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Abstract

LISYS is an arti�cial immune system frame-

work which is specialized for the problem of

network intrusion detection. LISYS learns to

detect abnormal packets by observing normal

network traÆc. Because LISYS sees only a

partial sample of normal traÆc, it must gen-

eralize from its observations in order to char-

acterize normal behavior correctly. A vari-

ation of the r-contiguous bits matching rule

is introduced, and its e�ect on coverage and

generalization is studied. The e�ect of rep-

resentation diversity on coverage and gener-

alization is also explored by studying permu-

tations in the order of bits in the representa-

tion.

1 Introduction

The natural immune system uses a variety of evolu-

tionary and adaptive mechanisms to protect organisms

from foreign pathogens and misbehaving cells in the

body. Arti�cial immune systems (AISs) seek to cap-

ture some aspects of the natural immune system in

a computational framework, either for the purpose of

modeling the natural immune system or for solving

engineering problems. In either form, the fundamen-

tal problem solved by most AISs can be thought of as

learning to discriminate between \self" (the normally

occurring patterns in the system being protected, e.g.,

the body) and \non-self" (foreign pathogens, such as

bacteria or viruses, or components of self that are

no longer functioning normally). Almost any set of

patterns that can be expressed as strings of symbols

can be placed into this framework, for example, the

set of normally occurring TCP connections in a local

area network (LAN) and the set of TCP connections

observed during a network attack [Hofmeyr, 1999,

Kim and Bentley, 2001]. This is the example on which

we will focus in this paper.

We are interested in the question of representation|

how well a set of AIS detectors covers the set of nor-

mally occurring patterns (or conversely, how well it

can detect the set of abnormal patterns). Because AIS

detectors are typically generated on-line in a 
uctuat-

ing environment, they are highly unlikely to be ex-

posed to every possible normal pattern during train-

ing. Consequently, it is important for detectors to gen-

eralize from the set of observed normal patterns to the

set of expected normal patterns. The generalization

properties of the AIS a�ect both false positives (mis-

takenly identifying normal patterns as abnormal) and

false negatives (mistakenly identifying abnormal pat-

terns as legitimate). These are known as Type I and

Type II errors respectively in the statistical decision

theory literature.

There are several components of the AIS that a�ect

how well it represents its environment and how well it

generalizes. The �rst of these is the mapping from the

domain to detectors, or what information is presented

to the AIS. Here we will use the 49-bit compressed

representation of TCP SYN packets, introduced by

Hofmeyr [Hofmeyr, 1999, Hofmeyr and Forrest, 1999,

Hofmeyr and Forrest, 2000]. In this representation

each detector is a 49-bit string. Detectors are matched

against the compressed 49-bit SYN packets (see Fig-

ure 1) using a partial matching rule which scores how

closely they match. Choosing an appropriate map-

ping for a given problem in the AIS context has all

the same complications as choosing a representation

for a genetic algorithms problem. Some representa-

tions are clearly better than others, but it is diÆcult

to formalize criteria by which one can choose a good

one in a particular instance. The 49-bit representation

chosen by Hofmeyr works surprisingly well, although

it contains a minimal amount of information and the

information is arranged in an arbitrary ordering.
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Local Address Remote Address Compressed Port

0 7 8 39 40 41 48

Incoming/Outgoing Bit

Figure 1: The 49-bit compression scheme used by

LISYS to represent TCP SYN packets. Strings are

compressed in two ways. First, it is assumed that one

of the IP addresses is always internal, so only the �-

nal byte of this address needs to be stored. The port

number is also compressed from 16 bits to 8 bits by

re-mapping the ports into several di�erent classes.

The second component is the match rule that is used

to assess how well an AIS detector matches a particu-

lar pattern. A perfect match between a detector and a

compressed SYN packet means that at each location in

the 49-bit string, the symbols are identical. However,

perfect matching (binding) is rare in the immune sys-

tem and improbable between strings of any signi�cant

length. We use a matching rule known as r-contiguous

bits [Percus et al., 1993]. This rule looks for r contigu-

ous matches between symbols in corresponding posi-

tions. Thus, for any two strings x and y, we say that

match(x; y) is true if x and y agree (match) in at least

r contiguous locations. We also introduce a variant of

this rule which we refer to as r-contiguous templates,

or more simply, r-chunks. Both r-contiguous bits and

r-chunks are related to genetic algorithms and classi-

�er systems in interesting ways.

A third component is the permutation mask, also

introduced by Hofmeyr. Permutation masks are a

mechanism for introducing diversity of representation,

crudely analogous to MHC diversity in the natural im-

mune system. The idea behind this form of diversity

is that di�erent representations will match di�erent

patterns, and that the union of a set of di�erent repre-

sentations will have greater detection ability than any

single representation. This insight is complicated by

the form of our problem, in which detecting more pat-

terns is not always better (because patterns detected in

error lead to false positives). Permutation masks sim-

ply store a di�erent permutation of the 49-bit map-

ping, one permutation for each detector set1. This,

combined with r-contiguous bits matching, causes dif-

ferent permutations to discover di�erent correlations

among bits in the representation.

1Permutation masks are one possible means of gener-
ating secondary representations. A variety of alternative
schemes are explored in [Hofmeyr, 1999].

2 LISYS

The following summary of LISYS is largely drawn from
[Balthrop et al., 2002]. LISYS is situated in a local-

area broadcast network and used to protect the LAN

from network-based attacks. In contrast with switched

networks, broadcast LANs have the convenient prop-

erty that every location (computer) sees every packet

passing through the LAN. In this domain, self is de-

�ned to be the set of normal pairwise connections (at

the TCP/IP level) between computers, and non-self

is the set of connections, which are not normally ob-

served on the LAN and are likely to be correlated with

network intrusions. A connection is de�ned in terms of

its \data-path triple"|the source IP address, the des-

tination IP address, and the service (or port) by which

the computers communicate [Mukherjee et al., 1994,

Heberlein et al., 1990].

LISYS consists of sets of detectors, where each detector

is a 49-bit string and a small amount of local state.

The detectors can be distributed across multiple hosts,

and they can perform their function with virtually no

communication. The detectors assigned to a particular

host are referred to as a detector set.

LISYS uses negative detection in the sense that valid

detectors are those that fail to match the normally

occurring behavior patterns in the network. LISYS

generates random detectors, censors them against self,

and eliminates those that match self (negative selec-

tion). The censoring process, known as the toleriza-

tion period, lasts for a few days during which time the

detector is matched against every SYN packet occur-

ring in the network. More eÆcient detector generation

algorithms are described in [D'haeseleer et al., 1996,

Wierzchon, 2000, Wierzchon, 2001]. However, when

generating detectors asynchronously for a dynamic self

set, such as the network setting, these methods are

not directly applicable and random generation seems

to work well.

Detectors in LISYS have a �nite lifetime. The ex-

pected lifetime of a mature detector is a parameter of

the system. Detectors can die in several ways, through

negative selection, old age, or lack of co-stimulation

(see [Hofmeyr, 1999]). The �nite lifetime of detectors,

when combined with detector re-generation and toler-

ization, results in rolling coverage of the self set.

Each independent detector set has its own permutation

mask, as described above. A permutation mask de�nes

a permutation of the bits in the string representation

of the network packets. Each detector set (network

host) has a di�erent, randomly-generated permutation

mask. One feature of the negative-selection algorithm
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as originally implemented is that it can result in unde-

tectable patterns called holes [D'haeseleer et al., 1996,

D'haeseleer, 1996], or put more positively generaliza-

tions [Esponda and Forrest, 2002]. Holes can exist for

any symmetric, �xed-probability matching rule, but

permutation masks e�ectively change the match rule

and thus the distribution of holes. Using a di�erent

permutation on each host allows us to control how

much the system generalizes in the vicinity of self, and

thus gives us more control over the undetectable holes
[Esponda and Forrest, 2002].

The original LISYS system uses several other mecha-

nisms, such as activation thresholds, sensitivity levels,

and co-stimulation to reduce false positives, and mem-

ory detectors to increase true positives. For details

on the full system, the reader is referred to [Hofmeyr,

1999, Hofmeyr and Forrest, 2000].2

3 Data Set

The experiments reported in this paper use the data

set described in [Balthrop et al., 2002]. Our data col-

lection strategy was to control the data set as much as

possible while still collecting data in a realistic context.

The data set was collected from an internal restricted

network of computers in a small university research

group. The six internal computers in this network

connected to the Internet through a single Linux ma-

chine that acted as a �rewall, router and masquerading

server for the internal machines. The internal network

was set up as a broadcast network, so we were able to

monitor the traÆc of all the computers easily.

This scenario provided a data set that satis�ed both

objectives. The internal restricted network was much

more controlled than the external university or depart-

mental networks. In this environment, we can under-

stand all of the connections that occur, and we can

be relatively certain that there were no attacks during

the normal training periods. Moreover, this environ-

ment is realistic. Many corporations have intranets

in which activity is somewhat restricted and external

connections must pass through a �rewall. This en-

vironment could also model the increasingly common

home network that connects to the Internet through

a cable or DSL modem and has a single external IP

address. Attacks are a reality in environments such as

these, and the attack scenarios corresponded to plau-

sible occurrences in this class of environment.

2The programs used to generate the results in this paper
are available from http://www.cs.unm.edu/�immsec. The
programs are part of LISYS and are found in the LisysSim
directory of that package.

The normal network data in our data set consist of two

weeks of data collected in November, 2001. In these

data, there are a total of 22,329 TCP SYN packets,

and roughly 55% of this is web traÆc. Thus, there

was an average of approximately 1600 packets per day

during the normal period. Because the network data

being produced is dependent on a small number of

users, two weeks seemed to be the shortest period of

time that could possibly give a reasonable character-

ization of self. Attack data were generated over the

course of two days near the end of the collection pe-

riod. The attacks took place about one week after the

normal period ended, and consisted of 76,179 TCP

SYN packets.

In [Hofmeyr, 1999], network connections to web servers

are removed from the data by �ltering out all con-

nections to port 80. Instead of completely removing

web connections, the data set simulates the behavior

of a proxy server. All outgoing connections to port 80

(http) or port 443 (https) are re-mapped to port 3128

on the proxy machine. This is very close to what the

traÆc would have been like if we were using the web

proxy cache SQUID.

All of the attacks, with the exception of the denial-

of-service attack, were performed using a laptop con-

nected to the internal network. The �rewall machine

was con�gured as a DHCP server, so the laptop was

able to acquire a dynamic IP address because it had

a physical connection to the internal network. We

used the free security scanner Nessus to perform the

attacks. A total of eight attacks were run, includ-

ing denial of service (from an internal computer to an

external computer), a �rewall attack against the �re-

wall/gateway machine, an ftp attack against an inter-

nal machine, an ssh probe against several internal ma-

chines, an attack probing for certain services, a TCP

SYN scan, an nmap tcp connect() scan against several

internal computers, and a full nmap port scan.

4 r-Chunks Matching

In this section we introduce a variant of the r-

contiguous bits matching rule, which we refer to as

\r-chunks." We will show in section 7 that r-chunks

matching performs better than full-length r-contiguous

bits matching for our data set. However, r-chunks

matching also has the virtue of being more amenable

to mathematical analysis than full-length matching
[Esponda and Forrest, 2002]. r-Chunks matching is

reminiscent of the f1; 0;#g matching rule for classi-

�er systems [Holland et al., 1986], with the additional

restrictions that all detectors have a constant number

of de�ned bits (the r parameter) and that all the de-
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�ned bits are located in contiguous positions. Match-

ing with both r-chunks and full-length detectors is re-

lated to the crossover operator in genetic algorithms
[Holland, 1975].

In r-chunks detectors, only r contiguous positions of

the detector are speci�ed (known as the window of the

detector); the remaining bit positions can be thought

of as \don't cares." Alternatively, an r-chunks detec-

tor can be thought of as a string of r bits together

with a speci�cation of the window to which it refers.

An r-chunks detector d is said to match a string x if all

the bits of d are equal to the r bits of x in the window

speci�ed by d.

The relation between full-length detectors and r-

chunks is shown in the following �gure for l = 4

and r = 2. A single full-length detector can be de-

composed into l � r + 1 (the number of windows) r-

chunks detectors. Let dfl be the full-length detector

and dc1; dc2; dc3 the r-chunks detectors into which it

can be decomposed:

dfl: 1 0 1 1

dc1: 1 0

dc2: 0 1

dc3: 1 1

An important di�erence between the two match rules

is in the number of undetectable strings they induce.

We refer to these strings as \holes" and the set of holes

for a given self set S as H . For full-length matching

there are two sources of holes: crossover holes and

length-limited holes.

Hence, a crossover hole is a string h not in S, for

which all windows in h are crossovers of adjacent win-

dows in S, according to the restricted crossover opera-

tion de�ned below. A crossover occurs in this context

between two adjacent windows Wi = vi::vi+r�1 and

Wi+1 = ui+1::ui+r whenever bits vj = uj 8j : i+ 1 �
j � i+ r� 1. There is an example of this type of hole

at the end of this section.

The second source of holes arises because in full-length

detectors, all the bit positions are speci�ed. This can

induce holes h which are strings that have at least

one window of r bits not present in S, but for which

a detector still cannot be generated. For instance, let

S = f110; 010g, l = 3, r = 2 and let h = 011 be a string

that has r contiguous bits not exhibited in any string

in S. A full-length detector for hmust either start with

the pattern 01 and/or end with the pattern 11 but any

detector starting with 01 will match self and hence can

not be generated. Similarly, if a potential detector for

h ends with pattern 11 the two possible strings 011 and

111 match a string in S as well, therefore a detector

for h cannot be generated.

r-Chunks detection does not induce length-limited

holes, because a detector can always be generated for a

pattern of length r which is not present in S. Thus, the

only holes induced by r-chunks matching are crossover

holes. This greatly simpli�es the task of characterizing

and managing holes. For example, the generalization

of a set S, for r-chunks, can be depicted as a directed

acyclic graph (DAG) with as many nodes as there are

distinct bit patterns for each window (each node la-

belled as the bit pattern it represents) where two nodes

are connected together if the windows they refer to

crossover. Consider, for example, a self set S com-

prised of the following two strings S = f0001; 1011g
with l = 4, r = 2:

��
��
00 ��

��
00 ��

��
01

c
c
c

��
��
01
c
c
c

��
��
10 ��

��
11#

#
#

�
�
�
�
�

Following all the paths, starting from the left-

most nodes, yields the strings f0001; 0011; 1001; 1011g
which constitute the generalization of the r-chunks

matching rule, out of which f0011; 1001g are crossover
holes. We refer to the holes plus the self strings that

induced them as the crossover-closure [Helman, 2002].

5 The Experimental Setup

In LISYS, new detectors are generated when the sys-

tem is initialized. Thereafter, new detectors are gener-

ated whenever another detector dies, usually through

negative selection or old-age. Detectors are generated,

trained, tested, and killed asynchronously throughout

a LISYS run. Consequently, di�erent detectors are

tolerized at di�erent times and are thus exposed to

di�erent samples of self.

Although this rolling coverage is desirable for dynam-

ically changing self sets and to make evasion by an

adversary more diÆcult, it also complicates analysis.

Accordingly, for the experiments reported in this pa-

per, we trained all detectors on the identical set of self

strings (training set), and tested them subsequently

against the identical set of test strings. We did not kill

o� detectors due to old age. In all of the experiments
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the initial tolerization period was set to 15,000 packets,

corresponding to approximately 8 days. Among these

15,000 initial packets, there were 131 unique strings to

which the immature detectors were exposed.

6 The E�ect of Permutation Masks

The goal of the �rst experiment was to assess how

di�erent permutations a�ect the performance of the

system. Because performance is measured in terms

of true and false positives, this experiment also tests

the e�ect of permutations on the system's ability to

generalize (because low false positive rates correspond

to good generalization).

100 sets of detectors were tolerized using the 131

unique strings derived from the �rst 15,000 packets

in the data-set (the training set), and each detector

set was assigned a random permutation mask. Each

detector set had exactly 5,000 mature detectors at the

end of the tolerization period and an r-value of 10.

These numbers were chosen on the basis of previous

experiments [Balthrop et al., 2002] which showed that

5,000 detectors provide maximal coverage (i.e. adding

more detectors does not improve subsequent match-

ing) for this data set and r threshold.3 Each set of

detectors was then run against the remaining 7,329

normal packets, as well as against the simulated at-

tack data. In these data (the test sets), there are a

total of 476 unique 49-bit strings. Of these 476, 50

also occur in the training set and are thus undetectable

(because any detectors which would match them are

eliminated during negative selection). This leaves 426

potentially detectable strings, of which 26 come from

the normal test set and 400 are from the attack test

set. The maximal possible coverage by a detector set

is thus 426 unique matches.

An ideal detector set would achieve zero false positives

on the normal test data and a high number of true

positives on the attack data. Thus, a perfect detector

set would match the 400 unique attack strings, and

fail to match the 26 unique normal strings in the test

set, thus generalizing from the self observed during

training. Note that because network attacks rarely,

if ever, produce only a single anomalous packet, we

3The use of 5,000 detectors to protect 131 unique strings
is clearly a somewhat arti�cial situation. This arises from
the small size of our data set and the decision to provide
maximal coverage of non-self. In general, once the num-
ber of self strings increases above a certain threshold, the
number of detectors needed to cover non-self through nega-
tive detection becomes less than that required for positive
detection (see [Esponda and Forrest, 2002] for the exact
tradeo�). And, for most applications, complete coverage
of non-self is an overly strict requirement.
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Figure 2: LISYS performance under di�erent permu-

tations. Each plotted point corresponds to a di�erent

permutation, showing false positives (x-axis) and true

positives (y-axis). The inset shows a zoomed view of

the same data.

don't need to achieve perfect true-positive rates at the

packet level in order to detect all attacks against the

system.

Figure 2 shows the results of this experiment. The

performance of each detector set is shown as a sep-

arate point on the graph. Each detector set has its

own randomly generated permutation of the 49 bits,

so each point shows the performance of a di�erent per-

mutation. The numbers on the x-axis correspond to

the number of unique self-strings in the test set which

are matched by the detector set, i.e. the number of

false positives (up to a maximum of 26). The y-axis

plots the corresponding value with respect to the at-

tack data, i.e. the number of unique true positive

matches (up to a maximum of 400). The graph shows

that there is a large di�erence in the discrimination

ability of di�erent permutations. Points in the up-

per left of the graph are the most desirable, i.e. they

correspond to permutations which minimize the num-

ber of false positives and maximize the number of true

positives; points toward the lower right corner of the

graph indicate higher false positives and/or lower true

positives.

Surprisingly, the performance of the original (unper-

muted) mapping is among the worst we found, suggest-

ing that the results reported in [Balthrop et al., 2002]

are a worst case in terms of true vs. false positives.

Almost any other random permutation we tried out-

performs the original mapping. Although we don't yet

have de�nitive proof, we believe this behavior arises in

the following way.
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The LISYS design assumes that there are certain pre-

dictive bit-patterns that exhibit regularity in self, and

that these can be the basis of distinguishing self from

non-self. As it turns out, there are also deceptive bit-

patterns which exhibit regularity in the training set

(observed self), but the regularity does not generalize

to the rest of self (the normal part of the test set).

These patterns tend to cause false positives when self

strings that do not �t the predicted regularity occur.

We believe that the identity permutation is bad be-

cause the predictive bits are at the ends of the string,

while the deceptive region is in the middle. Under

such an arrangement, it is diÆcult to �nd a window

that covers many predictive bit positions without also

including deceptive ones. It is highly likely that a

random permutation will break up the deceptive re-

gion, and bring the predictive bits closer to the middle,

where they will appear in more windows.

7 r-Chunks vs. Full-Length Detectors

In this section we compare the performance of r-

chunks matching to that of r-contiguous bits match-

ing with full-length detectors on our data set. The

essential di�erence between full-length detectors and

r-chunks lies in the holes which they induce, as dis-

cussed earlier. Holes are desirable to the extent that

they prevent false positives (strings which are close to

self and represent legitimate but novel behavior of the

network)4; holes are undesirable to the extent which

they lead to false negatives (a failure to match strings

which correspond to attempted intrusions). Although

both representations are subject to crossover holes,

full-length detectors are additionally subject to length-

limited holes. Therefore, we are interested in knowing

if in practice length-limited holes generalize over true

positives or false positives.

For this experiment, we generated one set of r-chunks

detectors for each value of r, ranging from 1 to 12. Be-

cause there are only 2r � (l� r +1) possible r-chunks

detectors, we generated all of them, and then elim-

inated through negative selection any detector that

matched a string in the training set. Full-length de-

tectors were generated according the the procedure de-

scribed in Section 5.

The results of this experiment are shown in Figure

3. As in the initial permutation-mask experiment,

the number of false positives is plotted on the x-axis

and the number of true positives on the y-axis. There

are two sets of points, each connected by lines. One

4This is the sense in which holes can be thought of as
generalizations.
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Figure 3: LISYS performance under di�erent r-values.

For r-chunks we plotted r =1..12 and for full length

detectors we plotted r =8, 10 and 12 (the points for

r-chunks and those for full-length detectors are each

connected via a line to indicate the ordering in terms

of r). Each point shows false positives (x-axis) and

true positives (y-axis).

set indicates the results obtained with r-chunks for

values of r ranging from 1 to 12. The second set,

shows the results of using full-length detectors for

r = 8; 10; and 12.

Section 4 tells us that for any self set, a given value of r

will always achieve equivalent-or-greater overall cover-

age (i.e. a greater sum-total of true and false positives)

when using r-chunks than with using full-length detec-

tors. This follows from the fact that there are no holes

induced by r-chunks which are not also induced using

full-length detectors. The experiment shows whether

or not this additional coverage is helpful. Figure 3

shows that for this data set r-chunks outperforms full-

length detectors. The greater coverage achieved by

r-chunks more often results in the detection of true

positives than false positives. In fact, for any value of

r shown using full-length detectors, there exists some

value of r for which r-chunks achieve a higher rate of

true positives while incurring an equal or lesser num-

ber of false positives.

Another property of r-chunks illustrated by the graph

is that for a given value of r, equivalent-or-greater

overall coverage will always be achieved using r + 1

rather than r. This is because any string detected us-

ing r can be detected using r+1. For this reason, as we

increase r, while the number of true and/or false pos-

itives may increase or remain constant, neither value

can decrease.
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A surprising result is how well r-chunks performs as r

becomes low (e.g. even for r = 1). An explanation for

this phenomenon is discussed below. This is surprising

in part because of the diÆculty reported by Kim and

Bentley [2001] in �nding detectors using r-contiguous

bits and negative selection, a result explained in part

by their choice of a low value for r [Balthrop et al.,

2002].

7.1 r-Chunks and the Magic Bit

We were interested in how r-chunks could perform so

well, especially for r = 1. A closer examination of the

data revealed that the DHCP (Dynamic Host Con�gu-

ration Protocol) con�guration on the internal network

was set up in such a way that dynamic IP addresses

were always assigned with the �nal byte in the range

128-254, while static IP addresses were always in the

range of 1-127 for the same byte. This is not an un-

usual DHCP con�guration. As it happened, however,

no hosts connected to the network using DHCP during

the normal data collection period. When we ran the

attacks, the attacking laptop did use DHCP to con-

nect to the network, and the majority of the attacks

were launched from this laptop (the Denial-of-Service

attack is the only one that wasn't).

As a consequence, the majority of our attack data had

the �rst bit of the 49-bit string (the internal IP is at

the start of the string) set to one, while none of the

normal data had this bit set. In other words, there

was a single \magic bit" that identi�ed approximately

84% of the attack SYN packets. r-chunks was able to

detect this magic bit and take advantage of it. Thus,

even the smallest possible window r = 1 could take

advantage of the magic bit, and because r + 1 can

detect everything that r can detect, all of the other r

values can use the magic bit as well.

Although artifacts such as these are not unlikely oc-

currences in real data, we were curious to see what the

results would be without the presence of a magic bit.

Would r-chunks (and full-length detectors) still per-

form well? To answer this question we eliminated the

magic bit from our data by systematically changing

the internal address of the computer from which the

attacks originated to look like the address of another

internal computer. This scenario is also realistic, be-

cause the attacks could as easily have originated from

an internal computer as from a malicious laptop, and

such an internal attack might be more diÆcult to de-

tect.

We repeated the r-chunks experiments with this modi-

�ed data set. The results are shown in Figure 4. From

this �gure, we can see that r-chunks did not perform as
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Figure 4: LISYS performance under di�erent r-values

after the magic bit has been removed. For r-chunks we

plotted r =1..12 and for full length detectors we plot-

ted r =8, 10 and 12. Each point shows false positives

(x-axis) and true positives (y-axis).

well as before. In particular, the low r-values did not

yield results as dramatically positive as before. Re-

moving the magic bit also hurt the performance of

r-contiguous bits for r = 10 and r = 12, although

the e�ect was not as signi�cant as for r-chunks. How-

ever, r-chunks without the \magic bit" still outper-

forms full-length detectors with the magic bit for all

the r-values we tested (r = 8; 10; 12).

8 Conclusions

In this paper we introduced a new matching rule, r-

chunks, and showed that it performs better than full-

length r-contiguous bits matching on one data set. r-

Chunks is appealing because it is easier to analyze

mathematically [Esponda and Forrest, 2002] and it

scales well as the length of l increases (both in terms

of eÆciency of matching and in terms of number of de-

tectors that are required for a given level of coverage).

This second property is essential if AIS frameworks

such as LISYS are to be used for real applications.

We also studied the e�ect of di�erent permutations

on the ability of LISYS to generalize from an initial

sample self. This form of generalization is important

for controlling false positives. The results reported

here show that some permutations perform much bet-

ter than others, and we have given an informal expla-

nation for why that is true.

The r-chunks detection scheme is intriguing because

it solidi�es the connection between r-contiguous bits

matching and crossover. Although we have shown that
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the crossover-closure is a good generalization for this

data set, we still don't know whether it will carry over

to related problems. However, the connection is tanta-

lizing, and one that we plan to explore in future work.

