs. GAP is
a new method inspired by Genetic Program-
ming as well as by Ant Algorithms. Applying
our GAP-approximations for the valuation of
American put options on non-dividend pay-
ing stocks to experimental data as well as
huge validation data sets we can show that
our formulas deliver accurate results and out-
perform other formulas presented in the lit-
erature.

1 INTRODUCTION

In their seminal papers Black and Scholes (1973) and
Merton (1973) derived an analytical solution for the
valuation of European call options on stocks paying no
dividends during the time to expiration. Merton ad-
ditionally showed that premature exercising of Amer-
ican call options on this type of stocks is never op-
timal and that the valuation can also be made using
the Black/Scholes—Merton method. If in the case of an
American call option, dividends are paid, and these are
known with certainty, its value can be obtained using
the analytically exact pricing model of Roll (1977).

In comparison to American call options, premature ex-
ercise of American put options on non-dividend paying
stocks may produce benefits, if the stock price falls
below a certain, permanently variable critical value
(killing price). As a result of this difference between

Matthias G. Schuster
University of Vienna
Department of Business Administration
Bruenner Strasse 72, A-1210
matthias.schuster@univie.ac.at

the premature exercising of American call options and
of American put options, ascertaining the optimal time
for premature exercising, or the killing price, is a part
of the problem to be solved, for which there was pre-
viously no exact model. Thus, the valuation of Amer-
ican put options is based on numerical procedures or
analytical approximations. The best-known numeri-
cal procedures are the lattice approach of Cox, Ross,
and Rubinstein (1979) and the finite difference method
of Brennan and Schwartz (1977). However, getting
accurate results by using numerical procedures nor-
mally requires long calculation time. A simple analyt-
ical approximation for the valuation of American put
options on non-dividend paying stocks was presented
by Johnson (1983). This simple analytical approxima-
tion, however, is not very accurate, so that many more
ambitious analytical approximations have been devel-
oped. The best-known of these come from MacMillan
(1986) and Geske and Johnson (1984).

MacMillan’s analytical approximation for the valua-
tion of American put options consists of raising the
value of a suitable European put option by the value
of the approximately calculated premature exercising
of the option. This method forms the basis for analyt-
ical approximations used to evaluate a range of other
American options, such as index options, currency op-
tions, and options on futures (see, e.g., Barone-Adesi
and Whaley (1987)). Geske and Johnson’s analyti-
cal approximation assumes that premature exercise is
possible only at particular, discrete points in time. Ac-
cordingly, for each of these moments an option value is
calculated, and, based on this, the value of the Amer-
ican put option is ascertained using the polynomial
extrapolation method. This method treats American
put options both with and without dividends. The
MacMillan method, however, deals only with put op-
tions on stocks paying no dividend during the maturity
of the options, although it was extended by Barone-
Adesi and Whaley (1988) as well as Fischer (1993) to
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include the dividend paying case. It is characteristic
of most approximations for the valuation of Ameri-
can put options found in the literature that they ap-
proximate either the stochastic stock price process, or
the partial differential equation (with the appropri-
ate boundaries) which implicitly describes the option
price. In contrast, Geske and Johnson (1984) as well
as Kim (1990) formulate a valuation equation which
represents an exact solution of the partial differential
equation, and then solve it either by analytical approx-
imation or by numerical techniques.

During the last few decades an increasing number of
researchers of various disciplines has been impressed
by the problem-solving power of nature. They devel-
oped optimization algorithms and heuristics based on
the imitation and simulation of admirable natural phe-
nomena. For example, Artificial Neural Networks im-
itate the principle of human brains and Fvolutionary
Algorithms make use of the Darwinian principle of the
survival-of-the—fittest. Both methodologies are used
to solve problems which are normally not amenable to
traditional solution techniques and have been applied
to option pricing problems. For instance, Hutchinson,
Lo, and Poggio (1994) employ an artificial neural net-
work for the valuation of European options whereas
Chen, Lee, and Yeh (1999), Chidambaran, Lee, and
Trigueros (2000), and Keber (2000) use Genetic Pro-
gramming to solve option pricing problems.

A further example and one of the most recent develop-
ments of nature-based solution techniques is the Ant
Colony Optimization meta-heuristic. Ant Algorithms
originally introduced by Dorigo and colleagues (Dorigo
(1992) and Dorigo, Maniezzo, and Colorni (1991)) as
a multi-agent approach to difficult combinatorial op-
timization problems like the travelling salesman prob-
lem (TSP) are inspired by the foraging behaviour of
real ant colonies, in particular, how ants can find short-
est paths between two points. Real ant colonies are
capable of solving such problems using collective be-
haviour and indirect communication via a chemical
substance called pheromone deposited on the ground.
It is hardly surprising that for the first time ant al-
gorithms have been applied to the travelling salesman
problem because the analogy between the real ants’
problem and the TSP is obvious. In the meantime,
ant-based algorithms have been applied successfully to
a broad field of combinatorial optimization problems
(see, e.g., Dorigo, Caro, and Gambardella (1999)).

In this contribution we develop the Generalized Ant
Programming (GAP) approach as a new variant of ant
algorithms and apply the proposed method to the op-
tion valuation problem. GAP enables computers to

solve problems without being explicitly programmed.
It is applicable to all problems in which the search
space of feasible solutions consists of computer pro-
grams. GAP works by using artificial ants to automat-
ically generate computer programs. As an acid test for
GAP we derive analytical approximations for the valu-
ation of American put options on non-dividend paying
stocks. We focus on this problem for several reasons.
Firstly, analytical exact solutions for pricing American
puts have not as yet been derived. Secondly, testing
new techniques should not be based on simple prob-
lems because any assessment of the proposed method
would be open to criticism. Furthermore, our results
have to be compared with other approximations pre-
sented in the literature. This can be easily done by
using the most frequently quoted approximations men-
tioned above. Using experimental data as well as huge
validation data sets we can show that the GAP based
formulas for the valuation of American put options on
non-dividend paying stocks deliver accurate approxi-
mation results and outperform other approximations
presented in the literature.

In the second section we focus on the concept of the
Generalized Ant Programming approach. The third
section presents the GAP-approximations for the valu-
ation of American put options on non-dividend paying
stocks. In the fourth section we show the experimental
results. The contribution concludes with a summary.

2 GENERALIZED ANT
PROGRAMMING

2.1 INTRODUCTION

The Generalized Ant Programming (GAP) approach
is a new method inspired by the Genetic Program-
ming approach introduced by Koza (1992) as well
as by Ant Algorithms originally presented by Dorigo
(1992) as a multi-agent approach to difficult combi-
natorial optimization problems like TSP. GAP is an
approach designed to generate computer programs by
simulating the behaviour of real ant colonies. When
travelling real ants deposit pheromone on the ground
which influence the choices they make. Ants tend to
choose steps marked by strong pheromone concentra-
tions. Pheromone trails can be seen as “public in-
formation” which is modified by ants to reflect their
experience while solving a problem, e.g., to find short-
est paths between the nest and food sources. The
quantity of pheromone left by an ant depends on the
amount of food found. Within a given interval of time,
shorter paths can be travelled more often, which causes
a stronger pheromone concentration. In return, this
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increases the probability of the path to be chosen.

2.2 METHODOLOGY

Generalized Ant Programming is an algorithmic
framework which enables computers to solve problems
without being explicitly programmed. It is applicable
to all problems in which the search space of feasible
solutions consists of computer programs. GAP works
by using artificial ants to automatically generate com-
puter programs. Similar to real ants, the artificial ants
explore a search space now representing the set of all
feasible computer programs which we describe as paths
through a graph. The pheromone amount deposited by
an artificial ant depends on the quality of the solution
found. In other words, it depends on which path (com-
puter program) was chosen. The quality of a path is
measured using the corresponding computer program
as an “input parameter” to an “algorithmic regression
problem”. These transpositions lead to our proposed
GAP approach which we describe in a more detailed
way in the next few paragraphs.

Computer programs are usually based on a well de-
fined programming language. In our GAP-application
we therefore use a programming language £ specified
by the context-free grammar G = (N, T,R,S), see,
e.g., Aho and Ullmann (1972). £(G) is to be seen sim-
ply as the set of all analytical expressions which can
be produced from a start symbol S under application
of substitution rules R, a finite set of non-terminal
symbols N, and a finite set or vocabulary of terminal
symbols T. Thus,

L={p|S=pApeT"} (1)

where 7 represents the set of all analytical expres-
sions which can be produced from the symbols of the
vocabulary 7. Using the grammar G a derivation
of an analytical expression p € L consists of a se-
quence g, ts, ..., t, of terminal symbols and the corre-
sponding derivation steps (productions) t; — t;+1 (for
i=1,...,p—1). This derivation is denoted by

§=p. 2)

To take a simple example, assume

g=W={ST,F},

T ={a,+,%(,)},
R=1{S—=S+T|I,T — T *F|F,F - (S)|a},
S)

and let us express this grammar in an equivalent
graphical representation (syntaz diagram).

S T
£ ]
L-—'—I-T @
T =1
o
6
F

@

O—s O

Each derivation in this grammar represents a simple
arithmetic expression including the symbols a, +, *, (,
and ) and can be interpreted as a path through the
syntax diagram. An example of a derivation in our
simple grammar would be

S>=S+T=>T+T=>F+T=a+T
sa+T*«F=a+F+«xF=>a+axF=>a+axa

In the sense of GAP, L is the search space of all po-
tential analytical expressions to be generated, p € £ is
a path which can be visited by ants, and J(t) C L is
a set of paths already visited at time ¢. Furthermore,
each path p € L consists of a sequence of terminal
symbols ti, tz,...,t, and the corresponding derivation
steps t; = tipq (fori=1,...,p—1).

In GAP each path p; € J () can be seen as a derivation

where P; C G. While walking each ant forms a new

path p' which is a derivation based on P’ = U | P; C
g,

S =7y 4

= (4)

and where all derivation steps contained in p’ are se-
lected according to the pheromone amounts of the cor-
responding paths p;. In the proposed GAP-application
the pheromone trail is put on whole paths implying
that the derivation steps describing a path are equally
weighted. This is just for simplification and can be ex-
tended to different pheromone amounts along a path.
We are going to present this extension in one of our
next papers.

The amount of pheromone trail on path p at time ¢ is
given by

7p(t) = (1= p) - 7p(t) + A7y (1), (5)

where 0 < p < 1 is the coefficient representing
pheromone evaporation, and

K
ATy (t) = Z ATZ’f(t)
k=1



ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION 77

is the pheromone increase obtained by cumulating the
contributions A7k(t) of each ant k = 1,...,K. In
other words, this is the amount of pheromone de-

posited on path p by the k' ant at time ¢. This quan-
tity of pheromone trail is given by

c¢ pth
ATIIIC(t) _ { OQ - Li(t,p) if k'™ ant takes path p 6)

otherwise

where @ is a constant and Ly (¢,p) is the value of the
objective function obtained by ant k at time ¢. As
GAP is similar to the Genetic Programming approach
each path p € L represents a computer programm (or
an analytical expression) and can therefore be seen as
a function p: & — A transforming input data & into
a solution or output data A. Accordingly, the func-
tion Li: A — IR has to be defined in a way that it
awards higher values to those paths (computer pro-
grams) which represent a good solution to the task in
hand, and lower values to less suitable paths (com-
puter programs). The value of the objective function
is measured using a representative set of test records
Ei, for i =1,...,D. If these input data are processed
using the computer program p € J(t), the result will
be the output data A;, which can then be compared
to the target output data A7 . Using a deviation func-
tion §(A;, A7) in a way that it delivers higher values
the more the output data differ from the target output
data, the aggregated deviation is given by

D
F(p) =Y 6(Ai AY) with A =p(&).  (7)
i=1
The objective function Lg (¢, p) can be formulated as
1
Li(t,p) = —/—— (8)

1+ F(p)

so that the values of the objective function lie between
zero and one, and larger values represent better paths
(computer programs).

For the (new) path p' € L(P’) being built by the

kth ant, see (4), the probability of selecting derivation
steps describing old paths p; € J(t) is given as

[ )" e, e pre
P (1) = E;(t)[”(t”a'[”"]ﬁ pi € Pi(t) o
0 k otherwise

where P (t) C P'(t) is the set of derivation steps of
path p; that the k" ant has not visited yet. 7,, is a
heuristic value of including derivation steps of p;. The
parameters a and S control the relative importance of
pheromone trail versus visibility.

Using the above definitions, GAP can be outlined by
the following (pseudo) computer program.

0] program Generalized AntProgramming;
1] t=0;
2] Init a,8,p,Q, T (1), 75(t);

[

[

[

[ 3] repeat

[ 4] t=t+1;

[ 5] for each ant k do

[ 6] Build a path p' according to (4) and (9);
[ 7] Calculate Lg(¢,p') using (8);

[ 8] Jt)=7Jt-1)up;

[ 9] end;

[10] Save the best solution found so far;

[11] Update trail levels 7,(t) according to (5);
[12] Shrink J(t);

[13] Perform global shaking on 7,(¢);

[14] until termination;

[15] end.

While most of the programming steps are already dis-
cussed, programming step [12], Shrink 7(t), is to be
seen in conjunction with step [8], J(t) = J(t—1)Up .
Executing [8] repeatedly implies that the set of paths
already visited, J(t), becomes bigger and bigger or
could go to infinity in worst case which is highly unde-
sirable. On the other hand, [J(t) also contains paths
where pheromone trails are completely evaporated so
that they can be excluded in further exploration, i.e.,
when ants choose a new path. Hence, in step [12] we
shrink 7(t) accordingly. A second step not yet men-
tioned is the global shaking procedure in [13]. In (1)
we choose a specification (of our language) which is of
finite size, although the language being specified is not
finite. Hence, GAP is comparable to dynamic prob-
lems such as the TSP with the insertion or deletion
of cities, see, e.g., Bonabeau, Dorigo, and Theraulaz
(1999) and Guntsch, Middendorf, and Schmeck (2001).
If, in GAP, the pheromone amount on a derivation step
(or path) becomes much higher than all others, this
step (or path) will almost certainly always be chosen.
This would be fine in a static model but is a prob-
lem in GAP because it prevents ants from taking new
derivation steps. Similar to dynamic approaches we
therefore apply the “shaking technique” to normalise
the pheromone levels. The formula used in our appli-
cation is a logarithmic one and is given by

r(t) =79 [1 +1n (“;g”)] , (10)

p

where 77 is the minimum value for 7,(t), forced by the
algorithm, so that 7,(t) > 7, (Eyckelhof (2001) and
Stiitzle and Hoos (2000)). In our GAP-application we

use the initial value as the lower boundary.
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2.3 RELATED WORK

To our knowledge, the first attempt using ants for au-
tomatic programming comes from Roux and Fonlupt
(2000). At first glance one tends to believe that their
approach can solve symbolic regression problems. But
on a closer view it is doubtful whether the approach
provides accurate approximation results. Hence, we
have retraced and implemented their method. Testing
the approach on several problems we have got poor
approximation results. This is in accordance with the
results presented in their own paper which, from our
point of view, are not very promising. Furthermore,
in the present version of the proposed method the au-
thors focus only on symbolic regression problems. In
comparison, our approach can be used for general “al-
gorithmic regression problems”. Thus, we refer to our
approach as Generalized Ant Programming.

3 APPLICATION

3.1 EXPERIMENTAL DESIGN

By applying the GAP approach to option pricing we
have to specify some parameters. For the aggregated
deviations used in the objective function (8) we used a
randomly generated training sample of 1,000 American
put options on non-dividend paying stocks described
by the tuple (Py, So, X,r,T, o) where Sy > S*. S* rep-
resents the killing price calculated using MacMillan’s
(1986) procedure, Py refers to the “exact” value of an
American put option on a non-dividend paying stock
at t = 0, Sp denotes the stock price at t = 0, X is the
exercise price, r represents the annual continuous risk-
free interest rate (in %), T is the time to expiration (in
years), and ¢ is the annual volatility of the stock price
(in %). Each option price Py was calculated by using
the finite difference method! and served as the exact
value of the American puts. Applying the property
that option prices are linear homogenous in Sy and
X, ie., v fo(So, X,r,T,0) = fo(y - So,v:X,r,T,0)
where 7 is a constant and fp denotes a function for
calculating the option price, we are able to use a stock
price Sp = 1 for all the options of the training sam-
ple. The remaining parameters were drawn randomly
based on uniform distributions. In accordance with
the literature as well as realistic circumstances we de-
fined the following domains: 2 < r < 10, %360 < T" < Vs,
10 < 0 < 50, and 0.8 < a < 1.2. The domain of
the moneyness ratio a = Sp/X is based on the con-
sideration that option trading always starts near-the-
money. Additionally, Stephan and Whaley (1990) look
at a sample of 950,346 stock option transactions and

'With At = (1/365)/5, AS = 0.01, and Spax = 2 - So.

report that the moneyness is between 0.9 and 1.1 in
about 78 % of cases.

In accordance with the Generalized Ant Programming
approach we transformed each tuple (FPy, So, X,r, T, 0)
into an input data record &; (= (Sp, X,r,T,0)) and a
corresponding target output data record A? (= (F)),
for © = 1,...,1000. For the aggregated deviations
used in (7) we used the sum of the squared errors
S2%(A; — AF)?. In the terminal symbol set we in-
cluded the variables So, X, r, T, o, o, ephemeral con-
stants, the commonly used mathematical operators +,
—, %, =, vz, In(z), 22, z¥, and the cumulative dis-
tribution function of the univariate standard normal
distribution ®(z). For the substitution rules, R, and
the non-terminal symbol set, N, we used subsets of
the grammar defining Jensen and Wirth’s “Standard
Pascal” (see Jensen and Wirth (1975), pp. 110-118).
This subset was chosen so that simple analytical ex-
pressions can be derived. For the other GAP related
parameters we used the following settings resulting in
a balanced relationship between convergence speed,
calculation effort and effectiveness of the GAP algo-
rithm. The ant colony includes K = 50 members and
for the relative importance of pheromone trails we used
a = 1. The remaining parameters are defined as fol-
lows: # =1,p=0.5 and Q = 1. Among other things,
7 is used to restrict the formula complexity. Further-
more, we stopped the GAP algorithm after 100,000
cycles.

3.2 APPROXIMATION

Applying the GAP approach as described we get vari-
ous approximations for the valuation of American put
options on non-dividend paying stocks. One of our
best approximations (for options with Sy = 1 and
So > S* as mentioned above) is given by

Py PEY =X 7T ®(—do) — Sp - ®(—dy)  (11)

where

_ In(So/X)
==

The above formula is as derived by the GAP algo-
rithm without possible simplification. Looking at (11)
it is amazing that our formula can be characterised
as a simple approximation when compared to other
analytical approximations presented in the literature.
Furthermore, our formula shows a strong structural
similarity to the Black/Scholes—Merton equation for
valuing European put options. Both formulas are iden-
tical except for the parameters d; and ds as well as 7
given in the appendix.

dy d2=d1—0\/T.
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4 EXPERIMENTAL RESULTS

To give a first impression of the accuracy of the GAP
based analytical approximations for the valuation of
American put options on non-dividend paying stocks
we use the data sets of Geske and Johnson (1984)
and Barone-Adesi and Whaley (1988) because these
data sets are often used as comparisons. Furthermore,
we use a huge sample of 50,000 randomly generated
American put options (validation data set). This en-
sures that the assessment of the approximations will be
highly accurate. The corresponding parameters are in-
dependent from those of the training sample and their
domains are as follows: 10 < Sy < 100, 2 < r < 8,
Yago < T < Yy 5 <o <50, and 0.8 < a < 1.2. The
numerically exact put option and killing prices Py and
S* were calculated using the finite difference method
(with At = (1/365)/5, AS = 0.01, and Spax = 2 - Sp)
and MacMillan’s (1986) procedure, respectively. For
the method-related comparison we use the most fre-
quently quoted analytical approximations Py of John-
son (1983), PSY of Geske and Johnson (1984), and
PMM of MacMillan (1986).

In Table 1 and 2 the GAP based approximation P{*A¥
as well as the most frequently quoted approximations
Py, P&’ and PMM are applied to the data sets
of Geske and Johnson (1984) and Barone-Adesi and
Whaley (1988), respectively. Py denotes the numeri-
cally exact put option price. At the end of each table
the three error measures mean absolute error (MAE),
mean squared error (MSE) and mean absolute percent-
age error (MAPE) are given for each approximation.
The approximation results can be summarised as fol-
lows:

e From Tables 1 and 2 it can be seen that John-
son’s (1983) put pricing formula delivers less ac-
curate approximations. The mean absolute er-
rors are about 7 and 71 pence, respectively. The
next best approximation comes from the GAP ap-
proach having mean absolute errors of about two
and three pence, respectively. MacMillan’s (1986)
and Geske and Johnson’s (1984) approximations
are better than the others because their mean ab-
solute errors are between about four tenths of a
penny and two pence. With respect to the ac-
curacy of the GAP based approximation we have
to keep in mind that only 40 % of the options
are consistent with the parameter domains used
in the GAP application. However, if we look at
these options exclusively the GAP based formula
delivers the best approximations.

The application results just shown cannot be used for

Table 1: Approximations for the value of American put
options on non-dividend paying stocks (Sp = 40,r =
4.88, data from (Geske and Johnson 1984, page 1519)).