It is important to emphasize that the results presented

here are empirical and are based on one small data

set. An important avenue for further work is to con-

duct experiments on other applications and to develop

a mathematical understanding of the properties of this

system. A second caveat concerns the simpli�ed ver-

sion of LISYS used to conduct these experiments. In

the future, it will be important to con�rm how well

permutations and r-chunks perform in the context of

the complete LISYS system.
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Abstract

This paper describes a racing procedure for find-
ing, in a limited amount of time, a configuration
of a metaheuristic that performs as good as pos-
sible on a given instance class of a combinatorial
optimization problem. Taking inspiration from
methods proposed in the machine learning litera-
ture for model selection through cross-validation,
we propose a procedure that empirically evalu-
ates a set of candidate configurations by discard-
ing bad ones as soon as statistically sufficient ev-
idence is gathered against them. We empirically
evaluate our procedure using as an example the
configuration of an ant colony optimization algo-
rithm applied to the traveling salesman problem.
The experimental results show that our procedure
is able to quickly reduce the number of candi-
dates, and allows to focus on the most promising
ones.

1 INTRODUCTION

A metaheuristic is a general algorithmic template whose
components need to be instantiated and properly tuned in
order to yield a fully functioning algorithm. The instan-
tiation of such an algorithmic template requires to choose
among a set of different possible components and to assign
specific values to all free parameters. We will refer to such
an instantiation as aconfiguration. Accordingly, we call
configuration problemthe problem of selecting the optimal
configuration.

Practitioners typically configure their metaheuristics in an
iterative process on the basis of some runs of different con-
figurations that are felt as promising. Usually, such a pro-
cess is heavily based on personal experience and is guided

†This research was carried out while MB was with Intellek-
tik, Technische Universität Darmstadt.

by a mixture of rules of thumb. Most often this leads to
tedious and time consuming experiments. In addition, it
is very rare that a configuration is selected on the basis of
some well defined statistical procedure.

The aim of this work is to define an automatic hands-off
procedure for finding a good configuration through sta-
tistically guided experimental evaluations, while minimiz-
ing the number of experiments. The solution we pro-
pose is inspired by a class of methods proposed for solv-
ing the model selection problem in memory-based super-
vised learning (Maron and Moore, 1994; Moore and Lee,
1994). Following the terminology introduced by Maron
and Moore (1994), we callracing method for selection
a method that finds a good configuration (model) from
a given finite pool of alternatives through a sequence of
steps.1 As the computation proceeds, if sufficient evidence
is gathered that some candidate is inferior to at least another
one, such a candidate is dropped from the pool and the pro-
cedure is iterated over the remaining ones. The elimination
of inferior candidates, speeds up the procedure and allows
a more reliable evaluation of the promising ones.

Two are the main contributions of this paper. First, we give
a formal definition of the metaheuristic configuration prob-
lem. Second, we show that a metaheuristic can be tuned
efficiently and effectively by a racing procedure. Our re-
sults confirm the general validity of the racing algorithms
and extend their area of applicability. On a more technical
level, left aside the specific application to metaheuristics,
we give some contribution to the general class of racing
algorithms. In particular, our method adopts blocking de-
sign (Dean and Voss, 1999) in a nonparametric setting. In
some sense, therefore, the method fills the gap between Ho-
effding race (Maron and Moore, 1994) and BRACE (Moore
and Lee, 1994): similarly to Hoeffding race it features a
nonparametric test, and similarly to BRACE it considers a

1Several metaheuristics involve continuous parameters. This
would actually lead to an infinite set of candidate configurations.
In practice, typically only a finite set of possible parameter values
are considered by discretizing the range of continuous parameters.
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blocking design.

The rest of the paper is structured as follows. Section 2
gives a formal definition of the problem of configuring a
metaheuristic. Section 3 describes the general ideas behind
racing algorithms and introduces F-Race, a racing method
specifically designed for matching the peculiar characteris-
tics of the metaheuristic configuration problem. Section 4
proposes some background information onMAX–MIN-
Ant-System and on the traveling salesman problem (TSP),
which are respectively the metaheuristic and the problem
considered in this paper. In particular, the section gives a
description of the sub class of TSP instances, and of the
candidate configurations ofMAX–MIN-Ant-System that
we consider in our experimental evaluation. Section 5 pro-
poses some experimental results, and Section 6 concludes
the paper.

2 CONFIGURING A METAHEURISTIC

This section introduces and defines the general problem
of configuring a metaheuristic. Before proposing a formal
definition, it is worth outlining briefly, with the help of an
example, the type of problem setting to which our proce-
dure applies. Namely, our methodology is meant to be ap-
plied to repetitive problems, that is, problems where many
similar instances appear over time.

2.1 An Example: Delivering Pizza

The example we propose is admittedly simplistic and does
not cover all possible aspects of the configuration problem;
still it has the merit of highlighting those elements that are
essential for the discussion that follows.

Let us consider the followingpizza delivery problem. Or-
ders are collected for a (fixed) time period of, say, 30 min-
utes. At the end of the time period, a pizza delivery boy
has some limited amount of time for scheduling a reason-
ably short tour that visits all the customers that have called
in the last 30 minutes. Then the boy leaves and delivers
the pizzas following a chosen route. The time available for
scheduling may be constant or may be expressed as a func-
tion of some characteristic of the instance itself, for exam-
ple the size which in the pizza delivery problem might be
measured by the number of customers to visit.

In such a setting, every 30 minutes a new instance of an
optimization problem is given, and a solution as good as
possible has to be found in a limited amount of time. It
is very likely that every instance will be different from all
previous ones in the location of the customers that need
to be visited. Further, a certain variability in the instance
size, that is the number of customers to be served, is to be
expected, too.

The occurrence of different instances can be conveniently
represented as the result of random experiments governed
by some unknown probability measure, sayPI , defined on
the class of the possible instances. In the example discussed
here, it is reasonable to assume that different experiments
are independent and all governed by the same probability
measure. In Section 2.3, we will briefly discuss how to pos-
sibly tackle situations in which such assumptions appear
unreasonable.

Now, our pizza delivery boy loves metaheuristics and uses
one to find a shortest possible tour visiting all the cus-
tomers. Being such a metaheuristic a general algorithmic
template, different configurations are possible (see Sec-
tion 4.2 for a more detailed example). In our setting, the
problem that the delivery boy has to solve is to find the
configuration that is expected to yield the best solution to
the instances that hetypically faces. The concept oftypi-
cal instance, used here informally, has to be understood in
relation to the probability measurePI , and will receive a
clear mathematical meaning presently.

SincePI is unknown, the only information that can be used
for finding the best configuration must be extracted from a
sample of previously seen instances. By adopting the ter-
minology used in machine learning, we will use the ex-
pressiontraining instancesto denote the available previous
instances. On the basis of such training instances, we will
look for the configuration that is expected to have the best
performance over thewholeclass of possible instances.

The fact of extending results obtained on a usually small
training set to a possibly infinite set of instances is a
genuinegeneralization, as intended in supervised learn-
ing (Mitchell, 1997). In the context of metaheuristics con-
figuration, generalization is fully justified by the assump-
tion that the same probability measurePI governs the se-
lection of all the instances: both those used for training and
those that will be solved afterwards. The training instances
are in this sense representative of the whole set of instances.

2.2 The Formal Statement

In order to give a formal definition of the general problem
of configuring a metaheuristic, we consider the following
objects:

• Θ is the finite set of candidate configurations.

• I is the possibly infinite set of instances.

• PI is a probability measure over the setI of instances:
With some abuse of notation, we indicate withPI(i)
the probability that the instancei is selected for being
solved.2

2Since a probability measure is associated to (sub)sets and not
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• t : I → < is a function associating to every instance
the computation time that is allocated to it.

• c(θ, i) = c(θ, i, t(i)) is a random variable represent-
ing the cost of the best solution found by running con-
figurationθ on instancei for t(i) seconds.3

• C ⊂ < is the range ofc, that is, the possible values
for the cost of the best solution found in a run of a
configurationθ ∈ Theta on an instancei ∈ I.

• PC is a probability measure over the setC: With the
notation4 PC(c|θ, i), we indicate the probability that
c is the cost of the best solution found by running for
t(i) seconds configurationθ on instancei.

• C(θ) = C(θ|Θ, I, PI , PC , t) is the criterion that needs
to be optimized with respect toθ. In the most general
case it measures in some sense the desirability ofθ.

On the basis of these concepts, the problem of configuring
a metaheuristic can be formally described by the 6-tuple
〈Θ, I, PI , PC , t, C〉. The solution of this problem is the
configurationθ∗ such that:

θ∗ = arg min
θ
C(θ). (1)

As far as the criterionC is concerned, different alternatives
are possible. In this paper, we consider the optimization
of the expected value of the costc(θ, i). Such a criterion
is adopted in many different applications and, besides be-
ing quite natural, it is often very convenient from both the
theoretical and the practical point of view. Formally:

C(θ) = EI,C

[
c(θ, i)

]
=
∫
I

∫
C

c(θ, i) dPC(c|θ, i) dPI(i),

(2)
where the expectation is considered with respect to both
PI andPC , and the integration is taken in the Lebesgue
sense (Billingsley, 1986).

The measuresPI andPC are usually not explicitly avail-
able and the analytical solution of the integrals in Equa-
tion 2, one for each configurationθ, is not possible. In
order to overcome such a limitation, the integrals defined
in Equation 2 will be estimated in a Monte Carlo fashion
on the basis of a training set of instances, as it will be ex-
plained in Section 3.

to single elements, the correct notation should bePI({i}). Our
notational abuse consists therefore in using the same symboli
both for the elementi ∈ I, and for the singleton{i} ⊂ I.

3In the following, for the sake of a lighter notation, the depen-
dency ofc on t will be often implicit.

4The same remark as in Note 2 applies here.

2.3 Further Considerations and Possible Extensions

The formal configuration problem, as described in Sec-
tion 2.2, assumes that, as far as a given instance is con-
cerned, no information on the performance of the various
candidate configurations can be obtained prior to their ac-
tual execution on the instance itself. In this sense, the in-
stances area priori indistinguishable.

In many practical situations, it is knowna priori that var-
ious types of instances with different characteristics may
arise. In such a situation all possible prior knowledge
should be used to cluster the instances into homogeneous
classes and to find, for each class, the most suitable config-
uration.

The case mentioned in Section 2.1, in which it is not rea-
sonable to accept that all instances are extracted indepen-
dently and according to the same probability measure, can
possibly be handled in a similar way. Often, some temporal
correlation is observed among instances. In other words,
temporal patterns can be observed on previous instances
that bringa priori information on the characteristics of the
current instance. This phenomenon can be handled by as-
suming that the instances are generated by a process akin
to a time-series. Also in this case, different configuration
problems should be formulated: Each class of instances to
be treated separately would be composed by instances that
follow in time a given pattern and that are therefore sup-
posed to share similar characteristics. The aim is again to
match the hypothesis ofa priori indistinguishability of in-
stances within each of the different configuration problems
in which the original one is reformulated.

3 A RACING ALGORITHM

Before giving a definition of a racing algorithm for solv-
ing the problem given in Equation 1, it is convenient to
describe a somewhat naivebrute-forceapproach for high-
lighting some of the difficulties associated with the config-
uration problem.

A brute-force approach to the problem defined in Equa-
tion 1 consists in estimating the quantities defined in Equa-
tion 2 by means of asufficiently largenumber of runs of
each candidate on asufficiently largeset of training in-
stances. The candidate configuration with the smallest es-
timated quantity is then selected.

However, such abrute-forceapproach presents some draw-
backs: First, the size of the training set must be defined
prior to any computation. A criterion is missing to avoid
considering, on the one hand, too few instances, which
could prevent from obtaining reliable estimates, and on the
other hand, too many instances, which would then require
a great deal of useless computation. Second, no criterion
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Θ

i

Figure 1: A visual representation of the amount of com-
putation needed by the two methods. The surface of the
dashed rectangle represents the amount of computation for
brute-force, the shadowed area the one for racing.

is given for deciding how many runs of each configuration
on each instance should be performed in order to cope with
the stochastic nature of metaheuristics. Finally, the same
computational resources are allocated to each configura-
tion: manifestly poor configurations are thoroughly tested
to the same extent as the best ones are.

3.1 Racing Algorithms: The Idea

Racing algorithms are designed to provide a better alloca-
tion of computational resources among candidate configu-
rations and therefore to overcome the last of the three above
described drawbacks of brute-force. At the same time, the
racing framework indirectly allows for a clean solution to
the first two problems of brute-force, that is the problems
of fixing the number of instances and the number of runs to
be considered.

To do so, racing algorithms sequentially evaluate candidate
configurations and discard poor ones as soon as statistically
sufficient evidence is gathered against them. The elimi-
nation of inferior candidates speeds up the procedure and
allows to evaluate the promising configurations on more
instances and to obtain more reliable estimates of their be-
havior. Figure 1 visualizes the two different ways of allo-
cating computational resources to candidate configurations
that are adopted by brute-force and by racing algorithms.

Let us suppose that a random sequence of training in-
stancesi is available, where the generick-th term ik is
drawn fromI according toPI , independently for eachk.
We assume thati can be extended at will and at a negligi-
ble cost, by sampling further fromI.

With the notationck(θ, i) we indicate an array ofk terms
whose genericl-th one is the costc(θ, il) of the best solu-
tion found by configurationθ on instanceil in a run oft(il)
seconds. It is clear therefore that, for a givenθ, the array

ck of lengthk can be obtained fromck−1 by appending to
the latter the cost concerning thek-th instance ini.

A racing algorithm tackles the optimization problem in
Equation 1 by generating a sequence of nested sets of can-
didate configurations:

Θ0 ⊇ Θ1 ⊇ Θ2 ⊇ . . . ,

starting fromΘ0 = Θ. The step from a setΘk−1 to Θk

is obtained by possibly discarding some configurations that
appear to be suboptimal on the basis of information avail-
able at stepk.

At step k, when the set of candidates still in the race
is Θk−1, a new instanceik is considered. Each candidate
θ ∈ Θk−1 is executed onik and each observed costc(θ, ik)
is appended to the respectiveck−1 to form the different ar-
raysck(θ, i), one for eachθ. Stepk terminates defining set
Θk by dropping fromΘk−1 the configurations that appear
to be suboptimal in the light of some statistical test that
compares the arraysck(θ, i) for all θ ∈ Θ. The description
of the test considered in this paper is given in Section 3.2.
It should be noticed here that, for anyθ, each component
of the arrayck(θ, i), that is, any costc(θ, i) of the best
solution found by a single run ofθ over one generici ex-
tracted according toPI , is an estimate ofC(θ), as defined in
Equation 2. The sampling average ofck(θ, i) is therefore
itself an estimate ofC(θ) and can be used for comparing
the performance yielded by different configurations.

The above described procedure is iterated and stops ei-
ther when all configurations but one are discarded, or
when some predefined total timeT of computation is
reached. That is, the procedure would stop before consid-
ering the(k + 1)-th instance if

∑k
l=1 t(il+1)

∣∣Θl

∣∣ > T.

3.2 F-Race

The racing algorithm we propose, F-Race in the following,
is based on the Friedman test, a statistical method for hy-
pothesis testing also known as Friedman two-way analysis
of variance by ranks (Conover, 1999).

For giving a description of the test, let us assume that F-
Race has reached stepk, andn = |Θk−1| configurations
are still in the race. The Friedman test assumes that the
observed costs arek mutually independentn-variate ran-
dom variables(ck(θ1, il), c

k(θ2, il), . . . , c
k(θn, il)) called

blocks (Dean and Voss, 1999) where each block corre-
sponds to the computational results on instanceil for each
configuration in the race at stepk. Within each block
the quantitiesck(θ, il) are ranked from the smallest to the
largest. Average ranks are used in case of ties. For each
configurationθj ∈ Θk−1, letRlj be the rank ofθj within
block l, andRj =

∑k
l=1Rlj the sum of the ranks over all
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instancesil, with 1 ≤ l ≤ k. The Friedman test considers
the following statistic (Conover, 1999):

T =

(n− 1)
n∑
j=1

(
Rj −

k(n+ 1)
2

)2

k∑
l=1

n∑
j=1

R2
lj −

kn(n+ 1)2

4

.

Under the null hypothesis that all possible rankings of the
candidates within each block are equally likely,T is ap-
proximativelyχ2 distributed withn−1 degrees of freedom.
If the observedT exceeds the1− α quantile of such a dis-
tribution, the null is rejected, at the approximate levelα, in
favor of the hypothesis that at least one candidate tends to
yield a better performance than at least one other.

If the null is rejected, we are justified in performing pair-
wise comparisons between individual candidates. Candi-
datesθj andθh are considered different if

|Rj −Rh|√
2k(1− T

k(n−1) )
(∑k

l=1
∑n
j=1R

2
lj−

kn(n+1)2
4

)
(k−1)(n−1)

> t1−α/2,

wheret1−α/2 is the 1 − α/2 quantile of the Student’st
distribution (Conover, 1999).

In F-Race, if at stepk the null of the aggregate comparison
is not rejected, all candidates inΘk−1 pass toΘk. On the
other hand, if the null is rejected, pairwise comparisons are
executed between the best candidate and each other one.
All candidates that result significatively worse than the best
are discarded and will not appear inΘk.

3.3 Discussion on the Role of Ranking in F-Race

In F-Race, ranking plays an important two-fold role. The
first one is connected with the nonparametric nature of a
test based on ranking. The main merit of nonparametric
analysis is that it does not require to formulate hypothe-
ses on the distribution of the observations. Discussions
on the relative pros and cons of the parametric and non-
parametric approaches can be found in most textbooks on
statistics (Larson, 1982). For an organic presentation of the
topic, we refer the reader, for example, to Conover (1999).
Here we limit ourselves to mention some widely accepted
facts about parametric and nonparametric hypothesis test-
ing: When the hypotheses they formulate are met, para-
metric tests have a higher power than nonparametric ones
and usually require much less computation. Further, when
a large amount of data is available the hypotheses for the
application of parametric tests tend to be met in virtue of
the central limit theorem. Finally, it is well known that the
t-test, the classical parametric test that is of interest here,
is robust against departure from some of its hypotheses,

namely the normality of data: When the hypothesis of nor-
mality is not strictly met t-testgracefullylooses power.

For what concerns the metaheuristics configuration prob-
lem, we are in a situation in which these arguments look
suspicious. First, since we wish to reduce as soon as possi-
ble the number of candidates, we deal with very small sam-
ples and it is exactly on these small samples, for which the
central limit theorem cannot be advocated, that we wish to
have the maximum power. Second, the computational costs
are not really relevant since in any case they are negligible
compared to the computational cost of executing configura-
tions of the metaheuristic in order to enlarge the available
samples. Section 5 shows that the doubts expressed here
find some evidential support in our experiments.

A second role played by ranking in F-Race is to imple-
ment in a natural way a blocking design (Dean and Voss,
1999). The variation in the observed costsc is due to dif-
ferent sources: Metaheuristics are intrinsically stochastic
algorithms, the instances might be very different one from
the other, and finally some configurations perform better
than others. This last source of variation is the one that
is of interest in the configuration problem while the oth-
ers might be considered as disturbing elements. Blocking
is an effective way for normalizing the costs observed on
different instances. By focusing only on the ranking of
the different configurations within each instance, blocking
eliminates the risks that the variation due to the difference
among instances washes out the variation due to the differ-
ence among configurations.

The work proposed in this paper was openly and largely in-
spired by some algorithms proposed in the machine learn-
ing community (Maron and Moore, 1994; Moore and Lee,
1994) but it is precisely in the adoption of a statistical test
based on ranking that it diverges from previously published
works. Maron and Moore (1994) proposed Hoeffding Race
that adopts a nonparametric approach but does not consider
blocking. In a following paper, Moore and Lee (1994) de-
scribe BRACE that adopts blocking but discards the non-
parametric setting in favor of a Bayesian approach. Other
relevant work was proposed by Gratch et al. (1993) and by
Chien et al. (1995) who consider blocking in a parametric
setting.

This paper, to the best of our knowledge, is the first work
in which blocking is considered in a nonparametric set-
ting. Further, in all the above mentioned works blocking
was always implemented through multiple pairwise paired
comparisons (Hsu, 1996), and only in the more recent
one (Chien et al., 1995) correction for multiple tests is con-
sidered. F-Race is the first racing algorithm to implement
blocking through ranking and to adopt an aggregate test
over all candidates, to be performed prior to any pairwise
test.
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4 MAX–MIN-ANT-SYSTEM FOR TSP

In this paper we illustrate F-Race by using as an example
the configuration ofMAX–MIN-Ant-System (MMAS)
(Stützle and Hoos, 1997; Stützle and Hoos, 2000), a par-
ticular Ant Colony Optimization algorithm (Dorigo and Di
Caro, 1999; Dorigo and Stützle, 2002), over a class of in-
stances of the Traveling Salesman Problem (TSP).

4.1 A Class of TSP Instances

Given a complete graphG = (N,A, d) with N being the
set ofn = |N | nodes,A being the set of arcs fully connect-
ing the nodes, andd being the weight function that assigns
each arc(i, j) ∈ A a lengthdij , the Traveling Salesman
Problem (TSP) is the problem of finding a shortest closed
tour visiting each node ofG once. We assume the TSP
is symmetric, that is, we havedij = dji for every pair of
nodesi andj.

The TSP is extensively studied in literature and that serves
as a standard benchmark problem (Johnson and McGeoch,
1997; Lawler et al., 1985; Reinelt, 1994). For our study
we randomly generate Euclidean TSP instances with a ran-
dom distribution of city coordinates and a random num-
ber of cities. Euclidean TSPs were chosen because such
instances are used in a large number of experimental re-
searches on the TSP (Johnson and McGeoch, 1997; John-
son et al., 2001). In our case, city locations are randomly
chosen according to a uniform distribution in a square of
dimension10.000×10.000, and the resulting distances are
rounded to the nearest integer. The number of cities in each
instance is chosen as an integer randomly sampled accord-
ing to a uniform distribution in the interval[300, 500]. We
generated a total number of 400 such instances for our ex-
periments reported in Section 5.

4.2 MAX–MIN-Ant-System

Ant Colony Optimization (ACO) (Dorigo et al., 1999;
Dorigo and Di Caro, 1999; Dorigo and Stützle, 2002) is a
population-based approach inspired by the foraging behav-
ior of ants for the solution of hard combinatorial optimiza-
tion problems. In ACO, artificial ants implement stochastic
construction procedures that are biased by pheromone trails
and heuristic information on the problem being solved. The
solutions obtained by the ants may then be improved by
applying some local search routine. ACO algorithms typ-
ically follow the high-level procedure given in Figure 2.
MMAS (Sẗutzle and Hoos, 1996, 1997; Stützle and Hoos,
2000) is currently one of the best performing ACO algo-
rithms for the TSP.

MAX–MIN-Ant-System constructs tours as follows: Ini-
tially, each of them ants is put on some randomly chosen

procedureAnt Colony Optimization
Init pheromones, calculate heuristic
while(termination condition not met)do
p = ConstructSolutions(pheromones, heuristic)
p = LocalSearch(p) % optional
GlobalUpdateTrails(p)

end
endAnt Colony Optimization

Figure 2: Algorithmic skeleton of ACO for static
combinatorial optimization problems.

city. At each construction step, antk applies a probabilistic
action choice rule. In particular, when being at cityi, antk
chooses to go to a yet unvisited cityj at thetth iteration
with a probability of

pkij(t) =
[τij(t)]α · [ηij ]β∑
l∈Nki

[τil(t)]α · [ηil]β
, if j ∈ N k

i ; (3)

whereηij = 1/dij is ana priori available heuristic value,
α andβ are two parameters which determine the relative
influence of the pheromone trail and the heuristic informa-
tion, andN k

i is the feasible neighborhood of antk, that is,
the set of cities which antk has not yet visited; ifj /∈ N k

i ,
we havepkij(t) = 0.

After all ants have constructed a solution, the pheromone
trails are updated according to

τij(t+ 1) = (1− ρ) · τij(t) + ∆τbest
ij , (4)

where∆τbest
ij = 1/Lbest if arc (i, j) ∈ Tbest and zero

otherwise. HereTbest is either theiteration-bestsolution
T ib, or theglobal-bestsolutionTgb andLbest is the cor-
responding tour length. Experimental results showed that
the best performance is obtained by gradually increasing
the frequency of choosingTgb for the pheromone trail up-
date (Sẗutzle and Hoos, 2000).

In MMAS, lower and upper limitsτmin andτmax on the
possible pheromone strengths on any arc are imposed to
avoid search stagnation. The pheromone trails inMMAS
are initialized to their upper pheromone trail limitsτmax,
leading to an increased exploration of tours at the start of
the algorithms.

In our experimental study, we have chosen a number
of configurations that differ in particular parameter set-
tings forMMAS. We focused on alternative settings for
the main algorithm parameters as they were identified
in earlier studies, in particular we considered values of
α ∈ {1, 1.25, 1.5, 2}, m ∈ {1, 5, 10, 25}, β ∈ {0, 1, 3, 5},
ρ ∈ {0.6, 0.7, 0.8, 0.9}. Each possible combination of the
parameter settings leads to one particular algorithm config-
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uration, leading to a total number of4×4×4×4 = 256 con-
figurations. In our experiments each solution is improved
by a 2.5-opt local search procedure (Bentley, 1992).

5 EXPERIMENTAL RESULTS

In this section we propose a Monte Carlo evaluation of
F-Race based on a resampling technique (Good, 2001).

For comparison, we consider two other instances of racing
algorithms both based on a paired t-test. They are therefore
parametric, and they adopt a blocking design. We refer
to them astn-Raceand tb-Race. The first does not adopt
any correction for multiple-tests, while the second adopts
the Bonferroni correction and is thereforenot unlike the
method described by Chien et al. (1995).

The goal is to select anas good as possibleconfigura-
tion out of the 256 configurations of theMAX–MIN-Ant-
System described in Section 4.2.

Each configuration was executed once on each of the 400
instances for10s on a CPU Athlon 1.4GHz with 512 MB
of RAM, for a total time of about 12 days to allow in a
following phase the application of the resampling analysis.
The costs of the best solution found in each of these exper-
iments were stored in a two-dimensional400 × 256 array.
In the following, when saying that werun configurationj
over instancei, we will simply mean that we execute the
pseudo-experimentthat consists in reading the value in po-
sition (i, j) from the array of the results.