T o X Py py pMM  pFJ pFAr
0.0833 0.20 35.00 0.0063 0.0062 0.0065 0.0062  0.0063
0.3333 0.20 35.00 0.2001 0.1969  0.2044 0.2000  0.2042
0.5833 0.20 35.00 0.4323 0.4205 0.4415 0.4318  0.4582
0.0833 0.20 40.00 0.8509 0.8406  0.8503 0.8521  0.8533
0.3333 0.20 40.00 1.5787 1.5262 1.5768 1.5759  1.5937
0.5833 0.20 40.00 1.9894 1.8916  1.9888 1.9827  2.0551
0.0833 0.20 45.00 5.0000 4.8403  5.0000 4.9969  5.0000
0.3333 0.20 45.00 5.0875 4.7882  5.0661 5.1053  5.1069
0.5833 0.20 45.00 5.2661 4.8584  5.2364 5.2893  5.3536
0.0833 0.30 35.00 0.0777 0.0777 0.0780 0.0772  0.0773
0.3333 0.30 35.00 0.6967 0.7056 0.7014 0.6972  0.7012
0.5833 0.30 35.00 1.2188 1.2390  1.2281 1.2198  1.2506
0.0833 0.30 40.00 1.3081 1.3047  1.3078 1.3103  1.3104
0.3333 0.30 40.00 2.4810 2.4757  2.4783 2.4801  2.4952
0.5833 0.30 40.00 3.1681 3.1634  3.1667 3.1628  3.2331
0.0833 0.30 45.00 5.0590 4.9910  5.0470 5.0631  5.0578
0.3333 0.30 45.00 5.7042 5.6090 5.6794 5.7017  5.7232
0.5833  0.30 45.00 6.2421 6.1265  6.2150 6.2367  6.3202
0.0833 0.40 35.00 0.2466 0.2499  0.2472 0.2461  0.2461
0.3333 0.40 35.00 1.3447 1.3886  1.3491 1.3461 1.3421
0.5833 0.40 35.00 2.1533 2.2475  2.1619 2.1553  2.1698
0.0833 0.40 40.00 1.7659 1.7763  1.7659 1.7688  1.7670
0.3333 0.40 40.00 3.3854 3.4494  3.3825 3.3863  3.3902
0.5833 0.40 40.00 4.3506 4.4728  4.3494 4.3475  4.3943
0.0833 0.40 45.00 5.2856 5.2706  5.2735 5.2848  5.2847
0.3333 0.40 45.00 6.5078 6.5535 6.4875 6.5015  6.5211
0.5833 0.40 45.00 7.3808 7.4874  7.3597 7.3695  7.4498
MAE 0.0692  0.0082 0.0040  0.0210
MSE (x107°) 1351.8420 15.4237 4.4433 117.0473
MAPE 0.0217  0.0045 0.0025 _ 0.0096

a general assessment of the accuracy of the approxi-
mation formulas because the underlying data sets are
too small. If we use the 1,000 data records used in the
GAP approach as a basis for a general assessment the
problem arises that this data sample represents train-
ing data, and thus the assessment would be open to
criticism of being a “self-fulfilling prophecy”. There-
fore, the definitive judgement of the approximation
formulas is to be made from the above mentioned val-
idation data set which is independent of the training
data set. Based on the validation data set Table 3 gives
the error measures and the graph in Figure 1 shows
the accuracy of the GAP based approximations as well
as Johnson’s (1983), Geske and Johnson’s (1984), and
MacMillan’s (1986) put pricing formulas. The accu-
racy is shown in terms of cumulated frequencies of
the absolute deviations between the numerically cal-
culated exact put option price and the approximations
just mentioned.

e Johnson’s (1983) put pricing formula delivers the
weakest approximation results. This can be seen
from Table 3 as well as the graph in Figure 1.
Whiile for the other approximations it can be said
with almost 100 % probability that the approx-
imated option prices differ from the numerically
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Table 2: Approximations for the value of American put
options on non-dividend paying stocks (X = 100, data
from (Barone-Adesi and Whaley 1988, page 315)).

T ers
Py i

T o So Py Py
r = 8.00

0.25 0.20 80.00 20.0000 18.0909 20.0000 20.0012 20.0000

0.25 0.20 90.00 10.0353 9.0470 10.0130 10.0730 10.0456

GAP
Py

0.25 0.20 100.00 3.2217 3.0378 3.2201 3.2115 3.2262
0.25 0.20 110.00 0.6642 0.6406 0.6810 0.6647 0.6725
0.25 0.20 120.00 0.0888 0.0865 0.0967 0.0879 0.0863

r = 12.00
0.25 0.20 80.00 20.0000 17.1344 20.0000 20.0112 20.0000
0.25 0.20 90.00 10.0000 8.2620 10.0000 9.9811 10.0000

0.25 0.20 100.00 2.9225 2.6265 2.9251 2.9110 2.9050
0.25 0.20 110.00 0.5541 0.5189 0.5781 0.5541 0.5549
0.25 0.20 120.00 0.0685 0.0654 0.0789 0.0676 0.0609

r = 8.00
0.25 0.40 80.00 20.3196 19.7588 20.2478 20.3699 20.3078
0.25 0.40 90.00 12.5635 12.4222 12.5142 12.5511 12.5769

0.25 0.40 100.00 7.1049 7.1204 7.0999 7.1018 7.1162
0.25 0.40 110.00 3.6968 3.7476 3.7120 3.7017 3.7002
0.25 0.40 120.00 1.7885 1.8310 1.8068 1.7892 1.7824

r = 8.00
0.50 0.20 80.00 20.0000 16.6555 20.0000 19.9402 20.0000
0.50 0.20 90.00 10.2890 8.8392 10.2348 10.3712 10.4406

0.50 0.20 100.00 4.1885 3.7889 4.1933 4.1519 4.3474
0.50 0.20 110.00 1.4095 1.3140 1.4459 1.4121 1.5142
0.50 0.20 120.00 0.3969 0.3768 0.4244 0.3961 0.4239
MAE 0.7083 0.0184 0.0173 0.0256
MSE (><10_4) 14886.3928 7.3752 8.2725 29.2733
MAPE 0.0721 0.0218 0.0034 0.0177

Table 3: Error measures for the approximations for the
value of American put options on non-dividend paying
stocks based on a sample of 50,000 put options.

Py PMM  pfl

GAP
Py

MAE 0.0674 0.0059 0.0031 0.0025
MSE (x1073) 27.0546 0.1197 0.1008 0.0201
MAX 1.8806 0.0827 1.2102 0.0584

exact option prices by no more than 5 pence, de-
viation to this level is only found in Johnson’s
(1983) solution in 72 % of cases. Put another
way, in 28 % of cases there is a deviation of more
than 5 pence. Due to these poor results, John-
son’s (1983) approximation is not considered in
further discussions.

e The next best approximations come from MacMil-
lan (1986) and Geske and Johnson (1984) hav-
ing MAEs of about 6 and 3 tenths of a penny
and maximum absolute deviations of about 8 and
120 pence, respectively. In comparison, the GAP
based formula delivers the best approximations
having a MAE of two and a half tenths of a penny
and a maximum absolute deviation of about 6
pence.

e In option pricing we usally look at the penny ac-
curacy of an approximation. From the graphs in
Figure 1 it can be seen that the penny accuracy
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Figure 1: Cumulated frequencies of the absolute devi-
ations between Py and the approximations based on a
sample of 50,000 put options.

of MacMillan’s and Geske and Johnson’s, approx-
imations is achieved in about 83 and 94 % of cases,
respectively. In comparison, the penny accuracy
of the GAP approximation is already achieved in
about 96 % of cases.

Summing up, for realistic and frequently observed
option parameters we can conclude that the GAP
based approximation clearly outperforms the approx-
imations of Johnson, MacMillan as well as Geske and
Johnson. Additionally, our approximation consists
only of fundamental mathematical operations and is
therefore easy to use whereas, e.g., Geske and John-
son’s formula requires at least the distribution function
of the trivariate, possibly also the multivariate, stan-
dard normal distribution which is normally calculated
using numerical integration. Moreover, the results pre-
sented so far represent work in progress and seem to
be very promising.

5 CONCLUSION

In this paper we have introduced the Generalized Ant
Programming approach as a new method for solving
problems in which the search space of feasible solutions
consists of computer programs. We have shown that
Generalized Ant Programming can be used to derive
accurate analytical approximations for the valuation of
American put options on non-dividend paying stocks.
Based on experimental data as well as huge validation
data sets we have shown that our formula delivers ac-
curate approximation results and outperforms other
formulas presented in the literature.
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Appendix

;:77,_4)<Cﬁln(7‘)> {m(x)zc @( .

T o2 In(X)o2

) % — o (@ (m(mu))}

where

-~ ry/® (r/In(X))r/T In(X)
A = (r—c1)X/® (T |:1n(r) + TVax -
B = \/X®(AcX®(~cy+T/B*))/B*, B* =o(n(X)So/c)?
¢ = VB+®(—0)-VT+ajo+®(So+C*)—T
ct = (,/m(a) In(r) — C3> (T +In(X) /o)
D = c40/T |:o"~‘I> (ln()()/o'2 + T) + (ﬁo’2 1n(r))2 — <I>(7T):| —c5
and
c1 =2.190564158 co = 1.757516557 c3 = 7.556576426
cq =0.219427468 c5 = 0.119453070 cg = —0.158050093
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Abstract

Game theoretic models are often used to simulate
phenomena observed in the natural world. It is
generally assumed that the implementation (or
representation) of the agents within a game has
no significant effect on the outcome of
simulations. To test this assumption the effect of
changing the representation of agents in the non-
reciprocal cooperation game studied by Riolo et
al. (2001) was used. In addition to the
implementation used by Riolo et al. (2001),
agents were also represented as higher dimension
real vectors, integer values, at bit-strings. It was
found that the method of agent implementation
used has a highly significant effect on the
cooperation rate and general behavior of the
simulation.

1 INTRODUCTION

Biologists and social scientists have long been interested
in the evolution of cooperation (e.g. Roy, 2000; Sigmund
and Nowak, 1999; Mouston et al., 2000; Hemesath,
1994). It is not understood how selfishly acting
individuals could evolve cooperative behavior (Axelrod,
1984). Scientists studying this phenomenon often use
theoretical games to investigate the origin of cooperation.
It is often tacitly assumed that agent representation has
only minor effects on the long-term behavior and results
of the model. The purpose of this paper is to present the
results of a study in which the method of representing the
agent in the model published by Riolo, et al. (2001) was
altered.

In Riolo et al. (2001)’s game individuals (agents) learned
to cooperate despite the cost of assisting another agent
and without reciprocity. In brief, this game was designed
so that an agent assisted another agent if identification
tags were sufficiently similar. The agents had ho memory
of previous encounters and were unlikely to play other
agents more than once (a substantial departure from the
usual iterated game used to study the evolution of

cooperation). Riolo et al. (2001) reported agents to assist
other agents at a rate of 73.6%, after evolution. A more
detailed description of the Riolo et al. (2001) simulation is
provided in the Experimental Design section.

Agents in Riolo et al. (2001) consisted of two real
numbers: the first served as an identity tag and the other
determining the altruistic behavior. This study used three
alternate implementations of the agents: multi-dimensional
real vectors, integer value, and bit-strings. Using a multi-
dimensional vector representation expands the tag space
(the number of possible tags). The real number
representation of computers is a fine-grained approach
since tags may vary by very small amounts. When using
integer value tags with a maximum value, the difference
between agents becomes more pronounced. As the size of
the maximum allowable integer increases, the results
should approach those of the single dimensional real
vector case. Using bit-strings examines the effect of both
higher dimensionality and the granularity of the
environment.

2 EXPERIMENTAL DESIGN

The experiments in this paper were conducted in the same
manner as described in Riolo et al. (2001). Specifically,
each simulation used a population of 100 agents which
were evolved for 30,000 generations. Each agent had a
tag (1), tolerance threshold (T), and a score. Every
generation, each agent played three agents selected at
random with replacement. For each place the first agent
(agent A) determines if it will assist the other agent (agent
B). If the distance between tags of agent A and agent B
was lower than the threshold of agent A, the score of
agent A was lowered by 0.1, and the score of agent B
increased by 1.0. This represents a costly contribution by
agent A to agent B.

The next generation was determined with tournament
selection of size two, where the population was randomly
shuffled and two agents were select without replacement
until there were no remaining agents. if the agents in each
pair had equal scores, each was copied to the next
generation. If one agent had a higher score, that agent
was copied twice to the next generation and the agent with
the lower score was not copied. Each copy was then
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subjected to mutation. Mutation of the tag occured at a
frequency of 0.1, and was performed by generating a new
tag uniformly at random in the tag space. At the same
frequency, the tolerance threshold mutated by a
representation-dependent function with a distribution
designed to leave the simulation as close as possible to the
original study (Gaussian with mean zero and a standard
deviation of 0.01). If the new T<0, then it was set to 0.

2.1 MULTI-DIMENSION REPRESENTATION

An agent tag in Riolo et al. (2001) was represented as a
real number, 7O [0,1], with tag distance calculated as the
absolute value of the difference between two tags.
Similarly, the agent tolerance was initialized as a real
number, T O [0,1]. To examine the effect of a larger tag
space on the behavior of the game, tags were represented
as real vectors, 7 [0,1],, where n is the dimension of the
tag space. The tolerance was represented as a single real
variable with T 00 [0,1]. The distance between the tags of
two agents, A and B, is the Euclidean distance,

D, = J (7,60 - 72 )

Player A assists player Bif D, , <T,.

The mutation of T was the same as in Riolo et al. (2001)
except that the standard deviation (o) of the mutation
distribution was adjusted so that the ratio of the
hypervolume of the hypersphere of radius o (V,) to the
hypervolume of the tag space (V, was constant across
dimensions (Table 1). This was done in order to insure
that the tolerance mutation was equivalent to theat used in
Riolo et al. (2001). Runs were performed forn =1, 2, 3,
4, 5, where n is the number of dimensions of the tag
space. 30 replicates were run for each tag space. Note
that the case where n=1 is identical to the setup for Riolo
et al. (2001).

Table 1: o for Higher Dimensions

o V Vi
0.01 0.02
0.079788456 0.02
0.16838903 0.02
0.25231352 0.02
0.32805473 0.02

o B W N | S

2.2 INTEGER REPRESENTATION

Using real values for rand T is a relatively fine-grained
environment since it is extremely unlikely that any two
agents will have the same 7. In Riolo et al. (2001), T most
frequently changed by small values relative to the tag
space, creating a fine distinction between agents with an
approximately continuous tag space. By employing
integer representation of the tag space and tollerance, the
simulation becomes more discrete. Both 7 and T were
initialized as 7, T O0[0,1,2,...,1], where | is the maximum
integer. Constraining the tag space and randomly selecting
new tags may result in duplication of the tags of other
agents, especially at low values for I. The mutation of T

[
was performed by adding A=Z§i, for
i=1

3, 0[-1,0,+1], 4 O [-1, 0, +1], with p(-1) = p(+1) =

0.1, and p(0) = 0.8. Experiments were run for 1=10, 100,
1000, and 10,000.

2.3 BIT-STRING REPRESENTATION

Implementing the tag and tolerance as bit strings both
increases the tag space by using larger strings and
constrains the tag space, reducing the values of each
dimension to one of two states. The distance between two
agents was measured as the Hamming distance. The value
of T was implemented as the weight of the tolerance
binary string. Mutation of the tolerance was performed as
bit flips determined by a Poisson distribution with the
expected probability of each bit-flip set equal to 0.01.
Since it is not possible for T < 0, there were no boundary
effects as there were in the other two representations.
Experiments were performed for string lengths, L of 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100 bits. The bit-string
for the tag and tolerance were of equal length in all
simulations.

3 RESULTS

An interesting difference between the results of these
experiments and those reported by Riolo et al. (2001) was
the presence of failed states. A failed state is an
occurrence of donation rates less that 10% for at least one
generation. The value of 10% was selected from
examination of the reproduction of the results of Riolo, et
al. (2001). In only one replicate did a population fall to a
donation rate of 10% or lower one without persisting in a
failed state for multiple generations. The comparisons of
a typical run from Riolo et al. (2001) compared to a failed
state are shown in Figures 1 and 2. The donation rate is
the proportion of plays per generation that result in one
agent assisting another. A cooperative state is defined as
an occurrence of donation rates greater than 10%.
Significance levels were calculated using ANOVA and
student-t tests.



84 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION

Failed State ...... Cooperative State

Tolerance

300
400

o o
3 3
I} 5

700
800

Generation

Figure 1: Tolerance Examples For Cooperative States
(n=1, Replicate 6) And Failed States (n=1, Replicate 0)
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Figure 2: Example Donation Rate For Cooperative States
(n=1, Replicate 6) And Failed States (n=1, Replicate 0)

3.1 MULTI-DIMENSION REPRESENTATION

Results of the one-dimensional case, a replicate of Riolo
et al. (2001) were consistent with those they reported. In
this study the mean donation rate was 73.4 = 0.3%,
whereas Riolo et al. (2001) foud 73.6%. The average
toleranceswas identical at 0.019.

As the number of dimensions increased the average
number of failed states increased significantly (Table 2)
with p < 0.0001. The dimensions in which significantly
different proportions of occured failed states are given in
Table 3.

Table 2: Mean Values for Experiments

Experiment  Failed Tolerance Donation
States Rate
n=1 18.6 0.0185 0.7344
n=2 1853.2 0.1071 0.6837
n=3 3898.3 0.1816 0.6340
n=4 4949.9 0.2394 0.6086
n=5 5630.2 0.2937 0.5913
1=10 0 0.0951 0.7217
1=100 127.7 0.0481 0.7096
1=1000 164.1 0.0229 0.7263
1=10000 23.2 0.0115 0.7420
L=10 0 0.0027 0.9898
L=20 0 0.0068 0.9807
L=30 0 0.0180 0.9730
L=40 0 0.0756 0.9702
L=50 0 0.2557 0.9817
L=60 0 0.4185 0.9953
L=70 0 0.4602 0.9983
L=80 0 0.4675 0.9987
L=90 0 0.4760 0.9988
L=100 0 0.4785 0.9989

The mean donation rate was found to decrease with
increasing dimension (p < 0.0001) with the same
significant groupings as for the average number of failed
states (Table 3). The mean tolerances of the dimensions
were significantly different (p < 0.0001).

Table 3: Significantly (*) and Insignificantly (J Different
Occurrences of Failed States Between Multi-Dimension
Representations

1 2 3

* *

4
*
*
O

O~ WNEFE S
1
0O * * *|a

3.2 INTEGER REPRESENTATION

The results of the integer representations were compared
with the results of the one dimensional real vector
representation, R (the replication of Riolo et al. (2001)).
ANOVA results indicated that the average number of
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failed states was significantly different from R (p <
0.0230). Only the mean number of failed states for
I=1000 was significantly higher than that for R. The
significant comparisons are shown in Table 4.

Table 4: Significantly (*) and Insignificantly (0l Different
Occurrences of Failed States for Integer Representations

1I=10 100 1000 10000 R
1=10 - * * O O
100 - O O O
1000 - * *
10000 - O
R -

The mean tolerance of the integer representations

decreased with increasing | (p < 0.0001), with each mean
tolerance significantly lower than the previous (Table 2).
At 1=10,000, the tolerance was less than R. The mean
donation rate decreased from 1=10 and 1=100 and then
increased with 1=10,000 having a greater donation rate
than R (p < 0.0001).

3.3 BIT-STRING REPRESENTATION

There were no failed states in any of the bit-string
experiments, so there was no significant difference across
simulations with different values of L. The mean
tolerance increased with increasing L (p < 0.0001)
beginning at L=30 until L=70, with no significant
difference between R and L=10, 20, and 30. The mean
donation rate gradually decreased from L=10 to L=50 and
then increased for L=50 to L=70 (p < 0.0001). The mean
donation rate for bit-strings was never below 97.0%,
significantly greater than R (p < 0.0001). See Table 2 for
the data.

4 DISCUSSION

41 MULTI-DIMENSION REPRESENTATION

The results demonstrated that the frequency of failed
states increased as the tag space increased in dimension.
In the one-dimensional space when a tag becomes the
most prevalent tag the selection for low tolerance is
weakened and the population will move towards higher
tolerance. Eventually, an agent with a different tag will
fall within the tolerance of the dominant tag. This can
occur through increasing the average tolerance of the
agents with the dominant tag or the generation of agents
with a new tag within the tolerance threshhold of the
dominant tag type. Over time, agents with the rarer and
less tolerant tag will become dominant through exploiting
the previously dominant agents, as in Riolo et al. (2001).

In the one-dimensional case an exploitative agent will
have a tag either less than or greater than the most
common tag. When the number of dimensions was

increased there were more axes along which tags may
vary, allowing multiple agents with differing tags to
exploit the dominant tag. Agents with the dominant tag
will quickly be removed from the population with no new
dominant type to take its place. This failed state will
persist while numerous agents with low tolerances fail to
assist one another. Eventually, another dominant type will
emerge. From the duration of failed states, it is thought
that the average amount of time until a new type takes
over increases as the dimension of the tag space increases.
It is conjectured that the increasing dimension makes it
more difficult for a new tag to be within the tolerance
threshold of an extant tag.

The decrease in donation rate observed as the number of
dimensions in the tag space increased was due to a
reduced donation rate in the failed states compared to the
cooperating states. Adjusting for failed states by dividing
the mean donation rate by the proportion of cooperative
generations over all generations results in an increase in
the average donation rate (Table 5). However, the one-
dimensional case is still significantly higher than those of
higher dimensions (p < 0.0001) with the higher
dimensions having mean donations rates of 72.9% or
72.8%. This seems to indicate that the occurrence of
failed states accounts for most of the decrease in donation
rate.

Table 5: Adjusted Tolerance and Donation Rates for the
Multi-Dimensional Representations

n Tolerance Donation
Rate

1 0.0185 0.7349

2 0.1144 0.7289

3 0.2100 0.7290

4 0.2887 0.7284

5 0.36583 0.7288

The increase in mean tolerance is more puzzling. Since
the standard deviation of the tolerance mutation function
increased with increasing dimension, it was thought that
there may be a consistent ratio between the two.
Calculating the ration of the standard deviation of the
mutation function to the mean tolerance demonstrate that
this was not the case (Table 6). The ratios were calculated
with both the mean tolderances from Table 2 and the
adjusted tolerance from Table 5 While the mutation
function likely has some effect, the selection of the game
acts to decreasee the tolerance, weakening the correlation
between the mutation function and the mean tolerance.
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Table 6: Ratio of the Standard Deviation of the
Tolderance Mutation Function to the Mean Tolerance

n E(Th):an  E(Tn):0n
unadjusted  adjusted

1 0.0185 0.7349

2 0.1144 0.7289

3 0.2100 0.7290

4 0.2887 0.7284

5 0.36583 0.7288

4.2 INTEGER REPRESENTATION

The results of the integer representations were expected to
approach those of the one-dimensional real vector
simulations (R) with increasing 1. It was found that the
mean number of failed states and donation rate initially
diverged from R and then approached that of R (Talbe 2).
Examination of the data indicated that the failed states
occurred early in the run and persisted for several
generations before evolving to a cooperative state (Figure
3). For 1=10,000, the initial failed states resemble the dip
in donations rates observed by Riolo, et al. (2001). Given
the decreased cooperation and increased failed states for |
= 100 and 1000, it is unlikely that the cooperative
behavior seen at 1=10 and 1=10,000 were due to the same
dynamics. For 1=10, a mutated tag may take on one of
only ten values, so it was likely that the new tag would be
the same as existing agents. Therefore, if the tag of an
agent with low tolerance was mutated it would cooperate
with agents already present. This coarse granularity
makes it unlikely for an agent to be in a position to exploit
others. For 1=10,000, the dynamics are similar to those
for R.

0.9 4

0.8 4

0.7 4

0.6 4

0.5 4

0.4

Donation Rate

0.3 4

0.2 4

0.1 4

400

800
1200
1600
2000

Generation

Figure 3: Example of the Initial Behavior for Integer
Representations (I = 1000, Replicate 0)

43 BIT-STRING REPRESENTATION

Of the three types of representations, bit-strings produced
the greatest average donation rate. All tested string lengths

had mean donation rates exceeding 97%. In the case of
runs with many agents of near zero tolerance, this must
have been the result of identical or nearly identical agents.
When the average tolerance is large (T = 0.47), it is not
necessary for agents to be highly similar. The process of
generating a new tag results in a tag that by chance will
have 50% similarity to all possible tags. With an average
T=>0.47, it is likely a tag will be in the tolerance threshold
of the majority of the agents. Furthermore, since the agent
with the new tag will have a T close to 0.5, most of the
agents will be within its own threshold.

The pattern of populations of short strings evolving low
tolerance while long strings evolve high tolerance remains
to be explained. For intermediate values of L (lengths of
40, 50, and 60), the populations begin with a tolerance
level similar to those of the longest strings, but changed to
low tolerance levels (Figure 4). This suggests that a
cooperative state may not be stable if the simulation is run
for a large number of generations. The stability of high
mean tolerance may be due to the fact that a single bit-flip
in the tolerance string would have a greater impact on the
population dynamics for low values of L than for high
values.