From the 400 instances, we extract 1000 pseudo-samples
each of which is obtained by re-ordering randomly the orig-
inal instances. Each pseudo-sample is used for apseudo-
trial , that is, for simulating a run of a racing algorithm: One
after the other the instances are considered and, on the ba-
sis of the results of pseudo-experiments, configurations are
progressively discarded. Each algorithm stops after execut-
ing 5 × 256 pseudo-experiments.5 Upon time expiration,
the best candidate in the pseudo-trial is selected and it is
tested on 10 instances that werenot used during the selec-
tion itself. The results obtained on these previously unseen
instances are recorded and are used for comparing the three
racing methods. To summarize, after 1000 pseudo-trials a
vector of 10 × 1000 components is obtained for each of
F-Race, tn-Race, and tb-Race. It is important to note that
the three algorithms face the same pseudo-samples and that
the candidates selected in each pseudo-trial by each algo-
rithm are tested on the same unseen instances. The generic
i-th components of the three10×1000 vectors refers there-
fore to the results obtained by the champions of the three

5In such a time, by definition, brute-force would be able to
test the 256 candidates on only 5 instances. The5× 256 pseudo-
experiments simulate 3.5 hours of actual computation on the com-
puter used for producing the results proposed here.

races respectively, where the three races were conducted on
the basis of the same pseudo-sample: We are therefore jus-
tified in using paired statistical tests when comparing the
three races among them.

On the basis of a paired Wilcoxon test we can state that
F-Race is significatively better, at a significance level of
5%, than both tn-Race and tb-Race.6

Some insight on this result can be obtained from the fol-
lowing observation. By early dropping the less interesting
candidates, F-Race is able to perform more experiments on
the more promising candidates. On the 1000 pseudo-trials
considered, at the moment in which the computation time
was up and a decision among the surviving candidate had
to be taken, the set of survivors was on average composed
by 7.9 candidates and such survivors had been tested on av-
erage on77.9 instances. In the case of tn-Race, the average
size of the set of survivors upon expiration of computation
time was31.1, while the number of instances seen by such
survivors was on average18.2. For tb-Race the numbers
are253.8 and5, respectively. In this sense, F-Race proved
to be the bravest of the three, while tb-Race appeared to
be extremely conservative and on average it dropped only
slightly more than2 candidates before the time limit.

On the basis of our Monte Carlo evaluation, some stronger
statement can be pronounced on the quality of the results
obtained by F-Race. We have shown above that the perfor-
mance of F-Race was good in arelativesense: F-Race pro-
duced better results than its competitors. We state now that,
in a precise sense to be defined presently, the performance
of F-Race wasabsolutelygood. We compare F-Race with
Cheat, a brute-force method that, rather unfairly, uses in
each pseudo-trial the same number of instances used by F-
Race and on these instances runs all the candidate config-
urations. In doing so, Cheat allows itself an enormously
large amount of computation time. In our experiments,
Cheat has performed on average about19950 experiments
per trial which is equivalent to about55 hours of computa-
tion against the3.5 hour available to F-Race. The selection
operated by Cheat is theoptimumthat can be obtained from
the fixed set of training instances, and considering only one
run of each configuration on each instance. F-Race can be
seen as an approximation of Cheat: The set of experiment
performed by F-Race is aproper subsetof the experiments
performed by Cheat.

Now, in the statistical analysis of the results obtained by
our Monte Carlo experiments, we were not able to reject
the null that F-Race and Cheat produce equivalent results.
Also in this case, we have worked at the significance level
of 5%: neither Wilcoxon test nor t-test were able to show
significance.

6The same conclusion can be drawn on the basis of a paired
t-test.

17ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION



6 CONCLUSIONS

The paper has given a formal definition of the problem of
configuring a metaheuristic and has presented F-Race, an
algorithm belonging to the class of racing algorithms pro-
posed in the machine learning community for solving the
model selection problem (Maron and Moore, 1994).

In giving a formal definition of the configuration problem,
we have stressed the important role played by the probabil-
ity measure defined on the class of the instances. Without
such a concept, it is impossible to give a meaning to the
generalization process that is implicit when a configuration
is selected on the basis of its performance on a limited set
of instances.

F-Race, the algorithm we propose in this paper, is the spe-
cialization of the generic class of racing algorithms to the
configuration of metaheuristics. The adoption of the Fried-
man test, which is nonparametric and two-way, matches
indeed the specificities of the configuration problem. As
shown by the experimental results proposed in Section 5,
F-Race obtains better results than its competitors that adopt
a parametric approach. This better performance can be in-
deed explained by the ability of discarding inferior candi-
dates earlier and faster than the competitors. Still, we do
not feel like using these results for claiming a generalpre-
sumedsuperiority of F-Race against its fellow racing algo-
rithms. Rather, we wish to stress the appeal of the racing
idea in itself, and we want to interpret our results as an evi-
dence that this idea is extremely promising for configuring
metaheuristics and should be further investigated.
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Abstract 

 

Two novel particle swarm optimization (PSO) 
algorithms are used to track and optimize a 3- 
dimensional parabolic benchmark function 
where the optimum location changes randomly 
and with high severity. The new algorithms are 
based on an analogy of electrostatic energy with 
charged particles. For comparison, the same 
experiment is performed with a conventional 
PSO algorithm. It is found that the best strategy 
for this particular problem involves a 
combination of neutral and charged particles.  

 

1 INTRODUCTION 

Particle Swarm Optimization (PSO) is a population based 
evolutionary technique applied to optimization problems. 
It differs from other population approaches such as 
genetic algorithms, by the inclusion of a solution (or 
particle) velocity, which moves the position of the 
solution in the space of all possible solutions, rather than 
relying on recombination of existing solutions. Linear 
spring forces govern the dynamics of the population (or 
swarm); each particle is attracted to its previous best 
position, and to the global best position attained by the 
swarm, where fitness is quantified by the value of a 
function at that position. These swarms have proven to be 
very successful in finding global optima in various static 
contexts such as the optimization of certain benchmark 
functions (Eberhart and Shi 2001a). 

The real world is rarely static, however, and many 
systems will require frequent re-optimization due to 
system and/or environmental change. The problem of re-
scheduling system resources is an important example of 
this. One important and implicit constraint is the 
requirement to balance the desired error of the solution 
with the need to be prepared to respond rapidly to change. 
For example, to achieve a low error will require a large 
number of iterations/generations, and will leave the 
evolutionary population well adapted to that situation. But 

system and environment change may occur on short time-
scales and may be large enough to leave the population 
ill-adapted to the new problem, so that a solution 
considered good enough may be hard to find within this 
time-scale. 

This work addresses these issues with the use of two 
novel swarm algorithms. These algorithms are tested and 
compared with the conventional PSO algorithm for an 
extreme search problem wherein the optimum location 
(solution) is randomized within a box representing the 
entire dynamic range. 

2 BACKGROUND  

Eberhart and Shi (2001b) have applied the conventional 
PSO algorithm to some dynamic search and optimization 
problems. In their experiments, they use a time-scale of 
100 iterations, and choose as a benchmark the (3-
dimensional) parabolic function and the sphere function 
in 10-dimensions. The optimum location of these 
functions was moved along a line by increments of 0.2% 
and 1% of the dynamic range, with each change occurring 
at 100 iterations. It was found that, under these 
conditions, the PSO algorithm performed at least as well 
as other evolutionary techniques (Angeline 1997, Bäck 
1998).   

One drawback noted by Eberhart and Shi is the lack of a 
strategy for dealing with a wide variety of change. One 
possibility is to randomize the swarm when a change is 
detected. In their work (2001b), the particle positions are 
retained, but the personal and global best positions are 
calculated with respect to the new optimum location. 
Another possibility would be to randomize the swarm 
when a change is detected. In general, a good strategy is 
needed that can account for chaotic rather than linear 
change, and for change that is commensurate with the 
entire range of the dynamic variables, and not just limited 
to one per cent of this range. 

This work investigates the capabilities of two novel 
swarm algorithms to overcome an extreme problem of 
this type. The two new algorithms were originated by the 
authors in quite a different context: the problem of 
artificial improvised music (Blackwell and Bentley 
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2002a). It was demonstrated that particle swarms can, if 
suitably interpreted as music, generate interesting 
melodies. Moreover, they can also interact with an 
external musician. External audio events are interpreted 
and placed in the search space, and become targets or 
attractors for the swarm. These targets may change on 
very small time-scales, and by large amounts.  It was 
found in this work that inter-particle repulsion or 
“collision-avoidance” balances the target attractions and 
leads to an extended swarm that follows this change well. 
Various features of the algorithm have been reported in a 
subsequent paper and the suggestion made that they may 
have relevance to optimization problems (Blackwell and 
Bentley, 2002b). 

The particular form of the repulsive force we have 
introduced is identical to the familiar electrostatic inverse 
square law between identically charged particles. In this 
paper we consider two different swarms: the first is 
composed entirely of identically charged particles, and the 
second has an equal number of charged and ‘neutral’ 
particles. Neutral particles do not experience the repulsive 
force. (Within this electrostatic analogy, it could be said 
that conventional PSO algorithms concern only neutral 
particles.) The idea is that the neutral particles will gather 
around the global best position (as if in a nucleus) whilst 
the charged particles will continue to explore the solution 
space as they orbit the nucleus. Hence there will be a 
balance between exploration and exploitation. This type 
of swarm could be termed ‘atomic’ since it has much in 
common with models of the atom. As such, it moves 
away from the original idea of an insect swarm or avian 
flock which inspired much of the early work on particle 
swarms.  

3 THE PROBLEM 

The dynamic problem investigated in this work is to find 
the global minimum f(0) of some function f(x-xopt) where 
xopt is the optimum location. For dynamic search, xopt = 
xopt(t), where t is an iteration counter although it could be 
a time variable as determined by the actual dynamic 
environment. Eberhart and Shi (2001b) hold xopt fixed for 
100 iterations at a time, and xopt varies in increments of 
s1, where 1 is the unit vector in n-dimensions (linear 
change) for s = 0.1 and s = 0.5. The dynamic range of the 
variables is [-50, 50] in each dimension. 

4 PARTICLE DYNAMICS 

Within the PSO methodology, the particle dynamics are 
determined by an update rule which modifies particle 
velocities. New positions are then found by adding the 
updated velocity to the current position. The particle 
update algorithm used in this work is given by the 
application of three simple steps:  

 vi  wvi + c1r1(xpb,i – xi) + c2r2(xgb-xi) (1) 

 if ( |vi| > vmax)  vi  (vmax / |vi| ) vi                (2) 

 xi  xi + vi    (3) 

In these rules, i is a particle label and each particle has a 
position x and a velocity v (n-dimensional vectors). The 
inertia weight w, and spring constants c1 and c2 are the 
adjustable parameters of the algorithm. r1 and r2  are 
random numbers drawn from the unit interval, r1, r2 ∈ 
[0,1].  xpb,i is the best position attained by particle i and 
the global best location xgb is the best position attained by 
any particle.   

Rule (1) adds the particle accelerations from the spring 
forces to a damped velocity wvi. Rule (2) clamps the 
velocity to the dynamic range [-vmax, vmax], which serves 
to limit the position increment applied in Rule (3). Notice 
that our rule (2) implements spherically symmetric 
velocity clamping, whereas other PSO algorithms clamp 
the velocity to a box. Since the following experiments 
involve qualitative observations on the spatial distribution 
of particles at any iteration, it is necessary to preserve 
spherical symmetry in the update rules. 

Table 1: Search algorithm 

Initialize a swarm {xi, vi}, i =1,…M, with xi ∈[0, xmax]
n 

and vi ∈ [-vmax, vmax]
n 

Set all personal best positions to xpb,i to xi
 

t 0 

do: 

     for i = 1 to M 

          if f(xi -xopt) < f(xpb,i -xopt) 

               then xpb,i  xi 

          if f(xpb,i -xopt) < f(xgb-xopt) 

               then xgb  xpb,i  

     endfor 

     if (t%100 = 0) 

          then xopt ∈ [(xmax/2)-L/2, (xmax/2)+L/2]3  

     for i = 1 to M 

          Apply particle update algorithm (1) – (3) 

     endfor 

     t t+1 

until stopping criterion is met 

 

This clamping is a constraint on global exploration. The 
balance between this and local exploitation of good 
solutions is given by the inertial weight. In the non-
dynamic case it is advantageous to reduce w from 1 down 
to near zero during the course of training run, since this 
allows full exploitation of possible good solutions 
(Eberhart and Shi 2001a). However, in the dynamic case 
it cannot be predicted whether exploration or exploitation 
is needed at any given time. With these factors in mind, 
Eberhart and Shi (2001b) used a value of 1.494 for the 
spring constants and a random inertia weight w ∈  [0.5, 
1]. These values were chosen to agree, on the average, 
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with Clerc’s analysis for convergence (Clerc 1999), and 
to provide a balance between exploration and 
exploitation.  

The PSO algorithm for the dynamic problem investigated 
here is given in table 1.  

In order to introduce the notion of charge – and hence 
collision avoidance – all that needs to be done is to 
modify the rule for particle accelerations, rule (1). The 
grounds for this extension, and a full description of the 
effects of the various parameters on particle motion, are 
given in (Blackwell, 2001) and (Blackwell and Bentley, 
2002b). In those studies, an additional acceleration 
towards the swarm centre was also implemented, but this 
is not used here.  

The necessary amendment to the particle update 
algorithm is an extra particle acceleration ai given by 

prp,
r

QQ
ijcoreij

ij
3

ji

i

ij

<<=
≠

ra   (4) 

where rij = xi – xj , rij = | xi – xj| and each  particle has a 

charge of magnitude Qi. Neutral particles are assigned a 

charge Qi = 0 and so will not contribute to the sum in (4). 

A charged particle i will have Qi > 0 and will experience 

the repulsive effects from all other charged particles j  i. 

Repulsion is only experienced for separations within the 

shell pcore  < rij < p. The lower cut-off pcore is a safeguard 

against the singularity of the inverse square law. The 

upper cut off p is a tunable parameter allowing the 

domain of influence of the repulsion to be controlled. 

The charged particle update algorithm, which replaces the 

particle update algorithm within the search algorithm 

(Table 1), is given by replacing rule (1) with: 

 vi  wvi + c1r1(xpb,i – xi) + c2r2(xgb-xi) + ai (1') 

It is worth noting that since the particles are updated in 
turn (i.e. from i = 1 to i = M), contributions to ai can 
involve non-updated particle positions (j  > i) as well as 
updated positions (j < i). This was found to give better 
avoidance in earlier experiments.  

5 EXPERIMENTS 

The experiments were conducted on the parabolic 
function in n = 3 dimensions, f(x-xopt) = (x-xopt) • (x-xopt). 

The task is made dynamic by placing xopt in a cube of side 
L and then randomly re-positioning it to another point in 
this cube every 100 iterations. The severity s therefore 
varies randomly from zero up to ( 3)L. With L set to 
2vmax, this gives a severity of up to 2 3 times the dynamic 
range. The parameter xmax solely determines the initial 
distribution of the particle velocities and positions and 
plays no part in subsequent updates after the first jump in 
xopt. The values of the spatial parameters set out in Table 
2.  

Table 2: Spatial parameters 

L xmax vmax M 

64 128 32 20 

 

The values of the electrostatic parameters pcore, p and Q 
are set out in Table 3. 

 

Table 3: Electrostatic parameters 

pcore p Q 

1 3xmax 16 

 

The values of the PSO parameters w, c1 and c2 are those 
used by Eberhart and Shi (2001b). The inertia weight w 
varies randomly between 0.5 and 1.0, so that the mean 
0.75 is close to the Clerc constriction factor 0.729 (Clerc 
1999). The spring constants c1 and c2 are set to 1.494, also 
in accordance with Clerc’s analysis. 

In all these experiments, 50 optimum jumps are made, (or 
5000 iterations of the system). In addition to the 
numerical data produced by these experiments, a three 
dimensional animation was set up which enabled a 
qualitative assessment of the three swarms. 

For comparison, four experiments were performed:  

I Neutral swarm. 

The first experiment uses the conventional PSO 
algorithm, which is implemented by setting the charge on 
all 20 particles to zero (i.e. each particle is neutral).  

II Charged swarm. 

In the second experiment, all 20 particles carry the same 
charge, Q. In other words, all particles experience 
repulsive forces from the other particles. 

III Atomic swarm. 

The third experiment evaluates the atomic swarm, where 
10 particles have charge Q and the remaining half are 
neutral.  

IV Neutral swarm, one optimum jump. 

The fourth experiment is identical to Experiment 1 except 
that just 200 iterations were allowed. The positions and 
velocities of the particles were saved to file for analysis of 
individual particle motion. 
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Figure 1: Neutral swarm 

 

 

 
 

Figure 3: Charged swarm 

 

 

 
 

Figure 5: Atomic swarm 

 

 
 

Figure 2: Neutral swarm, average best values per 100 

iterations. 

 

 
 

Figure 4: Charged swarm, average best values per 

100 iterations. 

 

 
 

Figure 6:Atomic swarm, average best values per 100 

iterations. 
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6 RESULTS 

The results for the experiments on the neutral, charged 
and atomic swarms are shown in Figures 1 to 6. In each 
case, two graphs have been prepared, plotted as a function 
of iteration number t: the best value found by the swarm, 
f(xgb - xopt), and the average best value over the 50 
problem optimum jumps (i.e., average best per 100 
iterations, from optimum jump to the iteration before the 
next optimum jump).  

6.1 EXPERIMENT I: NEUTRAL SWARM 

The best value attained after 100 iterations, i.e. just before 
the first optimum jump, is of the order of 10-8. This is at 
least two orders of magnitude lower than the best value 
obtained in the first 100 iterations of an equivalent 
experiment (Eberhart and Shi 2001b figure 1, p98), 
although comparable to the best values obtained in 
subsequent optimum positions. The discrepancy is 
presumably due to initial conditions, although the 
spherically symmetric clamping rule may play a part. 

However, the results depart significantly at the first 
optimum jump, due to the increased severity. The 
remarkable feature of Figure 1 is the small spikes at the 
optimum jump followed by a leveling of the graph for 
some tens of iterations, after a short fall. This plateau in 
best values sometimes then drops before the next 
optimum jump, but often does not. For example, there is a 
run from t = 2100 to 2500 where the initial short fall is 
not improved upon. The plot of the averages over the 50 
optimum jumps shows an average best of 125 at 100 
iterations. The slope at this point is -3.2, indicating only a 
slow improvement (3% per iteration) with increasing 
iteration. 

The 3D animations showed a very unusual feature. For 
the first 100 iterations, the particles were clumped very 
closely around the optimum. At the optimum jump, 
however, the particles moved along a line in the general 
direction of the new optimum, and then began to oscillate 
along this line about a point close, but not adjacent to the 
new optimum. After some tens of iterations the 
oscillations would cease and the particles would begin to 
swarm towards the new optimum, although they might 
not reach it before the next jump. This behavior was 
repeated invariably at each optimum jump, and in repeats 
of this experiment. 

6.2 EXPERIMENT II: CHARGED SWARM 

Figure 3 shows the best values over the 5000 iterations. 
By comparison with Figure 1, the spikes are now long, 
showing an improved best value by a factor of 103 after 
just a few iterations at each jump. The leveling out now 
occurs at a much smaller best value, a feature illustrated 
in Figure 4 which shows the average best values. In 
Figure 4, the lowest average best value obtained is 0.226, 
and the slope at this point is -2.10x10-3 showing an 
improvement of 1% per iteration at this point. 

The animations revealed typical swarming behavior: at 
each optimum jump the swarm moved towards the new 
optimum, with irregular motion about the swarm centre. 
After a few iterations the swarm centre was coincident 
with the optimum and the particle motion continued to be 
chaotic and spherically symmetric about this point, with 
particles amplitudes of some tens of units. These pictures 
agreed with previous swarm experiments (Blackwell and 
Bentley, 2001b). 

6.3 EXPERIMENT III: ATOMIC SWARM. 

Once more, the plot of best values, Figure 5, shows spikes 
at each optimum jump, but the spikes drop to a much 
lower best value, in the range 10-4 to 10-8 in 49 of the 50 
jumps. The figure does not show the plateaus that are a 
feature of Figures 1 and 3. The plot of average best 
values, Figure 6, shows a much improved average best at 
100 iterations of 1.12x10-4, with a slope of -1.21 x 10-5 or 
11% of the best value per iteration at this point. The 
average global best just before the next optimum jump is 
at least 6 orders of magnitude better than the neutral 
swarm and about 2000 times better than the charged 
swarm. 

In order to distinguish charged from neutral particles for 
the purposes of the animation, the particles were colored 
red (charged) and blue (neutral). At each optimum jump, 
the animations displayed the particles moving in an 
irregular swarming motion towards the optimum, 
followed by a long period where the blue neutral particles 
clumped around the optimum, moving ever slower with 
very small amplitude, surrounded with a ‘cloud’ of 
charged red particles, moving much like the charged 
swarm described in II. The picture was very reminiscent 
of representations of an atomic nucleus surrounded by an 
electron cloud.    

6.4 EXPERIMENT IV: NEUTRAL SWARM, ONE 

OPTIMUM JUMP. 

A further experiment was conducted on the neutral swarm 
to give greater insight on the linear non-swarming 
behavior of the particles just after the optimum jump, as 
observed in the animation. Just two hundred iterations 
were completed, allowing a single optimum jump to 
occur.  

At t =100, the 20 particles were clumped very tightly 
around xo, and moving slowly.  Between t = 100 and t  = 
120, all the particles followed a very similar trajectory. 
For this reason, some results for just a single particle, 
particle 0, will be presented. Table 4 shows x, y and z 
components of the optimum location, global best location 
and position and velocity of particle 0 at iteration 99, just 
before the effects of the optimum jump have influenced 
the particle dynamics. 
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Figure 7: Position of particle 0 for t = 100 to t = 120 

 

 
 

Figure 8: Snapshots at t = 114 and t = 115 

 

 
 

Figure 9: Position of particle 0 for t = 110 to t = 140 
 

 

 

 

Table 4: Opt., best & particle 0 components at t = 99. 

 xopt( 100) xgb(100) x0(100) v0(100) 

x 95.71089 95.710884 95.5921 0.61443764 

y 65.98201 65.98204 65.87358 0.52882737 

z 56.992935 56.992916 57.107887 -0.58677804 

 

Figure 7 shows the positions of particle 0 (circles) and the 
global best (+’s) for iterations t = 100 to t = 120. The 
optimum location is depicted with a triangle. Figure 8 
shows just two snapshots at t = 114 and t = 115. Finally, 
Figure 9 shows the position of particle 0 and global best 
between iterations 110 and 140. For the purpose of the 
subsequent analysis, a line showing the stable trajectory 
and its end point has been marked on the figure. 

7 ANALYSIS 

The strange behavior of the neutral swarm just after the 
optimum jump is the crucial difference between 
Experiments I and II. This analysis section will start with 
a possible explanation for this phenomenon. 

The situation for the neutral swarm just at and after the 
optimum jump must be studied, and the optimum jump of 
Experiment IV is a good place to start. At t = 100, the 
closest particle, k, to the new optimum location will now 
be at the new global best. Particle k will at this stage 
experience no acceleration, and therefore its next location 
is xk(100) = xk (99) + wvk(99). Notice that the velocity 
vk(99) is unlikely to be pointing towards xopt(100). 
However, if vk(99) has some component that lies along 
xopt(100) – xk(99) then the new position xk(100) will 
improve upon the previous position and may even be the 
new global best when the updates at this iteration are 
completed. Suppose this is so. Then, by a similar 
argument, xk(101) will lie along the same trajectory xk 
(100) - xk(99). Meanwhile the other particles, which were 
at their personal bests at t = 99, will experience 
accelerations towards xk (99) of magnitude c1 r1| xk(99) – 
xi(99) |. This will not be a large acceleration, but it will 
give the new velocity vector vi(100), an additional 
component along the trajectory defined by xk (100) - xk 
(99). At the next iteration, if the above scenario is played 
out, velocity components along the trajectory of particle k 
will again be reinforced.  

Of course there may well be some jostling for leadership, 
but occasionally a leader will be found whose trajectory 
defines a line of global bests. The remaining particle 
velocities are pulled ever more in the direction of this 
trajectory and the accelerations place them ever closer to 
positions along this trajectory. The result is collinear 
motion along a line that is closing on xopt but is not 
necessarily coincident with xopt. The leadership may then 
be exchanged, but motion along this line will always be 
reinforced until a final global best position is found which 
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is near to the point of closest approach between the 
trajectory – the ‘end-point’ - and xopt. Animations of many 
runs of the swarm provide empirical evidence that this 
scenario invariably occurs. 

The stable trajectory is clearly seen in Figure 7. Figure 8 
shows two snapshots that illustrate the attraction of the 
particles to the trajectory. At t = 114, particle 0 is 
displaced from the global best position. The acceleration 
is sufficient to place it very close to xgb(114) at t = 115, 
but the global best has now moved along the stable 
trajectory to xgb(115). 

Consider now what happens when the global best is near 
to the end-point. Velocities perpendicular to the stable 
trajectory will be very small so that accelerations towards 
xopt(100) will also be correspondently small. Moreover, 
the dissipative effects of the inertia weight will also be 
progressively slowing particle motion down. The result is 
that it may take a long time for the swarm to move away 
from the end of the stable trajectory, and the global best 
will hardly improve in the remaining iterations before the 
next optimum jump. The particle motion is now a spring-
like oscillation along the stable trajectory, centered on the 
end-point. The stable trajectory and end-point are 
depicted in Figure 9 which shows the position of particle 
0 and global best between iterations 110 and 140. 

This analysis can be applied to the results of Experiment 1 
(Figure 1). The plateau show that the global best scarcely 
improves over some tens of iterations. This is due to the 
collinear motion followed by oscillation about the end-
point of the stable trajectory. In fact, there is a particularly 
bad run between iterations 2100 and 2500 when the 
particles never improve on their global best, which 
corresponds to an optimum value of 1000. This is 11 
orders of magnitude from the best that the swarm is 
capable of finding (10-8). It is these high values that push 
up the average best value found (Figure 2).  

The charged swarm is less affected by this pathology 
since the collision avoiding acceleration will push 
particles away from the stable trajectory. In fact 
animations never show linear collapse; instead, the swarm 
maintains a near spherical shape, much more reminiscent 
of an insect swarm. However, this also has its drawbacks. 
Figure 3 does show some horizontal portions, for global 
bests in the range 10-1 to 1. The repulsions now work 
against exploitation so that better solutions than this are 
found in only 7 of the 50 optimum jumps. 