Tolerance

0 5000 10000 15000 20000 25000

Generation

Figure 4: Behavior of Bit-Strings for Intermediate Values
of L=50 (Replicate 0)

At the initialization of a population there will tend to be
more exploitative (T < 0.4) and exploitable (T > 0.6)
agents for shorter strings than longer strings (Table 7).
The greater effect of a single bit flip at shorter lengths
often results in a population in which agents with low
tolerances take advantage of agents with high tolerances.
In time, only the agents with low T values remain. When
a tag is mutated, there is a greater likelihood of agents
being more than 50% dissimilar at shorter lengths. As
length increases, the number of exploitative and
exploitable agents decreases, leading to the observed trend
of more generations passing before T becomes small.
Eventually, long strings (a length of 40 or greater)
maintain high values for T for the duration of the run,
though this may not be the case if run for more
generations than was done in this study.
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Table 7. Expected Proportion of Exploitable and
Exploitative Agents at Initialization of Bit-String

Populations
L Proportion
10 0.363
20 0.263
30 0.200
40 0.154
50 0.119
60 0.092
70 0.072
80 0.057
90 0.045
100 0.035

5 CONCLUSIONS

The results of the experiments described in this paper
demonstrate that altering the representation of the agents
in the Riolo et al. (2001) simulation has significant effects
on the outcome. In the literature, when game theoretic
models of the evolution of cooperation are examined, only
the rules of the game rather than the digital representation
of the agents are modified. The results described above
caution that generic statements of a game should not be
made from a single implementation. Furthermore, since
the outcome of this game is partially dependent upon the
representation used, it would not be prudent to present
data as a model for the natural world unless it is either
confirmed by multiple representations or shown that the
chosen representation is a reasonable approximation, such
as fitting the model to data from the natural world. With
the variety of models used to simulate aspects of the
nature, it would be of interest to test the effect of agent
representation on the behavior of other game theoretic
models.
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Abstract

A distributed GA is designed for the packet
switched network routing problem under
minimal information. The requirements of such a
problem mean that agents are required to possess
more intelligence than was previously the cae.
To this end a distributed GA approach is
developed and benchmarked against the AntNet
algorithm under the same information
constraints.

1 GENERAL FORMATTING
INSTRUCTIONS

Network information systems and telecommunication in
genera rely on a combination of routing strategies and
protocols to ensure that information sent by a user is
adualy receved at the desired remote locaion. In
additi on, the distributed nature of the problem means that
multiple users can make requests smultaneously. This
results in delayed response times, lost information or
other reductions to the quality of service objedives on
which users judge network service Routing is the process
used to determine how a padket travels from source to
destination. Protocols are used to implement handshaking
adivities such as error cheking and recever
adknowledgements. In this work, we ae interested in the
routing problem on computer networks.

The routing problem has sveral properties, which make it
particularly challenging. The problem is distributed in
nature; hence asolution that asaumes accessto any form
of global information is not desirable. The problem isalso
dynamic; hence asolution that is aufficient for presently
experienced network conditions may well be inefficient
under other loads experienced by the network. Moreover,
the traffic experienced by networks is subjed to widely
varying load conditions, making ‘typicd’ network
conditi ons unrepresentative.

Traditionally, routing strategies are implemented through
the information contained in routing tables available &

eat node in the network (Forouzan, 200J). That is, a
table detail s the next ‘hop’ a padket takes based on the
overall destination of the padket. This should not be taken
to imply that a routing table mnsists of an exhaustive list
of all destinations — aform of global information. Instead,
the table cnsists of spedfic entries for the neighboring
nodes and then a series of default paths for padets with
any other destination — such as OSPF or BGP4 (Halabi,
1997. Applicdion of a dasdcd optimizaion technique
to such a problem might take the form of first assessang
the overal pattern of network traffic, and then defining
the mntents of ead routing table such that congestion is
minimized. This approach does not generaly work in
pradice & it simply costs too much to colled the
information centrally on a regular basis, where regular
updating is necessry in order to satisfy the dynamic
nature of network utilization. We, therefore, see the
generic objedives of a routing strategy to be both
dynamicdly reoonfigurable axd be based on locdly
available information, whilst aso satisfying the user
quality of serviceobjedives (i.e. agloba objedive).

Several approaches have been proposed for addressng
these objedives including  adive networking
(Tenrenhouse et. al., 1997, socia insed metaphors (Di
Caro, Dorigo, 1998, (Heuss et al., 1998 cognitive
padket networks (Gelenbe et. al., 1999, and what might
be loosely cdled ather ‘adaptive’ techniques (Corne et.
al., 2000. The latter typicdly involve using evolutionary
or neural techniques to produce a‘routing controller’ as
oppcsed to a ‘routing table at eahr node, where the
controller may require knowledge of the global
connedivity to ensure a valid route. The global
information assumption may be avoided by framing the
problem as a reinforcement-leaning context (Boyan,
Littman, 1994. However, the Q-leaning method, on
which this is based, results in single path solutions for
ead destination. Both the social insed metaphor and the
cognitive padket approach provide a methoddogy for
routing, without such congtraints; by utilizing
probabilistic routing tables and letting the padkets
themselves investigate and report network topdogy and
performance
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All methods as currently implemented, however, suffer
from one drawbadk or another. Cognitive padket networks
and adive networking algorithms attempt to provide
routing programs at the padet level, hence atieving
scdable run time dficiency becomes an issle. To date,
implementations of ‘adaptive’ techniques and social
insed metaphors have relied, at some point, on the
avail ability of global information (Liang, et al., 2002).

The purpose of this work is to investigate the gplicaion
of a genetic dgorithm (GA) to build on lesons leant
from the social insed metaphor. This represents a major
departure from previous works attempting to utili ze GAs
to solve the dynamic routing problem e.g. (Corne D.W., et
al. 2000. In particular, a distributed GA is defined in
which populations associated with eadh node of the
network are required to co-evolve to solve the problem as
a whole. Moreover, the GA interadion with the
environment drives the feaures measured by the routing
tables, as oppased to the tables predefining the feaures
for measurement (a form of a priori information). Sedion
2 introduces the ‘ant’ based socia insed metaphor against
which the proposed approach is compared. Sedion 3
introduces the propcsed GA-agent scheme. Sedion 4
summarizes the network on which experiments are
performed. Results are presented in sedion 5 and
conclusions drawn in sedion 6.

2 ROUTING USING A SOCIAL INSECT
METAPHORE

As indicaed above, adive networking (Tennenhouse et.
al., 1997 and cognitive padket (Gelenbe et. al.,1999
based approaches emphasize aper padket mechanism for
routing. The gorementioned ‘adaptive’ techniques (Corne
et. al., 2000 tend to emphasize alding ‘intelligence to
the routers leaving the padkets unchanged. A social insed
metaphor provides a midde ground in which the concepts
of a routing table and data padket still exist, but in
addition, intelligent padkets — ants — are introduced that
interad to keep the cntents of the routing tables up to
date. To doso, the operation of ant pacetsis modeled on
obhservations made regarding the manner in which worker
ants use dhemicd trail s as a method o indired stigmergic
communication. Spedficdly, ants are only capable of
simple stochastic dedsions influenced by the avail ability
of previoudy laid stigmergic trails. The demicd
denoting a stigmergic trail is sibjed to decay over time,
and reinforcement propartional to the number of ants
taking the same path. Tral building is naturally a bi-
diredional process ants need to readh the food
(destination) and make asuccessul return path, in order
to significantly reinforce astigmergic trail (Forward only
routing hes also been demonstrated (Heuss et al., 1998).
Moreover, the faster the route, then the ealier the trail is
reinforced. An ant on encountering multiple stigmergic
trails will probabhli stically choase the route with greaest
stigmergic reinforcement. Naturally, this will correspond
to the ‘fastest’ route to the food (destination). The
probabili stic nature of the dedsion, however, means that

ants are sill able to investigate routes with a lower
stigmergic trial.

This approach has proved to be aflexible framework for
solving a range of problems including the traveling sales
man problem (Dorigo et al., 1996 and the quadratic
assgnment problem (Maniezao et al., 1999. The work
reported here follows the ‘AntNet’ algorithm of Di Caro
and Dorigo (Di Caro, Dorigo, 1998, and is informally
summarized as foll ows,

e Eacdh node in the network retains a record of packet
destinations as e on data padkets passng through
that node. This is used to periodicdly, but
asynchronoudly, launch ‘forward” ants with
destinations gochasticaly sampled from the wlleded
set of destinations;

e Once launched, a forward ant uses the routing table
information to make probabili stic dedsions regarding
the next hop to take & ead node. While moving,
eah forward ant colleds time stamp and node
identifier information where this is later used to
update the routing tables along the path foll owed;

e |If a forward ant re-encounters a node previousy
visited before reading the destination, it iskill ed;

* On succesdully reading the destination node, total
trip time is estimated and the forward ant converted
into a backward ant;

*  The badkward ant returns to the source using exadly
the same route @& recmrded by the forward ant.
Instead of using the data padket queues, however, the
badward ant uses a priority queue;

e At eah node visited by the badkward ant the
corresponding routing table entries are updated to
refled the relative performance of the path;

*  When the backward ant reades the source, it ‘dies’.

Although providing for a robust ant routing algorithm
under simulation conditions, an asaumption is made,
which inadvertently implies the use of global information
- knowledge of the number of nodes in the network (Di
Caro, Dorigo, 1998. The definition of routing tables is,
such that it is assumed that every node has a unique
locaion in the routing table, see Table 1, or a total of L
(number of neighboring rodes) by K (number of nodes in
the entire network) entries. In pradice this is never the
case. To do so would asume that it is first feasible, and
seoondly, should the network configuration ever change,
then al nodes dwould be updated with the new
configuration information. Moreover, as forward ants
propagate acossthe network, the anourt of information
they nea to ‘cary’ also increases (node identifier and
time stamp).
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Table-1 Original Routing Table & any Network Node
k on the NTTnet

All Network Nodes
(Possble Destinations)

P11 P2 | - P1ss
£8g
345 .~ P2,1 F’2,2 """ F’2,55
o209 ¥
ccHC
geg=
Sw PL1 P | - PLss

In order to avoid the use of global information, the
authors modify the information provided at the routing
tables ach that the routing tables only detail the
neighboring rodes, see Table 2, or a total of 2 by L
entries. Such a limitation, therefore, places greder
emphasis on the leaning cgpadty of the ant. This is
particularly significant during step (2) of the ant forward
pass(sedion 2.1). Tables 1 and 2 ill ustrate the difference
in avail able information for a node in the cmmonly used
Japanese benchmark badbone (NTTNet) routing
problem.

Table-2 Proposed Routing Table & any Network Node

on the NTTnet
Neighbor | If used for other
Node nodes
Qo P11 Prg,d#1
> <=
€Yo P2 Pog,d#2
L8 2
25 cosl - |
67 §ge~=
W P Pa,d#L

The foll owing sedion summarizes the AntNet algorithm.

21 ANTNET ALGORITHM

It is assumed that routing tables, Ty, exist at ead node, k,
in which a routing dedsion is made. Tables consist of ‘n’
rows, one row for ead neighboring rode/link. Asfar asa
normal data padet is concerned, if the destination, d,
from current node, k, is a neighbor then the routing is dill
a stochastic dedsion. In all other cases, arouteis sleded
based on the neighbor node probabiliti es.

1. New forward ants, Fg, are aeaed periodicdly, but
independently of the other nodes, from source, s, to
destination node, d, in propartion to the destination
frequency of passng data padkets. Forward ants
travel the network using the same priority structures
as data padkets, hence ae subjed to the same delay
profil es.

2. Next link in the forward ant route is sleded
stochasticdly, p'(j), in propation to the routing
table probabiliti es and length of the crresponding
output queue.

o P())+al,
P()=—r
1+a(N,[-1)
where p(j) is the probability of seleding rode j as
the next hop; a weights the significance given to
locd queue length verses global routing information,
p@); I; is propartional to the inverse of queue length
at destination ‘j’ normalized to the unit interval; and
Ny is the number of links from node k.

3. On visiting a node different from the destination, a
forward ant cheds for a buffer with the same
identifier as itself. If such a buffer exists, the ant
must be entering a ¢/cle and des. If this is not the
case, then the ant saves the previoudly visited node
identifier and time stamp a which the ait was
serviced by the aurrent node in a buffer with the
forward ant’s identifier. The total number of buffers
at a node is managed by attaching “an age” to buffer
space ad alowing badkward ants to free the
corresponding buffer space

4, When the aurrent node is the destination, k = d, then
the forward ant is converted into a badkward ant, By
The information recorded at the forward ant buffer is
then used to retrace the route followed by the
forward ant.

5. At ead node visited by the badkward ant, routing
table probabiliti es are updated using the following
rule,

IF (node wasin the path of the ant)

THEN p(i) = p(i) +r {1 —p(i)}

ELSE p(i) = p(i) —r P(i)

wherer [ (0O, 1] isthe reinforcement fadtor central to
expressng path quality (length), congestion and
underlying retwork dynamics.

As indicaed above, the reinforcement fador should be a
fador of trip time and locd statisticd model of the node
neighborhood To this end (Di Caro, Dorigo, 1998
recommend the foll owing relationship,

_ pwes ol
" E* H- .nf§+(tam .m)E

where W[m is the best case trip time to destination d over
a suitable temporal horizon, W, tant is the adual trip time
taken by the at; lin = Woes; lsip = Mo + {0ka / [W (1 =
I}

The estimates for mean, [, and variant, oq, of the trip
time ae dso made iteratively, using the trip time
information, o,4. Thus,

Hig = Hig + (O — Hia)
(0k)’ = (010)” + N { (0w — He)* — (01}

Trip time information is now updated incrementally based
on the recorded trip duration between current node, k, and
ultimate destination, d. This means that it is no longer
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necessary to cary al node and duration information as a
‘stadk’ to the target duration as in the original model (Di
Caro, Dorigo, 1998. Only the previous node information
istherefore carried by ead ant.

3 GENETIC ALGORITHM BASED
SCHEME TO ROUTING

Simulation of the aove AntNet scheme has been shown
to provide arobust alternative to six standard routing
algorithms — OSPF, SPF, BF, Q-R, P-QR and Daemon
(Di Caro, Dorigo, 1998. However, this is not without
utilizing routing tables in the AntNet algorithm, which
provide entries for al nodes on the network. In pradice,
such (global) information is not adualy available. In
(Liang et al. 2002, the AntNet algorithm is benchmarked
with routing tables configured with information regarding
their neighbors alone; Table 2 as oppcsed to Table 1. The
performance of such a system is then deamed
unaccetable. Spedficdly 55% of padets are lost where
‘logt’ in this work is defined as any padet (data or ant)
that visits the same node more than once In order to
address this problem, we ae, therefore interested in the
ability of route finding padets leaning to find paths
independently from the routing table information. By
doing so, we do not rely on the cgadty of the routing
tables alone to retain information regarding all nodes in
the network.

The objedive of this work is to investigate ascenario in
which the entries themselves are identified dynamicdly.
This will be afirst step towards a m-evolutionary model
cgoable of evolving solutions to the padket switched
routing problem. The aits, in this case, take the form of
individuals from a distributed Genetic Algorithm (GA),
heredter referred to as GA-agents. Individual
chromosomes travel the network using a string of next
hop dfsets, eg., {1, 5, 0, 4, 2, 3, 5} over the interval [0,
[O, L], where ‘L’ is sleded to enable indexing of node
connedivity. In all the experiments of sedion 5, ‘L’ is st
to 6. On entering a node, genes (offsets) are used to
identify the next link using a dockwise @unt, with
resped to the port the GA-agent entered the node i.e. the
next link is sleded as a modulus of (gene % # of links).
Such a representation is then independent of the spedfic
network connedivity, unlike say the GA approach in
(Munetomo et al., 1997). For eac node encountered, the
gene, used to seled the next link, is incremented and a
record is made of the node ID. The process naturally
continues until the GA-agent exeautes its last gene, at
which paint it becomes a badkward agent, returning to its
origina source node. In the spedal case of a GA-agent
attempting to return down the same link as it entered a
node, the router randomly seleds the next hop from the
available links, and changes the gene to the new value
(deterministic mutation). If no next hop is available, then
the cdhromosome is truncated, and the GA-agent becmes
a badkward agent (seethe dgorithm “processng agents').
Note, unlike the AntNet agorithm, modificaion of
routing tables only takes place once the GA-agents have

returned to their origina source, and modificaions only
affed the source node routing table. The &ove
representation supparts sngle point crossover, resultingin
variable length individuals. Mutation randomly seleds a
gene and adds/ subtrads an integer such that the new gene
is dill i ntheinterval [0, 6].

Table 3— GA-agent Routing Table

Agent ID | Agent Fitness | Trip Time (ms) and node ID
95 0.32 (3,9,(9,0), (21, W)

234 0.39 (1,B), (7, A),..., (432 Y)
31 0.71 (5,0), (9,K), ..., (871 X)

At initialization, a router sends out half of the population
of GA-agents to explore the network. Once the number of
returned GA-agents reades four, the fitness of the four
agents is evaluated; the best two agents are then chosen —
as in a stealy state tournament (See dgorithm “updating
routing table & population”).

The fitness function measures the popularity of nodes
visted as well as the time taken to read nodes
encountered by GA-agents. Both of these properties are
measured with resped to the original source node.
Popularity of destination ‘i’ at node ‘K (NP(i)) is a
dynamic property, measured at the original source node
by recoding the frequency of different data packet
destinations as e by the source node over a fixed time
window (50 seconds in this case), or

NP(i) = Dest(i) / TDx

Where TDy is the total number of data packets passng
through rode ‘K'; and Dest(i) is the number of data
padkets with destination ‘i’.

Chromosomes, which find shortest paths to frequently
used destinations, are therefore favored. The esuing
fitnessfunction taking the form,

Zfor each explored nocei Npk(i) X tl’ip_ti me,
Zfor each explored noce | trlp_tlm (1)

The routing table in the GA approach consists of a short
list of returned agents, every entry corresponds to an
evaluated returned agent path. On routing a data padet,
the router chedks the table for a path that had experienced
shortest trip time to the desired destination (third column
of Table 3); if such an entry is not found, the entry with
the highest fitness Table 3 column 2, will be seleded as
the default next node for this data padket. The first two
columns in the routing table ae used during ranking and
replacement of winning chromosomes.

The &ove ongitutes our basic GA-agent approach. In
additi on, threefurther concepts are introduced. Thefirst is
that of demes. This provides a mechanism for passng
useful chromosomes between neighbaing nodes. To do
S0, every node will propagate best-case dhromosomes to
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neighboring rmodes every 500 o 700ms (tunable
parameter, see “propagate freq” in sedion 5). Secondly,
in order to avoid stagnation in the routing tables, an
incremental penalty is applied to eat entry of the routing
table (see the dgorithm “updating routing table &
population“). The motivation for such an aging
medhanism is to ensure that routing tables remain
sensitive to the dynamic nature of the environment (e.g.,
changes to network topdogy, network node/link failure,
network congestion). Such a mechanism is introduced
during yodates to routing tables: making every routing
table entry a bit smaller in fitness and a bit longer in trip
time, or

fitNESS agent in routing tavle = Original fitnessx c2;
trip_time every nade of every entry = OFiginal_trip_time/ c2;
where @ isa constant [ (0.0, 1.0) )]

Finaly, when initiali zing the populations of chromosomes
at eat node, nodes with a higher connedivity naturally
represent a larger seach problem. Thus, the number of
chromosomes per population isinitialized in propartion to
the square of the number of neighbors.
The dgorithm is outlined as follows: (¢, ¢, and c; are
constants.)
init
initiali zefirst generation of agents;
#agents = #links® x ¢;;
string of offsetsof anagent-{3, 1, 4,5, 2, ...}
clea routing table;
clea flow pattern stats;
send out half population of individuals;
processing agents
if (case of badkward agent)

then if (agent arrives at the source)

then if (agent timeout)
then (kill agent);
ese (put into “bad” list);
end if

else if (next hopisdown)
then  (kill agent);
else  (forward tothelink)
end if

end if

ese agent records the trip time info;
retrieve offset from the next unused
gene position;
if (corresponding link is available and
no loop caused)
then (send the aent to the link);
ese  (randomly [ead available link
has equal probability] seled an available
link [without entering aloop]);

end if
if (no such link found)
then (convert the agent into a

badkward agent)

else  (set the off set to the new value);
(send agent to the link);
end if
end if

updating routing table & population (once 4 agents
return to the same source i.e. steady state tournament)

update the performance table by aging mechanism:
fitnessof agent = original fitnessx c2;

trip time to every node of every entry = origina
triptime/ c2;

use the fitness function to evaluate the fitness of
badkward agents;

seled the best two agents as parents;

put/update the fitness of parent agents in the
routing table;

delete the entries of the worst two agents in the
routing table;

use standard crossover and mutation on the parents
to generate two children;

put the dnildren into the population;

delete the worst two agents from the population;

if (current time > last clea time + c3)

then (clea flow statistics)

randomly launch 4 agents from the population to
explore the network;

routing data packets

if (routing table is empty)

then (randomly choose alink to forward)

else (seach the routing table for the shortest
trip time to the desired destination)

if (no entry found for the desired
destination)
then (choose fittest entry);
end if
end if
if (no route isfound)
then (discard the padket)
end if

31 DATA STRUCTURES

Every agent consists of a string of next hop dfsets, and
time stamp reoords. Every router consists of an incoming
buffer, a processng buffer (stores a padet at atime), and
an outgoing buffer for ead neighboring router. For the
GA approach, every router has a population of
chromosomes, a routing table, a flow pattern statistics
table, and a fitness table. The number of chromosomes
per population is in dired propartion to the square of
number of neighbors. The routing table, which is updated
whenever four chromosomes return, consists of current
fittest individuas, c.f (1). The flow pattern estimates the
popularity of data padcets passng through the node, c.f.
(2). The fitness table stores the fitness of every
chromosome, currently a member of the routing table.
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Figure-1: Japanese Badkbone - NTTnet (55 nodes)

To smulate ad test the GA-agent algorithm, an event
driven smulation environment is developed (C++ on
UNIX system). Spedficdly, the Japanese Internet
badbone (NTTNET — see figure 1) is modeled, where
this represents a narrow long configuration in which the
degree of conredivity is low (from 1 to 5), when
compared to the US badkbone. Hence the Japanese
network provides a more demanding configuration for
testing routing algorithms, as higher degrees of
connedivity lower the posgbility of padet loss due to
loops, timeouts, i.e., in a narrow long shaped network,
once apadket is forwarded in a wrong diredion, it might
never have the chance to be routed to the desired
destination.