The atomic swarm also does not suffer from the 
pathology of the neutral swarm. The charged particles 
allow for fast targeting, after which the neutral particles 
can continue searching the solution space in the near 
vicinity of the global best. Indeed, at the 100th iteration, 
the rate of improvement of best value is 11%, which 
shows that significant improvement can still occur. The 
corresponding rates for the neutral swarm and the charged 
swarm are 3% and 1%, indicating only slow progress is 
possible.    

8 CONCLUSIONS 

This work presents a new particle swarm algorithm based 
on an analogy of electrostatic energy. In addition, a 
dynamic search problem has been formulated that is more 
representative of real-world problems. The experiments 
considered here suggest that atomic particle swarms may 
offer a good strategy for dealing with such severe 
dynamic optimization over short time scales. Certainly 
this has been the case for the dynamic three dimensional 
parabolic function considered here, where the average 
best value obtained over 50 optimum jumps was, by the 
100th iteration, 1.12x10-4. This compares very well with 
the equivalent figure of 125 for the conventional PSO 
algorithm. 

The poor behavior of the conventional (i.e., neutral) 
particle swarm seems to be due to a curious pathology of 
‘linear collapse’, just after problem optimum jump. This 
was observed in animations and analysis suggests that the 
cause is the establishment of a linear trajectory that links 
global best positions and serves as an attractor for the 
swarm. At the end of this stable trajectory is a stable 
global best position, which can be some way from the 
optimum location, and from which the swarm has 
difficulty improving upon.  

The charged particle swarm has the advantage that the 
particle trajectories are always around an extended swarm 
shape, allowing good global search. The maintenance of 
an extended swarm was the reason for the use of collision 
avoidance in the earlier work on improvised music 
(Blackwell and Bentley 2002a,b). In this context, it is 
desirable to have a very fast swarm response to a 
changing audio input, yet undesirable for the swarm to 
cluster too closely around a target – this would lead to 
dull melodies and parody. The downside is that the 
particle repulsions prevent detailed exploration of the 
search space.  

However, experiments suggest that a swarm of neutral 
and charged particles (reminiscent to representations of 
the atom) does not suffer from linear collapse, and always 
allows for detailed exploitation. The advantage of an 
atomic swarm over randomizing strategies (e.g., where 
the particle positions are randomized when an problem 
optimum shift is noticed) is one of simplicity. No further 
analysis is needed to tell just when a change has occurred, 
and how the swarm should respond to this change.  
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Abstract

In this paper we deal with an NP -hard
combinatorial optimization problem, the k-
cardinality tree problem in edge-weighted
graphs. This problem has several applica-
tions in practice, which justify the need for
eÆcient methods to obtain good solutions.
Metaheuristic applications have already been
shown to be successful in tackling the k-
cardinality tree problem in the past. In
this paper we propose an ACO algorithm for
the edge-weighted k-cardinality tree problem
based on the Hyper-Cube Framework for Ant
Colony Optimization. We investigate the
usefulness of a higher order pheromone rep-
resentation in contrast to the standard �rst
order pheromone representation and compare
our algorithms to a multi{start local search
and a heuristic developed to tackle the prob-
lem.

1 Introduction

The k-cardinality tree problem is a combinatorial op-
timization problem which generalizes the well known
minimum weight spanning tree problem. It consists in
�nding in a node- or edge-weighted graphG = (V;E) a
subtree with exactly k edges, such that the sum of the
weights is minimal. Due to various applications, e.g.
in oil-�eld leasing [23], facility layout [18], quorum-cast
routing [9] and telecommunications [21] it has gained
considerable interest in recent years. In this paper we
will deal with the k-cardinality tree problem in edge-
weighted graphs. The problem can be formally de�ned
as follows. Let G = (V;E) be a graph with a weight
function w : E ! IN on the edges. We denote by Tk
the set of all k-cardinality trees in G. Then the edge-
weighted problem (G;w; k) is to �nd a k-cardinality
tree Tk 2 Tk which minimizes

w(Tk) =
P

e2E(Tk)
w(e): (1)

Several authors have proved independently that the
edge-weighted k-cardinality tree problem (1) is NP -
hard, see [17, 26]. In [26] it has been shown that it
is still NP -hard if w(e) 2 f1; 2; 3g for all edges e and
G = Kn, but polynomially solvable if there are only
two distinct weights. Several authors have considered
special types of graphs. One of the results is that the
problem is polynomially solvable if G is a tree (see
[25]). The edge-weighted problem is NP -complete for
planar graphs and for points in the plane, when edge
weights correspond to distances between the points
(see [26]). In the same paper polynomial algorithms for
decomposable graphs and graphs with bounded tree-
width have been given. There is also a polynomial
algorithm for the case when all points lie on the bound-
ary of a convex region. In [14], the authors have fo-
cused on properties of the distance matrix. They have
assumed that G = Kn and have proved several results
(both NP -completeness and polynomial time solvabil-
ity) on the complexity of the problem with graded dis-
tance matrices.
Concerning methodology, both exact and heuristic al-
gorithms have been developed, with a general focus on
approximation algorithms. We �rst note that integer
programming formulations have been presented in [17]
and later in [20]. Based on detailed studies of the as-
sociated polyhedron in the former paper a Branch and
Cut algorithm has been developed and implemented
in [19]. The code and also implementations of most of
the heuristics in [16] are documented in [15]. A Branch
and Bound method is described in [9]. The heuris-
tics mentioned are based on greedy and dual greedy
strategies and also make use of dynamic programming
approaches. Other constructive heuristics have been
presented in [9].
More recently, authors successfully applied meta-
heuristic methods to the k-cardinality tree problem
(see Tab. 1 for an overview). Metaheuristics1 in-
clude but are not restricted to Simulated Annealing
(SA), Evolutionary Computation (EC) with its most
famous representative the Genetic Algorithm (GA),

1See [5] for an overview on metaheuristics.
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Table 1: An overview of metaheuristic approaches to tackle the k-cardinality tree problem.

Publication Problem-type Metaheuristic

M.J. Blesa and F. Xhafa [2], 2000 edge-weighted TS
M.J. Blesa, P. Moscato and F. Xhafa [1], 2001 edge-weighted Memetic Algorithm
C. Blum [3], 1998 node-weighted TS and EC
C. Blum and M. Ehrgott [4], 2001
F. Catanas [8], 1997 node-weighted + edge-weighted TS and EC
K. Jornsten and A. Lokketangen [24], 1997 edge-weighted TS
N. Mladenovic [27], 2001 edge-weighted VNS

Tabu Search (TS), explorative search methods such
as Iterated Local Search (ILS), and Ant Colony Opti-
mization (ACO). Among the metaheuristics applied to
the k-cardinality tree problem are Evolutionary Com-
putation, Tabu Search, and Variable Neighborhood
Search (VNS) (see Tab. 1). The aim of this paper is
to show how Ant Colony Optimization can be success-
fully applied to the edge-weighted k-cardinality tree
problem. We investigate the usefulness of a higher or-
der pheromone representation in contrast to the stan-
dard �rst order representation and compare the re-
sults obtained by our algorithms to a multi{start local
search and a heuristic developed to tackle the problem.
The remainder of the paper is organized as follows. In
Sec. 2 we brie
y outline the concepts of Ant Colony
Optimization and a particular way of implementing
ACO algorithms, called the Hyper-Cube Framework.
In Sec. 3 we present the framework and the com-
ponents of the ACO algorithm to tackle the edge-
weighted k-cardinality tree problem. In Sec. 4 we
present results and �nally in Sec. 5 we draw some con-
clusions and give an outlook to future work.

2 Ant Colony Optimization

Ant Colony Optimization (ACO) [10, 13, 11] is a re-
cently proposed metaheuristic approach for solving
hard combinatorial optimization problems. The in-
spiring source of ACO is the foraging behavior of real
ants. This behavior enables them to �nd shortest
paths between food sources and their nest. While
walking from food sources to the nest and vice versa,
ants deposit a substance called pheromone on the
ground. When they decide about a direction to go
they choose, in probability, paths marked by strong
pheromone concentrations. This basic behavior is the
basis for a cooperative interaction which leads to the
emergence of shortest paths.
In ACO algorithms, an arti�cial ant incrementally con-
structs a solution by adding opportunely de�ned so-
lution components to a partial solution under con-
sideration2. For doing that, arti�cial ants perform

2Therefore, the ACO metaheuristic can be applied to
any combinatorial optimization problem for which a con-

randomized walks on a completely connected graph
Gc = (C;L) whose vertices are the solution compo-
nents C and the set L are the connections. This graph
is commonly called construction graph. The problem
constraints 
 are built into the ants' constructive pro-
cedure in a way such that in every step of the construc-
tion process only feasible solution components are per-
mitted to be added to the current partial solution. In
ACO algorithms we work with a set of pheromone val-

ues � and also with a set of heuristic values �. These
values are used by the ants' heuristic rule to make
probabilistic decisions on how to move on the con-
struction graph. The probabilities involved in moving
on the construction graph are commonly called tran-

sition probabilities.
The �rst ACO algorithm proposed was Ant System
(AS) [13]. Although AS is important, because it was
the �rst ACO algorithm proposed, in the last few years
some changes and extensions of AS have been pro-
posed, e.g. Ant Colony System (ACS) [12] andMAX -
MIN Ant System (MMAS) [29]. In general, ACO
algorithms have been proven to be a very e�ective { for
some problems like the QAP even the state-of-the-art {
metaheuristic method for combinatorial optimization
problem solving.

2.1 The Hyper-Cube Framework

The Hyper-Cube Framework { recently proposed by
Blum et al. [6] { is a certain way of implementing
ACO algorithms. This way of implementing ACO al-
gorithms comes with several bene�ts. Maybe the most
important one is the property of scaling objective func-
tion values.
To a set of pheromone values � = f�1; :::; �ng in ACO
algorithms usually a pheromone updating rule of the
following kind is applied.

�i  (1� �) � �i +
Pns

j=1�
j�i (2)

where

�j�i =

�
f(sj) if sjcontributes to �i
0 otherwise :

(3)

structive heuristic can be de�ned.
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�j�i is the contribution of a solution sj to the up-
date for pheromone value �i (ns is the number of solu-
tions used for updating the pheromone values), � is the
evaporation rate (a small positive constant), and f is
a function which is monotone in the quality of the so-
lution (for minimization problems it usually maps the
quality of a solution to its inverse). In the Hyper-Cube
Framework a normalization of the contribution of ev-
ery solution used for updating the pheromone values
is done in the following way.

�i  (1� �) � �i + � �
Pns

j=1�
0j�i (4)

where

�0j�i =

(
f(sj)P
ns

l=1
f(sl)

if sjcontributes to �i

0 otherwise
(5)

where we multiply the sum of normalized contribu-
tions with the evaporation rate �. This formula can
be reformulated as:

�i  �i +
�P

ns

l=1
f(sl)

�Pk

j=1 f(s
j) � Æ(sj ; �i)� �i

�
(6)

where

Æ(sj ; �i) =

�
1:0 if sjcontributes to �i
0:0 otherwise

(7)

This leads to a scaling of the objective function values
and the pheromone values are implicitly limited to the
interval [0; 1] (see [6] for a more detailed description).

3 ACO for the k-cardinality tree
problem

In this section we outline the framework of our ACO al-
gorithm for the edge-weighted k-cardinality tree prob-
lem. The basic framework of our algorithm is shown in
Alg. 1. In Alg. 1, � = f�1; :::; �ng is a set of pheromone
values, na is the number of ants used in every itera-
tion, Tk

j are solutions to the problem, cf is a numeri-
cal value which we called the convergence factor, Tk

ib

is the iteration best solution, Tk
rb is the restart best

solution and Tk
gb is the best solution found from the

start of the algorithm.

InitializePheromoneValues(�): In every version of our
algorithm we initialize all the pheromone values to
0:5.

ConstructSolution(�): To tackle the k-cardinality tree
problem with an ACO algorithm we have to de�ne
the constructive heuristic to be used in a probabilis-
tic manner to construct solutions to the problem. In
ACO algorithms arti�cial ants construct a solution by
building a path on a construction graph G = (C;L)
where the elements of the set C (called components)

Algorithm 1 ACO for the k-cardinality tree problem

input: a problem instance (G;w; k)

Tk
gb  NULL

Tk
rb  NULL

cf  0
InitializePheromoneValues(�)
while termination conditions not met do
for j = 1 to na do
Tk

j  ConstructSolution(�)

LocalSearch(Tk
j)

end for
Tk

ib  argmin(w(Tk
1); :::; w(Tk

na))

ApplyPheromoneUpdate(cf ,� ,Tk
ib,Tk

rb,Tk
gb)

Update(Tk
ib,Tk

gb,Tk
rb)

cf  ComputeConvergenceFactor(�; Tk
ib)

if algorithm converged then
ResetPheromoneValues(�)

Tk
rb = NULL

end if
end while
output: Tk

gb

and the elements of the set L (called links) are given
for the k-cardinality tree problem as follows:

C = E(G) [ fcsource; csinkg
L = f(ei; ej) j ei; ej 2 E(G); ei 6= ejg

[ f(csource; e) j e 2 E(G)g
[ f(e; csink) j e 2 E(G)g

Note that all links in L are directed. This graph G is
fully connecting the edges of G (which are the compo-
nents of G) plus a source component csource (and arcs
from the source component to every component of G)
and a sink component csink (and arcs from every com-
ponent in G to the sink component).
To build a solution an ant starts from the source com-
ponent csource of the construction graph and does k
construction steps as shown in Alg. 2. In every step

Algorithm 2 Ant construction phase

Ant is placed on csource
J1 = fe = [vr; vs] j e 2 Cg
for t = 1 to k do
Choose e? = [vi; vj ] 2 Jt to probability p(e?jTt)
Ant moves to the component associated with e?

E(Tt) = E(Tt) [ e?
V (Tt) = V (Tt) [ fvi; vjg
Jt+1 = fe = [vr; vs] j e =2 E(Tt); either vr 2
V (Tt) or vs 2 V (Tt)g

end for
Ant moves to csink

of the ant construction phase we can only add an
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edge e = [vi; vj ] to the partial k-cardinality tree Tt
(t 2 f1; k�1g) if exactly one of the two nodes incident
with this edge (vi, or vj) is already in the node set
V (Tt) of Tt. The generation of the transition prob-
abilities p(ejTt) for all e 2 Jt is dependent on the
pheromone representation to be explained in the fol-
lowing.
There are a number of design decisions to be made
when developing an ACO algorithm to tackle a com-
binatorial optimization problem. One of the most cru-
cial decisions is the choice of a pheromone model. For
the TSP for example it is a fairly obvious choice to
put a pheromone value on every link between a pair of
cities. For other combinatorial optimization problems
the choice is not as obvious as for the TSP (see [28]
for MAX-SAT, or [7] for FOP Shop scheduling). Often
this problem can be stated as the problem of assigning
pheromone values to the decision variables themselves
(�rst order pheromone values) or to subsets of decision
variables (higher order pheromone values). In the fol-
lowing we present two di�erent pheromone representa-
tions (models) for the edge-weighted k-cardinality tree
problem.

1) Pheromone values on decision variables: This
�rst pheromone model (called PH1storder further on)
is the most simple choice of a pheromone represen-
tation for the edge-weighted k-cardinality tree prob-
lem. To every edge ei 2 E(G)3 we have associated
a pheromone value �ei . Therefore, if jE(G)j = m we
have m pheromone values. The probabilities p(eijTt)
for the edges in set Jt of the ant construction phase
to be chosen by the ant (called transition probabili-
ties) are determined as follows. If t = 1 the transition
probabilities are

p(eijT1) =
( �eiP

el2J1
�el

: if ei 2 J1
0 : otherwise

(8)

where J1 is the set of operations allowed to be sched-
uled next (see Alg. 2). As a good edge (an edge with a
low weight) is not necessarily a good starting point for
building a low weight k-cardinality tree, we decided
not to use any heuristic information in this formula.
This is di�erent for the next k � 1 construction steps.
For t > 1 the transition probabilities are

p(eijTt) =

8<
:

�ei �
1

w(ei)P
el2Jt

�el �
1

w(el)

: if ei 2 Jt
0 : otherwise

(9)

This means that for the second and consecutive steps
the distribution given by the pheromone values is in-

uenced by the weights of the edges. Low edge weights
result in a higher probability to be chosen by the ants

3We consider the edges of graph G to be the decision
variables of the problem.

and the other way around. With this pheromone repre-
sentation the algorithm tries to learn for every edge the
desirability of having it in a solution. This pheromone
model doesn't take into account any dependencies be-
tween decision variables.

2) Pheromone values on pairs of decision vari-
ables: This pheromone model (called PH2ndorder fur-
ther on) takes into account dependencies between deci-
sion variables. To every pair < ei; ej > (where ei 6= ej)
of edges in E(G) we have associated a pheromone value
�<ei;ej> (where �<ei;ej> and �<ej ;ei> are the same).
We also use the pheromone values of the pheromone
model PH1storder for the �rst construction step (when
t = 1). Therefore, in this model we have m+(m2�m)
pheromone values. If t = 1 the transition probabilities
p(eijT1) are generated as shown in equation (8). If
t > 1 the transition probabilities p(eijTt; t) are gener-
ated as follows:8>><
>>:

�P
ej2E(Tt)

�<ej;ei>

�
� 1

w(ei)P
el2Jt

�P
ej2E(Tt)

�<ej;el>

�
� 1

w(el)

: if ei 2 Jt

0 : otherwise

(10)
where Jt is as described above. With this pheromone
representation the algorithm tries to learn for every
pair of edges the desirability of having them together in
a solution. As we have pheromones on pairs of edges,
this pheromone model takes into account all �rst order
dependencies between decision variables.

LocalSearch(Tk
j): The most important ingredient of

a local search method is the neighborhood function.
Let Tk be a k-cardinality tree. The neighborhood
NSwap(Tk) of a k-cardinality tree Tk consists of all
k-cardinality trees which can be generated from Tk by
cutting o� one of the leaf edges e from Tk and adding
one edge from the neighborhood of Tk n e. This neigh-
borhood function has the advantage to be easy to com-
pute, but it is probably coming with the disadvantage
of quite a few low quality local minima. However we
decided to use this simple neighborhood function in
a steepest descent local search (best improvement) in
order not to spend a too high percentage of the com-
putation time on the local search.

ApplyPheromoneUpdate(cf ,� ,Tk
ib,Tk

rb,Tk
gb): For up-

dating the pheromone values we are using a so-called
online delayed pheromone update rule. We always use
3 di�erent solutions for updating the pheromone val-
ues4, the best solution found in the current iteration
Tk

ib, the restart best solution Tk
rb and the best solu-

tion found since the start of the algorithm Tk
gb. In

contrast to the usual updating rule of the Hyper-Cube
Framework as shown in equation (6), in our updating
rule the in
uence of each on of these 3 solutions is de-
pendent one the state of convergence of the algorithm

4Note that a similar scheme was used in [29].

30 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION



(given by the convergence factor cf) rather than by
the quality of the solutions themselves. First we com-
pute an update value �e for every edge e 2 E(G) in
the following way.

�e  �ibÆ(Tk
ib; e)+�rbÆ(Tk

rb; e)+�gbÆ(Tk
gb; e) (11)

where �ib is the in
uence weight of Tk
ib, �rb the in
u-

ence weight of Tk
rb, �gb the in
uence weight of Tk

gb

and �ib+�rb+�gb = 1:0. The Æ-function is de�ned as
follows.

Æ(Tk; ei) =

�
1:0 if ei 2 E(Tk)
0:0 otherwise

(12)

To the pheromone values �ei of pheromone model
PH1storder we then apply the following update rule.

�ei  �ei + � � (�ei � �ei) (13)

To the pheromone values �<ei;ej> of the pheromone
model PH2ndorder we apply basically the same
pheromone update rule. We compute for every or-
dered pair of edges < ei; ej > the value �<ei;ej> by
using in equation (11) the following Æ-function.

Æ(Tk; �<ei;ej>) =

�
1:0 if ei; ej 2 E(Tk)
0:0 otherwise

(14)

Then for updating the pheromone values we use the
following rule.

�<ei;ej>  �<ei;ej> + � �
�
�<ei;ej> � �<ei;ej>

�
(15)

Depending on the convergence factor cf the in
uence
of every one of these 3 solutions on the pheromone
update is determined. The convergence factor cf is a
value providing an estimate about the state of conver-
gence of the system. The convergence factor is com-
puted in the following way.

cf =

P
e2E(G)

Æ(Tk
ib;e)�(1:0��e)

k
(16)

where we use the Æ-function de�ned in equation (12).
As by using the Hyper-Cube Framework for updating
the pheromone values, the pheromone values can only
assume values between 0:0 and 1:0 (see [6]) it obviously
holds that cf also only can assume values between 0:0
and 1:0. It is also clear that if cf is close to 0:0 the
system is in a state where the probability to produce
solution Tk

ib is close to 1 and therefore the probabil-
ity to produce a solution di�erent to Tk

ib is close to
0. This is what we informally call the state of conver-
gence for our system.
From experience gathered with the algorithm we chose
the schedule of settings for values �,�ib, �rb and �gb
as shown in Tab. 2. In the following we give an inter-
pretation of the choice of parameters shown in Tab. 2.

At the beginning of the search process the evapora-
tion rate (which is in the Hyper-Cube Framework more
appropriately called learning rate) is set to the value
0:15, because at the beginning of the search there is no
need to be very careful. The algorithm should rather
drift around in the search space to get a kind of global
perspective. Also the in
uence of the best solution
found in an iteration is quite high, which also sup-
ports the algorithm drifting through the search space.
Once the algorithm starts converging (cf falls below
0:3) we decrease the learning rate (in order to perform
a more careful search) and increase the in
uence of the
best solution found since the restart of the algorithm.
Once the algorithm is near to the state of convergence
only the restart best solution is used to update the
pheromone values and we decrease the learning rate
even more in the hope to �nd a better solution near
the restart best solution. Before the algorithm is com-
pletely converged we use the best solution found since
the start of the algorithm to update the pheromone
values. This action basically results in a shift of the
probability distribution given by the pheromone val-
ues toward the best solution found. The reason behind
that is the hope to �nd a better solution in-between
two good solutions which are the restart best and the
overall best solution in this case. This idea is very
similar to ideas we can �nd in Path Relinking [22] for
example.

Update(Tk
ib,Tk

rb,Tk
gb): In this procedure we replace

the old solution Tk
rb with Tk

ib if w(Tk
ib) < w(Tk

rb).

We do the same for Tk
gb.

ComputeConvergenceFactor(�; Tk
ib): The convergence

factor cf is re-computed in every iteration according
to equation (16).

ResetPheromoneValues(�): In this procedure we reset
all pheromone values �e to the start value 0:5.

4 Test results

We chose three di�erent problem instances for a pre-
liminary testing of our algorithms. Two of them are
complete grid graphs5 with 10 rows and 10 columns
which sums up to 100 nodes and 180 edges. These
graphs are called 10x10 1.gg and 10x10 2.gg in the fol-
lowing. The weights of the nodes were randomly gen-
erated using a uniform distribution on the integers be-
tween 1 and 100. There are two motivations for choos-
ing grid graphs for testing our algorithms. Problems
in practice are often modeled as grid graphs (e.g., the
oil-�eld leasing problem in [23]). Also, it was observed
in earlier publications (see [3]) that the problem is con-
siderably harder to solve in grid graphs compared to
unstructured graphs. Additionally we chose one of the

5No edges or nodes are missing in the grid.
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Table 2: The schedule used for values �,�ib, �rb and �gb depending on the value of the convergence factor cf .

cf > 0:3 cf � 0:3, cf > 0:05 cf � 0:05, cf > 0:025 cf � 0:025

� 0:15 0:1 0:05 0:1
�ib 2=3 1=3 0 0
�rb 1=3 2=3 1 0
�gb 0 0 0 1

graphs with 400 nodes and 800 edges used by Jornsten
and Lokketangen in [24] to test their algorithm. This
graph is called g400-4-01.dat. We applied the following
four di�erent algorithms to these three graphs:

� Alg. 1 using pheromone model PH1storder, further
on called ACO1.

� Alg. 1 using pheromone model PH2ndorder, further
on called ACO2.

� Alg. 1 using pheromone model PH1storder, without
updating the pheromone values. This is resulting
basically in a multi{start local search, further on
called MSLS.

� A heuristic based on greedy strategies developed
in [16], which is called KCP.

The results are shown in Tables 3{5 (best results in
bold). We started the algorithms for a range of car-
dinalities between 2 and jV (G)j. On each graph, each
algorithm was applied 20 times for each cardinality.
The results are reported for every algorithm (except
for KCP) on every problem instance in four columns.
The �rst column (titled \Obj.") contains the average
of the best found solutions out of 20 runs. The second
column (titled

p
�) contains the standard deviation of

these best found solutions. The third column (titled
\time") contains the average of the times (in seconds)
when the best solution of a run was found. Finally
the fourth column (titled

p
�) contains the standard

deviation of these times. The stopping criterion for all
the algorithms (except KCP) was a maximum amount
of running time. We allowed the same amount of run-
ning time to all the algorithms. This amount of run-
ning time is dependent on the cardinality, and given

in seconds by 1 +
k�jV (G)j

100 .
From the results in Tables 3{5 we can draw several
conclusions. ACO1 is among the tested algorithms
clearly the best one. Except for very high cardinal-
ities { where the heuristic KCP is likely to produce the
optimal solution { it clearly beats the other algorithms
in average quality, in standard deviation of the quality,
and in average time the best solution was found. This
superiority is especially obvious for cardinalities in the
middle of the cardinality range where the problem is
harder to solve than at the beginning or the end of the
cardinality range. The di�erence between ACO1 and

MSLS points out, that the usage of pheromone values
for the k-cardinality tree problem seems very fruitful.
At �rst sight it seems surprising that ACO2 doesn't
reach the quality of ACO1, because ACO2 is taking
into account �rst order dependencies between decision
variables compared to no dependencies in ACO1. How-
ever, if we consider the quadratic increase in complex-
ity of the algorithm6, the outcome of the experimental
results become understandable. Due to the consid-
erably increased complexity, ACO2 needs much more
time to �nd good solutions. This is getting more ob-
vious with growing graph size. Therefore the \use of
more information" seems not to be very promising in
ACO algorithms for the k-cardinality tree problem.