4 SIMULATION ENVIRONMENT

The event driven simulation models the network as
routers (nodes) and links. Every router has an incoming
buffer, a memory space for processng padkets, and an
outgoing buffer for ead link to its neighboring routers. A
priority queue is used to store the events. Both AntNet
(locd routing table information, Table 2) and GA-agent
algorithms are simulated under the same environmental
conditions. That is, an event generator is used to generate
the events, such as new padet time of generation, or
routers avail ability. The following are the parameters used
in the simulation,

* Network topdogy takes the form of the Japanese
badkbone, figure 1,

e Forward ants are launched every 300ms;

e« The AntNet algorithm is given 5 seconds at the
beginning of the simulation to converge the initial
routing tables, during this period, routing padets
(ants or GA-agents) are the only padkets traversing
the network;

e Data padets are generated by Poisson distribution
(mean of 35ms);

*  The parameters for the GA based scheme ae given as
the first 5 rows of tables 4 - 7, where 4 (columns 2 -
5) different GA based agent structures are simulated;

e Any padkets, including data padkets, are kill ed should
they encounter a previoudy visted node. Given the
probabilistic nature of the routing tables this
represents a rather harsh constraint, but in doing so is
utilized to emphasize the properties of different
routing strategies. In addition padkets that are routed
down links representing a fault condition are
distinguished separately as lost packets.

The simulation length is 1250s. As a result, 1985536 dta
padkets are generated within 1250s. The queue length is
the total number of waiting padets per second, which
includes the data packets and the routing padkets. In this
paper, the routing padkets refer to the ants in the AntNet
algorithm, and to the GA-agentsin the GA approadh.

5 RESULTS

On measuring the performance of a routing algorithm, we
focus on:

* Network throughput, which is defined as number of
data padket bytes siccesdully receved at their
destination in atwo second window;

» Total timeto deliver all the data padkets (finish time);
*  Number of arrived data padets;

e Number of ‘killed’ and ‘lost’ padets;

» Averagetrip time of arrived data padkets.

Two sets of experiments are mnducted, in both cases
using a series of network scenarios designed to investigate
operation urder changing retwork conditions. The first
set of experiments investigates parameters associated with
the distributed GA. The second of experiments takes one
set of these parameters and reduces the degree of
exploration/ exploitation (mutation/ crossover
respedively).

There ae atotal of 4 scenariosin ead set of experiments,
in the first case dl routers remain available. The
remaining scenarios investigate plasticity of the network
by removing different router combinations. First, router
34 isremoved at atime step of 500s. From figure 1, it is
apparent that router 34 represents a significant node in the
topdogy, although aternative paths certainly exist. In the
third scenario, two routers are removed, wheress in
scenario four the same two routers are removed hbut
asynchronoudly.

51 PARAMETERIZATION OF DISTRIBUTED
GA

In the case of routing Lsing GA-agents, there ae six basic
parameters,

1. Agents / link? — c;, determines the population of
chromosomes per node. The implicaion being that
there ae O(L? locations in eat routing table,
where L isthe number of neighboring rodes;
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2. Aging — c,, rate by which fitness of individuals

currently populating the routing tables decyy;

3. Propagate ratio — the number of chromosomes
exchanged between populations, expressed as a % of
node population size

4. Propagate freq — rate of exchange of chromosomes
between populations;

5. Flow clea freq — cs, time interval over which data
padket destination statistics are mlleded;

6. Crosover and Mutation — the results in this dion
utilize maximum crossover and mutation rates in
order to encourage ntinuous investigation of
dternative routes. Sedion 5.2 considers the cae of a
more dasscd sedion of crosver and mutation

thresholds.

These ae initially seleded to enable qualificaion of the
sengitivity to population size, rate of aging etc. and
remain the same acoss all experiments, Tables 4 to 7,
columns 2 - 5. Table 8 summarizes the same information
for the AntNet algorithm under a ‘locd’ routing table
configuration. Thus, Locd AntNet utilizes tables of
length O(L), significantly lessthan the GA-agent case.

Table 4 — No Network Failure.

Avag. trip time 2,014 2,613 3,156 2,668
for AP (ms)

#killed padkets | 617,064 665188 630479 590732
# lost packets 21,922 21922 21,923 21,918

#Agents(x10°) | 1,801 1,087 966 552

Table 6 — Routers 49 & 13 are Down at 500s.

# Agents/ link? 32 32 40 48
Aging 0.8 0.9 0.9 0.9
Propagate ratio 5% 3% 3% 2%
Propagate freq 500ms 500ms 700ms 700ms
Flow clea freq 50s 50s 50s 50s
Finish time (9) 1,254 1,445 1,258 1,520
Arrived padets 1,317 1,369 1,402 1,504
(AP) (x1000
Avag. trip time 947 1,301 850 1,759
for AP (ms)
#Kkilled packets | 623539 571,390 539747 438378
# lost packets 44,466 44,882 43,658 43,496
# Agents (x10°) | 1,543 973 754 514

Table 7 — Router 13isdown at 300s, Router 49 is down at
500s, and bah are up at 800s.

# Agents/ link? 32 32 40 48
Aging 0.8 0.9 0.9 0.9
Propagate ratio 5% 3% 3% 2%
Propagate freq 500ms 500ms 700ms 700ms
Flow clea freq 50s 50s 50s 50s
Finish time (s) 1,535 1,261 1,496 1,437
Arrived packets 1,410 1,334 1,441 1,458
(AP) (x10°)
Avg. trip time 2088 1202 470 2018
for AP (ms)
#killed packets | 551,218 627596 520989 503873
# lost padkets 23953 23426 23401 23,085
#Agents(x10°) | 1447 1,043 896 648

# Agents/ link? 32 32 40 48
Aging 0.8 0.9 0.9 0.9

Propagate ratio 5% 3% 3% 2%
Propagate freq 500ms 500ms 700ms 700ms
Flow clea freq 50s 50s 50s 50s
Finish time (9) 1,252 1,253 1,252 1,267

Arrived Padkets 1,619 1,585 1,583 1,560
(AP) (x1000
Avag. trip time 742 905 678 1,236

for AP (ms)

#Kkilled packets | 366533 400351 402517 385750
# lost packets 0 0 0 0

# Agents (x10°) | 1,690 1,028 801 475

Table 5— Router 34is Down at 500s.
# Agents/ link? 32 32 40 48
Aging 0.8 0.9 0.9 0.9

Propagate ratio 5% 3% 3% 2%
Propagate freq 500ms 500ms 700ms 700ms
Flow clear freq 50s 50s 50s 50s
Finish time (s) 1,417 1,307 1,444 1,494

Arrived Packets | 1,346 1,298 1,333 1,373

(AP) (x1000)

Performanceis qualified in terms of two basic parameters,
time taken for all padkets to be receved (or lost) and the
number of padkets successully recaved. Naturaly, the
former should be minimized and the latter maximized. In
the cae of experiment 1 — no network failures — the time
for all padketsto be acounted for is esentialy the same,
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irrespedive of parameter or algorithm. An immediate
difference is remgnized, however, in the number of
arrived padkets. The AntNet algorithm can only
succesdully route 55% of those in the GA-agent
approach. This observation is repeded acoss al the
remaining scenarios. Moreover, in terms of ‘killed
padkets this means that lessthan 50% of the padcketsin the
locd version of the AntNet algorithm revisit sites

previously encountered.

Table 8 — AntNet with Locd Information Only

No network failure

Finish time (9) 1,267

Arrived padkets (AP) 903(x10%)

Avg. trip time of AP (ms) 398

#kill ed padkets 1,082652

# lost padkets 0

# of Ants 218(x10%)
Router 34 dawvn at 500s

Finish time (s) 1,369

Arrived padkets (AP) 813(x10%)

Avg. trip time of AP (ms) 2,899

#Kkill ed padkets 1,138860

# lost padkets 32,763

# of Ants 219(x10%)

Routers 49 & 13 down at 5008

and propagation ratio least. (Investigation of GA-agents
without demes, however, performs very badly.) It is also
noticed that although a maximum allowable length of 30
genes per individual is permitted, chromosomes never
read this limit. Instead a preference of chromosome
lengths of 10 a lessgenes is found for nodes with a low
level of connedivity and 15to 25 for individuals with a
connedivity of 3 or more.

52 PARAMETERIZATION OF CROSSOVER
AND MUTATION

As a final experiment, one instance of the distributed
parameter set is investigated under a dasdcd crossover
and mutation rate of 90% crossover and 10% mutation.
As identified in sedion 5.1, lower agent per link counts
result in less padkets being delivered. Table 9 reports the
case of 32 agents link, an aging fador of 0.9, a
propagation ration of 3% and a frequency of 500ms
(column 3intables4to 7).

On comparison with the same parameterization urder
100% crossover and mutation, the number of ‘killed’ or
‘lost’ padkets deaeases by 33% to 8%, and the trip time
improves in eat scenario ather than no network failure.
Moreover, the cae of 90% crosover and 10% mutation
betters all combined ‘kill ed-lost’” padet courts of any of
the distributed GA parameters investigated in sedion 5.1.
The impli cation being that more data padkets are routed to
the destination without either encountering a faulty link or
a previously visited node. The principle penalty, however,
appeas to be an increase in the number of GA-agents
introduced. Future work will naturally investigate whether
this trend holds for other distributed GA
parameterizaions (the cae of 48 agents per link appeas

Finish time (s) 1,300 to utili zelessGA-agents).
Arrived padkets (AP) 827(x10°) Table 9 — GA-agent with Crossover of 90%, Mutation
Avg. trip time of AP (ms) 1,617 10%
#Kill ed packets 1114729 No retwork fail ure
#lost packets 43682 Finish time (9) 1,252
7 o Anis 219 (x10) Arrived padkets (AP) 1,693(x10%
Routers 13 dawn at 300s, Router 49 dawn at 500s, both upat Avg. trip time of AP (ms) 1171
800 #kill ed padkets 292723
Finish time (9) 1,272 # lost padkets 0
Arrived padkets (AP) 863(x10°) # of Agents 961 (x10°)
Avg. trip time of AP (ms) 1,254 Router 34 down at 500s
#kill ed padkets 1,099,283 Finish time (s) 1,507
# lost packets 23209 Arrived padkets (AP) 1,401 (x10%
# of Ants 219(x10°) Avg. trip time of AP (ms) 356
#kill ed padkets 562751
In terms of spedfic parameter settings, the GA-agent #lost packets 21,924
approach appeas to consistently route the most padets
successully when the number of agents per link is highest # of Agents 1,170(x10)




96 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION

Routers 49 & 13 down at 500s
Finish time (9) 1,252
Arrived padkets (AP) 1,417 (x10%)
Avg. trip time of AP (ms) 861
#kill ed padkets 523673
# lost padkets 44,658
# of Agents 1,025(x10%
Routers 13 down at 300s, Router 49 dawvn at 500s, both upat

800s

Finish time (s) 1,252
Arrived padkets (AP) 1,555 (x10°%
Avg. trip time of AP (ms) 1,012
# lost padkets 406,840
#kill ed packets 23,861
# of Ants 1,083(x10%

6 CONCLUSIONS

As indicaed in the introduction, network routing
problems force an interesting set of constraints, which
present a suitable test-bed for problem solving wsing co-
evolutionary techniques. In this work, we eanphasize the
case in which routing table fedures, as well as content,
are evolved. Thus, we ae not privy to a priori knowledge
regarding the number of nodes in the network. The
AntNet algorithm (Di Caro et al., 1998 does not perform
efficiently and the GA representation cannot make use of
global knowledge of network connedivity, as has been
the ceae in the past (Munetomo et al., 1997). Such an
environment implies that padkets responsible for updating
network connedivity requires more aitonomy than were
previously adknowledged to solve padket switched
routing problems. As a first attempt at addressng these
problems diredly, we utilize a representation that is
independent of spedfic network connedivity patterns and
distributed in its operation (multi-population model with
chromosomes physicdly traveling the network). Such a
system improves on the AntNet algorithm when
constrained to a ‘locd’ table representation, Table 2 (see
(Liang et al., 2002 for a detailed discusdon of AntNet
under ‘locd’ and ‘global’ routing table mnstraints), or be
it whilst utilizing larger routing tables. The principle
drawbadk for the GA-agent is the seach efficiency of the
ensuing routing table where a seach as oppacsed to an
indexing process is now necessary. Future work will
expand the interadion between chromosomes to fadlit ate
a more -evolutionary approach to the development of
routing policies and develop a better organization to the
routing table structure. Moreover, the relationship
between routing table size and performance requires
further investigation.
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Abstract

This research focuses on agent migration
strategies and communication behaviors in
a sparse distributed memory implementation
based on the human immune system. Evalua-
tion of various agent strategy/behavior com-
binations is measured in the context of ge-
netic search performance at multiple, in-
dependent system nodes. Results indicate
that agent behaviors which promote and
enhance information exchange between dis-
tributed nodes yield the best performance.

1 Introduction

Our research involves a sparse distributed memory
(SDM) where the theoretical memory capacity far out-
weighs the physical memory space (i.e., the ratio of
memory cells to items represented is 1 to n, where
n >> 1). This model is based in part on the human
immune system, wherein memory persists in the form
of a relatively modest population of antibodies (107
to 10%) with a high affinity to a much greater number
(1012 to 101) of possible antigen strains [5]. An effec-
tive SDM must develop and maintain a sufficient (with
respect to quality) population of memory cells so that
associative recall is not only feasible, but efficient.

The memory cell population in this SDM is sparsely
distributed in representation space and physically dis-
tributed in the execution environment. In this system,
mobile software agents circulate a limited number of
memory cells between system nodes (Figure 1). Dis-
tributed, independent genetic search is leveraged in
order to develop a system-wide memory cell popula-
tion. Emergent behavior at the system level is a result
of interactions between simultaneous and independent
genetic searches, as well as, local feedback decisions.

Significant work has been performed with respect to
agent strategies and enhanced distributed communi-
cation performance [3, 4]. This research differs in that
we seek to examine the impact of mobile agents with
respect to their migration strategies and communica-
tion behaviors to improve genetic search performance.
Improved genetic search performance in turn, results
in a more efficient SDM.

AP
O = S S FE
— O O — transported antibody (bit string)
o
o O

Figure 1: Agent Circulation of Antibodies.

2 Sparse Distributed Memory

This investigation is influenced by previous work that
incorporates genetic algorithms in an immune system
model to explore pattern recognition [2]. We have
modeled the problem space using Hamming space (i.e.,
bit strings). In training the SDM, the objective is to
dynamically develop “immunity” to patterns that are
repeatedly re-introduced from a fixed library of pat-
terns. Immunity is achieved by evolving a memory
cell population that generalizes to adequately repre-
sent a much larger set of random bit string patterns.
The random set of bit string patterns that must be
matched is known here as the antigen library. The
system population of memory cells, known as anti-
bodies, consists of a small (relative to the size of the
antigen library) collection of bit string patterns. Anti-
body evolution (i.e., system level learning) is a result
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of isolated genetic search, local feedback decisions, and
the ability of mobile agents to maintain an adequate
distribution and diversity of antibodies between sys-
tem nodes.

2.1 System Operation

This SDM consists of two core operations. The first is
genetic search, taking place simultaneously and con-
tinuously on each node. The second involves mobile
agents that circulate antibodies between the system
nodes. Genetic search is used to perform pattern
matching at each node, where each node randomly
samples from a common antigen library, similar to For-
rest, et. al. [2]. When an antigen sample is taken, the
resident antibodies in the input queue on each respec-
tive node are compared against the sample. If a match
is found, the search is complete and the node prepares
for a new antigen sample. If a match is not found,
the antibody population in the local input queue is
used to seed the initial population for genetic search.
The sampling of an antigen and searching for a match
constitute a cycle.

The final population for each independent search in-
cludes the solution (i.e., antibody pattern matching
the sampled antigen) and antibodies that are similar to
the antigen, but not necessarily perfect matches. This
provides the opportunity to feed patterns (in the form
of antibodies) back into the system that are similar
to the current antigen sample. The system antibody
population subsequently evolves with representatives
that have high affinity for the antigen library.

In this SDM, the mobile agents operate autonomously.
From the perspective of each node, agents continuously
arrive, deposit antibodies in the input queue, retrieve
new antibodies from the output queue and transport
them to new nodes (Figure 2). Meanwhile, patterns
are continuously sampled from the antigen library as
described above. When a sample is taken from the
antigen library that must be matched, an initial pop-
ulation of 50 individuals is constructed to start ge-
netic search. To take advantage of the system’s learned
knowledge, the initial population is comprised of: 1)
antibodies taken from the local input queue, 2) copies
of antibodies currently waiting in the output queue
and 3) mutated copies of antibodies from steps 1 and
2. Copying and mutating antibodies is repeated until
the initial population is complete.

In order to bound the size of the antibody population
while promoting quality information in the system, we
have introduced a survival scoring mechanism based
on 1) age and 2) affinity to antigen library samples.
This rewards antibodies for survival time (long-term

Input Antigen
Quene Library
(antibodies)

step 2 - deposit
antibody

step | - arrive / @
Genetic
. | N __EE B
< Agent Evolution
d (evolve
step 4 - depart anfibody that
matches the
for new hast Outpis hes th
Queue antigen antigen satple
(antibodies) sanple) from the library

step 3 - retrigve
new antibody

Figure 2: Simultaneous Activities At Each Node.

reward) and for scoring well against the current anti-
gen sample (short-term reward). The survival score is
the sum of the age and af finity values.

The age of an antibody corresponds to the number of
nodes that it has visited since creation. A new anti-
body has an age of zero, and this value is subsequently
incremented by one for each new search in which it is
used as an initial seed. The af finity is based on the
percentage of bits that match antigen samples. This
value is initially set to 100, giving newly created anti-
bodies a chance to survive infancy. The value is subse-
quently decremented at each feedback step. The affin-
ity value is reset to the affinity for the current antigen
sample if that score is greater than the current affinity.

At the conclusion of every genetic search on each sys-
tem node (when a given antigen sample is matched), a
competition takes place to determine which antibod-
ies are fed back into the system. At each competition,
individuals in the antibody population that were in
the input queue prior to genetic search (i.e., seeds) are
compared with individuals from the final search pop-
ulation. The highest scoring antibodies are fed back
into the system, and the remainder are discarded. A
search feedback threshold allows individuals from the
final search population that are not exact matches to
be competitive in the feedback competition.

2.2 Pattern Matching Application

These experiments were designed to examine the im-
pact of agent behavior and agent mobility strategies on
the performance of this SDM. Performance in this con-
text is measured with respect to the work necessary to
discover the antibody strings that match the antigens
sampled at the nodes in the system over the course of
time. The antibody population consists of bit strings
that are used to seed the population at local nodes for
genetic search in order to match the patterns sampled
from the antigen library.



ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION 99

B NN NS NN EEEE

base antigen bit string

® basc antigen

= antigen

TR,

param eter space boundry

Figure 3: Antigen Library Distribution.

In each of these experiments, a parameter space is
defined surrounding a randomly generated bit string,
known as the base antigen string. An antigen li-
brary is generated in a binomial distribution around
the base antigen, bounded by a given Hamming dis-
tance (Figure 3). The distribution reflects the fre-
quency of occurrence of samples based on their Ham-
ming distance from the base antigen. Thus, bit strings
that are closer to the base antigen string are included
in the library less frequently than those that are far-
ther from the base string. This distribution is similar
to that of B and T cell clones as modeled by Smith,
et. al. [6], in simulations of immune system models.

In training the SDM, success is measured by the ability
to generate antibodies quickly (i.e., few trials) that
match strings sampled from the antigen library. A
trivial solution to this problem is to generate one or
more antibodies that match each antigen sampled (i.e.,
specialists). However, in a sparse distributed memory,
the address space can be orders of magnitude larger
than the instantiated address locations[6]. We used an
antigen to antibody ratio in this system of 10:1. This
means that, on average, one antibody must represent
ten antigens. The hypothesis is that good system-wide
performance requires an antibody circulation scheme
that promotes an antibody population comprised of
“generalist” antibodies (as opposed to specialists).

2.3 Migration Strategies and Communication
Behaviors

Within the context of the SDM described, we have de-
vised three agent migration strategies and three agent
communication behaviors for investigation. This re-
sults in nine agent strategy/behavior combinations.
The three agent migration strategies are as follows:

1. Random Migration - In this migration strategy,
agents circulate antibodies by moving at random
between system nodes.

2. Directed Migration - This migration strategy is
intended to promote maximum diversity by corre-
lating agent movement with the specific antibody
that is being transported. Each node maintains a
most recently sent queue that consists of a single
entry representing every other node in the system.
Each entry associates a node ID with the last an-
tibody transported by an agent to the respective
remote node from the local node. When an agent
retrieves an antibody to transport, the Hamming
distance between that antibody and every other
entry in the queue is measured. The agent selects
the destination node based on the entry that is
furthest away in Hamming space.

3. Cyclic Migration - Cyclic migration agents
move in a fixed pattern between system nodes.
Each agent generates a random itinerary upon
creation that includes a single visit to each node
(i.e., Hamiltonian cycle).

The three communication behaviors are as follows:

1. Always Communicate - This is a simple behav-
ior that requires no thinking, or decision process,
on behalf of the agent. The agent simply deposits
the transported antibody into the input queue of
the node on which it arrives.

2. Just In Time (JIT) Communication - Agents
search for a host that has just sampled an anti-
gen from the library and is ready to begin ge-
netic search. Agents continue to move until a host
in this state is found, and then they deposit the
transported antibody, “just in time” to begin ge-
netic search.

3. Load Balanced Communication - Agents have
a tendency to move away from other agents when
exhibiting a load balancing communication be-
havior. This behavior forces agents to move away
from “busy” nodes, thereby evenly distributing
the antibody population among the system nodes.

2.4 CHC Algorithm

There are numerous genetic search approaches that
could be used in the context of this SDM. We have
chosen to incorporate the CHC adaptive search algo-
rithm for antibody evolution at the local nodes. The
CHC adaptive search algorithm [1] is a generational
genetic algorithm that has been shown to yield very
good performance for optimizing a wide variety of test
problems and requires no parameter tuning [7]. Mat-
ing in CHC is performed by randomly pairing parents



100 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION

and applying the HUX crossover operator. HUX ex-
changes exactly half of the bits that differ between the
mates. Crossover is only performed if the differences
between mates is greater than a threshold that is dy-
namically adjusted during the search process. This is
known as incest prevention and serves to slow genetic
convergence appreciably. Selection is performed using
the (pu + \) strategy, preserving the best N individu-
als from the child and parent populations, where N is
the population size. When the population does con-
verge, the search process is restarted via cataclysmic
mutation. The population is filled with copies of the
best individual and then 35% of the bits in all but one
individual are complemented and search is restarted.

3 Experimental Conditions

For these experiments, the three migration strategies
were paired with all three of the communication behav-
iors. These strategy /behavior combinations were also
compared against the performance of a control strat-
egy wherein no agents were used (i.e., no communi-
cation between nodes was possible). Table 1 identifies
the system parameter values used for all experiments.!
To emulate a sparse distributed memory, we main-
tained a 10:1 antigen to antibody ratio. To adequately
sample the antigen pool, each simulation consisted of
5,000 cycles? at each of four nodes. This allows ex-
amination of a full range of behavior without spurious
states (due to early termination) and an even sampling
distribution of the patterns from the antigen library.

4 Results

All nine of the agent migration strategy/ communi-
cation behavior combinations were simulated for 30
independent runs. Combining all agent communica-
tion behaviors with all of the agent migration strate-
gies provides a complete factorial design, supporting
analysis of variance (ANOVA) testing. This allowed
us to determine if any of the migration strategies or
communication behaviors resulted in a statistically sig-
nificant performance advantage or disadvantage (i.e.,
significant main effect).

'To support a fair comparison between the migration
strategy /communication behavior pairs, the parameter val-
ues for the total number of agents, antibody mutation rate,
and search feedback threshold were established via a sepa-
rate search using a meta-GA. The purpose of the meta-GA
was to find a good, if not optimal, set of parameter values
for operation of this system.

2Genetic search is used to find an antibody that matches
an antigen sample at each cycle except when a perfect
match resides in the initial genetic population.

Parameter Value
System Nodes 4
Antigen Library Size 320
System Antibody Population 32
Antibody String Length (bits) 32
Parameter Radius (bits) 5
Cycles (antigen samples/node) 5000
Time Between Search at each Node (msec) 20
Total Agents 24
Antibody Mutation Rate (bits) 3
Search Feedback Threshold (bits) 5

Table 1: System Operational Parameters.

Table 2 shows the average number of trials (and stan-
dard error of the means - SEM) to match antigen
samples for each of the strategy/behavior combina-
tions. The random agent migration strategy paired
with the always communicate behavior expended the
least amount of work (i.e, fewest trials), on average, to
discover the antibodies that match the antigens sam-
pled in the simulations. However, this performance
advantage is only statistically significantly better than
a few of the other cells in Table 23 (particularly the di-
rected/JIT combination). The average trials to match
the antigens sampled using the cyclic agent migration
strategy are significantly worse than any of the other
strategy/behavior combinations. ANOVA tests con-
firm this fact as a significant main effect.

Comm. Migration Strategy

Behavior Random Directed Cyclic
Always 283.1 (0.73) | 285.1 (1.19) | 300.8 (1.69)
JIT 285.5 (0.66) | 286.2 (0.72) | 301.1 (1.87)
Load Bal | 284.3 (1.46) | 287.1 (2.61) | 306.2 (2.13)

Table 2: Average Trials to Match Antigen Samples.
When no agents are present, 298.7 trials (SEM = 1.49)
are needed to match the pattern, on average.

The cyclic migration strategy combined with the load
balancing communication behavior results in the worst
performance, relative to all other strategy/behavior
combinations. This performance is 10 standard errors
worse than the random migration, always communi-
cate runs and more than 2 standard errors worse than
the experimental runs with the cyclic/JIT implemen-
tation. In fact, it is even inferior to the performance of
simulations where no agents were present in the sys-
tem. The average trials to match the antigens sampled
when no agents are present (i.e., antibodies are not cir-

culated) is 298.7 (SEM = 1.49).

3This may be due to the stochastic nature of the simu-
lations contributing more noise than the variance between
the strategy/behavior combinations.
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It is important to note that the system learns and per-
forms significantly better than genetic search on an
equivalent problem when a random initial population
is used. For example, on average, CHC solves a 32-bit
one-max? problem in 504 trials (SEM = 9.12), when
beginning with a random initial population.

4.1 An Emergent Behavior

Although the goal of genetic search at each local node
is to match antigen library samples, the search efforts
combined with the local survival decisions result in a
globally emergent behavior. The communication of in-
formation via agents consistently resulted in an inter-
esting phenomenon, notably the discovery and propa-
gation of the string pattern used to create the antigen
library (i.e., the base antigen string). Table 3 shows
the average percentage of the system’s final antibody
population occupied by copies of strings matching the
base antigen for each respective strategy/behavior ex-
periment. This is referred to as the saturation rate.

Comm. Migration Strategy

Behavior Random Directed Cyclic

Always 100.0% (0.00) 100.0% (0.00) | 89.7% (1.04)
JIT 100.0% (0.00) 100.0% (0.00) | 89.1% (1.35)

Load Bal 96.1% (0.74) 97.2% (0.68) | 82.9% (3.40)

Table 3: Antibody Population Saturation Rate. When
no agents are present, the average saturation rate is
91.1% (SEM = 0.50).

ANOVA testing confirms the trends evident by vi-
sual inspection as significant. First, the load-balancing
communication behavior does not allow the base anti-
gen to saturate the system, regardless of the agent
migration strategy employed. The cyclic agent migra-
tion strategy also prevents the base antigen string from
saturating the antibody population. This seems obvi-
ous in hindsight as the cyclic migration strategy is the
most restrictive of the migration strategies. Visita-
tion by a given agent is not equally likely at all nodes
at each time step for this migration strategy. This
restriction is so severe in fact, that the results were
comparable to runs where no agents were present in
the system. While simulations using no agents did dis-
cover this base antigen string, the simulations yielded
an average saturation rate of 91.1% (SEM = 0.50).

The discovery of antibodies that match the base anti-
gen string cannot be a result of searches in which the
base antigen is sampled from the antigen library. An-

1A one-max problem is equivalent to finding a match-
ing bit-string using an evaluation score that reports the
number (or percentage) of bits matching another pattern.

tibodies fed back to the system must meet or exceed
a feedback threshold of five bits.

In searching for strings to match samples from the anti-
gen library, each node contributes strings to the sys-
tem antibody competition that have a large number
of bits in common with the base antigen. This may
or may not be sufficient for a given antibody to sur-
vive the feedback competition and be propagated to
other nodes. However, those strings that are close to
the base antigen string in Hamming distance will also
likely score well against other antigens, if kept in the
system antibody population. This causes the system
antibody population to accumulate alleles in common
with the base antigen string. When the antibody pop-
ulation is viewed as a probability vector that repre-
sents the percentage of 0- or 1-bits at each locus over
the strings in the antibody population, this vector will
approximate the base antigen string more accurately
over time.

Eventually, an antibody matching the base antigen is
a by-product of a search for another antigen library
sample. Antibody copies of the base antigen string
will likely perform well in the feedback competitions
at each node, and chances of survival in the system
will be better than average. After surviving in the an-
tibody population for several cycles, the age weighting
guarantees future survival.

The base string is very rarely useful in exactly match-
ing any string in the antigen library (a 1 in 320 chance),
yet this string serves as a good seed string for the ge-
netic search. The discovery of the base string may or
may not be an optimal system-wide strategy for learn-
ing how best to reduce the number of trials required
to evolve an antibody that matches an antigen sam-
ple. For example, the discovery of four antibodies that
divide the antigen library into equally sized attraction
basins, based on Hamming distance, might work as
well as, or better than, a single generalist. Regardless,
the discovery of the base string is an interesting exam-
ple of local behavior that facilitates emergent global
behavior.

The best performances shown in Table 2 generally cor-
respond with complete saturation (Table 3), yet there
is not a perfect correlation. For example, the load bal-
ancing/random migration implementation performs
quite well, but does not exhibit complete saturation.
Therefore, saturation of the antibody population with
the base antigen must not be the only factor in obtain-
ing good performance.
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4.2 Propagation of Information

To further explore the correlation between the propa-
gation of quality information and the efficiency of dis-
covering antibody/antigen matches, we measured the
average number of cycles required to: 1) discover the
base string, 2) propagate the base string to all nodes
after it has been discovered, and 3) saturate the sys-
tem after a copy of the base string has been seen at all
nodes. Table 4 shows these results.®

Comm. Migration Strategy
Behavior | Random [ Directed [ Cyclic
Avg. Cycles to Discover Base String

Always 138.4 (24.5) 234.4 (51.7) 123.4 (19.9)
JIT 147.2 (23.6) 153.0 (26.6) 182.3 (35.7)
Load Bal 195.4 (37.2) 153.6 (32.4) 123.5 (20.9)
Avg. Additional Cycles to Circulate Base String to All Nodes
Always 36.4 (12.4) 60.4 (22.1) 818.7 ( 77.7)
JIT 35.6 (12.4) 58.8 (17.8) 1018.9 (135.1)
Load Bal 19.4 ( 4.3) 89.4 (31.5) 1278.1 (130.3)

Avg. Additional Cycles to Saturate With Base String
Always 1083.9 (154.4) 1106.6 (178.0) *3906 (0)
JIT 865.1 ( 86.8) 973.2 (107.4) *3798.5 (831.5)
Load Bal | ¥2944.5(410.3) | *2943.4 (378.5) %2013 (0)

Table 4: Average Cycles (SEM) to Discover, Circulate
and Saturate the Antibody Population.

ANOVA testing shows that there is no significant main
effect in the time taken to discover the base antigen
by any of the strategy/behavior combinations. Sur-
prisingly, the average cycles for the experimental runs
using a cyclic agent migration strategy and the always
and load-balancing communication behaviors are bet-
ter than the other strategies at discovering the base
string (but not significantly so in most cases, due to
large SEM values). The no agent strategy required, an
average of 163 cycles (SEM=19) to discover the base
string. This is comparable with most cells in Table 4.

There is a significant main effect seen in the num-
ber of cycles required to propagate the base string
to all of the nodes after it has been discovered. In
fact, it is at this stage of the simulation that those
strategy/behavior combinations that incorporate the
cyclic agent migration strategy experience a signifi-
cant disadvantage, as compared to the other strat-
egy/behavior combinations. In fact, the number of
cycles needed by the cyclic agent migration strategy
to propagate the base string to all other nodes after
discovery is comparable with having no agents in the
system. On average, the SDM runs where no agents
are employed require 1158 cycles (SEM=102) after the

5The * indicates that all 30 runs did not saturate. Av-
erage cycles reported, include only those runs that did
saturate.

initial discovery of the base string, until all nodes have
independently discovered the base string.

There is also a weak main effect that indicates that
the load-balancing behavior is slower at propagating
the base string to all nodes after discovery than either
the always or JIT communication behaviors. However,
this trend is to be treated carefully, as there is an ob-
vious exception. The random migration strategy that
incorporates the load-balancing behavior appears to
be considerably faster at propagating the base string
among all of the nodes. We performed several repeti-
tions of the complete factorial design and this was the
only occurrence of this rapid propagation of informa-
tion (while all other trends were verified).

The ANOVA tests could not be performed for the av-
erage number of cycles between complete circulation
and saturation due to the fact that all 30 experimental
runs for every strategy/behavior combination did not
saturate. However, it can be observed that the random
and directed strategies that use the load-balancing be-
havior do not propagate the base string nearly as well
as when the always and JIT communication behaviors
were employed.

4.3 Performance at Various Stages of the
Simulation

There is an obvious difference in the ability of the
strategy/behavior combinations to propagate informa-
tion (although that information does not always ap-
pear to expedite search speed). It seemed prudent
to test the hypothesis that the discovery of the base
string does in fact affect the number of trials to match
an antigen. Table 5 shows the average number of trials
(and SEM) required to match an antigen during the
stages relative to: 1) discovering the base string, 2)
propagating the base string to all nodes after the first
discovery, 3) between circulating the base to all nodes
and saturation occurring, and 4) after saturation.”

ANOVA tests show that there is indeed a significant
main effect where the discovery of the base antigen re-
duces the average number of trials required to match
a sampled antigen. This holds true for all strat-
egy/behavior combinations but could not be confirmed
for the final two stages of simulation (i.e., after cir-
culation and after saturation), since all runs did not
saturate. The cyclic migration strategies performed
consistently worse than the random and directed mi-
gration strategies, although it is not statistically sig-
nificant. Therefore, the average cycles for the cyclic
agent migration strategy between base string circula-
tion among all nodes and population saturation (Ta-
ble 4) must account for the significant performance
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Comm. Migration Strategy
Behavior Random [ Directed | Cyclic
Stage 1 - Prior to Base String Discovery
Always 380.0 (5.46) 371.8 (3.96) | 392.5 (9.34)
JIT 375.1 (4.60) 381.8 (4.79) | 373.7 (2.67)
Load Bal 371.5 (2.98) 390.0 (9.98) | 385.7 (5.63)
Stage 2 - Between Base String Discovery & Circulation
Always 346.7 (2.71) | 344.6 (2.59) | 338.8 (2.51)
JIT 350.6 (2.95) 355.9 (3.19) | 337.9 (2.60)
Load Bal 346.3 (2.72) 353.4 (3.18) | 339.2 (2.19)
Stage 3 - Between Base String Circulation & Saturation
Always *291.5 (2.70) 291.0 (2.77) | *278.3 (0.0)
JIT 290.5 (1.92) 292.7 (2.20) | *279.1 (0.7)
Load Bal | *282.4 (2.66) | *284.1 (1.33) | *282.1 (0.0)
Stage 4 - After Saturation
Always *278.2 (0.33) 278.3 (0.29) N/A
JIT 280.8 (0.28) 280.2 (0.30) N/A
Load Bal | *276.0 (0.47) | *275.3 (0.61) | *274.6 (0.0)

Table 5: Average Trials to Match Antigen Samples
During Critical Stages of Simulation.

differences observed in Table 5. This is also consistent
with the infrequent saturation rates exhibited by the
cyclic migration strategy.

Figure 4 shows the number of trials required to match
an antigen for the first 1,500 samples of the 5,000 cy-
cle simulation at one of the four nodes for a single
representative run. Trials are shown on the Y-axis
while cycles are shown on the X-axis. The open cir-
cles indicate the trials required to match an antigen
during a particular cycle, and the black line represents
the running average (lag = 100). The base string is
first discovered at cycle 259. The trials to discover a
match for the antigen samples begins to decrease at
this point. The running average reaches a low of ap-
proximately 250 trials by cycle 410, where the system
antibody population saturates with the base string.

4.3.1 The Effects of Seeding Genetic Search
in the SDM Simulation

An unusual behavior observed in Figure 4 is the occur-
rence of searches that expend two to three times the
normal number of trials to find an antibody/antigen
match. This is indicative of seeding the initial popu-
lation for the CHC search in a biased manner, risking
the incidence where the correct allele is not present
in any member of the initial population. Since CHC
does not employ mutation, except at divergences, the
search will converge to an antibody string that does
not match the antigen sample, and hence cataclysmic
mutation will be performed to restart the search. Such
an event can significantly impact the number of trials
necessary to find the matching string.
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Figure 4: Search Profile At A Single Node For First
1,500 Cycles.

This phenomenon occurs here due to the seeding pro-
cedure. Each genetic search is started by seeding the
population with three-bit mutations of the antibod-
ies available in the input queue, where each antibody
in the input queue seeds an equal fraction of the ge-
netic population. The expected difference between the
base string and an antigen sample is five bits. Hence,
the expected difference between antibodies that are fed
back from the genetic search (i.e., at least Hamming
distance five from the antigen just matched) and a
another antigen sample is ten bits. Therefore, the oc-
currence of restarts is not unexpected. It is important
then, that genetic meta-search was used to discover
the seeded mutation value (i.e., three bits) as opposed
to arbitrary determination.

5 Conclusions

Evidence from this study illustrates that seeding the
initial population with a single “generalist” pattern
can expedite genetic search for other related patterns.
In this context, a generalist pattern can form an ef-
fective sparse representation for a library of patterns.
This SDM learns that a good strategy for reducing
the work necessary to match antigen library samples
is to evolve and propagate antibodies matching the
base antigen string. Performance analysis reveals that
providing feedback from the final population used in
genetic search is sufficient to discover such a general-
ist, even when the genetic material does not contain
precise matches for the antigen samples.

It is clear that the use of mobile agents to circulate ge-
netic material between nodes expedites the discovery
and propagation of the base antigen string. Without
agents to circulate the information, each node must
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discover the base string independently. The number
of trials required to match an antigen is significantly
reduced when the base antigen is discovered and its
representation (antibody copies) is shared in the sys-
tem via mobile agents. This is evident from com-
paring the performances of the simulations using ran-
dom and directed migration strategies with the perfor-
mances of simulations implementing cyclic migration,
where communication is hindered, or those containing
no agents, where communication is non-existent. Sim-
ulations using the cyclic agent migration strategy are
unable to propagate the base string throughout the
system and do not consistently saturate the antibody
population.

Additional analysis of system behavior provides insight
into the operational dynamics of each agent commu-
nication behavior. Although not impacting total tri-
als, the load balancing behavior did not saturate the
population in all instances. The relatively large num-
ber of cycles required for this communication behav-
ior to saturate the population with copies of the anti-
body matching the base antigen (Table 4) gives rise to
the hypothesis that agents implementing this behav-
ior may be hiding quality material while “looking” for
non-busy nodes.

On average, the JIT communication behavior provides
more antibodies to begin each search. This behavior
did in fact expedite the antibody population satura-
tion, as evident from the number of cycles to satu-
rate the population with the base string (Table 4),
although it did not seem to significantly impact the
performance metric used in the experiments. Exam-
ining metrics beyond total average trials suggests that
additional experiments run with different performance
criteria (such as reducing the number of cycles per
node) could very well serve as a significant discrimina-
tor among communication behaviors.

The directed agent migration strategy was designed to
promote maximum antibody diversity in the system.
This objective was not realized with respect to im-
proved genetic search performance (Table 2). In fact,
directed migration did not perform quite as well as ran-
dom migration during several simulation stages (Ta-
bles 4 and 5). We surmise that near real-time knowl-
edge (as opposed to real-time) contained in the most
recently sent queue mitigates the anticipated advan-
tage of antibody diversity promotion. This is a result
of the decentralized implementation, where an instan-
taneous global snapshot of node state is not available.

Thorough study of agent behaviors and migration
strategies is a valuable performance analysis exercise.
This investigation illustrates that various communica-

tion implementations can yield surprising results. A
restrictive agent strategy (cyclic migration), conducive
to uneven visitation, performed worse than simulations
using no agents. Agent implementations employing
more complex strategies and behaviors (such as those
that are based on current system state or require coor-
dination) are not always performance leaders. Our re-
sults indicate that a greater degree of agent autonomy,
where agents make simple, independent decisions, fa-
cilitates expedited genetic search that improves sparse
distributed memory performance.
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Abstract

A deterministic model for Ant Colony Opti-
mization (ACO) algorithms is proposed and
used to study the dynamics of ACO. The
model is based on the average expected be-
haviour of ants. The behaviour of ACO algo-
rithms and the model are analysed for certain
types of permutation problems. It is shown
numerically that decisions of the ants are in-
fluenced in an intriguing way by the proper-
ties of the pheromone matrix. This explains
why ACO algorithms show a complex dy-
namic behaviour. Simulations are done to
compare the behaviour of the ACO model
with the ACO algorithm. The results show
that the model describes essential features of
the dynamics of ACO algorithms.

1 INTRODUCTION

Ant Colony Optimization (ACO) has been applied suc-
cessfully to several optimization problems (ACO was
proposed in [1, 2]). Since ACO algorithms are based on
sequences of random decisions of artificial ants which
are usually not independent it is difficult to analyze the
behaviour of ACO algorithms theoretically. Except
from convergence proofs for types of ACO algorithms
with a strong elite principle [3, 4, 12] not much the-
oretical work has been done. Usually ant algorithms
have been tested on benchmark problems or real world
problems. In this paper we propose and analyze a de-
terministic model for ACO algorithms and use it to
derive exact results on optimization problems with a
simple structure. The analytical results are comple-
mented with empirical tests to compare computations
done with the ACO model with test runs of the ACO
algorithm.
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Modelling has been done in the field of genetic algo-
rithms (GAs) by several authors in order to better
understand GAs behaviour. One line of modelling is
to use an infinite population which is often easier to
handle than a finite population since many proper-
ties of an infinite population do not fluctuate due to
few random events [13, 14]. Another method is to
characterize the population by few parameters (e.g.,
mean and variance of the fitness distribution of the
population) which capture important aspects of the
population instead of dealing with a concrete popula-
tion (e.g., [9-11]). Mostly in these studies, GAs are
modelled on problems which are simple but have some
characteristic features of more complicated and real-
world problems (e.g., “Royal Road” functions [8]).

The approach used in this paper is to define a deter-
ministic model for ACO that is based on the expected
decisions of the ants. In the model the pheromone
update in every iteration is done by adding for each
pheromone value the expected update of a random
generation of ants.

In Section 2, we describe the permutation problems
that are used in this paper. The ACO algorithm is
described in Section 3 and the ACO model is defined
in Section 4. In Section 5, we discuss how to apply
the model to permutation problems. A fixed point
analysis of pheromone matrices is done in Section 6.
In Section 7, we analyze the dynamic behaviour of
the ACO model. Simulation results are described in
Section 8 and conclusions are given in Section 9.

2 PERMUTATION PROBLEMS

Although the general approach of our ACO model does
not depend on a specific type of optimzation problems
we give a more elaborated description only for permu-
tation problems. They are also used as test problems.
In particular, we use the following type of permutation
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problems. Given are n items 1,2,...,n and ann X n
cost matrix C' = [c(ij)] with integer costs c(i,7) > 0.
Let P,, be the set of permutations of (1,2,...,n). For
a permutation m € P, let ¢(m) = Yi, c(i,w(i)) be
the cost of the permutation. Let C := {c(7) | m € Py}
be the set of possible values of the cost function. The
problem is to find a permutation 7 € P, of the n
items that has minimal costs, i.e., a permutation with

e(m) = min{e(n') | ' € P, }.

3 ACO ALGORITHM

An ACO algorithm consists of several iterations where
in every iteration each of m ants constructs a solution
for the optimization problem. It has to be mentioned
that we can not consider here all the variants and im-

provements that have been proposed in recent years
for ACO.

For the construction of a solution (here a permutation)
every ant selects the items in the permutation one af-
ter the other. For the selection of an item the ant uses
pheromone information which stems from former ants
that have found good solutions. The pheromone in-
formation, denoted by 75, is an indicator of how good
it seems to have item j at place i of the permutation.
The matrix (7i;); je[1:n) Of pheromone values is called
the pheromone matrix. In addition an ant may also
use problem specific heuristic information. But since
we want to study ACO algorithms in general and not
for some specific problem we do not consider heuristics
in this paper.

The next item is chosen by an ant from the set S
of items, that have not been placed so far, accord-
ing to the following probability distribution (e.g. [2])
that depends on the pheromone values in row i of the
pheromone matrix: p;;j = 755/ Ehes Tin, j € S.

Note that alternative methods where the ants do not
consider only the local pheromone values have also
been proposed [5, 7]. Before the pheromone update is
done a certain percentage of the old pheromone evapo-
rates according to the formula 7;; = (1—p)-7;;. Param-
eter p allows to determine how strongly old pheromone
influences future decisions. Then, for every item j of
the best permutation found so far some amount A of
pheromone is added to element 7;; of the pheromone
matrix (¢ is the place of item j). The algorithm stops
when some stopping criterion is met, e.g. a certain
number of generations has been done. For ease of de-
scription we assume that the sum of the pheromone
values in every row and every column of the matrix
is always one, Le., >.»  7;; = 1for j € [1: n] and
>iymij=1fori€[l:n]and A = p.

4 ACO MODEL

In the proposed ACO model the pheromone update
of a generation of ants is done by adding to each
pheromone value the expected update value. This
means that the effect of an individual ant in a run
is averaged out. Since the update values in the ACO
algorithm are always only zero or A = p the ACO
model can only approximate the average behaviour of
an ACO algorithm over more than one generation.