5 Conclusions and outlook to the
future

In this work we presented an ACO algorithm for the
edge-weighted k-cardinality tree problem. We pre-
sented two di�erent pheromone models, the �rst of
them not taking into account any dependencies be-
tween decision variables, the second one taking into
account �rst order dependencies between decision vari-
ables. It turned out, that for the k-cardinality tree
problem it doesn't seem bene�cial to take into account
dependencies between decision variables, because the
increased complexity slows the algorithm considerably
down. In the future we plan to improve the eÆciency
of our algorithm in order to compare it to state-of-the-
art metaheuristics for the k-cardinality tree problem.
We also plan to investigate the usefulness of diversi�-
cation schemes for our algorithm.
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Abstract

Giving positive feedback to good solutions
is a common base technique in model-based
search algorithms, such as Ant Colony Op-
timization, Estimation of Distribution Algo-
rithms, or Neural Networks. In particular,
the reinforcement of components of good so-
lutions by positive feedback is known as a
successful technique in tackling hard combi-
natorial optimization problems. We show by
a simple model-based search algorithm for
the node-weighted k-cardinality tree prob-
lem that this strategy doesn't guarantee
steadily increasing performance of the algo-
rithm in general. It is rather possible that for
some \problem"-"probabilistic model" com-
binations the average performance of the sys-
tem is decreasing and even the average proba-
bility of sampling good solutions is decreasing
over time. The result is proven analytically
and the consequences are studied in some em-
pirical case studies.

1 Introduction

Model-based search (MBS) [10] algorithms are increas-
ingly popular methods for solving combinatorial opti-
mization problems. In MBS algorithms, such as Ant
Colony Optimization (ACO) [2] or Estimation of Dis-
tribution Algorithms (EDAs)1 [7, 8], candidate solu-
tions are generated using a parametrized probabilistic
model that is updated using the previously seen solu-
tions in such a way that the search will concentrate in
the regions of the search space containing high qual-
ity solutions. In particular, reinforcment of solution
components depending on the solution quality is an

�Corresponding author
1EDAs are covering several algorithms emerging from

the �eld of Evolutionary Computation.

important factor in the development of heuristics to
tackle hard combinatorial optimization problems. It
is assumed that good solutions don't occur sporadi-
cally, but consist of good solution components. To
learn which components contribute to good solutions
can help to assemble them to better solutions. In gen-
eral, a model-based search approach attempts to solve
an optimization problem by repeating the following
two steps:

� Candidate solutions are constructed using some
parametrized probabilistic model, that is, a
parametrized probability distribution over the so-
lution space.

� The candidate solutions are used to modify the
model in a way that is deemed to bias future sam-
pling toward low cost solutions.

Often it is implicitly assumed that the average per-
formace of model-based algorithms is increasing over
time. However, during empirical investigations of an
Ant Colony Optimization Algorithm for the Group
Shop scheduling problem2 we observed that for some
of the probabiltistic models chosen the performance
of the system was decreasing over time. This trig-
gered us to explore \problem"-"probabilistic model"
combinations where the expected performance of a
model-based search algorithm decreases over time. As
a test case we chose the node-weighted k-cardinality
tree problem, an NP -hard combinatorial optimization
problem.

The paper is organized as follows. In Sec. 2 we brie
y
present the node-weighted k-cardinality tree problem.
In Sec. 3 we outline a simple model-based search al-
gorithm for the k-cardinality tree problem. Section 4
contains the analytical analysis of the system for a

2Group Shop scheduling is a general formulation of
scheduling problems covering Job Shop scheduling and
Open Shop scheduling
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small problem instance. Section 5 deals with empiri-
cal results and Sec. 6 �nally o�ers conclusions and an
outlook to the future.

2 The node-weighted k-cardinality
tree problem

The k-cardinality tree problem is a combinatorial op-
timization problem that generalizes the well{known
minimum weight spanning tree problem. It consists
in �nding in a node- or edge-weighted graph a subtree
with exactly k edges, such that the sum of the weights
is minimal. Due to various applications, such as oil-
�eld leasing [6], facility layout [4], quorum-cast routing
[1] and telecommunications [5], it has gained consid-
erable interest in recent years. In this paper we deal
with the k-cardinality tree problem in node-weighted
graphs. The problem can be formally de�ned as fol-
lows. Let G = (V;E) be a graph (where jV j = n and
jEj = m) with a weight function w : V ! IN on the
nodes. We denote the set of all k-cardinality trees in
G by Tk. Then the node-weighted problem (G;w; k) is
to �nd a k-cardinality tree Tk 2 Tk that minimizes

w(Tk) =
P

v2V (Tk)
w(v): (1)

The general problem is NP -hard, and in [9] NP -
completeness results have been obtained for grid and
split graphs.

3 A simple MBS algorithm for the
k-cardinality tree problem

In this section we brie
y outline a simple model-based
search algorithm based on positive feedback for the
k-cardinality tree problem. It is constructed in a
straight-forward manner and it is representative for
the class of model-based algorithms. The pseudo-code
for this algorithm is shown in Alg. 1. In Alg. 1, T i

k

Algorithm 1 A model-based algorithm for the node-
weighted k-cardinality tree problem

input: A problem instance (G;w; k)
InitializeModelParameters(�)
while termination conditions not met do
for i = 1; :::; ns do
T i
k  ConstructSolution(�)

end for

ApplyModelParameterUpdate(� ,T 1
k ,...,T

ns
k )

end while

output: A k-cardinality tree T best
k

denotes the ith solution constructed in the current it-
eration, ns � 1 is the total number of solutions con-
structed in every iteration, and � = f�v1 ; :::; �vng is

a set of model parameters. After initialization of the
model parameters, in every step of the algorithm ns
solutions are constructed using the current values of
the model parameters. These solutions are then used
to update the model parameters which are de�ned as
follows: To every node v 2 V (G) we have associated a
model parameter �v . The components of Alg. 1 are to
be explained in more detail in the following.

InitializeModelParameters(�): At the beginning of the
algorithm, the model parameters �v are all initialized
to the same small numerical value c > 0.

ConstructSolution(�): In order to construct solutions
to the problem we have to formalize how to use the
model parameter values to construct solutions3. For
constructing a solution, k + 1 construction steps are
done as shown in Alg. 2. In every step of the construc-

Algorithm 2 Solution construction

V (T0) ; and E(T0) ;
J0  V (G)
Choose v? 2 J0 with probability p(v? j T0)fSee eqn.
(2)g
V (T0) V (T0) [ v

?

for t = 1 to k do

Jt  fv 2 V (G) n V (Tt�1) j 9 e[vr; v] 2
E(G) with vr 2 V (Tt�1)g
Choose v? 2 Jt with probability p(v? j Tt)
Find an edge e connecting v? with Tt
E(Tt) E(Tt�1) [ feg
V (Tt) V (Tt�1) [ fv

?g
end for

tion phase, we can only add a node v to the partial
k-cardinality tree Tt (t 2 f1; :::; k � 1g) if there is an
edge e 2 E(G) that connects one of the nodes in Tt
with v. The probabilities p(vi j Tt) for all vi 2 Jt are
then de�ned in the following way.

p(vi j Tt) =

( �viP
v2Jt

�v
if vi 2 Jt

0 otherwise
(2)

where Jt is the set of nodes allowed to be added next
to the partial k-cardinality tree Tt (see Alg. 2).

ApplyModelParameterUpdate(� ,T 1
k ,. . . ,T

ns
k ): Once

all solutions of an iteration are constructed, a rule up-
dating the model parameters is applied. For the set
of model parameters f�v1 ; :::; �vng this update rule is
de�ned as:

�vi  (1� �) � �vi +
1
ns
�
Pns

j=1�� jvi (3)

3We have to de�ne a method of using the model to
sample the search space.
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where

�� jvi =

(
1

w(T
j

k
)

if vi 2 T
j

0 otherwise :
(4)

In (4), T j is the jth solution produced in the cur-
rent iteration, w(T j) is the quality of solution T j and
0 < � < 1 is a parameter supporting the intensi�cation
of the search (a similar parameter in ACO algorithms
is called evaporation rate). This update rule is simi-
lar to update rules used in Ant Colony Optimization
and some other population-based methods from the
�eld of Evolutionary Computation. It should lead to
an increase of model parameter values associated with
solution components which have been found in better
quality solutions compared with other solution com-
ponents, hence increasing the expected performanc of
the algorithm over time. In the following section we
will prove that this expectation is not always met in
practice.

4 A counterexample: Decreasing
average performance of a MBS
algorithm over time

In this section we choose a small problem instance
of the k-cardinality tree problem and we show that
the expected performance of Alg. 1 is decreasing.
The problem instance under consideration is shown
in Fig. 1. It shows an undirected graph G = (V;E)
formally de�ned as follows.

V (G) = fv1; v2; v3; v4g (5)

E(G) = fev1;v2 ; ev2;v3 ; ev3;v4g (6)

w(vi) = wi > 0; for i = 1; :::; 4 (7)

For the weights we choose

w2; w3 > w1; w4; (8)

and for the sake of simplicity we choose

w1 = w4and w2 = w3 : (9)

In graph G we want to solve the 1-cardinality tree
problem with the model-based search algorithm out-
lined in the last section. In G we can �nd 3 di�erent
1-cardinality trees:

T a with V (T a) = fv1; v2g; E(T
a) = fev1;v2g

) w(T a) = w1 + w2

T b with V (T b) = fv2; v3g; E(T
b) = fev2;v3g

) w(T b) = w2 + w3

T c with V (T c) = fv3; v4g; E(T
c) = fev3;v4g

) w(T c) = w3 + w4

Because of (8) and (9) it holds that

w(T a) = w(T c) < w(T b): (10)

Therefore T a and T c are both optimal solutions of
this problem instance and T b is the worst solution.
With model parameter values �v1(t); :::; �v4 (t) at dis-
crete time steps t = 0; 1; :::, the probabilities pa(t),
pb(t) and pc(t) to construct solutions T a, T b and T c

are the following:

pa(t) =
�v1 (t)P
4

i=1
�vi (t)

+
�v2 (t)P
4

i=1
�vi (t)

�
�v1 (t)

�v1 (t)+�v3 (t)
(11)

pb(t) =
�v2 (t)P
4

i=1
�vi (t)

�
�v3 (t)

�v1 (t)+�v3 (t)

+
�v3 (t)P
4

i=1
�vi (t)

�
�v2 (t)

�v2 (t)+�v4 (t)
(12)

pc(t) =
�v4 (t)P
4

i=1
�vi (t)

+
�v3 (t)P
4

i=1
�vi (t)

�
�v4 (t)

�v4 (t)+�v2 (t)
(13)

We use the notation pvi for the probability of node vi
to be found in a solution constructed. These probabil-
ities are obviously the following ones.

pv1(t) = pa(t) (14)

pv2(t) = pa(t) + pb(t) (15)

pv3(t) = pb(t) + pc(t) (16)

pv4(t) = pc(t) (17)

Let us now examine the evolution of the model param-
eter values over time.

Evolution of �v1 over time: After every construc-
tion step there are two possibilities. Either v1 is a
part of the constructed solution, or it is not. Then the
expected value of �v1 at time t+ 1 is the following.

E(�v1(t+ 1)) =
�
(1� �) � �v1(t) +

1
w1+w2

�
� pv1(t)

Æ

��
Æ

��
Æ

��
Æ

��

w1 w2 w3 w4

v1 v2 v3 v4

Figure 1: The problem instance consists of four nodes
v1, v2, v3 and v4, connected by three edges. The node
weights of the nodes vi are indicated by wi.
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+ (1� �) � �v1(t) � (1� pv1(t))

= �v1(t)pv1(t)� ��v1(t)pv1(t)

+ 1
w1+w2

pv1(t) + �v1(t)� �v1(t)pv1(t)

� ��v1(t) + ��v1(t)pv1(t)

= �v1(t) +
�

1
w1+w2

� pv1(t)� ��v1(t)
�

As pv1(t) = pa(t) we get

E(�v1 (t+ 1)) = �v1(t) +
�

1
w1+w2

� pa(t)� ��v1(t)
�
(18)

Evolution of �v2 over time: After every construc-
tion step there is { as above for �v1 { the possibility
that v2 is a part of the solution constructed. But there
are also two di�erent solutions v2 can be part of. In
the following pa+b will stand for pa + pb, w1+2 will
stand for w1 + w2, and w2+3 will stand for w2 + w3.

E(�v2 (t+ 1)) =�
(1� �) � �v2(t) +

pa(t)

pa+b(t)
1

w1+2
+

pb(t)

pa+b(t)
1

w2+3

�
� pv2(t)

+ (1� �) � �v2(t) � (1� pv2(t))

As pv2 = pa+b we get

E(�v2(t+ 1)) = (1� �) � �v2(t) � pa+b(t) +
pa(t)

w1+2

+
pb(t)

w2+3
+ (1� �) �v2(t) (1� pa+b(t))

= �v2(t)pa+b(t)� ��v2(t)pa+b(t)

+
pa(t)

w1+2
+

pb(t)

w2+3
+ �v2(t)

� �v2(t)pa+b(t)� ��v2(t)

+ ��v2(t)pa+b(t) :

Therefore we get

E(�v2 (t+ 1)) = �v2(t) +
�
pa(t)

w1+2
+

pb(t)

w2+3
� ��v2(t)

�
:

(19)
For the evolution of �v3and �v4 the computations are
the same as for �v2 and �v1 respectively. Consequently

E(�v3(t+ 1)) = �v3(t) +
�
pc(t)

w3+4
+

pb(t)

w2+3
� ��v3(t)

�
(20)

and

E(�v4(t+ 1)) = �v4(t) +
�

1
w3+4

� pc(t)� ��v4(t)
�

:

(21)
It is common practice in Genetic Algorithm research
to analyse the bahaviour of the algorithm with in�nite
population size. Therefore, in the following we con-
sider the limit case of ns !1. In this case the law of
large number says that the actual value of �vi(t) con-
verges in probability to the expected value. Therefore

we use �vi(t) instead of E(�vi(t)) in the following.
The algorithm at time t = 0 starts with �v1(0) =
�v2(0) = �v3(0) = �v4(0) = c > 0. With (9), (11)
and (13) it follows that pa(0) = pc(0). With (18) and
(21) it follows that �v1(1) = �v4(1) and with (19) and
(20) it follows that �v2(1) = �v3(1). In turn this implies
with (9) that pa(1) = pc(1). By induction it follows
that for t � 0

�v1(t) = �v4(t) and �v2(t) = �v3(t) (22)

pa(t) = pc(t) : (23)

This means that the evolution of �v1(t) is equal to the
evolution of �v4 (t), the evolution of �v2(t) is equal to
the evolution of �v3(t) and the probability to produce
tree T a is equal to the probability to produce tree T c.
This allows us to simplify equations (11), (12) and
(13) expressing everything in terms of �v1(t) and �v2(t).
Substituting �v3(t) by �v2(t) and �v4(t) by �v1(t) in
equations (11), (12) and (13) results in

pa(t) = pc(t) =
�v1 (t)

2(�v1 (t)+�v2 (t))
�
�
1 +

�v2 (t)

�v1 (t)+�v2 (t)

�
(24)

pb(t) =
�v2 (t)

�v1 (t)+�v2 (t)
�

�v2 (t)

�v1 (t)+�v2 (t)
: (25)

Theorem 1 In the settings described above the fol-
lowing holds. The probability pb(t) to produce T b (the
worst 1-cardinality tree to be found in graph G as de-
�ned in equations (5){(9)) is increasing from the �rst
step of Alg. 1 onward as long as

1
w2+3

pb(t) � �v1 >
1

w1+2
� pa(t) (�v2 � �v1) : (26)

Proof: In the following we will write �v1+v2(t) for
�v1(t) + �v2(t). Then

pb(t+ 1) > pb(t)
,�

�v2 (t)+
�
pa(t)

w1+2
+

pb(t)

w2+3
���v2 (t)

�
�v1+v2 (t)+

�
2pa(t)

w1+2
+

pb(t)

w2+3
��(�v1+v2 (t))

��2

>�
�v2 (t)

�v1+v2 (t)

�2
, (taking the square root)�

�v2(t) +
�
pa(t)

w1+2
+

pb(t)

w2+3
� ��v2(t)

��
� (�v1+v2(t))

>

�v2(t) �
�
�v1+v2(t) +

�
2pa(t)

w1+2
+

pb(t)

w2+3
� �(�v1+v2(t))

��
,

�v2(t)�v1(t) + (�v2(t))
2
+

pa(t)

w1+2
�v1 (t) +

pa(t)

w1+2
�v2(t)

+
pb(t)

w2+3
�v1(t) +

pb(t)

w2+3
�v2(t)� ��v2(t)�v1(t)� � (�v2 (t))

2

>

�v2(t)�v1 (t) + (�v2(t))
2
+

2pa(t)

w1+2
�v2(t) +

pb(t)

w2+3
�v2 (t)

���v2(t)�v1 (t)� � (�v2(t))
2

,
1

w2+3
pb(t) � �v1 >

1
w1+2

� pa(t) (�v2 � �v1) :

38 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION



As in the �rst iteration of Alg. 1 all model parame-
ter values are equal and greater than 0, it holds that
pb(1) > pb(0). qed

Remark 1 With (22) it is now also clear that in the
case pb(t+ 1) > pb(t) it holds that

pa(t+ 1) < pa(t); (27)

pc(t+ 1) < pc(t); (28)

pa(t+ 1)� pa(t) = � 1
2
(pb(t+ 1)� pb(t)) ; (29)

pc(t+ 1)� pc(t) = � 1
2
(pb(t+ 1)� pb(t)) :(30)

If we now measure the performance P(t) of Alg. 1 as
the expected average quality of a solution produced at
any time t � 0 as

P(t) = w1+2 � pa(t) +w2+3 � pb(t) +w3+4 � pc(t); (31)

then it is clear that for pb(t+ 1) > pb(t) the expected
performance of the system is decreasing from time t

to time t+1. Using Theorem 1 it follows that the ex-
pected performance of Alg. 1 is decreasing from t = 0
to an unknown time tstop > 0 which may be �nite or in-
�nite. To summarize, we have shown that it is possible
to �nd circumstances where the expected performance
{ as formalized in (31) { of Alg. 1 is decreasing. In the
next section we will con�rm the outcomes outlined in
this section empirically.

5 Analytical curves and empirical
con�rmation

In this section we present analytical and empirical re-
sults for Alg. 1 on two di�erent weight settings for the
k-cardinality tree problem instance de�ned in equa-
tions (5){(9). The �rst setting of the weights is

w1 = w4 = 1:0 and w2 = w3 = 2:0 (32)

further on referred to as problem instance 1. The sec-
ond setting is

w1 = w4 = 1:0 and w2 = w3 = 100:0 (33)

further on referred to as problem instance 2. We
used the formulas derived in the last section4 to pro-
duce the analytical curves showing (i) the performance
of the system as de�ned in (31), and (ii) the evolu-
tion of the four model parameter values over time.
We also run Alg. 1 with 10000 solution constructions
per iteration for four di�erent values for parameter
� 2 f0:5; 0:1; 0:05; 0:01g on both problem instances to
see the empirical behavior of the system. The results
are shown in Fig. 3{5. In Fig. 3 and Fig. 4, we observe

4Formulas (18){(21) for the evolution of model param-
eter values, and formulas (11){(13) for the evolution of the
probabilities to produce the di�erent solutions.
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Figure 2: This graph shows four di�erent empirically
obtained performance curves for problem instance 1,
� = 0:05 (averaged over 100 experiments). The curve
labeled \no perturbation" is the curve for the system
starting with model parameter values �v1 = �v2 =
�v3 = �v4 = c, where c is the starting value for the
model parameters. The other curves show the perfor-
mance of the system when there is a random pertur-
bation on the starting model parameters. 0:1% per-
turbation for example means that for every model pa-
rameter value we were tossing a coin: this means that
to equal probability we either added 1

1000
� c to �vi or

we subtracted 1
1000
� c from �vi . We did that for each

of the four model parameter values independently.

that the performance of the system in the analytical
and also in the empirical case decreases quite drasti-
cally in the �rst couple of hundred iterations. Then,
the analytic curves seem to converge (with still de-
creasing performance) to a �xed point of the system
(not being one of the solutions). This �xed point is im-
plicitly de�ned by equation (26)5. On the other hand,
the empirically obtained curves show even a slightly
higher decrease in performance at the beginning, but
then near the equilibrium the sensitivity to sampling
errors seems to increase rapidly. As a result, the sys-
tem converges to one of the two optimal solutions (Ta
or Tb). For problem instance 2, the number of itera-
tions needed for both, the analytical and the empirical
curves, to reach there limits is lower than for prob-
lem instance 1. Qualitatively the results are the same
for the two di�erent weight settings. This is in accor-
dance with the results of the last section, which are not
dependent on the relative di�erence between weights
w1 = w4 and w2 = w3.

5This claim is supported by the fact that if we take the
analytically obtained convergence values (exact up to four
decimal digits) for the four model parameter values and
substitute them in equations (24), (25) and (26) we get
equality in (26) for up to decimal digits.
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We also compared the evolution of the four model pa-
rameter values over time, analytically as well as empir-
ically. The graphs are shown in Fig. 5. In the analytic
case, the evolution of model parameter values �v1 and
�v4 (resp. �v2 and �v3) is the same whereas in the em-
pirical case the evolution is the same at the beginning,
until the system nearly reaches the equilibrium and
then, due to the sampling error, begins to drift toward
one of the two optimal solutions.

The last set of experiments we performed was to in-
vestigate the in
uence of perturbations of the starting
model parameter values. To perturb the model param-
eter values (initially set to a constant c), a value 1

x
� c

was either added or substracted to equal probability.
For x we considered values 10, 100 and 1000. The re-
sults are shown in Fig. 2. With x = 1000 (just a slight
perturbation) the convergence of the system seems to
be slightly slowed down, but at the end it is reaching
the state of convergence slightly faster than the system
without perturbation. With the choice of x = 100, we
notice a bigger advantage in convergence speed in all
phases. The choice of x = 10 (which corresponds to a
strong perturbation) shows a much higher convergence
speed until about 1000 iterations at which point the
speed of convergence gets really slow and the system
does not even converge before the 1500 iteration limit.
These results suggest that a slight perturbation of the
initial model parameter values is useful (but it must
neither be too low nor too high).

6 Conclusions and outlook to the
future

In this paper we showed that { unlike what is usually
expected { the expected performance of model-based
search algorithms using positive feedback can decrease
over time in certain settings. We want to make clear at
this point, that the results presented in this paper have
not uncovered a general weak point of learning systems
based on positive feedback as such. We believe that
it is rather in the nature of algorithms such as Ant
System [3] and related algorithms such as Population
Based Incremental Learning (PBIL) and Estimation of
Distribution algorithms (EDAs) that such phenomena
can occur when applied to a certain kind of problem or
problem instances with a certain kind of structure. In
the case of the problem and problem instance chosen
in this paper we have a structure of two equally good
solutions competing in the system and a bad solution
taking pro�t from that. We also point out that the
update rule is a crucial component of a model-based
search algorithm. If we chose a di�erent update rule in
the example presented { for instance a rule only using
the best solution found since the start of the algorithm
for updating the model parameter values { the algo-

rithm wouldn't show a decreasing performance. In the
future we intend to investigate into the interactions
between parameter model and model parameter up-
date rule in order to improve the understanding about
phenomena related to the one presented.
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Figure 3: Performance curves for problem instance 1. The graph in the upper left corner shows the analytic
curves for four di�erent values for � 2 f0:5; 0:1; 0:05; 0:01g. In contrast to that the graph in the right upper corner
shows the empirically obtained curves for 10000 solution constructions per iteration (the curves are averaged
over 100 experiments). The other four graphs show the comparison of the analytic and the empirical curve for
every one of the four settings for �.
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Figure 5: The three graphs show the evolution of the four model parameter values exemplary for problem instance
1, � = 0:05. The top graph shows the analytic curves (there are just two curves visible, because the curves for
�v1 and �v4 (�v2 and �v3 respectively) are exactly the same). In contrast, the two lower graphs show the evolution
of model parameter values empirically obtained. In the graph on the left the system is converging to solution
Ta, and in the graph on the right to the solution Tc.
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Abstract

This paper gives an algorithm for the graph
bisection problem using the Ant System (AS)
technique. The ant algorithm given in this
paper differs from the usual ant algorithms
in that the individual ant in the system does
not construct a solution to the problem nor
a component of the solution directly. Rather
the collective behavior of the two species of
ants in the system induces a solution to the
problem. The algorithm also incorporates lo-
cal optimization algorithms to speed up the
convergence rate and to improve the quality
of the solutions. The results achieved by this
algorithm on several classes of graphs equal
the best known results for the majority of
graphs tested, and are very close to the best
known results for the remainder.

1 Introduction

Let G = (V,E) be a graph on n vertices, where n
is even. A bisection of G is a partition of the vertex
set V into two disjoint sets A,B of equal size, i.e.,
A∪B = V,A∩B = ∅, and |A| = |B|. Such a bisection
is denoted by (A,B). The cut size of a bisection (A,B)
is the number of edges that have one endpoint in A and
the other endpoint in B. The graph bisection problem
is the problem of finding a bisection of minimum cut
size for a given graph. The graph bisection problem is
well-known to be NP-hard [13]. It arises in a wide va-
riety of problems including VLSI placement and rout-
ing, sparse matrix computation, and processor alloca-
tion [6][7][16]. Since the problem is NP-hard, efforts
have been concentrated on designing efficient approx-
imation algorithms and heuristics for solving it. In
this paper we use ideas from Ant System (AS) [11] to
design an algorithm for the graph bisection problem.

Our algorithm incorporates several AS features as well
as local optimization techniques and graph preprocess-
ing. The algorithm was tested on five classes of graphs
ranging in size from 500 to 5,252 vertices with average
degrees from 2 to 36. The results were compared with
the best known results for each graph as well as re-
sults from several other heuristic algorithms. For the
majority of graphs tested, the algorithm produced the
best known results. For the remaining graphs the re-
sults produced by the algorithm are very close to the
best known solutions. A major advantage of this al-
gorithm compared to other existing algorithms for the
graph bisection problem is that our algorithm is very
amenable to parallelization.

The rest of the paper is organized as follows. In Sec-
tion 2 we provide some background information on the
graph bisection problem and AS. We describe our algo-
rithm in Section 3. The performance of the algorithms
on the test graphs is described in Section 4 and con-
clusions are given Section 5.