In order to determine the expected update for a ran-
dom generation of ants the probabilities for the vari-
ous decisions of the ants have to be determined. Let
M = (7;j) be a pheromone matrix and let o;; be the
probability that a random ant selects item j for place 3.
Clearly, this selection probability can be computed as
described in the following. Let P,, be the set of possible
solutions, i.e. the set of permutations of (1,2,...,n).
The probability to select a solution 7w € P, is

Tl TI' l
(1)
H Z] '3 Tz 7l'
The probability that item 7 is put on place j is
Oij = Z O * g(ﬂ,i,j)
TEP,

where g(m,i,7) = 1if n(i) =
0).

j (otherwise g(m,i,j) =

Given a permutation problem P with corresponding
cost matrix and pheromone matrix let 0'( ™) he the
probability that the best of m ants in a generatlon
selects item j for place i. Let Ppyin(P,71,.-.,Tm) be
the subset of permutations of {1, ..., 7y} with mini-
mal costs, i.e., Prin(P, 71, ..., ) = {m,i € [1 : m] |
c(m;) = min{c(m;) | j € [1 : m]}}. Probability U'Z(;n)
can be computed by

O'z(Jm) = Z (H ka)'g(ﬂ-la-"aﬂ-mvivj) (2)

(T15eesTm),mi €Pr k=1
where g(71, ..., Tm, 1, j) equals

{7 € Pmin(Pym1, -y mm) | 7(0) = j}
|’Pmin(P77rla---a7Tm)|

(3)

At the end of a generation the pheromone update is
done in the ACO model by 7;; = (1—p) -7 +p- UZ(;.”).
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In the following an alternative way to compute the se-
lection probabilities for the best of m ants is described.
Let C be the set of possible cost values for a permu-
tation or in other words the set of possible solution
qualities. Let £(™%) be the probability that the best
of m ants in a generation finds a solution with quality
z € C. Let wg-”) be the probability that an ant which
found a solution with quality = € C has selected item
1 for place 5. Then

o) =3 wp (4)

zeC

An interesting aspect of this formula is that the
pheromone update that is performed at the end of an
iteration is obtained as a weighted sum over the pos-
sible solution qualities. For each (possible) solution
quality the update value is determined by the proba-
bilities for the decisions of a single ant when it chooses
between all possible solutions with that same quality.
The effect of the number m of ants is only that the
weight of the different qualities in this sum changes.
The more ants per iteration, the higher becomes the
weight of the optimal quality.

We now consider a variant of the above situation that
is needed in the next section. We introduce the con-
cept of malus values. It is assumed that some ants in
an iteration receive a malus value. This value is added
to the cost of the permutation they found. An ant with
a malus is allowed to update only when the cost of its
solution plus the malus is better than the solution of
every other ant plus its malus (in case it has a malus).
Formally, for ¢ € [1 : m] let d; > 0 be the malus of
ant ¢. We always assume that ant 1 has no malus, i.e,
d; = 0. Let ¢m™®id2dm he the probability that the
best of m ants where ant ¢ € [1 : m] has a malus d;
has found a solution of quality z € C. Then

Ugn;dQ,...,dm) — Zé—(m;z;dz,...7dm) . wl(]x) (5)

zeC

5 ACO MODEL FOR RESTRICTED
PERMUTATION PROBLEMS

Many real world problems consist of subproblems that
are more or less independent from each other. In or-
der to study the behaviour of ACO algorithms on such
problems we model this in an idealized way. We con-
sider restricted permutation problems which consist
of several small independent problems. Define for a
permutation problem P of size ng a restricted permu-

tation problem P? that consists of ¢ independent in-
stances of P. Formally, let C4,Cs,...,C, be the cost
matrices of ¢ instances of P and denote by cg-) element
(,7) of matrix Cj, I € [1 : gq]. Then for problem P?
the item (I —1) -no+j,l € [1:q], j € [1:ng] can be
placed only at places (I — 1) -ng+ 1, (I — 1) - ng + 2,
..oy (l=1)-ng+mng. The cost to place item (I—1)-ng+J
at place (I—1)-ng+h is clhj. Let C be the correspond-
ing cost matrix of the instance of problem P? where
¢ij = oo when j is not of the form (I —1)-ng+h. Note,
that our definition of restricted permutation problems
does not allow an ant to make a decision with cost
0o. We call P the elementary subproblem of P? and
the ¢ instances of P that form an instance of P? the
elementary subinstances of P?. We consider here only
the case that all cost matrices C,Cl,...,C, are equal,
ie. C =Cy =0y =...=C, for some cost matrix C'.
Then P? is called homogeneous restricted permutation
problem and the cost matrix of P? is denoted by C(4).

In the following we show how the behaviour of the
ACO algorithm for a (possibly inhomogeneous) re-
stricted permutation problem PY can be approximated
using the behaviour of the ACO model for the elemen-
tary subproblem P. Consider an arbitrary of the ¢
elementary subinstances of P? — say the rth subin-
stance — and the quality of the solutions that m
ants in an iteration have found on the other elemen-
tary subinstances (which form an instance of problem
P9~1). Without loss of generality assume that the
quality of the solution found by ant ¢ is at least as
good as the solution found by ant ¢ +1,4 € [1 : m —1].
Let d,,q.. be the maximum difference between two
values in cost matrix C,. of the rth subproblem, i.e.
dmaz = max{cg) | 3,5 € [1:nol}— min{cg) |i,j €
[1 : no]}. Let d;, i € [2 : m] be the minimum of
dmaz + 1 and the difference of the cost of the permu-
tation found by ant i on P?~! minus the cost of the
permutation found by ant 1 on P?~!. Our assump-
tion implies 0 < dy < ... < d,,. Define @¢midz,dm
0 < d; < dmae + 1,1 € [2:m] as the probability that
for m ants on problem P?~! the difference of the costs
of the solutions found by the ith best ant and the best
ant is d; when d; < dp.. and when d; = dpee + 1
it is the probability that this difference is > dpnae,
i € [2:m]. Let D be the set of all vectors (da, ..., dn)
with integers dy < ... < dp, 0 < d; < dppaz + 1,
i € [2: m]. Then for the rth elementary subproblem
(m)

of P? we obtain o,

;i equals

Z ¢(m;d2,...,dm) . a_l(;n;dzy...7dm) _ wa . wz(jm)

(dz,....,du ) ED zeC
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with w, = Z(dz,...7dm)e’l) d)(m;dz,...,dm) _f(m;.'t;dQ,...,dm)'
This shows that the effect of the subproblem P9~! on
the remaining subinstance P,. of PY is to change the
weights between the influence of the different solution
quality levels when compared to formula 4 for solving
only the subproblem P = P,.

We study the case of m = 2 ants in more detail.
For problem P? let pg», and ps=, be the probabil-
ities that the absolute value of the difference of the
solution quality of two ants on the smaller problem
P91 is > y respectively = y. Then the probability
to select item j of the [th elemen-

)
(l*l)’ﬂgﬁ*h,(l*l)ﬂo%’j

tary subproblem equals

dmaz
' 1(2;y)
Pd>dpmas " Ohj T E Dd=y * Op;

y=1

+ Pd=o * U;L(;)

where ¢' refers to probabilities for the elementary
subinstance P. This equation shows the interesting
fact that part of the probability to select the item is
just the probability U;Lj of a single ant to select item
J at place h for the elementary subproblem P. This is
the case when the quality of the solutions of both ants
differ by more than d,,,,;. When the qualities of both
solutions are the same the probability U;L(;) to select
item j at place h equals the probability that the bet-
ter of two ants on problem P selects item j at place h.
All other cases correspond to the situation that one of
two ants on problem P has a malus.

The larger the number ¢ of subproblems is the larger
becomes the probability pgsg,,... An important con-
sequence is that the (positive) effect of competition
between the two ants for finding good solutions be-
comes weaker and a possible bias in the decisions of a
single ant has more influence.

Let ga—y (qfiq:;l)) be the probability that the difference
of the solution quality found by the first ant minus the
solution quality found by the second ant on subprob-
lem P (respectively P?!) is y (here we do not as-
sume that the first ant finds the better solution). The
value of this difference on subproblem P?~! can be de-
scribed as the result of a generalized one-dimensional
random walk of length ¢ — 1. Define I, as the set
of tuples (kfdmam ) k*dmam+17 EERN kdmaw—l ) kq ) with
qg—1= Zf:mj”dmw ki,y = Z?;”j“;mw k; - d; where k; is
the number of elementary subinstances of P?~! where
the difference between the first and the second ant is
i € [~dmaz ¢ dmaz]. Then qdq:_y1 can be computed as
follows

max

Z (¢ —1)! ) qk—dmmc L qkdmm
PR T
where the sum is over (k_q,..,...,kd,..) € Iy.

Clearly, pi—o = ¢/"
Pd—y =2 q((iq:_yl). The remarks on analysing the ACO
model for m = 2 ants can be extended to m > 3.

and due to symmetry, for y # 0

As an example consider the following problem P; with
cost matrix

01 2
Ci=|1 0 1 (6)
2 10
The possible solution qualities for problem P; are 0,
2, and 4 and the optimal solution is to put item ¢ on

place ¢ for ¢ € [1: 3]. Hence aéflj73i+h = Pa>4 - U;Lj +

> y=o.4 Pi=y -U;L(;;y) +pd:0-a;fj2) . Consider the following

pheromone matrix for P;

Ti1 Ti2 Ti3 0.1 0.3 0.6
T21 T22 T23 = 0.6 0.1 0.3 (7)
T31 T32 T33 0.3 0.6 0.1

Then the probability for an ant to put, e.g., item 2 on
place 2 can be computed as 022 = 0.1-0.1/(0.14+0.3) +
0.6-0.1/(0.1 + 0.6) ~ 0.111. The matrix of selection
probabilities for one ant on problem P is

013 0.1 0.3 0.6
0.714 0.111 0.175
0.186 0.589 0.225

011 012
021 022 023 ~

2

031 032 033

Since the optimal solution is to place item 4 on place
i for i € [1: 3] it is seems likely that the correspond-
ing selection probabilities are larger with two ants per
iteration compared to the case of a single ant in an
iteration. But our example shows that this is not nec-
essary. The probability to place item 2 on place 2 is
ag) = 0.109 and slightly smaller than oy = 0.111.
When one of two ants has a malus the selection prob-
abilities are mostly in between the case of two ants per
iteration and a single ant per iteration. But again, the
probability to place item 2 on place is a counterexam-
ple: Ug) <o < ag;z). Although not true in every
case, it can be observed that the selection probabilities
for the better ant become more similar to the matrix
of the selection probabilities for a single ant the higher
the malus is.
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Figure 1: Direction of the vector field for changes of
pheromone vectors (721, T22,T23) for the ACO model
with a single ant and 71 = 72 = 113 = 1/3; possible
pheromone vectors lay in the white area; distance from
right (bottom,left ) line: 791 (722,723)

6 FIXED POINTS

Since the pheromone values of an ACO algorithm re-
flect the frequencies of decisions that resulted in good
solutions it is desirable that the selection probabili-
ties used by an ant are equal to their corresponding
pheromone values. As observed in [6] this might often
not be the case since the decisions of an ant are not in-
dependent. We say that there is a selection bias when
the probability of a random ant to choose an item is
different from the corresponding pheromone value. A
pheromone matrix where the probability of a random
ant to choose an item is the same as the corresponding
pheromone value, i.e., 7;; = 055, for all 4, j, is called
fixed point matrix. A fixed point matrix can change
in the ACO model only for m > 2 ants. The ques-
tion arises which matrices are fixed point matrices for
a permutation problem.

As an example consider a permutation problem of size
n = 3 where the pheromone matrix (7;); jer1:3) is de-
fined by the values 71,712,721, 722. Clearly, the se-
lection probabilities for the items in the first row are
always equal to their corresponding pheromone values.
It remains to determine the probability of choosing the
first and the second item in the second row. The se-
lection probabilities for these items are

TieTer . (L—Ti1 — T12) Tor
021 =
1— 1799 Tor + Toz
T Tee | (L=Ti1 —Tig) Tog
0929 =
1— 7y Tor + Toz

The solutions of o217 — 191 = 0 and g22 — 792 = 0 show

1strow ——

Figure 2: ACO model for P/, ¢ = 2,4,8,16,32, 64,128,
m = 2; change of pheromone values 711,712, 713 (first
row of corresponding fixed point matrix is identical):
starting point at (711,712, 713) = (0.1,0.3,0.6)

that the fixed points depend only on the pheromone
values in the first row of the pheromone matrix:

1. 71 =0, 72 = (71 + 712 — 1) /(111 — 1)
2. m=(mi+mn2—-1)/(n12—1), 22 =0
3. 71 = (m11)/(T11 + T12), T2 = (112) /(711 + Ti2)

4. T21:1—2'T11,T22:1—2'T12

Analysing the eigenvalues of the Jacobian matrix of
[0’21 — T21,0922 — T22] the Stability of the fixed points
was determined. For every pair of possible values 711
and 115 exactly one of the fixed points is stable and
attracting in the range of possible pheromone values.
The cases (1), (2), and (3) are symmetric: for 17 > 0.5
the fixed point (1) is stable, for 712 > 0.5 the fixed
point (2) is stable, and for 1 —74; — 112 > 0.5 the fixed
point (3) is stable. In every other case the fixed point
(4) is stable. Thus, there exists always exactly one
stable fixed point matrix. Some of the three unstable
fixed points might lay outside of the allowed parameter
range 7s1, 722,723 € (0, ].), To1 + Too + To3 = 1.

The directions of the vector field for changes of
pheromone vector (721, 722, 723) when (711,712, T13) =
(1/3,1/3,1/3) are shown in Figure 1. In this case
the vector field is symmetric with respect to rotations
of 60 degree around the fixed point (721,722, 723) =
(1/3,1/3,1/3). It is interesting to observe that in some
areas of the vector field there are points (721, 722, T23)
with a value m5; > 1/3 for ¢ € [1 : 3] that becomes even
larger. This shows that the effects of the selection bias
can be complex even for small problems.
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2nd row ——
’ fixed points -

Figure 3: ACO model for P/, ¢ = 2,4,8,16,32, 64,128,
m = 2; change of pheromone values 751, 722, T3 and fix
point matrix: starting at (721, 722, 723) = (0.6,0.1,0.3)

7 DYNAMIC BEHAVIOUR

To study the dynamic behaviour of the ACO model
consider problem P; with cost matrix given in (6) in
Section 4. Figures 2-4 show the dynamic behaviour of
the ACO model for P} with different values of ¢ and
m = 2 ants. The pheromone evaporation p is 0.1 and
the initial pheromone matrix is the same as in (7).

In contrast to the situation of one ant where the model
converges to its stable selection fixed point the model
converges for this example to the optimal solution.
During convergence the actual position of the selec-
tion fixed point has a strong influence on the system.
Note that for the first row of the matrix the pheromone
values always equal the corresponding selection prob-
abilities. Hence all dynamic in the first row is only
due to competition (and not due to selection bias).
Therefore, the pheromone values in Figure 2 approach
the optimal values on an almost straight path. This
is different for the pheromone vectors of row 2 and 3
(see figures 3, 4) where the stable selection fixed point
has a large influence and the system moves often more
in direction of the stable selection fixed point than in
direction to the optimal solution. In Figure 4 paths
with ¢ > 8 contain a loop that is clearly influenced by
the turn of the selection fixed point. The larger g the
stronger is the deviation from a straight line because
a high number of elementary subproblems leads to a
small influence of competition (see Section 5).

In order to investigate the relative influence of selec-
tion, pure competition, and weak competition (where
one ant has a malus) we computed the probabilities
for the possible differences in solution quality between
the two ants on the smaller problem P{~". Recall that

3rdrow ——
fixed points -

Figure 4: ACO model for P?, q = 2,4,8, 16,32, 64,128,
m = 2; change of values 731, 732, 733 and fix point ma-
trix: starting at (731,732, 733) = (0.3,0.6,0.1)
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Figure 5: ACO model for P}, m =2, ¢ = 4; change of
Pd=y ON P1q_13 Pd=0, Pd=2; Pd=4, Pd>4

0 100 200 300 400 500 600 700

Figure 6: ACO model for P!, m = 2, ¢ = 64; change
of pa—y on P{™'t py—o, Pa=2, Pa—1, Pa>a
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3rd row ——

Figure 7: ACO model for problem P}, m = 2, ¢ =
6,10, 14,18,22, initial matrix defined by (7117 = 0.1,
12 = 0.2, 791 = 0.1, 793 = 0.7; change of pheromone
values 731,732,733

the solution quality for the elementary subproblem P;
can be 0, 2, or 4. Figures 5, 6 show the probabilities
Pd—0, Pd—2, Pd—4, Pd>4 for a small and a large number
of subproblems. For the large number the cases pg>4,
respectively pq,>4,4,>4, Which correspond to selection
by a single ant on the elementary subproblem have a
probability of more than 50% over most parts of the
run. Only when the ACO model starts to converge the
model is driven more by competition (as suggested by
the analysis of the dynamics of the pheromone values).

To show that the selection bias can be so strong that
the ACO model is not able to find the optimal solu-
tion consider the following small problem P» with cost
matrix (c¢;;) where ¢;; = 0, ¢13 = 100 and all the other
values are ¢;; = 1,4, € [1: 3].

Figure 7 shows the behaviour of the ACO model for
qu with initial pheromone values 711 = 0.1, 712 = 0.2,
191 = 0.1, 792 = 0.7 for different values of ¢q. For
q = 6,10, 14 subproblems the system converges to the
optimal solution. But for larger numbers ¢ = 18,22
the influence of the selection bias is so high that
the system converges to a non-optimal solution with
(7'11;7'12,7'13) = (33;1 —1’,1): (T21,T22,T23) = (0;0,1)
and (731,732,733) = (1 — z,2,0). Even for small
numbers the system is driven by a selection bias but
competition becomes stronger early enough to change
the direction of convergence to an non-optimal solu-
tion. We tested the system also for all 666 matri-
ces with a feasible combination of pheromone values
Ti; € 0.1,0,2,...,0.9, for i,j € [1 : 3]. Even for
the small problem P# the optimal solution can not
be found for 83 of the 666 different initial matrices.
This number increases up to 296 for P§°.
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Figure 8: Solution quality on problem P}?® with m = 2
over 1000000 (respectively 1000) iterations: average m
ants: average quality found by m ants in the iteration
of ACO algorithm; expected value m ants: expected
quality found by a random ant on the pheromone ma-
trix in the generation of ACO algorithm; model m
ants: average quality for ACO model

8 SIMULATION RESULTS

Since we have to consider single runs of the ACO
algorithm in our simulation a very small value of
p = 0.0001 was chosen for the algorithm. For the ACO
model p = 0.1 was used. We compare then iteration
t of the model with iteration 1000t of the algorithm.
Note that this establishes an additional difference be-
tween the model and the algorithm.

Figure 8 shows the behavior of the algorithm and
model on problem PJ with ¢ = 128. The solution
quality found by a random ant of the ACO model is
nearly the same as the expected behaviour of an ant
in the ACO algorithm (in the figure the corresponding
curves are nearly identical). The observed average so-
lution quality of the ACO algorithm found by m = 2
ants fluctuates around the solution quality that can
be expected from the pheromone matrix in that gen-
eration. It is interesting that the expected solution
quality of the ACO model and algorithm can become
worse during the run (This effect is not the result of
disadvantageous random decisions but is predicted by
the model).

Figure 9 shows the results of the ACO algorithm on
problems P! with different values for ¢q. Since ev-
ery curve stems from one run of the algorithm only
(it is not clear how to average in a reasonable way)
the curves are not very smooth. Nevertheless the
figure shows when compared to figures 3,4 that the
ACO model predicts very well the development of the
pheromone values of the ACO algorithm.

Of course not all aspects of ACO algorithms behaviour
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128 blocks ——
64 blocks -
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Figure 9: ACO algorithm for P/, ¢ = 2,4,8,16,32,
64,128, m = 2: change of pheromone values 751, T22,
723 starting at (7'21, T22, 7'23) = (06,01,03)

can be observed in the ACO model. As an exam-
ple consider the restricted homogeneous permutation
problem P? where the ACO model shows the same be-
haviour on each of the elementary subproblems. The
ACO algorithm in contrast behaves differently on the
elementary subproblems due to random effects.

9 CONCLUSION

A deterministic model for ACO algorithms was pro-
posed that uses a pheromone update mechanism based
on the expected decisions of the ants. An interest-
ing feature of the model is that it describes the be-
haviour of ACO algorithms through a combination of
situations with different strength of competition be-
tween the ants. A fixed point analysis of the models
pheromone matrices has given insights into the occur-
rence of biased decisions by the ants. It was shown
analytically that the fixed points in the state space of
the system have a strong influence on its optimization
behaviour. Simulations have shown that the model
accurately describes essential features of the dynamic
behaviour of ACO algorithms.
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Abstract

In competitive coevolution, the goal is to es-
tablish an “arms race” that will lead to increas-
ingly sophisticated strategies. However, in prac-
tice, the process often leads to idiosyncrasies
rather than continual improvement. Applying
the NEAT method for evolving neural networks
to a competitive simulated robot duel domain,
we will demonstrate that (1) as evolution pro-
gresses the networks become more complex, (2)
complexification elaborates on existing strate-
gies, and (3) if NEAT is allowed to complexify,
it finds dramatically more sophisticated strate-
gies than when it is limited to fixed-topology net-
works. The results suggest that in order to real-
ize the full potential of competitive coevolution,
genomes must be allowed to complexify as well
as optimize over the course of evolution.

1 INTRODUCTION

In competitive coevolution, two or more populations of in-
dividuals evolve simultaneously in an environment where
an increased fitness in one population leads to a decreased
fitness for another. Ideally, competing populations will
continually outdo one another, leading to an ’arms race” of
increasing sophistication (Dawkins and Krebs 1979; Van
Valin 1973). In practice, evolution tends to find the sim-
plest solutions that can win, meaning that strategies can
switch back and forth between different idiosyncratic yet
uninteresting variations (Darwen 1996; Floreano and Nolfi
1997; Rosin and Belew 1997). Several methods have been
developed to encourage the arms race (Angeline and Pol-
lack 1994; Rosin and Belew 1997). For example, a "hall of
fame” can be used to ensure that current strategies remain
competitive against strategies from the past. Although such
techniques improve the performance of competitive coevo-
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lution, they do not directly encourage continual coevolu-
tion, i.e. creating new solutions that maintain existing ca-
pabilities. Much time is wasted evaluating solutions that
are deficient in this way.

The problem is that in general genomes have a fixed set
of genes mapping to a fixed phenotypic structure. Once a
good strategy is found, the entire representational space of
the genome is used to encode it. Thus, the only way to
improve it is to alter the strategy, thereby sacrificing some
of the functionality learned over previous generations.

In this paper, we propose a novel solution to this prob-
lem. The idea is to complexify or add structure to the dom-
inant strategy, so that it does not merely become different,
but rather more elaborate. This idea is implemented in a
method for evolving increasingly complex neural networks,
called NeuroEvolution of Augmenting Topologies (NEAT;
Stanley and Miikkulainen 2001, 2002b,c). NEAT begins by
evolving networks without any hidden nodes. Over many
generations, new hidden nodes and connections are added,
resulting in the complexification of the solution space. This
way, more complex strategies elaborate on simpler strate-
gies, focusing search on solutions that are likely to maintain
existing capabilities.

NEAT was tested in a competitive robot control domain
with and without complexification. The main results were
that (1) evolution did complexify when possible, (2) com-
plexification led to elaboration, and (3) significantly more
sophisticated and successful strategies were evolved with
complexification than without. These results imply that
complexification allows coevolution to continually elabo-
rate on successful strategies, resulting in an arms race that
achieves a significantly higher level of sophistication than
is otherwise possible.

We begin by describing the NEAT neuroevolution method,
followed by a description of the robot duel domain and a
discussion of the results.
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2 NEUROEVOLUTION OF
AUGMENTING TOPOLOGIES (NEAT)

The NEAT method of evolving artificial neural networks
combines the usual search for appropriate network weights
with complexification of the network structure. This ap-
proach is highly effective: NEAT outperforms other neu-
roevolution (NE) methods, e.g. on the benchmark double
pole balancing task by a factor of five (Stanley and Miik-
kulainen 2001, 2002b,c¢). The NEAT method consists of so-
lutions to three fundamental challenges in evolving neural
network topology: (1) What kind of genetic representation
would allow disparate topologies to crossover in a mean-
ingful way? (2) How can topological innovation that needs
a few generations to optimize be protected so that it does
not disappear from the population prematurely? (3) How
can topologies be minimized throughout evolution so the
most efficient solutions will be discovered? In this section,
we explain how NEAT addresses each challenge.'

2.1 GENETIC ENCODING

Evolving structure requires a flexible genetic encoding. In
order to allow structures to complexify, their representa-
tions must be dynamic and expandable. Each genome in
NEAT includes a list of connection genes, each of which
refers to two node genes being connected. Each connec-
tion gene specifies the in-node, the out-node, the weight of
the connection, whether or not the connection gene is ex-
pressed (an enable bit), and an innovation number, which
allows finding corresponding genes during crossover.

Mutation in NEAT can change both connection weights and
network structures. Connection weights mutate as in any
NE system, with each connection either perturbed or not.
Structural mutations, which form the basis of complexifi-
cation, occur in two ways (figure 1). In the add connection
mutation, a single new connection gene is added connect-
ing two previously unconnected nodes. In the add node
mutation an existing connection is split and the new node
placed where the old connection used to be. The old con-
nection is disabled and two new connections are added to
the genome. This method of adding nodes was chosen in
order to integrate new nodes immediately into the network.
Through mutation, genomes of varying sizes are created,
sometimes with completely different connections specified
at the same positions.

In order to perform crossover, the system must be able to
tell which genes match up between any individuals in the
population. The key observation is that two genes that have
the same historical origin represent the same structure (al-

'A more comprehensive description of the NEAT method is
given in Stanley and Miikkulainen (2001, 2002c).
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Figure 1: The two types of structural mutation in NEAT.
Both types, adding a connection and adding a node, are illus-
trated with the genes above their phenotypes. The top number in
each genome is the innovation number of that gene. The bottom
two numbers denote the two nodes connected by that gene. The
weight of the connection, also encoded in the gene, is not shown.
The symbol DIS means that the gene is disabled, and therefore not
expressed in the network. The figure shows how connection genes
are appended to the genome when a new connection is added to
the network and when a new node is added. Assuming the de-
picted mutations occurred one after the other, the genes would be
assigned increasing innovation numbers as the figure illustrates,
thereby allowing NEAT to keep an implicit history of the origin
of every gene in the population.

though possibly with different weights), since they were
both derived from the same ancestral gene from some point
in the past. Thus, all a system needs to do to know which
genes line up with which is to keep track of the historical
origin of every gene in the system.

Tracking the historical origins requires very little compu-
tation. Whenever a new gene appears (through structural
mutation), a global innovation number is incremented and
assigned to that gene. The innovation numbers thus rep-
resent a chronology of every gene in the system. As an
example, let us say the two mutations in figure 1 occurred
one after another in the system. The new connection gene
created in the first mutation is assigned the number 7, and
the two new connection genes added during the new node
mutation are assigned the numbers 8 and 9. In the future,
whenever these genomes crossover, the offspring will in-
herit the same innovation numbers on each gene; innova-
tion numbers are never changed. Thus, the historical origin
of every gene in the system is known throughout evolution.

Through innovation numbers, the system now knows ex-
actly which genes match up with which. Genes that do not
match are either disjoint or excess, depending on whether
they occur within or outside the range of the other parent’s
innovation numbers. When crossing over, the genes in both



ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION 115

genomes with the same innovation numbers are lined up.
Genes that do not match are inherited from the more fit par-
ent, or if they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover
without the need for expensive topological analysis.
Genomes of different organizations and sizes stay compat-
ible throughout evolution, and the problem of competing
conventions (Radcliffe 1993) is essentially avoided. Such
compatibility is essential in order to complexify structure.

2.2 PROTECTING INNOVATION THROUGH
SPECIATION

Adding new structure to a network usually initially reduces
fitness. However, NEAT speciates the population, so that
individuals compete primarily within their own niches in-
stead of with the population at large. This way, topological
innovations are protected and have time to optimize their
structure before they have to compete with other niches in
the population.

Historical markings make it possible for the system to di-
vide the population into species based on topological simi-
larity. We can measure the distance d between two network
encodings as a simple linear combination of the number of
excess (F) and disjoint (D) genes, as well as the average
weight differences of matching genes (W):

6=%+%+03-W. (1)
The coefficients c;, ¢2, and c3 adjust the importance of the
three factors, and the factor NV, the number of genes in the
larger genome, normalizes for genome size. Genomes are
tested one at a time; if a genome’s distance to a randomly
chosen member of the species is less than d;, a compatibil-
ity threshold, it is placed into this species. Each genome is
placed into the first species where this condition is satisfied,
so that no genome is in more than one species.

As the reproduction mechanism for NEAT, we use explicit
fitness sharing (Goldberg and Richardson 1987), where or-
ganisms in the same species must share the fitness of their
niche, preventing any one species from taking over the pop-
ulation.

2.3 MINIMIZING DIMENSIONALITY THROUGH
COMPLEXIFICATION

Unlike other systems that evolve network topologies and
weights (Angeline et al. 1993; Gruau et al. 1996; Yao 1999;
Zhang and Muhlenbein 1993), NEAT begins with a uni-
form population of simple networks with no hidden nodes.
Speciation protects new innovations, allowing topological
diversity to be gradually introduced over evolution.

= @ @ =

Figure 2: The Robot Duel Domain. The robots begin on op-
posite sides of the board facing away from each other as shown
by the lines pointing away from their centers. The concentric
circles around each robot represent the separate rings of oppo-
nent sensors and food sensors available to each robot. Each
ring contains five sensors, which appear larger or smaller de-
pending on their activations. From this initial position, nei-
ther robot has a positional advantage. The robots lose energy
when they move around, yet they can gain energy by consum-
ing food (shown as black dots). The food is placed in a hor-
izontally symmetrical pattern around the middle of the board.
The objective is to attain a higher level of energy than the op-
ponent, and then collide with it. Because of the complex inter-
action between foraging, pursuit, and evasion behaviors, the do-
main allows for a broad range of strategies of varying sophistica-
tion. Animated demos of the robot duel domain are available at
www.cs.utexas.edu/users/nn/pages/research/neatdemo.html.

New structure is introduced incrementally as structural mu-
tations occur, and only those structures survive that are
found to be useful through fitness evaluations. This way,
NEAT searches through a minimal number of weight di-
mensions, significantly reducing the number of generations
necessary to find a solution, and ensuring that networks be-
come no more complex than necessary. In other words,
NEAT searches for the optimal topology by complexifying
when necessary.

3 THE ROBOT DUEL DOMAIN

To demonstrate the effect of complexification on competi-
tive coevolution, a domain is needed where it is possible to
develop increasingly sophisticated strategies and where the
sophistication can be readily measured. A balance between
the potential complexity of evolved strategies and their an-
alyzability is difficult to strike. Pursuit and evasion tasks
have been utilized for this purpose in the past (Gomez and
Miikkulainen 1997; Jim and Giles 2000; Miller and Cliff
1994; Reggia et al. 2001), and can serve as a benchmark
domain for competitive coevolution as well. While past ex-
periments evolved either a predator or a prey, an interesting
coevolution task can be established if the agents are instead
equal and engaged in a duel. To win, an agent must de-
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velop a strategy that outwits that of its opponent, utilizing
structure in the environment.

In the robot duel domain, two simulated robots try to over-
power each other (figure 2). The two robots begin on op-
posite sides of a rectangular room facing away from each
other. As the robots move, they lose energy in proportion
to the amount of force they apply to their wheels. Although
the robots never run out of energy (they are given enough
to survive the entire competition), the robot with higher
energy can win by colliding with its competitor. In addi-
tion, each robot has a sensor indicating the difference in
energy between itself and the other robot. To keep their en-
ergies high, the robots can consume food items, arranged
in a symmetrical pattern in the room.

The robot duel task supports a broad range of sophisticated
strategies that are easy to observe and interpret without ex-
pert knowledge. The competitors must become proficient
at foraging, prey capture, and escaping predators. In addi-
tion, they must be able to quickly switch from one behavior
to another. The task is well-suited to competitive coevolu-
tion because naive strategies such as forage-then-attack can
be complexified into more sophisticated strategies such as
luring the opponent to waste its energy before attacking.

The simulated robots are similar to Kheperas (Mondada
et al. 1993). Each has two wheels controlled by separate
motors. Five rangefinder sensors can sense food and an-
other five can sense the other robot. Finally, each robot has
an energy-difference sensor, and a single wall sensor.

The robots are controlled with neural networks evolved
with NEAT. The networks receive all of the robot sensors
as inputs, as well as a constant bias that NEAT can use to
change the activation thresholds of neurons. They produce
three motor outputs: Two to encode rotation either right or
left, and a third to indicate forward motion power.

This complex robot-control domain allows competitive co-
evolution to evolve increasingly sophisticated and complex
strategies, and can be used to benchmark coevolution meth-
ods.

4 EXPERIMENTS

In order to demonstrate how complexification contributes
to continual coevolution, we ran four evolution trials with
full NEAT and three trials with complexification turned off.
The methodology is described below.

4.1 COMPETITIVE COEVOLUTION SETUP

In each evolution trial, 2 populations, each containing 256
genomes, were evolved simultaneously. In each generation,
each population is evaluated against an intelligently chosen

sample of networks from the other population. The popu-
lation currently being evaluated is called the host popula-
tion, and the population from which opponents are chosen
is called the parasite population (Rosin and Belew 1997).
The parasites are chosen for their quality and diversity,
making host/parasite evolution more efficient and more re-
liable than random or round robin tournament.

A single fitness evaluation included two competitions, one
for the east and one for the west starting position. That way,
networks needed to implement general strategies for win-
ning, independent of their starting positions. Host networks
received a single fitness point for each win, and no points
for losing. If a competition lasted 750 time steps with no
winner, the host received 0 points.

In selecting the parasites for fitness evaluation, good use
can be made of the speciation and fitness sharing that al-
ready occur in NEAT. Each host was evaluated against the
champions of four species with the highest fitness. They
are good opponents because they are the best of the best
species, and they are guaranteed to be diverse because their
compatibility must be outside the threshold é; (section 2.2).
Another eight opponents were chosen randomly from a
Hall of Fame (Rosin and Belew 1997) that contained pop-
ulation champions from all generations. Together, specia-
tion, fitness sharing, and Hall of Fame comprise a state of
the art competitive coevolution methodology. However, as
our experimental results will show, complexification is the
most important ingredient in establishing continual coevo-
lution.

4.2 MONITORING PROGRESS IN
COMPETITIVE COEVOLUTION

In order to track progress in coevolution, we need to be
able to tell whether one strategy is better than another. Be-
cause the board configurations can vary during the game,
networks were compared on 144 different food configura-
tions from each side of the board, giving 288 total compar-
isons. The food configurations included the same 9 sym-
metrical food positions used during training, plus an addi-
tional 2 food items, which were placed in one of 12 dif-
ferent positions on the east and west halves of the board.
Some starting food positions give an initial advantage to
one robot or another, depending on how close they are to
the robots’ starting positions. We say that network a is su-
perior to network b if @ wins more comparisons than b out
of the 288 total comparisons.

Given this definition of superiority, progress can be tracked.
The obvious way to do it is to compare each network to oth-
ers throughout evolution, finding out whether later strate-
gies can beat more opponents than earlier strategies. For
example, Floreano and Nolfi (1997) used a measure called
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Figure 3: Complexification of connections and nodes over generations. The graphs depict the average number of connections and
the average number of hidden nodes in the highest dominant network in each generation. Averages are taken over four complexifying
runs. A hash mark appears every generation in which a new dominant strategy emerged in at least one of the four runs. The graphs show
that as dominance increases, so does complexity level on average. The differences in complexity between the average final dominant
and first dominant strategies are statistically significant for both connections and nodes (p < 0.05).

master tournament, in which the champion of each genera-
tion is compared to all other generation champions. Unfor-
tunately, such methods are impractical in a time-intensive
domain such as the robot duel competition. Moreover, the
master tournament only shows how often each champion
wins against other champions. In order to track strategic
innovation, we need to identify dominant strategies, i.e.
those that defeat all previous dominant strategies. This
way, we can make sure that evolution proceeds by devel-
oping a progression of strictly more powerful strategies,
instead of e.g. switching between alternative ones.

To meet this goal, we developed the dominance tourna-
ment method of tracking progress in competitive coevo-
lution (Stanley and Miikkulainen 2002a). Let a genera-
tion champion be the winner of a 288 game comparison
between the two population champions of a single genera-
tion. Let d; be the jth dominant strategy to appear in the
evolution. Then dominance is defined recursively:

e The first dominant strategy d; is the generation cham-
pion of the first generation;

e dominant strategy d;, where j > 1, is a generation
champion such that for all ¢ < j, d; is superior to
(wins the 288 game comparison with) d;.

This strict definition of dominance prohibits circularities.
For example, d4 must be superior to strategies d; through
ds, dz superior to both d; and ds, and ds superior to d; .
The entire process of deriving a dominance hierarchy from
a population is a dominance tournament, where competi-
tors play all previous dominant strategies until they either
lose a 288 game comparison, or win every comparison
to previous dominant strategies, thereby becoming a new

dominant strategy. Dominance tournaments require signif-
icantly fewer comparisons than the master tournament.

The question tested in the experiments is: Does the com-
plexification of networks help attain high levels of domi-
nance?

S RESULTS

Each of the seven evolution trials lasted 500 generations,
and took between 5 and 10 days on a 1GHz PIII proces-
sor, depending on the progress of evolution and sizes of
the networks involved. The NEAT algorithm itself used
less than 1% of this computation: the rest of the time was
spent in evaluating networks in the robot duel task. Evolu-
tion of fully-connected topologies took about 90% longer
than structure-growing NEAT because larger networks take
longer to evaluate.

We define complexity as the number of nodes and connec-
tions in a network: The more nodes and connections there
are in the network, the more complex behavior it can poten-
tially implement. The results were analyzed to answer three
questions: (1) As evolution progresses does it also contin-
ually complexify? (2) How is complexification utilized to
create more sophisticated strategies? (3) Does complexi-
fication allow better strategies to be discovered than does
evolving fixed-topology networks?

5.1 EVOLUTION OF COMPLEXITY

NEAT was run four times, each time from a different seed,
to verify consistency of results. The highest levels of dom-
inance achieved were 17, 14, 17, and 16, averaging at 16.



118 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION

At each generation where the dominance level increased
in at least one of the four runs, we averaged the number
of connections and number of nodes in the current domi-
nant strategy across all runs (figure 3). Thus, the graphs
represent a total of 64 dominance transitions spread over
500 generations. The rise in complexity is dramatic, with
the average number of connections tripling and the aver-
age number of hidden nodes rising from O to almost 10.
In a smooth trend over the first 200 generations, the num-
ber of connections in the dominant strategy nearly doubles.
During this early period, dominance transitions occur fre-
quently (fewer prior strategies need to be beaten to achieve
dominance). Over the next 300 generations, dominance
transitions become more sparse, although they continue to
occur.

Between the 200th and 500th generations a staircase pat-
tern emerges, where complexity first rises dramatically,
then settles, then abruptly increases again. The reason for
this pattern is speciation. While one species is adding a
large amount of structure, other species are optimizing the
weights of less complex networks. While it is initially
faster to grow structure until something works, such ad hoc
constructions are eventually supplanted by older species
that have been steadily optimizing for a long period of time.
Thus, spikes in complexity occur when structural elabora-
tion leads to a better strategy, and complexity slowly settles
when older structures optimize their weights and overtake
more recent structural innovations.

The results show more than just that the champions of each
generation tend to become complex. The dominant strate-
gies, i.e. the networks that have a strictly superior strat-
egy to every previous dominant strategy, tend to be more
complex the higher the dominance level. Thus, the results
verify that continual progress in evolution is paired with
increase in complexity.

5.2 SOPHISTICATION THROUGH
COMPLEXIFICATION

To see how complexification contributes to evolution, let
us observe the development of a sample dominant strategy,
i.e. the evolution of the species that produced the winning
network dq7, in the third run. Let us use S}, for the best net-
work in S at generation k, and h; for the [th hidden node
to arise from a structural mutation over the course of evo-
lution. We will track both strategic and structural innova-
tions in order to see how they correlate. Let us begin with
S100 (figure 4, left), when S had a mature zero-hidden-node
strategy:

e Sigo’s main strategy was to follow the opponent,
putting it in a position where it might by chance col-
lide with its opponent when its energy is up. However,

\
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Figure 4: Complexification of a Winning Species. The best
networks in the same species are depicted at landmark genera-
tions. Over generations, the networks in the species complexified
and gained skills.

S100 followed the opponent even when the opponent
had more energy, leaving Si9p vulnerable to attack.
S100 did not clearly switch roles between foraging and
chasing the enemy, causing it to miss opportunities to
gather food.

e Sao. During the next 100 generations, S evolved
a resting strategy, which it used when it had signifi-
cantly lower energy than the enemy. In such a situa-
tion, the robot stopped moving, while the other robot
wasted energy running around. By the time the op-
ponent gets close, its energy was often low enough
to be attacked. The resting strategy is an example of
improvement that can take place without complexifi-
cation: it involved increasing the inhibition from the
enemy difference sensor, thereby slightly modifying
intensity of an existing behavior only.

e In Sase7 (figure 4, middle), a new hidden node, haoa,
appeared. Node hoo arrived through an interspecies
mating, and had been optimized for several genera-
tions already, Node haa gave the robot the ability to
change its behavior at once into a consistent all-out at-
tack. Because of this new skill, Sa67 no longer needed
to follow the enemy closely at all times, leaving it to
focus on collecting food. By implementing this new
strategy through a new node, it was possible not to
interfere with the already existing resting strategy, so
that S now switched roles between resting when in
danger to attacking when high on energy. This way,
the new structure resulted in strategic elaboration.

e In S315 (figure 4, right), hyro split a link between an
input sensor and haa. Replacing a direct connection
with a sigmoid function greatly improved S315’s abil-
ity to attack at appropriate times, leading to very ac-
curate role switching between attacking and foraging.
S315 would try to follow the opponent from afar fo-
cusing on resting and foraging, and only zoom in for
attack when victory was certain. This final structural
addition shows how new structure can greatly improve
the accuracy and timing of existing behaviors.
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The analysis above shows that in some cases, weight op-
timization alone can produce improved strategies. How-
ever, when those strategies need to be extended, adding
new structure allows the new behaviors to coexist with old
strategies. Also, in some cases it is necessary to add com-
plexity to make the timing or execution of the behavior
more accurate. These results show how complexification
can be utilized to produce sophistication in competitive co-
evolution.

5.3 COMPLEXIFICATION VS.
FIXED-STRUCTURE EVOLUTION

To see whether complexifying coevolution is more pow-
erful than standard non-complexifying coevolution, we ran
three trials with fixed, fully-connected topologies. To make
the comparison fair, the fixed-topology networks in the first
two trials had 10 hidden nodes, as did the winning networks
of complexifying runs on average. In the third trial, fixed-
topology networks had only five hidden nodes, which gives
them the same number of connections as the complexify-
ing trials. In the first trial, the hidden nodes were fully
connected to the outputs. In the other two trials, the inputs
were also fully connected to outputs. In all standard runs,
the hidden layer was fully recurrent, because complexify-
ing runs were found to evolve recurrent connections. Al-
though topologies were fixed, evolution continued to spe-
ciate using weight differences.

Fixed-topology Run | Highest | Equivalent | Equivalent

Dom. | Dom. Level | Generation

(out of 16) | (out of 500)

1: 10 Hidden Node 12 5.5 17.75

2: 10 Hidden Node, 14 9.25 39
Direct Connections

3: 5 Hidden Nodes, 10 10.75 65.5
Direct Connections

Table 1: Comparing the dominant strategies in the fixed-
topology (i.e. standard) coevolution with those of complexi-
fying coevolution. The second column shows how many levels
of dominance were achieved in the standard coevolution. The
third column gives the highest dominance level in complexifying
runs that the dominant from the standard run can defeat and the
fourth column shows its average generation. The main result is
that the level of sophistication reached by standard coevolution
is significantly lower than that reached by complexifying
coevolution.

In Table 1, the relative sophistication of the strategies de-
veloped are compared to those in complexifying coevolu-
tion. We compared the highest dominant network from
each of the standard runs with the entire dominance hier-
archies of all the complexifying runs. The table reports the
highest dominance level within the complexifying runs that
the best fixed-topology network can defeat on average. In
all cases, the standard strategy reaches only the middle lev-
els of the hierarchy, i.e. 5.5, 9.25, and 10.75 out of possible

16. Complexifying coevolution on average found 7 lev-
els of dominance above the most sophisticated strategies of
standard coevolution. Considering that high levels of dom-
inance are much more difficult to attain than low levels, it
is clear that complexifying coevolution develops a dramat-
ically higher level of sophistication.

Another significant result is that NEAT developed equiva-
lent strategies very early in evolution. For example, the sec-
ond standard run stopped producing new dominant strate-
gies after the 169th generation, followed by 331 consec-
utive generations without any additional dominant strate-
gies. This network can defeat about the 9th dominant from
complexifying coevolution, which was found on average in
the 39th generation. In other words, standard coevolution
is considerably slower in finding even the first few steps in
the dominance hierarchy.

In summary, complexifying coevolution progresses faster
and discovers significantly more sophisticated solutions
than standard coevolution.

6 DISCUSSION AND FUTURE WORK

Evolution in nature acts as both an optimizer and a com-
plexifier. Not only do existing genes express different
alleles, but new genes are added occasionally through a
process called gene amplification (Darnell and Doolittle
1986). Therefore, we should expect to find that complexi-
fication can also play a role in models of open-ended evo-
lution, such as competitive coevolution, thus strenghening
the analogy of evolutionary computation with nature.

Indeed, as the results confirm, complexification does en-
hance the capability of competitive coevolution to find so-
phisticated strategies. Complexification encourages contin-
ual elaboration, whereas evolution of fixed-structures pro-
ceeds primarily by alteration. When a fixed genome is used
to represent a strategy, that strategy can be optimized, but
it is not possible to complexify without sacrificing some of
the knowledge that is already present. In contrast, if new
genetic material can be added, then sophisticated elabora-
tions can be layered above existing structure.

Complexification can find solutions that are difficult to find
by evolving fixed structure. In fixed evolution, the com-
plexity must be guessed just right: too little structure will
make it impossible to solve the problem and too much will
make the search space too large to search efficiently. A
complexifying system saves the user from such concerns.