2 Preliminaries

2.1 The Graph Bisection Problem

As mentioned above the graph bisection problem is
NP-hard and thus we do not expect to have a polyno-
mial time algorithm for solving it. For special types of
graphs there are polynomial time algorithms for solv-
ing it exactly, e.g., k-outerplanar graphs, for fixed k,
or planar graphs whose optimal bisection is of size
O(log n) [8]. However, the complexity of the problem
on planar graphs remains an open question.

One approach to NP-hard problems is to find efficient
approximation algorithms. Currently, the best known
polynomial time approximation algorithm for bisecting
graphs can find a solution that is within O(

√
n log n) of

the optimal [12]. It has been shown that it is NP-hard
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to find a bisection that is within an additive factor of
O(n1/2−ε) of the optimal, for any ε > 0 [5].

Since the best approximation algorithm still has a
rather large approximation ratio and is rather compli-
cated to implement, heuristics are often used for the
graph bisection problem in practice. Heuristics are
algorithms that do not have performance guarantee
as approximation algorithms do. However, they usu-
ally are fast and produce solutions that are very good.
Generally, one can classify the heuristic algorithms for
bisecting graphs into two main groups: local meth-
ods and global methods. Local methods include the
greedy algorithm, Kernighan-Lin, simulated annealing
and multi-level algorithms [14][15][16]. Global meth-
ods include spectral algorithms, flow based algorithms
and genetic algorithms [4][7][19]. The Kernighan-Lin
algorithm is one of the first efficient algorithms for
the graph bisection problem. We briefly describe the
Kernighan-Lin algorithm here since we use it in our
algorithm later on.

2.2 The Kernighan-Lin Algorithm

Kernighan-Lin is a local optimization algorithm for the
graph bisection problem [16]. The algorithm starts
with a bisection (A,B), either created randomly or
as the result of some other algorithm. The algorithm
consists of a number of passes. During one pass of the
algorithm it interchanges equal sized subsets of A and
B. The subsets to be interchanged are selected by first
ordering the vertices of A and B, say a1, . . . , an/2 and
b1, . . . , bn/2. The algorithm then selects k such that
swapping a1, . . . , ak with b1 . . . , bk will give the great-
est reduction in the size of the current bisection over
all choices of k. This constitutes one pass of the al-
gorithm. The bisection produced by this pass is then
used as input to the next pass. The algorithm may
run for a fixed number of passes or until no more im-
provement can be made from the current bisection.

2.3 Ant System

Ant System (AS) is a heuristic technique that seeks to
imitate the behavior of a colony of ants and their abil-
ity to collectively solve a problem. For example, it has
been observed that a colony of ants is able to find the
shortest path to a food source by marking their trails
with a chemical substance called pheromone[3][11].

The Traveling Salesman problem was the first problem
to which the Ant System (AS) technique was applied
[2] [11]. Other problems that have been the focus of AS
as well as Ant Colony Optimization (ACO) [10] work
include the quadratic assignment, network routing, ve-

hicle routing, frequency assignment, graph coloring,
shortest common supersequence, machine scheduling,
multiple knapsack and sequential ordering problems
[18] [3].

In addition to the idea of finding shortest paths, the
idea of territorial colonization and swarm intelligence
can also be utilized in ant algorithms. Kuntz and Sny-
ers applied these concepts to a graph clustering prob-
lem [17]. The organisms are called animats, reflect-
ing the fact that the system draws ideas from several
sources, not just ant colonies.

We combine these two ideas of animats following paths
and forming colonies, together with the use of graph
preprocessing and local optimization to develop an
Ant System algorithm for the graph bisection prob-
lem, which we call ASGB. Our algorithm is described
in the next section.

3 Ant System Algorithm for Graph
Bisection

3.1 Main Ideas

The basic foundation of the algorithm is to consider
each vertex in the graph as a location that can hold
any number of animats. The animats can move around
the graph by moving across edges to reach a new ver-
tex. Each animat belongs to one of two species (called
species A and B). However, animats of both species
follow the same rules. Since movement of animats from
vertices to vertices is an important part of the algo-
rithm, the first step in the algorithm is to add edges,
called free edges, to the input graph to make it con-
nected if it is not. This is accomplished in two steps
as follows.

First, we add the necessary free edges to connect all
disconnected subgraphs. This is done by randomly
selected a starting vertex and performing a depth first
search until no new vertices can be reached. If any
vertices were not reached, an edge is randomly placed
between a vertex that was found in the search and
a vertex that was not found. The depth first search
then continues again and the process is repeated until
all vertices have been joined to the graph.

Next, we add free edges between a number of vertices
to improve the animats’ ability to move and explore.
The number of free edges added in this step is pro-
portional to the number of vertices in the graph, but
inversely proportional to the average degree. Thus a
graph with a large number of vertices and a very low
average degree will have the most free edges added
while a graph with few vertices and a high average de-
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gree will have the least free edges added. To select the
locations of the free edges, a pool of possible pairs of
vertices are randomly selected. The number of pairs
in the pool is τ times the number of pairs that will
actually be chosen. The distance between each pair is
determined, in terms of the minimum number of steps
needed to move from one vertex to the other, up to a
certain maximum distance. Then pairs of vertices are
selected randomly from the pool but in proportion to
the distance between them. In other words, a pair of
vertices that is furthest apart has the greatest chance
of being selected.

Once the free edges are added, the animats consider
them in the same manner as regular edges in selecting
moves. However, when the cut size of a partition is
calculated, the free edges are ignored.

The algorithm now starts by distributing α animats
on the graph. (Note that the values of all parameters
used in the description of the algorithm are given in
Table 1.) Their species and location are chosen ran-
domly. At any point throughout the algorithm, the
configuration of animats on the graph constitutes a
partition of the graph in the following way. Each ver-
tex is considered to be colonized by one species. At
a given time, it is said to be colonized by whichever
species that has the greater number of animats on it.
Ties are broken in a random order by assigning the
vertex to the species that results in a lower cut size.
The set of all vertices colonized by each species, called
colony, makes up one half of the partition. This par-
tition is not necessarily a bisection, since one colony
may contain more vertices than the other. Thus, other
techniques are used at certain points in the algorithm
to ensure that the final solution is a bisection.

In addition, each vertex can hold pheromone. The
two species produce separate types of pheromone, so
each vertex has an amount of A pheromone and B
pheromone.

The idea of the algorithm is for each species of animats
to form a colony consisting of a set of vertices that are
highly connected to each other but highly disconnected
from the other colony. The result should be two sets of
vertices that are highly connected amongst themselves,
but have few edges going between the two sets.

The ASGB algorithm is divided up into σ sets each
comprised of γ iterations. In each iteration a percent-
age of animats are activated. When an animat is acti-
vated, it adds an amount of pheromone to the vertex
it is currently at based on conditions at the vertex. It
then may die with a certain probability or it may re-
produce with a certain probability and then moves to

a new vertex. In each iteration, these activations are
performed in parallel. After each iteration, the graph
is updated with the new information.

After each set, the configuration of the graph is forced
into a bisection using a greedy algorithm and a local
optimization algorithm is run to help speed up the con-
vergence rate. During each set, the parameters, which
include probabilities for activation, death, reproduc-
tion and birth are varied. The parameters are varied
in such a way that at the beginning of the set, the
colonies change a great deal and by the end of the set
the colonies have converged to a stable configuration.
The next set begins at the state where the previous
set ended. However, if the animats follow their usual
rules immediately, they will not be able to move away
from the local optimum that has been reached. So,
for all but the initial set, a jolt is performed for a cer-
tain number of the first iterations to help move the
configuration, or distribution of animats on the ver-
tices, away from the local optimal solution to which
it had converged. The jolt allows animats to select
moves randomly instead of following the normal rules
for movement. The length of the jolt is changed during
the algorithm. The first jolt lasts for ν iterations and
for subsequent jolts the length decreases linearly until
the last set where there is no jolt. The idea is that
with each successive set, the bisection should come
closer to the optimal bisection, and thus shorter and
shorter jolts are needed.

After σ sets have been completed, the solution is the
best bisection that has been achieved. This is usually
the bisection found by the last set; however, occasion-
ally the best bisection is found earlier.

In the following subsections we will describe in detail
what occurs in one iteration, what occurs when an
animat is activated and what occurs between sets. The
full ASGB algorithm is given in Figure 1.

3.2 Iteration

An iteration of the algorithm consists of a percentage
of the animats being activated and then performing
the necessary operations in parallel. The probability
of an animat being activated changes during the set.
At the beginning of the set, more animats are acti-
vated during each iteration. By the end of the set,
only a small percentage of the animats are activated
in each iteration. The actual probability of activation
is a sigmoid-like function. The function starts at a
maximum of πamax and ends at πamin.

After the activations of animats have been completed,
ε percent of the pheromone on each vertex is evap-
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Figure 1: An Ant System algorithm for graph bisec-
tion

Preprocess the graph to make it connected
Randomly add α animats to graph
For set=1 to σ

For time=1 to γ
For each animat do (in parallel):

Activate animat with probability a(time)
If activated

Add p(animat, time) pheromone to
the animat’s location

Die with probability πd
If not dead

If animat meets reproduction criteria
Then reproduce with probability πr

If time is in a jolt period
Then select move randomly

Else select move based on pheromone
and connectivity

Endif
Endif

Endfor animat
Evaporate ε percent of the pheromone from

each vertex
Endfor time
Convert configuration to a bisection with

a greedy algorithm
Run Kernighan-Lin local optimization
Reduce total number of animats
Equalize number of animats in each species

Endfor set
Return best bisection found

orated. This prevents pheromone from building up
too much and highly populated vertices from being
overemphasized, which in turn prevents the algorithm
from converging prematurely.

3.3 Activation of an Animat

When an animat is activated, it deposits pheromone
on its current vertex, dies with a certain probability or
reproduces with a certain probability, and then moves
to another vertex. These operations are performed by
the animat by using local information to make deci-
sions.

3.3.1 Pheromone

The purpose of pheromone is to allow the algorithm
to retain a “memory” of good configurations that have
been found in the past. The formula for the amount
of pheromone to be deposited is:

p(a, i) =
acol
atotal

· i
γ

Table 1: Parameter values
Param. Value Description
γ 1000 Number of iterations per set
σ 10 Number of sets
ν 50 Maximum jolt length
α 10000 Initial number of animats
πamax 0.8 Maximum activation probability
πamin 0.2 Minimum activation probability
πd 0.035 Death probability
βinit 4 Expected number of animats born

in first iteration
βfinal 2 Expected number of animats born

in final iteration
βrange 50% Percentage range from average

number of animats born
πr 0.01 Reproduction probability
η 10 Max number of offspring per ani-

mat
µ 5 Number of moves needed before an-

imat can reproduce
ψstay 20% Percentage of offspring that stay on

old location when not colonized by
animat’s species

ωpmin 0 Minimum pheromone weight
ωpmax 1 Maximum pheromone weight
ωcmin 250 Minimum connection weight
ωcmax 500 Maximum connection weight
πmin 0.1 Minimum probability for moving to

a vertex
ρ 0.9 Reduction factor for returning to

previous location
ψswap 75% Percentage of vertices needed for

swap
ψmaj 90% Percentage of animats needed for

majority
ε 0.2 Evaporation rate
λ 1000 Pheromone limit
τ 50 Free edge factor

where a is the animat, i is the iteration number, acol is
the number of vertices adjacent to the animat’s current
location which are colonized by the animat’s species,
and atotal is the total number of vertices adjacent to
the animat’s current location. The idea here is for
an animat to deposit more pheromone at a vertex if
that vertex is highly connected to vertices colonized
by its own species. Also, less pheromone is used in
early iterations to allow for more exploration and more
pheromone is used later on to emphasize exploitation.
Even though the number of neighbors of a seems to
relate more directly to the cut size, the amount of
pheromone deposited is made proportional to the frac-
tion acol/atotal, to prevent the amount of pheromone
at any vertex from growing out of control, even with
evaporation.

There is also a limit to the amount of pheromone of
each species that can be stored on a vertex. The limit
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for a vertex is the product of the degree of that ver-
tex and the pheromone limit parameter (λ). This al-
lows densely connected vertices to accumulate more
pheromone. The more highly connected a vertex is,
the more essential it is that it is colonized by the right
species. This is because a mistake on a highly con-
nected vertex will mean a much greater cut size.

3.3.2 Death

Next, the animat may be selected to die. The an-
imat die with probability πd, which is fixed through-
out the algorithm. However, the activation probability
changes throughout the set, so that early in the set,
more animats are activated, and therefore more ani-
mats die early in the set. The purpose of this is to
have shorter life spans in the beginning, which allows
more turnover and change in the configuration. Later
in the set, the animats live longer and thus there is
less change and the solution is able to converge.

3.3.3 Reproduction

If the animat is not selected for death, the algorithm
proceeds to the reproduction step. The animat is se-
lected for reproduction with fixed probability πr. How-
ever, the number of new animats that are produced
depends on time. In the first iteration of a set, the av-
erage number of animats born is βinit and it decreases
linearly over time to βfinal in the last iteration. The
changing birth rate serves to allow more change in ear-
lier iterations, in which animats live for shorter lengths
of time. In later iterations, fewer animats are born, but
they live longer. The actual number of animats born is
selected uniformly at random over a range centered on
the average birth rate for the iteration. The number
of animats born can be up to βrange more or less than
the specified average.

If the vertex on which the parent is located is colonized
by its own species, the offspring animats are all placed
on that vertex. However, if the vertex is colonized by
the opposite species, only ψstay percent of the offspring
animats are placed there. The remaining new animats
will be placed on the vertex to which the parent animat
moves in the next step. The rationale is that if the
parent animat is already in its own colony but moves to
another vertex, it should leave its offspring behind to
help maintain the majority on that vertex. However,
if the parent’s species is not in majority, it should take
most of its children to the new vertex in which it is
trying to create a colony. The parent leaves some of
its offspring behind however, so that some of its species
remain at the vertex (in case that vertex really should

be part of their colony).

There are two other constraints on reproduction.
First, there is a limit to how many offspring an an-
imat can produce during its lifetime (η). This value
is fixed throughout the algorithm and is the same for
each animat. Once the limit is reached, the animat
can no longer reproduce. This serves to prevent one
species from taking over the graph and forcing the
other species into extinction.

To prevent a species from overemphasizing a vertex
through reproduction, the animats are not allowed to
reproduce until they have made a set minimum num-
ber of moves (µ). This ensures that the graph is ex-
plored and that new configurations are created by the
reproduction and movement rather than being inhib-
ited by these operations.

3.3.4 Movement

An animat can move to any vertex which is connected
to its current location by an edge. There are two fac-
tors used to select a move from the set of possible
moves. For each vertex to which the animat could
move, the connectivity to other vertices is examined.
The animat should move to a vertex that is highly con-
nected to other vertices colonized by its own species.
This factor gives an indication of the current configura-
tion of the graph. In addition, the animat should learn
from the past and take into account the pheromone
that other animats have deposited. Throughout the
course of a set, these two factors are weighted differ-
ently. Initially, the pheromone is weighted at ωpmin
with the weight increasing linearly to ωpmax. Con-
versely, the connectivity is weighted at ωcmax to be-
gin and decreases linearly to ωcmin. In this way, the
configuration of the colonies changes greatly in early
iterations and over time learning is incorporated into
the algorithm. These basic factors drive the animats
to create colonies of highly connected vertices which
are highly disconnected from the vertices colonized by
the opposing species.

These factors are the basis of move selection. The
probability of moving to an adjacent vertex is propor-
tional to the two combined factors. Specifically, the
factors are combined as follows to create a “probabil-
ity” of moving to a specific vertex v:

pr(v) = cvc + pvp + πmin

where vc is the number of vertices adjacent to v that
are colonized by the animat’s own species, c is the
connectivity weight and ωcmin ≤ c ≤ ωcmax, vp is
the amount of pheromone of the animat’s species on
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vertex v, p is the pheromone weight and ωpmin ≤ p ≤
ωpmax, and πmin is a fixed amount added to prevent
any probabilities from being zero.

In addition, one more factor is considered in selecting a
move. To encourage the animats to explore more of the
graph in the early sets, the probability of selecting the
move which would result in the animat returning to its
previous location is reduced. The factor it is reduced
by starts at ρ and decreases linearly after each set until
it reaches zero in the final set. Then the probability
of moving to a connected vertex is the resulting value
divided by the sum of values over all possible moves.

3.4 Between Sets

After each set of iterations, several other operations
are performed. They help nudge the configuration into
a bisection, improve the bisection through local opti-
mization and then prepare the configuration for the
next set.

First, the algorithm looks for “mistakes” the animats
have made. Here the algorithm looks for vertices in
which a very high percentage (ψswap) of the adjacent
vertices are colonized by the opposite species. In these
cases, the vertex is swapped to the other colony. This
is achieved by changing the species of animats on the
vertex until the new species attains ψmaj percent of the
animats. In most cases, few such vertices are found.

Next the colonies are manipulated to produce a bi-
section. As was discussed earlier, any given configu-
ration of animats on the graph does not necessarily
induce a bisection. Therefore, if one species is colo-
nizing more vertices than the other, some vertices will
have to be swapped to the other species. The vertices
to be swapped are selected from the set of fringe ver-
tices, that is, vertices that are adjacent to a vertex of
the opposite colony. By only changing the colonizing
species on fringe vertices, the algorithm continues in
the direction the animats were heading. Vertices are
selected to be swapped by making the greedy choice
from amongst the fringe vertices.

Using the bisection produced by this greedy optimiza-
tion, a weak version of the Kernighan-Lin algorithm is
run. Since the quality of the result produced by the
Kernighan-Lin algorithm depends largely on the qual-
ity of the bisection used as input, it produces little if
any improvement in early sets. However, in later sets,
after the animats have begun to converge upon a good
solution, it usually improves the solution slightly.

Even though we now have a bisection, the number of
animats on the graph may differ from the initial num-

ber of animats of both species. To prevent the animat
population from growing unchecked the algorithm re-
moves animats at random until the population size
reaches its initial value. This may disrupt the colonies,
however, this is not a problem since each new set be-
gins with a jolt anyway.

Finally, to prevent one species from dominating the
graph, the number of animats in the two species is
equalized. This is done by adding animats to equalize
the number of animats in each species. Usually this
is a very small number and thus is not problematic
in consideration of the previous operation (reducing
the number of animats to the initial number). The
new animats are added only to vertices where their
own species is already in majority. Thus, this opera-
tion does not significantly alter the configuration of the
colonies; it merely gives added strength to the colonies
in which animats are added.

Following this operation, a new set is begun. Again,
the time is initialized to 0 and all probabilities relating
to time are reset. Thus, as the animats have converged
on a possible solution, starting a new set allows the an-
imats to move away from that solution in expectation
of finding a better solution in case this solution was a
local optimum. After σ sets have been completed, the
solution is the bisection with minimum cut size.

4 Results

Using the parameter values listed in Table 1, the algo-
rithm was tested on a total of forty graphs of five dif-
ferent types to determine its behavior on a wide selec-
tion of inputs. These graphs are used as a benchmark
as they have been used to test a number of different
graph bisection algorithms [1][7]. Thus the results can
be compared with other algorithms. The graphs range
in size from 500 to 5,252 vertices and have average de-
grees from 2 to 36. The algorithm was implemented in
C++ and run on a Pentium III 800MHz with 256 MB
RAM. For each graph, the algorithm was run for 100
trials. These results are given in Table 2 which also
gives average running time in seconds for one trial of
each graph. In this section, the five graph types are
described and the results for different graph types are
discussed.

4.1 Graphs Types

In [14], Johnson et al. described two classes of graphs
that we use to test our algorithm. The first type, Gn.p,
is a random graph on n vertices where an edge is placed
between two vertices with probability p, independent
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of all other edges. The expected vertex degree is then
p(n − 1). These graphs are a good test case as they
have large optimal bisections. The second type, Un.d,
is a random geometric graph on n vertices with ex-
pected vertex degree d. It is generated by selecting n
points within the unit square which represent the ver-
tices. An edge is placed between two vertices if their
Euclidean distance does not exceed t. It can be shown
that the expected vertex degree is d = nπt2. This
type of graph is highly clustered so it provides a very
different test case than the previous class of graphs.

Three other graph types were proposed by Bui et al. in
[4]. They defined the class of random regular graphs,
Bregn.b, on n vertices with degree 3 having an optimal
cut size b with probability 1− o(1). These graphs pro-
vide an interesting test case because of they are sparse
and have a provable unique optimal bisection with high
probability. A grid graph, Gridn.b, on n vertices is a
grid with known optimal cut size b. A variation of this
type is W-Gridn.b in which the grid boundaries are
wrapped around. This class of graphs is highly struc-
tured with good connectivity. The last class of graphs
used is the caterpillar graph, Cat.n, on n vertices with
an optimal cut size of 1. It is constructed by starting
with a spine, which is a straight line in which all ver-
tices except the two ends have degree 2. Then to each
vertex on the spine, called a node, we add six legs each
of which consist of adding a vertex and connecting it
to the node on the spine. If the number of nodes on
the spine is even, the optimal cut size of 1 is found
by dividing the spine in half. In addition, RCat.n is a
caterpillar graph in which each node on the spine has
degree

√
n. Caterpillar graphs seem simple but are

difficult for local bisection algorithms.

4.2 Comparison with other algorithms

The results of the ASGB algorithm are compared with
results from three other algorithms in Table 2. The
table compares the best result achieved by each algo-
rithm in a fixed number of trials. For the ASGB algo-
rithm, 100 trials were run for each graph with either
10 or 25 sets depending on the difficulty of the graph
for the algorithm. Results for other algorithms reflect
1,000 trials as this was the data that was available
from the sources. The last three columns of Table 2
contain the average and the standard deviation of the
solutions returned by ASGB in 100 trials, as well as
the average running time.

Battitti and Bertossi gave a Reactive and Ran-
domized Tabu Search (RRTS) in [1]. The Multi-
Start Kernighan-Lin (KL) consists of running the
Kernighan-Lin algorithm 65 times on a new random

bisection each time. The final result is the minimum
cut size of the 65 results. Since the results of KL are
greatly affected by the quality of input, it is neces-
sary to run it many more times to achieve good re-
sults since random bisections usually have poor cut
sizes. This allows us to compare KL with other al-
gorithms which normally would outperform it. The
results for Multi-Start KL, Simulated Annealing (SA)
and the best known results are taken from [7]. The
sources provide results for most graphs in the bench-
mark set, however, when the results for a graph are
not provided by the source, the corresponding entry is
left blank.

Overall, ASGB got the best known solution for 27
of the 40 graphs tested. When the best known so-
lution is not 1, the best solution returned by ASGB
is less than 5% away from the optimal, usually much
less. Generally, ASGB performed best when the in-
put graphs have some clustering structure and enough
connectivity that allow the animats to discover a good
bisection, e.g., Un.d, Bregn.b and grid graphs. The
caterpillar graphs have regular structure, but they do
not have enough connectivity to allow the animats to
explore the graph easily. The effect of random free
edges added in the preprocessing step is not enough to
overcome this deficiency. We did observe that if the
number of sets is increased to 30 ASGB returns the
optimal answer for almost all caterpillar graphs. It
seems that the larger the caterpillar graphs, the more
sets are required to get the optimal solution. For the
class Gn.p, ASGB either produced the best known so-
lution or solutions that are within at most 5% of the
best known.

Generally, we can see from Table 2 that ASGB is bet-
ter than Multi-Start KL and SA and is very compet-
itive with RRTS, noting that the data from these al-
gorithms are from 1,000 trials for each graph.

5 Conclusion

An algorithm, called ASGB, using Ant System tech-
niques with local optimization and graph preprocess-
ing was developed for solving the graph bisection prob-
lem. Animats from two different species are placed on
a graph and follow a set of local rules. The emergent
behavior of the population following these rules, cou-
pled with a local optimization, results in a bisection
of the graph with low cut size. The results achieved
were equal or very close to the best known results for
the set of benchmark graphs. Even though the results
achieved by ASGB were not always as good as the re-
sults of RRTS it seems that ASGB is more amenable
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Table 2: Comparison of ASGB results with other algorithms

Graph Best known ASGB RRTS Multi-Start KL SA ASGB Avg S.D. Time
G500.005 49 51 51 52 52 57.52 2.38 139.36
G500.01∗ 218 218 218 220 219 225.29 3.51 412.72
G500.02 626 626 626 627 628 633.62 3.19 139.47
G500.04 1744 1744 1744 1744 1744 1752.98 3.56 197.14
G1000.0025∗ 95 97 96 101 102 103.82 3.57 426.96
G1000.005∗ 445 450 447 457 451 459.25 4.03 460.04
G1000.01∗ 1362 1367 1362 1376 1367 1377.51 3.89 542.38
G1000.02 3382 3385 3382 3390 3389 3399.88 7.63 222.83
U500.05∗ 2 2 2 5 4 14.28 5.75 462.01
U500.10∗ 26 26 26 26 26 61.66 16.93 494.16
U500.20 178 178 178 178 178 209.75 28.92 207.72
U500.40 412 412 412 412 412 461.43 54.13 297.55
U1000.05∗ 1 3 1 15 3 21.76 6.56 395.02
U1000.10 39 39 39 39 39 116.59 31.74 172.45
U1000.20 222 222 222 222 222 293.48 58.87 249.92
U1000.40 737 737 737 737 737 873.58 145.31 333.40
Breg500.0 0 0 0 0 – 0.00 0.00 132.48
Breg500.12 12 12 12 12 – 13.36 8.06 123.39
Breg500.16 16 16 16 16 – 16.68 4.82 138.87
Breg500.20 20 20 20 20 – 20.00 0.00 123.20
Breg5000.0 0 0 0 0 – 0.00 0.00 323.28
Breg5000.4 4 4 4 4 – 4.00 0.00 324.84
Breg5000.8 8 8 8 8 – 8.00 0.00 309.73
Breg5000.16 16 16 16 16 – 16.00 0.00 328.04
Grid100.10 10 10 10 10 – 10.06 0.45 137.39
Grid1000.20 20 20 20 20 – 23.64 8.69 135.74
Grid500.21 21 21 21 21 – 23.00 4.62 120.69
Grid5000.50 50 50 50 50 – 53.98 12.84 394.90
W-Grid100.20 20 20 20 20 – 20.00 0.00 120.37
W-Grid1000.40 40 40 40 40 – 43.98 13.76 143.98
W-Grid500.42 42 42 42 42 – 44.50 4.31 128.36
W-Grid5000.100 100 100 100 100 – 104.64 16.98 368.78
Cat.352 1 3 1 3 – 6.08 1.64 139.03
Cat.702 1 3 1 13 – 10.18 2.54 18.82
Cat.1052 1 7 1 25 – 13.14 3.01 155.51
Cat.5252 1 14 – 165 – 31.30 4.21 382.69
RCat.134 1 1 1 1 – 2.68 0.97 150.03
RCat.554 1 3 1 1 – 7.00 1.61 194.23
RCat.994 1 5 1 3 – 9.42 1.91 210.48
RCat.5114 1 7 – 17 – 14.50 2.81 528.28

∗ graph is run with 25 sets instead of 10

to parallelization than the RRTS algorithm.
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Abstract

Neural plasticity in humans is well known to
be age dependent, with `critical periods' for
the learning of many tasks. It is reasonable to
hypothesise that this has some intrinsic ad-
vantage over constant plasticity, and that it
has arisen as the result of evolution by nat-
ural selection. If this is true, then it may
also prove useful for building more eÆcient
arti�cial systems that are required to learn
how to perform appropriately. In this paper
I explore these ideas with a series of explicit
evolutionary simulations of some simpli�ed
control systems.

1 INTRODUCTION

Evolutionary algorithms have shown much promise for
generating arti�cial neural networks with performance
superior to those formulated directly by human re-
searchers. Factors such as network architecture, learn-

ing rules and connection weights have all been suc-
cessfully optimised by evolution (e.g., Yao, 1999). A
similar approach can equally well be applied to opti-
mising the adjustable parameters and learning rates
in other systems that learn, such as traditional adapt-
able controllers (e.g., Levine, 1996; Bullinaria, 2001).
In this paper I take this work one stage further by
considering how an evolutionary approach might lead
to more eÆcient systems by allowing the emergence of
non-constant learning rates.

It is well known that human neural plasticity varies
considerably with age, and that there are \critical peri-
ods" during which learning must take place if the given
task is to be mastered successfully (Julesz & Kovacs,
1995). The idea of variable neural plasticity is also
quite common in the �eld of arti�cial neural networks

where modellers have found it bene�cial to vary their
network learning rates during the course of training
(Jacobs, 1988). For example, near the end of training
it may be useful to decrease the learning rates to min-
imise the weight variations seen after each sample in
online training, or to increase them to speed the satu-
ration of sigmoids as the errors become small. Alter-
natively, if the performance of a task depends crucially
on some lower level of processing, it may be sensible
to delay the learning of that task until the lower level
processes have fully developed. It is not clear to what
extent factors such as these have been responsible for
the evolution of the patterns of plasticity found in hu-
mans, or if it has been more a matter of minimizing
the physical overheads of the plasticity. In this paper
I shall present a series of explicit simulations of the
evolution of some simple adaptable control systems.
The evolutionary processes will result in eÆcient pat-
terns of variable learning rates for these arti�cial sys-
tems that can then be used to develop better learning
strategies for real world applications, and perhaps also
provide some constraints on our explanations of the
critical learning periods found in humans. The overall
aim will be to see which learning strategies evolve nat-
urally, and to explore how di�erent strategies evolve
under di�erent circumstances.

2 THE CONTROL MODEL

The control system that will form the basis of the cur-
rent investigation is shown in Figure 1. It is actually
a simpli�ed version of the part of the oculomotor con-
trol system that focuses and rotates the human eye
(Schor et al., 1992), though similar systems can be ap-
plied quite generally (Levine, 1996). The input is a se-
quence of target responses and a feedback loop allows
the determination of an error signal. This signal then
feeds into standard simple integral and proportional
controllers, the outputs of which are added to bias and
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Figure 1: A simpli�ed control model with four learnable parameters: WC, WP, WT, WB.

tonic signals, and fed into the plant to produce the re-
sponse. The unit bias provides an appropriate resting
state, and the leaky integrator tonic allows short time-
scale adaptation of the resting state during periods of
constant demand. In the human eye focusing system,
for example, we would have blur being processed to
generate signals for the ciliary muscles in the eye ap-
propriate for the distance of the visual target. The
system can equally well be regarded as a traditional
control system (Levine, 1996), or as a fully dynamical
network of leaky integrator neurons.

Simulating the evolution will involve working with
a large number of copies of this model, each
with four adjustable parameters/connection weights
W(t) = fWC(t);WP (t);WT (t);WB(t)g where t

is the time/age of the individual model measured
in simulated years. These are learned by a sim-
ple on-line gradient descent algorithm that mini-
mizes a cost function consisting of response error
and regularization (smoothing) components which
would be readily available to the system (Bullinaria
& Riddell, 2001). Corresponding to the learnable
weights, then, each instantiation of the model will
have four variable learning rates/plasticities P(t) =
fPC(t); PP (t); PT (t); PB(t)g. The model will also
have various other parameters (time constants, plant
characteristics, feedback time delay, and so on) which
we take to be the same for all instantiations, with val-
ues appropriate for human oculomotor control (Schor
et al., 1992). Such a system that has evolved/learned a
good set of weights will produce appropriate damped
responses to arbitrary discontinuous output require-
ments such as steps, and smooth pursuit of arbitrary
continuous output changes such as ramps (Bullinaria
& Riddell, 2001).

For the purposes of this paper, I shall assume that all
the learning rates in a given model vary with age in
the same manner, and that this variation depends only
on the genotype (innate parameters) of the individual,
and not on the environment that the individual �nds

itself in. Naturally, it will be important to relax this
condition in the future, but this means that we can
write P(t) = s(t):P(0), where P(0) are the four ini-
tial learning rates, and s(t) is a simple age dependent
scaling factor. Clearly, if there is no plasticity varia-
tion, s(t) = 1 for all t. A convenient parameterization
is simply to take s(t) to be piecewise linear with pa-
rameters S = fs(t) : t = 1; : : : ; Ng. The part of the
model's genotype that varies between individuals thus
represents the 8 +N parameters fW(0);P(0);Sg.

3 EVOLVING THE MODEL

Simulating an evolutionary process for our model in-
volves taking a whole population of individual instan-
tiations and allowing them to learn, procreate and die
in a manner approximating these processes in real (liv-
ing) systems. The genotype of each new individual will
depend only on the genotypes of its two parents and
random mutation. Then during their life each indi-
vidual will learn from their environment how best to
adjust their weights to perform most e�ectively. Even-
tually, perhaps after producing a number of children,
each individual dies. Obviously, in nature, the ability
of an individual to survive or reproduce will depend on
a number of factors that are related in a complicated
manner to that individual's performance on a range of
related and unrelated tasks (food gathering, �ghting,
running, and so on). For the purposes of our simpli�ed
model, however, I shall consider it to be a suÆciently
good approximation to assume a simple linear relation
between our single task �tness function and the sur-
vival or procreation �tness. In fact, any monotonic
relation should result in similar evolutionary trends,
but it is easy to lose weak e�ects in the noise of the
rather coarse simulations forced upon us by limited
computational resources.

Given that, initially at least, we are aiming to repli-
cate an e�ect that arises in human evolution, it seems
appropriate here to follow a more natural approach to
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procreation, mutation and survival than has been used
in many evolutionary simulations in the past (e.g. in
Belew & Mitchell, 1996). Rather than training each

member of the whole population for a �xed time and
picking the �ttest to breed and form the next genera-
tion, our populations contain competing learning indi-
viduals of all ages, each with the potential for dying or
procreation at each stage. During each simulated year,

every individual learns from their own experience with
a new randomly generated common environment (i.e.
set of training/testing data) and has its �tness mea-
sured. Random pairs of individuals are then forced to
compete, with the least �t dying (i.e. being removed
from the population). Additionally, a random sub-
set of the oldest individuals die of old age. The dead
are replaced by children, each having one parent who
is the �ttest of a randomly chosen pair from the re-
maining population, who randomly chooses their mate
from the rest of whole population. Each child inherits
characteristics from both parents such that each in-
nate free parameter is chosen at random somewhere
between the values of its parents, with suÆcient noise
(or mutation) that there is a reasonable possibility of
the parameter falling outside the range spanned by
the parents. Ultimately, our simulations might bene�t

from more realistic encodings of the parameters, con-
cepts such as recessive and dominant genes, learning
and procreation costs, di�erent inheritance and muta-
tion details, di�erent survival and procreation criteria,
more restrictive mate selection regimes, o�spring pro-
tection, di�erent learning algorithms and �tness func-
tions, and so on, but for the purposes of this paper,
our simpli�ed approach seems adequate.

4 SIMULATION RESULTS

A previous study (Bullinaria, 2001), employing a
slightly more complex control system and a slightly
simpler evolutionary regime, has already explored the
Baldwin E�ect, i.e. the interaction of learning and
evolution (Baldwin, 1896; Belew & Mitchell, 1996),
in models of the type considered here. This demon-
strated explicitly how genetic assimilation of learned
behaviour (i.e. learned parameter values) will occur
automatically, without Lamarckian inheritance, to re-
duce the inherent costs of learning (e.g. periods of poor
performance). However, even when a good set of in-
nate parameters have evolved, a control system will
still bene�t from being plastic since that will allow
it to �ne tune its performance after a noisy procre-
ation process and/or being born into an unpredictable
environment. Many biological systems will also need
plasticity to compensate for the changes (e.g. grow-
ing size) that naturally take place during their own

maturation period. For the current study, such a mat-
uration process was simulated by a simple output scale
factor that varies linearly from 0.5 to 1.0 over the �rst

ten years of life for each individual. (It turns out that
the precise details of this variation are not crucial.) In
humans this maturation might correspond to changes
in inter-pupilliary distance for the eye rotation sys-
tem, or changes in arm length for reaching or point-

ing. The important consequence is that the appro-
priate innate/newborn weights will not be the same
as the adult values. The pattern of plasticities that
evolve will allow the system to learn most eÆciently
how to optimize its weights throughout its life.

Unfortunately, limited computational resources al-
lowed only a rather coarse simulation of the evolution-
ary process, but for an initial study it proved suÆcient
to have a �xed population size of only 100, with around
10 deaths per year due to competition, and around 4
individuals over 30 years old dying each year due to
old age. (Such a system coded in C typically simulated
around 20,000 years per CPU day on an average UNIX
workstation.) The procreation and mutation param-
eters were chosen to speed the evolution as much as
possible without introducing too much noise into the

process. These evolutionary details were kept constant
across all the simulations I shall now present.

Figure 2 shows the simulation results for a typical run
of the basic system described above. First we see that
the population means of the initial weights W(0) and
learning rates P(0) quickly evolve to take on appro-
priate values. (Note the large variation between the
learning rates that emerge for the di�erent weights.)
These lead to good values for the weights throughout
the individuals' life. All the weights will need an initial
�ne tuning to remove the noise in the procreation pro-
cess, then some weights (WC andWP ) need to adjust
during the maturation period, while others (WT and
WB) need little further change. The plots of WC(t)
and WT (t) for a typical evolved population show this
quite clearly. The plots of the mean weights W(t) for
the whole population show how they di�er in magni-
tude and noise from the initial weights W(0). Finally,
we see how the plasticity scale factor s(t) varies with
age t. In particular, we see that the plasticity falls
drastically between birth and the end of the matura-
tion period, thus con�rming that critical periods for
learning will arise as a natural consequence of evolu-
tion.

The results from the basic system naturally lead to
the question of what happens if an individual needs to
adapt or learn later in life, after the standard learn-
ing period is over. There is a traditional saying that
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Figure 2: Evolution and learning in a typical simulation of the basic system. Individuals in the evolved population
have plasticities that fall rapidly between birth and the end of their maturation period.
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Figure 3: Evolution and learning in a typical simulation when late life adaptation is required. Individuals in the
evolved population have plasticities appropriate for the learning or adaptation that is forced upon them.
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Figure 4: Evolution and learning in a typical simulation when there is a dependency on the development of lower
level sub-systems. Individuals in the evolved population have a critical period for learning.
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Figure 5: Typical plasticity scale factors arising from a di�erent implementation to that used for Figures 2 and
4. The basic patterns are the same, but considerably noisier.

\old dogs cannot learn new tricks", but it seems un-
likely that evolution would allow the plasticities to de-
cay away to small values in situations where late life
adaptation is regularly required. To introduce such
a requirement, the basic model was modi�ed so that
there was a sudden step in the output scale factor from
1.0 to 0.75 at the age of 20. (Again it turns out that
the precise details of this variation are not crucial.)
There is no need to specify whether this variation cor-
responds to an internal factor (e.g. compensation for
system damage or deterioration) or an external factor
(e.g. adaptation to changes in the operating environ-
ment), as they will have the same e�ect. Obviously,
the need for real late life adaptation will rarely be so
predictable, but the consequences for our model will
be similar, and the simpli�cation makes it easier to
interpret the results.

Figure 3 shows how this changes the simulation re-
sults from those of the basic model in Figure 2. The
most obvious di�erence is in the plot of WC(t) where
we see the required step change at age 20 has been
learned successfully. The plot of s(t) shows the initial
fall as before, but then a sharp rise to give the re-
quired increased plasticity at the age of 20. This gives
us con�dence that our evolutionary simulations really
are picking up the requirement for plasticity, and not
some confounding factor.

A �nal situation to consider, that regularly arises in
human development, is when one level of processing re-

lies on signals from another system. If the sub-system
supplying those signals is not fully developed, it might
be sensible to wait until it is before beginning to learn

how to use the signals. For example, the adult eye ro-
tation (vergence) system uses an image disparity sig-
nal, and humans have to wait until 12-16 weeks of age
before this signal relatively suddenly becomes avail-
able. To simulate such an e�ect in our basic model,
the error signal was replaced by low level noise for each
individual until they reached three years of age.

Figure 4 shows how this a�ects the standard results
of Figure 2. The changes here are rather clear. First,
the initial/innate weights WC, WP and WT all drop
to very low values, leaving the system with an appro-
priate constant output driven by the bias WB, and
no interference from the noisy input signal. Naturally,
the initial learning rates are also all very low, because
learning from noise is not a good strategy, but they
quickly rise to coincide with the onset of the input sig-
nal at the age of three. By the age of seven, the system

has caught up with the performance levels of Figure 2.
Once again our simpli�ed evolutionary approach leads
to a sensible pattern of plasticity variations.

5 SCALE FACTOR MUTATIONS

As with all modelling endeavours, it is important to
test the robustness of the results with respect to the
implementational details. Naturally, in this case it is
the encoding of the plasticity scale factor s(t) that we
need to be particularly careful about. If each point
fs(t) : t = 1; : : : ; Ng de�ning the piece-wise linear
function were simply allowed to evolve in isolation in
the same manner as the weights and learning rates,
we would actually end up with the rather noisy results
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shown in Figure 5.

The individual performance advantages that would

keep the curves smooth, and reduce any unnecessary
plasticity, are rather weak and get lost in the noise of
our coarse simulations. This is particularly apparent
after the age of about 10. The weakness is partly due
to the error signals being relatively low after the mat-
uration period is complete, and partly because it will

be relatively unimportant if the �tness starts decreas-
ing again after a number of children have already been
produced, or if the majority of individuals normally
die before reaching that age.

Fortunately, we can compensate for these limitations
by variations of the plasticity scale factor mutations.
First, we can prevent unnecessary plasticity (which
will surely have an intrinsic cost in real systems) by
allowing mutations which set random points s(n) to
zero. Then, it is unlikely in real systems to be eÆcient
to have s(t) varying wildly with age, so it is reasonable
to encourage smoothness of s(t) by allowing mutations
which swap the values of random adjacent points s(n)
and s(n+1). It was these simple variations that turned
the noisy and ineÆcient results of Figure 5 into the
smooth and eÆcient results of Figures 2, 3 and 4.

6 CONCLUSIONS

By simulating evolving populations of simple adapt-
able control systems we have seen that there is a natu-
ral propensity for the evolution of plasticities that vary
sensibly with age, quite independently of any physical
overheads of the plasticity. This is consistent with the
well known \critical periods" of human brain devel-
opment (Julesz & Kovacs, 1995). It is reasonable to
expect that such an evolutionary approach will also
be a pro�table strategy for obtaining improved per-

formance in adaptable systems for real world applica-
tions.

There are two competing e�ects at play. In order to
survive in competition with �tter adults and/or a hos-
tile environment, a newborn needs to adapt as quickly
as possible to its environment. It also needs to adapt
eÆciently to its own maturation. Large plasticities
will be bene�cial for both. In adults, however, large
plasticities can lead to an unstable learning system,
in which unusual/extreme experiences can potentially
result in a large shift of the systems' parameters with
a serious reduction in overall �tness. Lower learn-
ing rates in this situation will allow smoother optimal
parameter estimation and more consistently good re-
sponses in a varied environment. In this paper it has
been demonstrated how a process of evolution by nat-

ural selection can result in a population of individual
systems that deal with these con
icting requirements
by having plasticities that vary appropriately with age

under normal maturation, when late life adaptation
is required, and when there is a dependence on the
prior development of other sub-systems. We have also
seen how appropriate changes to the implementational
details (e.g. the plasticity scale factor mutations) can

lead to vastly superior results.

In complex systems, such as the human brain, we can
expect each of the various sub-systems to evolve appro-
priately for its own requirements, so there may well be
no single global behaviour. The next stage of this work
will be to develop and test larger scale and more re-
alistic simulations of speci�c human sub-systems, and
to explore explicitly how these ideas could be applied
to the formulation of more eÆcient arti�cial adaptable
systems for particular real world engineering applica-
tions.
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Abstract 
 

Process changes, such as flow disturbances 
and sensor noise, are common in the chemical 
and metallurgical industries. To maintain 
optimal performance, the controlling system 
has to adapt continuously to these changes. 
This is a difficult problem because the 
controller also has to perform well while it is 
adapting. The Adaptive Neural Swarming 
(ANS) method introduced in this paper 
satisfies these goals. Using an existing neural 
network controller as a starting point, ANS 
modifies the network weights through Particle 
Swarm Optimisation. The ANS method was 
tested in a real-world task of controlling a 
simulated non-linear bioreactor. ANS was 
able to adapt to process changes while 
simultaneously avoiding hard operating 
constraints. This way, ANS balances the need 
to adapt with the need to preserve 
generalisation, and constitutes a general tool 
for adapting neural network controllers on-
line. 

 

1.  INTRODUCTION 
 
The chemical and metallurgical industries face constant 
demands for greater economic return that requires 
increased production and greater product purity. Also, 
environmental concerns call for the use of minimal 
resources. By addressing these issues, intelligent 
control techniques add economic value to process 
plants.  
 
A process' operating point (i.e., the process state) 
determines the product purity and production rate. The 
operating point thus has an intrinsic economic value. 
Control engineers select fixed operating points (i.e., set 
points) based on their economic value. Process 
changes, due to process disturbances and drifting 
dynamics, cause deviations from the set points, 
requiring corrective action. Optimal set points and 
effective corrective actions yield greater economic 
return. Typically, linear controllers (e.g., PID 
controllers) maintain the set points and provide 
corrective action to process changes (Seborg et al., 
1989). 

 

 For example, a chemical reactor has an optimal 
operating temperature. This temperature determines the 
production rate that directly impacts on the economic 
return from the reactor. The control engineer selects 
this optimal temperature as a set point. A PID 
controller responds to process disturbances that affect 
the reactor temperature, by increasing or decreasing the 
cooling water flow rate, thereby maintaining the set 
point 
 
PID controllers typically utilise both set points and 
fixed controller parameters. The PID controller 
parameters govern the corrective action (i.e., the 
control response) to process changes. There are three 
PID controller parameters: gain, integral and 
derivative. PID control's linear control structure is the 
industry standard, though not suited to non-linear 
processes.  
 
Non-linear processes are common in the process 
industries. In such cases, PID controller parameters are 
optimal only over a limited operating region. Process 
changes may cause the operating point to stray far from 
the set point, whereupon PID controllers may 
implement sub-optimal corrective actions. Sub-optimal 
performance may be avoided only by adapting the 
controller parameters. As the set points largely 
determine the economic return, the set points must also 
adapt in response to process changes. Tracking the 
economic optimum therefore requires adapting both the 
controller parameters and the set points (Hrycej, 1997).  
 
Effective generalisation and adaptability during process 
changes are essential to tracking a process' economic 
optimum. Generalisation tools, such as neural 
networks, are invaluable in creating non-linear 
controllers for non-linear processes. Non-linear 
controllers are near optimal over wider operating 
regions than possible with PID control (Conradie, 
2000). Near optimal performance may be further 
improved by on-line adaptation of the neural network 
weights in response to process changes. Robust search 
techniques are required for effective on-line adaptation 
of neurocontroller weights. 
 
This paper introduces an adaptive neurocontrol 
strategy, Adaptive Neural Swarming (ANS). A highly 
non-linear bioreactor benchmark is used in the control 
simulation. The bioreactor's dynamic behaviour is 
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changed continuously, which shifts the operating point 
with maximum economic return. ANS adapts an 
existing neurocontroller's weights to reap greater 
economic return from the changing bioreactor process. 
ANS emerges as an effective tool for adapting existing 
neural network strategies, resulting in enhanced 
performance.   
 
Section 2 outlines basic notions in conventional 
adaptive control, which remain relevant to an advanced 
scheme such as ANS. Section 3 describes Adaptive 
Neural Swarming (ANS). Section 4 outlines the 
bioreactor case study. The paper concludes with an 
explanation of ANS' mechanism.    
 

2.  ADAPTIVE CONTROL METHODS 
 
Control design requires a dynamic process model. 
Optimal control design is possible only if the process 
model is accurate. However, the model and the actual 
process are invariably mismatched. Also, exact 
knowledge of possible process changes is seldom 
available for control design purposes. Despite these 
shortcomings, robust control remains a control 
requirement. Generalisation is the ability of a controller 
to deliver near optimal performance, despite limited 
process knowledge during its design.  
 
Generalisation may provide robust control, but optimal 
control is rarely ensured during the control design 
process.  The designed controller frequently requires 
on-line refinements to the controller parameters and set 
points. Improved generalisation is difficult to impart 
on-line, as it involves reconciling past (i.e., design) and 
current process information into a single control 
strategy. For example, catalyst decay may cause the 
optimal temperature of a reactor to change over time. 
In contrast, adaptation changes controller parameters 
giving precedence to on-line process information. 
However, degraded performance may result should 
past process conditions return. A balance must thus be 
maintained between retaining generalisation imparted 
during design, while allowing adaptation to exploit 
changes in the process conditions (Hrycej, 1997).  
 
On-line process information contains inaccuracies due 
to sensor noise and short-lived disturbances. Adapting 
controller parameters based on imperfect process 
information involves operational risk. The process may 
become unstable. On-line adaptation to control 
parameters faces numerous challenges: (1) Balancing 
the use of past and present process information, (2) 
Supervising process stability, (3) Implementing 
emergency procedures should the process become 
unsafe, due to on-line adaptation (Hrycej, 1997).  
 
The following two sub-sections illustrate the aims of 
conventional methods for adapting controller 
parameters (section 2.1) and process set points (section 
2.2). ANS has the same aims, though its methodology 
is dissimilar. 
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Figure 1: Objective of linear adaptive control. An 
oscillatory control response around the set point (a) is 
changed to a specified control response (b). The 
specified response settles sooner on the set point. 
 

2.1  CONVENTIONAL ADAPTIVE CONTROL 
 
An adaptive linear controller maintains a specified 
control response (i.e., corrective action) around a set 
point during process changes. For non-linear processes, 
a set of PID controller parameters can only maintain 
the specified control response for a limited range of 
process conditions. Process changes in non-linear 
processes may cause the control response to become 
oscillatory around the set point, as illustrated in figure 
1a. Adaptive linear control tunes the PID controller 
parameters, which corrects the oscillatory response in 
figure 1a to the specified response in figure 1b. 
Conventional adaptive control relies on on-line process 
modelling (i.e., Model Reference Adaptive Control) 
and heuristic methods (i.e., Ziegler-Nichols) for 
adapting controller parameters (Ghanadan, 1990). ANS 
must also ensure that a specified control response is 
maintained. 
  
2.2  EVOLUTIONARY OPERATION  
 
Adaptive control does not change the set points that 
largely determine the economic return. Set points are 
selected during design based on an optimisation of 
dynamic model equations. The optimisation considers 
both economic return and controllability. However, 
process changes during operation may make the current 
set points economically sub-optimal.  
 
Evolutionary operation (EVOP) challenges the use of 
constant set points in a continuously changing process. 
EVOP monitors the process and improves operation by 
changing the set points towards the economic optimum. 
EVOP makes a number of small set point changes that 
do not disrupt production. However, the set point 
changes need to be sufficiently large to discover 
potential improvements in the operating point. EVOP 
uses an experimental design to determine the number 
of set point change experiments. Pattern search 
methods use the experimental results to determine 
whether and in which direction the set points should be 
changed (Walters, 1991).  
 
Consider figure 2, which graphs the economic return of 
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Figure 2: EVOP for a process with two process 
variables. The current set point (circular marker) is 
moved along the arrow's trajectory based on the 
economic return of each set point experiment (square 
markers). The process operation is thus improved. 
 
a process that has two process variables. The contour 
lines represent operating points with similar economic 
returns.  The circular marker represents the current set 
point, which is economically sub-optimal. The set 
points for both process variables should be reduced for 
optimal economic return. EVOP conducts a number of 
set point change experiments (represented by square 
markers) in the neighbourhood of the current set point. 
The economic return for each set point experiment is 
determined. In figure 2, three experiments have greater 
economic return than the current set point. EVOP 
adjusts the current set point in the direction of greater 
economic return. The process is repeated until optimal 
set points are found (Walters, 1991).    
 
EVOP does not adapt the PID controller parameters for 
each of the set point experiments. As discussed in 
section 2.1, using the same controller parameters for all 
the set point experiments may give oscillatory 
responses. Poor control responses impact negatively 
the accurate determination of economic returns. 
 
Adaptive control and EVOP may be combined in a 
two-step methodology to track a changing economic 
optimum. EVOP selects a number of set point 
experiments. An adaptive control method establishes a 
specified control response for each set point 
experiment. The economic evaluations for each 
experiment will consequently be comparable, 
whereupon EVOP adjusts the current set point. This 
cumbersome two-step process is repeated until the 
optimal set point is found. Ideally, a single on-line 
experiment (evaluation) should provide information on 
both the economic return and the control response. 
 