Complexification is a new and still largely unexplored re-
search area. How complexifying systems work in general,
and what the best ways are to describe such systems are
open questions at this point. Although evolution is the best
known complexifier, that does not mean it is the only one.



120 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION

Organizations (such as corporations and governments) are
also complexifying systems, with new positions being cre-
ated that only have meaning relative to positions that pre-
viously existed. We need to develop an abstract descrip-
tion of complexification, from which we can derive theories
and rules for understanding and utilizing complexification
in different domains.

7 CONCLUSION

We hypothesized that complexification of genomes can
lead to continual coevolution of increasingly sophisticated
strategies. Experimental results showed three trends: (1)
as evolution progresses, complexity of solutions increases,
(2) evolution uses complexification to elaborate on exist-
ing strategies, and (3) complexifying coevolution is sig-
nificantly more successful in finding highly sophisticated
strategies than evolution of fixed structures. These results
suggest that complexification is a crucial component of
continual coevolution.
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Abstract

This paper addresses cross-validation in
multiagent-based simulation by analyzing
evolutionary agents in a bargaining game in
game theory. In particular, this paper fo-
cuses on analyzing different learning mecha-
nisms and knowledge representation capabili-
ties applied to agents for cross-validation. To
investigate these issues, we compare the fol-
lowing two cases: (1) agents employing an
evolutionary strategy (ES) and agents em-
ploying a learning classifier system (LCS) as
different learning mechanisms; and (2) agents
handling an ordinary explanation of numbers
and agents handling a limited explanation of
numbers as different knowledge representa-
tion capabilities. An intensive comparison of
simulation results reveal the following impli-
cations: (1) simulation results by ES-based
agents show the same tendency in game the-
ory but those by LCS-based agents do not;
and (2) even simulation results by ES-based
agents become strange when the agents are
restricted to handling only a real number
with two decimal digits instead of an ordinary
real number in a negotiation process between
the agents in the bargaining game.
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1 Introduction

Recently, research based on multiagent-based simula-
tion (Moss and Davidsson, 2001) or agent-based sim-
ulation (Axelrod, 1997) has attracted a lot of atten-
tion owing to not only improvements in computa-
tional power and simulation techniques but also to
the availability of an alternative way of understand-
ing complex social phenomena. Such research has
employed computational techniques to provide tools
for analyzing social dynamics and has contributed to
the creation of theories by clarifying vague, intuitive,
or under-specified issues in conventional approaches.
Although, many useful implications have been found
through computer simulation, the validation' of sim-
ulation results and computational models remains an
open issue. To overcome these problems, Axtell and
his colleagues claim the importance of investigating
whether two different models can produce the same
results in terms of validating the results and models
(Axtell et al., 1996).2

It should be noted, however, that results derived
by computer simulation are sensitive to how agents
are modeled. This indicates that two models may
not show the same results even if a different part
between two models is very small. Examples in-
clude two models which difference is only learning
mechanisms or knowledge representation capabilities
of agents. To clarify such parts, this paper starts
by comparing two computational models that are im-
plemented differently in terms of the learning mech-

! Burton argues that computational validity is a bal-
ance of three elements: (1) the question or purpose, (2)
the computational model, and (3) the experimental design
(Burton and Obel, 1995).

2 They call this concept the “alignment of computational
models” or “docking”.
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anisms and knowledge representation capabilities of
agents.®> Here, we call this type of investigation
cross-validation,* which means to validate the re-
sults and models against different implementation of
agents. Note that this differs from the usual meaning
of cross-validation that checks the results of a single
learning algorithm or a single knowledge representa-
tion on a reserved set of data. As a concrete do-
main, we employ a bargaining game (Muthoo, 2000)
for this comparison, because this game is one of the
fundamental examples and because rational behaviors
of agents have already been analyzed in game theory
(Osborne and Rubinstein, 1994).

This paper is organized as follows. Section 2 starts
by explaining the bargaining game. A concrete imple-
mentation of agents is described in Section 3. Section 4
presents computer simulations and Section 5 discusses
the cross-validation of results and models. Finally, our
conclusions are made in Section 6.

2 Bargaining game

A bargaining game (Muthoo, 2000) was studied in
the context of game theory (Osborne and Rubinstein,
1994). This study addressed the situation where two
or more players (or agents) try to reach a mutually
beneficial agreement through negotiations, and inves-
tigated when and what kinds of offers of an individual
player can be accepted by other players.

To understand the bargaining game, let’s give an ex-
ample. In Rubinstein’s work (Rubinstein, 1982), he
illustrated a typical situation using the following sce-
nario: two players, A; and Ao, have to reach an agree-
ment on the partition of a “pie”. For this purpose, they
alternate offers describing possible divisions of the pie,
such as “A; receives z and A, receives 1 — z at time
t”, where x is any value in the interval [0,1]. When
a player receives an offer, the player decides whether
to accept it or not. If the player accepts the offer, the
negotiation process ends, and each player receives the
share of the pie determined by the concluded contract.
Otherwise, the receiving player makes a counter-offer,
and all of the above steps are repeated until a solution
is reached or the process is aborted due to some exter-
nal reason (e.g., the number of negotiation processes
is finite or one of the players leaves the process). In
the case that the negotiation process is aborted, both

8 Moss classifies the validation issues as (1) predictions,
(2) agent and mechanism designs, and resulting outputs as
descriptions (Moss, 2001). From this viewpoint, our focus
is related to the second point in his classification.

4 Carley also claims the same point using the term cross-
model validation (Carley and Gasser, 1999).

players can no longer receive any share of the pie.

Here, we consider the finite-horizon situation, where
the maximum number of steps (MAX_STEP) in the
game is fixed and all players know this information as
common knowledge (Stahl, 1972). In the case where
MAX_STEP = 1 (also known as the ultimatum game),
agent A; can make the only offer and then As can ac-
cept or refuse it. If Ay refuses the offer, both agents
receive nothing. Since a rational agent is based on
the notion of “anything is better than nothing”, a ra-
tional A; tends to keep most of the pie to herself by
offering only a minimum share to As. Since there are
no further steps to be played in the game, a rational
A, inevitably accepts the tiny offer. By applying a
backward induction reasoning to the situation above,
it is possible to perform simulation for MAX_STEP > 1.
For the same reason of the ultimatum game, the agent
who can make the last offer is better positioned to
receive the larger share by offering a minimum offer
(Stahl, 1972). In this case, the last offer is granted to
the agent that does not make the first offer if MAX_STEP
is even, because each agent is allowed to make at most
MAX_STEP/2 offers. On the other hand, the last offer is
granted to the same agent that makes the first offer if
MAX_STEP is odd.

After this session, we use the terms “payoff” and
“agent” instead of the terms “share” and “player” for
their wide meanings in the bargaining game.

3 Modeling agents

To implement agents in the framework of the bargain-
ing game, this section starts by modeling a basic part
of agents and then modeling the parts of our focus.

3.1 Modeling of a basic part

For a basic part of modeling agents, we implement the
following components of agents as shown in Figure 1.
Note that each agent has the same architecture.

< Memory >

e Strategies memory stores a set of strategies
(the number of strategies is n in this figure), which
consist of fixed numbers of pairs of offers (O) and
thresholds (T), and the worth of the strategies
(w). These strategies are similar to those used in
(Oliver, 1996). The offer and threshold values are
encoded by floating point numbers in the interval
[0, 1], while the worth values are calculated as av-
erages of acquired payoffs. In this model, agents
independently store different strategies, which are
initially generated at random.
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e Selected strategy memory stores the one
strategy selected to confront the strategy of an op-
ponent agent. Figure 1 shows the situation where
agent A; selects the zth strategy while agent A,
selects the yth strategy.

< Mechanism >
e Learning mechanism varies both offer and
threshold values in order to generate good strate-
gies that acquire a large payoff. The detailed
mechanism is described later.

Agent 1 Agent 2

Strategies
ifoTloT}OT
2loT]oT|{OT
M3loT|OT||OT

Strategies
otloT|-{oT
ot|loT|-{OT
OT|OT | oT

n[oT | oT | oT
I 1| I
Selected Strategy Selected Strategy

x ET o T-oTIW))| (e o -To Ty

-(Learning Mechanism )
. /

Vs

(Learning Mechanism )—
. J/

Figure 1: Agent architecture

As a concrete negotiation process, agents proceed as
follows. Defining {O, T}?{M}as the ith offer or thresh-
old value of agent A; or A, agent A; starts with
the first offer Ofl. Here, we count one step when
either agent makes an offer. Then, A accepts the of-
fer if 03" > T*; otherwise, it makes a counter-offer

512, i.e., the offer of A;. This cycle is continued un-
til either agent accepts the offer of the other agent
or the maximum number of steps (MAX_STEP) is ex-
ceeded. To understand this situation, let’s consider
the simple example where MAX_STEP= 10, as shown
in Figure 2. Following this example, A; starts by
offering 0.01 to As. However, As cannot accept the
first offer because it does not satisfy the inequality of
031(0.01) > 17*2(0.99). Then, Ay counter-offers 0.01
to Ay. Since A1 cannot accept the second offer from A,
because of the same reason, this cycle is continued un-
til A7 accepts the 10th offer from Ay where the offer
satisfies the inequality of Ofo‘“ (0.01) > Tf?)l (0.01). If
the negotiation fails, which means exceeding the max-
imum number of steps, both agents can no longer re-
ceive any payoff, i.e., they receive 0 payoff. Here, we
count one confrontation when the above negotiation
process ends or fails.

Furthermore, the worth of each strategy is calculated
by the average of payoffs acquired in a fixed number

Agent 1
O T O T O T
(0.01,0.99)] (0.01,0.99)] = (0.01,0.01)
2nd 4th 10th
><lst ><3rd >< 9th
(0.01,0.99)] (0.01,0.99)] = (0.01,0.99)

o T o T o T
Agent 2

Figure 2: An example of a negotiation process

of confrontations (CONFRONTATION), where the strate-
gies of the other agents are randomly selected in each
confrontation. For example, the xth strategy of A;
in Figure 1 confronts the randomly selected strategies
of the other agents in the CONFRONTATION number of
confrontations and then the worth of the xth strat-
egy is calculated by the average of payoffs acquired in
these confrontations. Since each agent has n number
of strategies, the (CONFRONTATION X n X 2) number of
confrontations is required to calculate the worth of all
strategies of two agents. Here, we count one iteration
when the worth of all strategies of two agents is calcu-
lated.

3.2 Modeling of parts of our focus

For our focus of modeling agents, we address the fol-
lowing two parts in modeling agents: (1) learning
mechanisms and (2) knowledge representation capa-
bilities.

3.2.1 Learning mechanisms

When implementing learning mechanisms of agents,
we can consider several mechanisms. Among the many
useful learning mechanisms, we employ the following:
(1) evolutionary strategy (ES) (Back et al., 1992) and
(2) learning classifier system (LCS) (Goldberg, 1989,
Holland et al., 1986). The reasons for this employ-
ment are summarized as follows: (1) the ES mech-
anism performs well with a real number required to
represent offer and threshold values in the bargaining
game; and (2) the LCS architecture is implemented by
modeling human beings (Holland et al., 1986) and sev-
eral conventional research works employing LCS have
already investigated social phenomena (e.g., an artifi-
cial stock market (Arthur et al., 1997)). In detail, we
employ the conventional (i + A) evolution strategies
(ES) (Back et al., 1992) for ES and a Pittsburgh-style
(Smith, 1983) classifier system instead of a Michigan-
style (Holland, 1975) classifier system for LCS.

Under these learning mechanisms, a strategy, the
worth of a strategy, and the strategies of an agent
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as shown in Figure 1 correspond to a gene, a fitness,
and a population in evolutionary computation (EC)
literature, respectively. Based on these learning mech-
anisms, EC-based agents acquire good strategies by
varying the numerical values of offer and threshold as
shown by the following ordinary procedure: (1) a fixed
number (¢ or GENERATION GAPxn) of the best strate-
gies (parents) remains in the set from one iteration to
the next; (2) a fixed number (A or GENERATION _GAP xn)
of new strategies (offspring) is produced from the set of
parents at each iteration by applying the mutation op-
eration in (4 A)-ES and the crossover, mutation, and
inversion operations in the Pittsburgh-style LCS; (3)
new strategies replace the same number of strategies
with low worth values. The detailed implementation
of both learning mechanisms is described below.

e Evolutionary strategy: Two bargaining agents
are equipped with their own (u + M)-ES;
the framework is based on the works of
(Gerding et al., 2000, Bragt et al., 2000). When
producing offspring strategies, the mutation op-
eration adds to or subtracts from the offer and
threshold values. These added and subtracted
values are calculated from a Gaussian distribu-
tion with standard deviation o, which is kept by
each strategy. After these offspring strategies are
produced, the standard deviations of the offspring
are set as the averages of those in the parents at
each iteration, while the standard deviations of
the parents are maintained. Note that if an offer
or threshold value becomes inappropriate (e.g., a
minus value or a value more than 1), it is reset to
0 or 1, whichever is closer to the current value.

e Learning classifier system: Two bargaining
agents are equipped with their own Pittsburgh-
style LCS. To conduct computer simulations in
the same framework of ES, we set or modify each
LCS as follows: (1) the LCS in our simulations
applies the crossover operation at each iteration
to produce offspring strategies the every iteration.
Mutation and inversion operations are probabilis-
tically applied to the offspring strategies gener-
ated by the crossover operation; (2) although the
pair of offer and threshold can be considered as
one if-then rule from the viewpoint of LCS, the
selected order of these rules (pairs) is determined
in advance; and (3) the concept of don’t care is
not employed in our simulations. For the second
point, in particular, a preliminary research found
that LCS-based agents cannot learn good strate-
gies if they are allowed to select the rules (the pair
of offer and threshold) in the ordinary LCS way.

3.2.2 Knowledge representation capabilities

When implementing agents, we have to consider their
knowledge representation capabilities. In the bargain-
ing game, in particular, a representation of strategies
of agents must be considered, though there are no stan-
dard guidelines. From this fact, we start by employing
the following two types of knowledge representation
capabilities:® (1) an ordinary explanation of numbers
(e.g., 0.01---) and (2) a limited explanation of num-
bers, which are restricted to a real number with two
decimal digits (e.g., 0.01) in this simulation. We fo-
cus on this knowledge representation because (1) so-
cial scientists may take the latter case for a concise
representation (Indeed, we have met such situations);
and (2) a real number in offer and threshold values is
critical in the bargaining game.

4 Simulation

4.1 Simulation design

Computer simulations are conducted to compare the
following two cases. Note that the first simulation is
performed without any restriction of a real number
represented in strategies of agents (i.e., the simulation
with an ordinary real number).

e ES vs. LCS: An investigation on the influence
of different learning mechanisms of agents.

e An ordinary real number vs. a real number
of two decimal digits in ES: An investigation
on the influence of different knowledge represen-
tation capabilities of agents.

In each simulation, the following three cases are inves-
tigated. Note that all simulations are conduced until
5000 iteration and their results show average values
over 10 runs.

e Case (a): A payoff
e Case (b): An average negotiation process size

e Case (c): An accumulated number of each ne-
gotiation process size at the final (5000) iteration

As the parameter setting, the variables are set as fol-
lows. Note that preliminary examinations found that
the tendency of the results does not drastically change
according to the parameter setting.

5In addition to these issues, we should also investigate
an influence of a modeling of strategies that are currently

composed of the combination of offer and threshold as
shown in Figure 1.
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Figure 3: Simulation results of ES vs. LCS: Average values over 10 runs at the 5000 iteration.
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e Common parameters: n (the number of
strategies) is 50; MAX_STEP (the maximum num-
ber of steps in one confrontation) is 10; and
CONFRONTATION (the number of confrontations for
each strategy) is 20.

e ES parameters: p (the parent population size)
is 25; A (the offspring population size) is 25; and
o (the initial standard deviation of a Gaussian
distribution) is 0.5.

e LCS parameters: GENERATION.GAP (the
percentage of replaced strategies) is 50%;
CROSSOVER RATE (the percentage of crossover
operations) is 100%; MUTATION RATE (the per-
centage of mutation operations) is 5%; and
INVERSION RATE (the percentage of inversion op-
erations) is 5%.

4.2 Simulation results

Figure 3 shows simulation results of both ES and LCS.
In detail, figures (a), (b) and (c) indicate the results
of the payoff, the average negotiation process size, and
the accumulated number of each negotiation process
size at the final (5000) iteration, respectively. The
vertical axis in all of the figures indicates the indexes
in the above three cases, while the horizontal axis in
figures (a) and (b) indicates the iterations and the hor-
izontal axis in figure (c) indicates the negotiation pro-
cess size with negotiation failure represented as “Over”
at the most right side. In particular, Figure 3(a) shows
the payoff of agent A; in the lower lines and that of
Ay in the upper lines. The difference between the solid
and light dash lines indicates that the former shows the
best results and the latter shows the average results
over 10 runs. Furthermore, Figure 4 shows simulation
results of ES restricted to a real number with two dec-
imal digits. Cases (a), (b) and (c) in Figure 4 has the
same meaning of those in Figure 3.

From these results, we find that simulation results do
not show the same tendency when different learning
mechanisms or knowledge representation capabilities
are applied to agents.

5 Discussion

5.1 Learning mechanisms

First, when focusing on the simulation results on dif-
ferent learning mechanisms of agents in Figure 3, the
following implications are revealed: (1) the payoff of
ES-based agents finally converges at the mostly max-
imum or minimum value (i.e., 1 or 0), while that of
LCS-based agents neither converges at a certain value
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Figure 4: Simulation results of ES with two dec-
imal digits: Average values over 10 runs at the
5000 iteration.
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nor close to the maximum or minimum value; (2) the
average negotiation size of ES-based agents increases,
while that of LCS-based agents does not but simply
oscillates; and (3) although the accumulated number
of the 10th negotiation process size at the 5000 itera-
tion is high both in ES-based and LCS-based agents,
the accumulated number of another negotiation pro-
cess size of ES-based agents is mostly close to 0, while
that of LCS-based agents is not.

The reasons for the above results are summarized as
follows: (1) the standard deviation of a Gaussian dis-
tribution in ES decreases as the iterations become
large, while the crossover, mutation and inversion op-
erations in LCS are constantly performed. Since most
of these operations work as a divergent or explored fac-
tor, the decrease of such influence makes simulation re-
sults converge; (2) the offer and threshold values in all
offspring are modified at every iteration in ES, while
they are modified only by a mutation operation exe-
cuted in a low probability in LCS. Furthermore, ES
modifies such values like in a gradient search, while
LCS modifies them randomly.

Here, we consider that game theory proves that ra-
tional agents A; and As receive the maximum and
minimum payoffs at the final negotiation process, re-
spectively. This is because A; in our simulations has
to accept any small offer proposed by As at the 10th
negotiation process; otherwise, A; cannot receive any
payoff, i.e., it receives 0 payoff. We therefore expect
the following simulation results: (1) learning agents
can acquire the maximum and minimum payoffs; (2)
the average negotiation size increases if agents learn
strategies appropriately; and (3) learning agents com-
plete their negotiation process at the final offer of As
and the acceptance of A;. In analyzing the simulation
results according to the above three assumptions, we
can consider that the ES-based agents show the same
tendency in game theory but that LCS-based agents
cannot. From this analysis, we can first conclude that
simulation results are sensitive to the learning mecha-
nisms applied to agents.

5.2 Knowledge representation capabilities

Next, when focusing on the simulation results on dif-
ferent knowledge representation capabilities of agents
in Figure 3 (the normal case employing an ordinary
real number) and Figure 4 (the restricted case em-
ploying a real number with two decimal digits), the
following implications are revealed: (1) the payoff in
the normal case finally converges at the mostly maxi-
mum or minimum value (i.e., 1 or 0), while that in the
restricted case does not completely converge; (2) the

average negotiation size in the normal case increases,
while that in the restricted case decreases; and (3) the
accumulated number of each negotiation process size
except the final (i.e., the 10th) process in the normal
case is mostly close to 0, while that in the restricted
case is not.

To seek the reasons for the above different results, let’s
move our focus on to the 10th offer in Figure 2, where
the values of offer and threshold are set here as 0.012
and 0.011, respectively. In this case, the agent who
receives the offer from the opponent agent cannot ac-
cept it when employing an ordinary real number be-
cause the inequality of 0(0.012) > T(0.011) described
in Section 3.1 is not satisfied. In contrast, the same
agent accepts the offer when employing a real num-
ber with two decimal digits because the inequality of
0(0.01) > T(0.01) is satisfied. The same story can be
told for other steps where both the offer and thresh-
old values are close to each other. Due to this fact,
agents have a possibility of accepting offers in each
negotiation process. For this reason, agents with re-
stricted knowledge representation capabilities cannot
learn good strategies appropriately and thus they may
accept unwilling (i.e., small) offers in each negotiation
process size. This increases the accumulated number
of each negotiation process size except the final (the
10th) process in Figure 4(c) in comparison with that
in Figure 3(c).

This finding indicates that simulation results can be-
come strange when agents are restricted to handling
only a real number with two decimal digits instead of
an ordinary real number. Considering the fact that the
previous section indicates that ES-based agents show
the same tendency in game theory, we can secondary
conclude that simulation results are sensitive to the
knowledge representation capabilities of agents, even
employing the same mechanism.

5.3 Essential factors for modeling agents

From the above analysis, both (1) learning mechanisms
and (2) knowledge representation capabilities are im-
portant factors for cross-validating simulation results
and computational models. This indicates that it is
necessary to investigate such factors before investigat-
ing social phenomena arising from learning agent in-
teraction.

6 Conclusion

This paper addressed cross-validation in multiagent-
based simulation by analyzing evolutionary agents in
a bargaining game. In particular, this paper focused
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on analyzing different learning mechanisms and knowl-
edge representation capabilities applied to agents for
cross-validation. To investigate the importance of the
above issues, we compared the following two cases: (1)
agents employing an evolutionary strategy (ES) and
agents employing a learning classifier system (LCS)
as different learning mechanisms; and (2) agents han-
dling an ordinary explanation of numbers and agents
handling a limited explanation of numbers as differ-
ent knowledge representation capabilities. Through an
intensive comparison of the above simulation results,
we found that both learning mechanisms and knowl-
edge representation capabilities are important factors
for cross-validating simulation results and computa-
tional models.

However, the results obtained in this paper do not
cover all factors for cross-validation, and thus further
careful qualifications and justifications such as exper-
iments in other domains are needed to generalize our
results. Such important directions must be pursued
in the near future, but the following implications are
potentially suggested from the current results: (1) sim-
ulation results by ES-based agents show the same ten-
dency in game theory but those by LCS-based agents
do not; and (2) even simulation results by ES-based
agents become strange when the agents are restricted
to handling only a real number with two decimal dig-
its instead of an ordinary real number in a negotiation
process between agents in the bargaining game.

Future research will include the following: (1) many
simulations in other domains to generalize our results;
(2) a comparison with other learning mechanisms such
as reinforcement learning or other knowledge represen-
tations such as discrete numbers; (3) a validation of
results and models with more than two agents; and
(4) an investigation on the influence of the discount
factor in ES- and LCS-based agents.
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