3.  ADAPTIVE NEURAL SWARMING 
 
This section describes Adaptive Neural Swarming 
(ANS), which combines adaptive control and EVOP 
into a single comprehensive step. In ANS, both the 
economic return and the control response are combined 
into a single feedback signal. A local PSO uses this 
sparse reinforcement information to adapt the weights 

of existing neural network controllers towards greater 
economic return in response to a changing process.  
  
3.1  NEURAL NETWORK STRUCTURES 
 
Neurocontrollers may originate from various sources. 
Neural networks may be trained to mimic the control 
actions of existing PID controllers, thereby distributing 
the PID functionality over several neurons. Existing 
fuzzy logic systems may be converted to equivalent 
neural network architectures (Jong & Sun, 1993). 
Neurocontrollers are also developed utilising 
evolutionary reinforcement learning techniques 
(Conradie et al., 2000). Neural networks possess 
characteristics that are beneficial to an adaptive 
scheme, such as generalisation and graceful 
degradation. 
 
Once a PID controller is adapted, the small number of 
control parameters prohibits effective generalisation to 
past process conditions. Neural network controllers are 
collections of neurons, with each neuron specifying the 
weights from the input layer (process states) to output 
layer (control actions). Neurocontroller parameters are 
the neural network weights. A neurocontroller that is 
equivalent to a PID controller, has additional degrees 
of freedom, owing to a larger number of controller 
parameters. During adaptation, a neural network's 
distributed functionality preserves greater 
generalisation to past process conditions. The need for 
effective generalisation justifies the use of neural 
networks. 
 
Neural networks also exhibit graceful degradation. 
Graceful degradation allows small changes to the 
weights, without causing catastrophic control 
performance loss (S'euim & Clay, 1990). Process 
stability is preserved during adaptation.   
 
These neural network characteristics are relied upon in 
a reinforcement learning framework, described below, 
to provide process stability and continued 
generalisation.  
 
3.2  REINFORCEMENT LEARNING 
 
Reinforcement learning (RL) automates the acquisition 
of on-line performance (i.e., feedback) information and 
the adaptation process. RL uses on-line performance 
evaluations to guide adaptation. RL improves 
controller performance without a need to specify how 
the control objectives should be reached (Kaelbling et 
al., 1996).    
 
ANS maintains a population of possible 
neurocontroller solutions that serve as RL evaluations, 
similar to EVOP experiments. Each neurocontroller is 
evaluated individually over a number of sensor sample 
periods while interacting with a dynamic process as in 
figure 3. Initially, the process may be at an arbitrary 
operating point (state, st). The neurocontroller observes 
the current process operating point at sample, t, and 
selects a control action, at. The control action changes 
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Figure 3: Reinforcement learning framework. A 
neurocontroller interacts with a dynamic process to 
learn an optimal control policy from cause-effect 
relationships. 
 
the operating point to st+1. A reward, rt, is assigned 
based on the economic value of this new operating 
point. The objective is to maximise the total reward 
over a series of control actions, while maintaining a 
specified control response. An optimisation algorithm 
adapts the neural network weights based the reward 
feedback from each evaluations.  
 
ANS treats the population of neurocontrollers as a 
swarm, using a local particle swarm optimisation for 
adapting the weights of each neurocontroller.   
 

3.3  PARTICLE SWARM OPTIMISATION 
 
PSO is loosely based on the social behaviour of flocks 
of birds. A population of individuals is updated based 
on feedback evaluations, gathered from the collective 
experience of the swarm individuals (Shi & Eberhart, 
1999). Equations 1 and 2 determine the velocity and 
position of the swarm in the solution space: 
 

idididid xprandcvv (): 1  

           idgd xprandc ()2                                  (1)     

ididid vxx :                                                         (2) 

 
where each particle, i, moves through the solution 
space with dimension, d. Each particles velocity vector, 
vid, is dynamically adjusted according to the particle's 
own best experience, pid, and that of the current best 
particle, pgd, in the swarm. These two knowledge 
components are blended with each particle's current 
velocity vector to determine the next position of the 
particle as per equation 2 (Shi and Eberhart, 1999).  
 
The best swarm particle is a beacon to a region of the 
solution space that may contain better optimisation 
solutions. Each particle searches the solution space 
along its unique trajectory for better solutions. Should a 
better solution be found, the new best swarm particle 
moves the swarm in a new direction. The momentum in 
each particle's current velocity provides some 
protection against convergence to a local optimum (Shi 
and Eberhart, 1999).  
 
PSO has been utilised in tracking changing optima in 
function optimisation problems (Carlisle and Dozier, 

 2001; Angeline, 1997). PSO's success in these artificial 
domains motivates its use in complex real-world 
problems. 
 
3.4  ON-LINE OPTIMISATION  
 
ANS uses a local PSO search as the optimisation 
algorithm within a reinforcement learning framework. 
ANS thereby tracks the shifting economic optimum 
resulting from a changing process.  Practical 
considerations for on-line use relate to the selection of 
swarm size, swarm initialisation, appropriate PSO 
parameters and duration of an RL evaluation. 
 
Each on-line experiment is time and resource intensive, 
since no control improvements are possible during the 
evaluation phase. The number of reinforcement 
learning evaluations per PSO adaptation must therefore 
be minimal. However, the dimensionality of the control 
task constrains the minimum number of evaluations. 
More process information (i.e., more evaluations) is 
required during the evaluation phase, as the 
dimensionality of the control task increases. Otherwise, 
effective adaptation based on on-line feedback is not 
possible. Each neuron in a neurocontroller represents a 
partial solution to the control task. The number of 
neuron weights reflects the dimensionality of such 
partial solutions. For example, to effectively adapt 
neurons with 12 weights, an absolute minimum of 12 
evaluations is required. The number of swarm 
neurocontrollers (n) is thereby selected based on the 
dimensionality of the control task, as reflected by the 
number of neuron weights.  
 
In ANS, each swarm particle is an altered version of an 
existing neurocontroller. The initial swarm consists of 
the original (i.e., existing) neurocontroller and (n-1) 
altered neurocontrollers. Each altered neurocontroller is 
initialised with a small gaussian deviation from the 
existing neurocontroller weights. The maximum weight 
deviation is 3% from the each original weight, thereby 
altering the control policy only marginally. A 
neurocontroller swarm is thus initialised in a local 
region of the network weight solution space. This slight 
weight alteration determines the direction in which the 
swarm should move, without negatively effecting 
production and inducing process instability. On-line 
evaluation (experimentation) is thus limited to 
neighbouring solutions of an existing solution.  
 
Each swarm neurocontroller is evaluated on-line for a 
limited number of sensor samples. A process' time 
constant is defined as the process response time to a 
step change in a control action. The process' time 
constant determines the number of sensor samples used 
in each evaluation.  Equation 3 is the fitness evaluation 
that serves as feedback of each swarm neurocontroller's 
economic return: 

PenaltydttPtFitness

t

t

2

1

)(      (3) 

where the evaluation is conducted for the number of 
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Figure 4: Possible adaptation trajectories of a weight 
vector based on the swarm's experience. The possible 
final position after adaptation lies in the plane formed 
by the arrow lines. The limited trajectories make the 
search exploitative. 
 
samples between t1 and t2 and P(t) is the instantaneous 
profit at time t.  
 
A higher P(t) for each sample reflects a higher 
economic return, which increases the fitness value. 
ANS thus searches for improved economic return. 
Equation 3 also dictates the specified control response. 
An ITAE (integral-time-absolute-error) control 
response has minimal oscillation, which is suited to 
numerous process control applications. Maximising the 
integral results in an ITAE control response. The 
fitness evaluation thus contains information regarding 
both the economic return and the control response. 
Also, should hard operating constraints exist for the 
process, a penalty is assigned should such operating 
constraints be approached during adaptation. This 
penalty reduces the fitness and solutions are therefore 
pursued only within the search boundaries.  
 
An exploitative search preserves generalisation and 
reduces the risk of inducing process instability. A local 
(i.e., exploitative) PSO search is implemented by 

selecting a small inertia weight (  = 0.4) and the 
parameters c1 and c2 equal to 0.5 (conventionally 2.0) 
in equation 1. Each neurocontroller, i, adapts each 
weight, xid, at position d in accordance with equation 2.  
 
A neurocontroller may move only in a limited number 
of trajectories based on the swarm's experience. 
Consider a neurocontroller comprised of one neuron 
with 3 weights with no initial velocity. In figure 4, the 
circular marker represents the current weight vector. 
The dashed arrow lines illustrate the possible 
adaptation trajectories. These trajectories are 
determined by the global best neurocontroller (square 
marker) and the neurocontroller's own best experience 
(diamond marker). These limited trajectories make the 
search exploitative and are relevant to the optimisation 
objectives, since the directions are determined by the 
swarm's collective experience (Shi and Eberhart, 
1999).   
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Figure 5: Adaptive neural swarming flow diagram. An 
effective neurocontroller is initialised into a swarm and 
adapted based on the evaluation of the swarm.  
 
The local PSO search is run for five iterations, as 
illustrated in figure 5. The swarm is then re-initialised 
around the new best neurocontroller. Re-initialisation 
starts a new search in the neighbouring solution space 
of the new best neurocontroller. The search thus 
continues outside the space of the prior initialisations.  
 
ANS was tested in a real-world bioreactor case study. 
The case study illustrates ANS' ability to adapt the 
neurocontroller weights towards greater economic 
return.   
 

4. BIOREACTOR CASE STUDY 
 
4.1  BIOREACTOR CONTROL PROBLEM 
 
A bioreactor is a continuous stirred tank fermenter. It 
contains a biomass of micro-organisms that grow by 
consuming a nutrient substrate. The liquid substrate is 
fed continuously into the reactor, which also 
determines the reactor's liquid level (i.e., hold-up). The 
biomass is sold as the product. The bioreactor's 
dynamic behaviour is highly complex, non-linear and 
varies unpredictably. Also, the bioreactor process is 
difficult to quantify, due to unreliable biosensors and 
long sampling periods (Brengel and Seider, 1992).  
 
Furthermore, the maximum bioreactor liquid level is a 
hard operating constraint. Should operation exceed the 
maximum level, the bioreactor is shut down and must 
then be restarted at great operational cost. However, the 
maximum instantaneous profit increases as operation 
approaches the hard level constraint. A trade-off 
between safety and the maximum economic return is 
required (Brengel and Seider, 1992). 
 
The operating objective is to maximise the venture 
profit of the process on-line in response to process 
changes. This entails tracking the operating point with 
the maximum venture profit and ensuring acceptable 
control responses. The bioreactor may be simulated 
accurately and as such constitutes a benchmark for 
testing new adaptive methodologies without risking 
unsafe operation. 
 
4.2  EXPERIMENTAL SET-UP 
 
Typical process changes were simulated to mimic real-
world bioreactor operation. The bioreactor's model was 
changed significantly by reducing the cell mass growth 
K (figure 6a) and increasing the substrate feed 
concentration SF. The increased (i.e., off-set) SF is also 
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Figure 6: Process changes to the bioreactor. The arrows 
show the changes from the nominal process conditions 
(dashed line) for the growth parameter (a) and the 
substrate feed (b). The process is changed significantly. 
 
disturbed with a gaussian distribution (figure 6b). In 
addition, the biosensors were inaccurate with a 
gaussian distribution around the correct reading.  
 
Process search limits ensured that the process operation 
did not exceed the operation constraints. An adaptation 
scheme should never induce process shutdown by 
searching for operating points that are unsafe. The 
reactor level must remain below a high level alarm, 
which is a safety margin before bioreactor shutdown is 
initiated. The high level alarm was set at 5.95 [m] and 
bioreactor shutdown at 6.2 [m].  
 
An optimal neurocontroller, with 12 neurons comprised 
of 7 weights each, was developed for the nominal 
process conditions using methods developed in prior 
work (Conradie et al, 2000). As discussed in section 
3.4, ANS utilised this original neurocontroller to 
initialise a swarm of 10 neurocontrollers and each 
swarm neurocontroller was evaluated on-line over 20 
sample periods. The inaccurate sensors and randomly 
changing process conditions make obtaining accurate 
feedback (i.e., evaluations) for ANS difficult. The ten 
evaluations, though not based on precise information, 
determined the direction and velocity of the 
neurocontroller swarm.  
 
4.3  RESULTS 

 

4.3.1  Adaptation efficiency of ANS 
 
Figure 7 presents the instantaneous profit (IP) for the 
original neurocontroller and the ANS neurocontroller 
over a hundred day operating period. Figure 7 
illustrates the effect of the process changes on the IP. 
The average instantaneous profit for the original 
neurocontroller was 55 [$/min]. As shown in table 1, 
this is well below the optimal profit of 96 [$/min] 
expected during design for the nominal process 
conditions. The original neurocontroller's IP is reduced 
due to sub-optimal generalisation to the process 
changes, though it was able to keep the process stable. 
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Figure 7: Instantaneous profit for the original and ANS 
neurocontrollers over 100 days of on-line operation. 
The adaptive neurocontroller garners greater economic 
return from the changing process than the original 
neurocontroller. 
 
Table 1: Maximum IP for changing process conditions  

Process condition Maximum 

profit[$/min] 

Nominal process conditions 
K reduced, Off-set SF 

K reduced, Minimum SF deviation 
K reduced, Maximum SF deviation 

96 
106 
69 

130 

 
The original neurocontroller incurs an economic 
opportunity cost. Improved performance over 55 
[$/min] is attainable with ANS. The average increase in 
SF (i.e. off-set) presents an opportunity for greater 
venture profit. ANS achieves a substantially increased 
average profit of 94 [$/min] (figure 7), which is only 
slightly below the attainable 106 [$/min] possible for 
the increased SF (table 1).  
 
As seen in figure 7, the ANS neurocontroller has a 
larger IP standard deviation than the original 
neurocontroller. ANS tracks the optimal IP that is due 
to the gaussian disturbance in SF. For high SF values 
over extended periods (figure 6b, between samples 
2000-2250), an IP of 120 [$/min] was attained, though 
a maximum of 130 [$/min] is attainable (table 1). For 
unusually low SF values over extended periods, the 
swarm attained a minimal profit of 60 [$/min]. The 
optimal profit for this unfavourable process condition 
is 69 [$/min] (table 1). ANS thus approximates the 
changing optimal IP. A small difference remains, 
because SF changes substantially over time periods that 
are too short for the swarm to adapt completely. The 
swarm is thus essentially tracking the moving average 
of SF. Nevertheless, the IP for ANS control exceeds the 
highest IP for the original neurocontroller at all times 
(figure 7). ANS offers considerable benefits over the 
generalisation offered by the original neurocontroller.  
 
4.3.2  Avoiding Hard Process Constraints 
 
Figure 8 illustrates the swarm's ability to avoid the 
process search limits. Recall that the IP increases as the 
bioreactor level increases. The swarm neurocontrollers 
thus searched for control policies that increased the 
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Figure 8: Avoiding the hard level constraint. The trend 
line (solid) illustrates the swarm moving away from 
high level alarm set at 5.95 [m]. Process shutdown is 
thereby avoided. 
 
bioreactor level. Consequently, the swarm moved 
towards the high level alarm during on-line operation. 
The high level alarm of 5.95 [m] should never be 
exceeded; preserving the safety margin before 
bioreactor shutdown. A neurocontroller's fitness was 
penalised severely for exceeding the high level alarm. 
Such a penalised fitness was always lower than the 
fitness of a neurocontrol policy that remained within 
the search boundaries. Neurocontrollers, with a 
penalised fitness, no longer guided the swarm and the 
swarm moved away from the high level alarm. In 
Figure 8 at 3000 sample periods, the trend line 
indicates a move away from the high level alarm. 
Shutdown at a reactor level of 6.2 [m] was thus safely 
avoided in ANS' on-line search.   
 

4.3.3  Neuron Weight Adaptations 
 
Each neuron in a neurocontroller has a particular 
functionality that is a partial solution to the control 
task. A neuron's weight vector determines its 
functionality. The changes to a neuron's weight vector 
during adaptation, provides insight into how its 
functionality changed in response to the changing 
process conditions. Principal component analysis 
allows visualisation of neuron weight vectors and 
therefore neuron functionality.  
 
Figure 9 is a principal component plot of the weight 
vector of each neuron in the swarm's current best 
neurocontroller. After each adaptation, all the neuron 
weight vectors for the best swarm neurocontroller were 
plotted in figure 9 as circular markers. The markers 
thus represent the history of adapted neuron 
functionalities.  
 
In figure 9, the clusters indicate the different neuron 
functionalities that solve the control task.  A cluster 
that is distributed over a larger region of the neuron 
weight space, had undergone a greater degree of on-
line adaptation to its functionality. The extent of each 
neuron's adaptation is determined by the reigning 
process changes. 
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Figure 9: Principle component analysis of neuron 
functionality (85% variance explained). Circular 
markers represent neuron weight vectors. Each cluster 
represents the change in neuron functionality due to 
adaptation. The extent of each neuron's adaptation is 
determined by the reigning process changes. 
 

5.  DISCUSSION AND FUTURE WORK 
 
ANS' exploitative search preserves the existing 
neurocontroller's generalisation. For the bioreactor, 
adaptation failure (i.e., shutdown) never occurs during 
extensive implementation. Also, instability is never 
induced in the control response.  The bounded nature of 
each neuron cluster in figure 9 provides insight into 
how ANS preserves generalisation. Each 
neurocontroller retains memory of its best position (eq. 
1) during the five iterations between initialisations. As 
the fitness landscape changes, the fitness value of a 
neurocontroller's best position is no longer valid. A 
neurocontroller's best position rather serves as an 
example of where previous good solutions have been 
found. Memory of past neurocontroller positions biases 
the search in the direction of good past solutions. This 
memory function preserves generalisation by 
considering both past and current process information 
in the search. Re-initialisation, which clears the 
swarm's memory, limits prolonged bias to past 
solutions. Without limiting memory of past solutions, a 
drifting optimum would be difficult to track. 

ANS' search for optimal control policies in a changing 
process works as follows. Process changes affect each 
neuron's functionality differently. Some neurons 
consequently no longer contribute to optimal economic 
return. The functionality of such a neuron needs to be 
updated, while retaining information in its weight 
structure that is still valid.  
 
Consider a neuron weight that is optimal once adapted 
to a fixed value, despite continued process changes. 
Such fixed weights correspond to process conditions 
that remain constant (e.g., fixed growth parameter). As 
described in section 3.4, the possible directions for 
adaptation are limited to the positional experiences of 
all the swarm neurocontrollers. In ANS, the swarm 
neurocontrollers align along such a fixed weight, 
preventing (as per eq. 1) the swarm from moving along 
that particular weight dimension. After several ANS 
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Figure 10: Arrow lines indicate the trajectories of 
neuron functionalities in response to common (re-
occurring) process changes such as SF. ANS implicitly 
takes advantage of common process changes, which 
facilitates effective adaptation. 
 
iterations, only weights still relevant to improving the 
IP are implicitly changed. Re-occurring process 
changes (e.g., SF) govern which specific neuron 
weights are continuously changed to track the 
economic return. The dimensionality of the search is 
thus somewhat reduced. Figure 10 is a copy of figure 9, 
except that adaptation trajectories are emphasised by 
drawing arrow lines through the clusters. Each neuron 
functionality (cluster) moves along a fixed trajectory in 
response to re-occurring process changes. ANS 
establishes these trajectories implicitly and exploits this 
swarm knowledge for greater economic return.  
 
Future work will explicitly identify neuron 
functionalities that require adaptation. Such explicit 
knowledge may be used to further speed adaptation 
using fewer on-line evaluations. As ANS is a robust 
means for adapting neurocontrollers, it will be tested in 
other complex domains such as robotics and gaming. 
 

6.  CONCLUSIONS 
 
Although neurocontrollers generalise their control 
actions in a changing process, such generalisation 
(though robust) may be economically sub-optimal. 
Adaptive Neural Swarming augments neurocontroller 
weights on-line, thereby garnering greater economic 
return from the changing process. ANS balances the 
need to adapt with the need to preserve generalisation. 
ANS also effectively avoids hard operating constraints 
during its on-line search. ANS implicitly identifies re-
occurring process changes and uses this knowledge to 
speed adaptation. ANS is therefore a robust general 
tool for adapting of neural network controllers on-line. 
The greater economic return for the bioreactor case 
study suggests that the process industries would benefit 
significantly by implementing Adaptive Neural 
Swarming.  
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Abstract 
 
 
The Particle Swarm Optimization method has 
proven quite successful in treating a variety of 
applied problems.  Here we further test its 
capabilities by studying its behavior when 
applied to a challenging problem, namely the 
search for energy conformations of atomic 
clusters.  In its simplest form this is known as the 
Lennard-Jones Problem.  Results are compared 
with those achieved using simple Genetic 
Algorithms. 

1 INTRODUCTION 
The problem of minimizing the potential energy function 
of clusters of atoms is generally known as the molecular 
conformation problem.  Cluster sizes can range from a 
few atoms up to several hundred atoms.  Physical and 
chemical characteristics vary with size. The determination 
of the global minima or ground states of these energy 
functions is of particular interest to researchers in 
chemistry, biology, physics and optimization methods.  
One particular class of these problems in molecular 
conformation is that where the interaction potential is the 
pure Lennard-Jones potential function.  This turns out to 
be a very difficult problem to solve since the number of 
local minima has been estimated to increase exponentially 
with the number of atoms N (Tsai and Jordan, 1993; 
Stillinger, 1999).   Studies have shown that at N = 13 
there are 988 local minima, and for N = 98 the number 
grows to the order of 1040. In spite of this formidable 
hurdle, success has been found in locating what are 
believed to be the global minima (ground states) for 
systems with N as large as 250 (Hartke, 1993 and 2001).   
 While Genetic Algorithms (GA) have played an 
important role in treating this problem (Barron et al. 1999; 
Deaven and Ho, 1995; Zeiri, 1995), the generic GA has 
not proven to be very successful beyond small numbers of 
atoms, requiring a large number of generations in order to 
locate the global minima.  In place of it, modifications to 

the GA operations of crossover, and mutation have had to 
be made in order to bring about more rapidly converging 
sequences.  These variations have been based on physical 
insight into the problem (Hartke, 2001) incorporating 
crossover and mutation procedures based on the physical 
geometry of the clusters.   In addition, improvements have 
been achieved by incorporating local search algorithms 
into the GA as well (Deaven et al., 1996; Doye et al., 
1999; Neisse & Mayne, 1996; Radcliffe and Surry, 1995; 
Wales and Doye, 1997).  These investigations have shown 
that the problem can be treated using problem-specific 
GAs. 
Here we investigate and compare the success of the 
Particle Swarm Optimization  (PSO) method with a fairly 
generic GA when applied to the Lennard-Jones problem.  
There has already been some discussion of the similarities 
and differences between the PSO method and genetic 
algorithms (Eberhart and Shi, 1998; Angeline, 1998).  
The PSO method has proven to be successful in a variety 
of applications (Kennedy and Eberhart, 2001).  Our 
objective is to see how well it can handle quite a 
challenging function in order to better understand its 
capabilities.  Certainly the success achieved using special 
treatments tailored to the cluster problem will not be 
achieved using a simple approach such as the PSO.  
However, it’s ability to seek out the global minimum in a 
function with a large number of local minima will be 
severely tested.  If it can accomplish this test as well if not 
better than simple generic genetic algorithms, then it 
should merit recognition as a valuable tool for treating 
other global optimization problems. 

2 THE LENNARD-JONES PROBLEM  
The Lennard-Jones problem is concerned with 
determining the lowest-energy configuration of a cluster 
of neutral atoms interacting via the Lennard-Jones 
potential.  The function to be minimized is the total 
energy (in reduced units) of the Lennard-Jones cluster as 
computed from 
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where N is the number of atoms in the cluster, and rij 
represents the distance separating atom i and atom j. This 
problem has a long history (Hoare, 1979; Leary, 1997).  It 
has served as a test-bed for a wide variety of optimization 
algorithms, primarily due to the exponentially increasing 
number of local minima.  It is significant in the field of 
chemical physics for the insight gained by studying the 
structure of the clusters as the size increases.  It also 
serves as a reasonably accurate mathematical model of a 
real physical system, namely that of low-temperature 
microclusters of heavy rare-gas atoms such as argon, 
krypton and xenon. 
Much of the foundation for the study of the Lennard-
Jones problem was laid by the well-known results of 
Northby (1987).  He established multilayer icosahedral 
conformations as the dominant structural motif for the 
optimal microclusters and produced global optima for all 
N # 147.  Other authors (e.g. Xue, 1994;  Deaven et al. 
1996; Leary & Doye, 1999) have since found new 
configurations having lower energies than those of 
Northby for some values of N.  Many of these studies 
employed hybrid genetic algorithms with local search. 
More recently (Hartke, 2001) the PHENIX method, also 
based on a GA, has extended the values of N successfully 
treated up to 250.  It is believed that the lowest-energy 
configurations have now been determined for all N # 250. 

3 PARTICLE SWARM OPTIMIZATION 
The Particle Swarm Optimization (PSO) method has 
evolved from a purely qualitative social optimization 
scheme to a truly numeric optimization scheme (Kennedy 
and Eberhart, 1995; Eberhart and Kennedy 1995).  In its 
most applied form, the algorithm is designed to search for 
global optima in an n-dimensional search space of real 
numbers.  An excellent review of the background and 
philosophy behind this method can be found in a recently 
published book (Kennedy and Eberhart 2001). 
As in the more common Genetic Algorithm, a population 
of individuals is formed.  Each individual in the PSO 
method is considered as a “particle” which is free to move 
about the search space.  In the case of the Lennard-Jones 
problem each particle of the population is characterized 
by a set of 3N real numbers corresponding to the (x,y,z) 
positions of each atom.  The fitness of a particle 
corresponds to the energy of the collection of N atoms, 
with the objective to make this energy as small as 
possible.  In practice this energy is negative, 
corresponding to a ‘bound’ set of N atoms. 
If particle i in the population, at time t, is represented as 
the vector ( )ix t , then the change of position as the 
particle goes from one time step to the next is defined to 
be its velocity, 
 
 ( ) ( ) ( )1i i iv t x t x t= − −  
 

How this velocity changes at each time step is determined 
by the history of the particles past motion as well as that 
of its neighbours.  This information is encapsulated in two 
parameters, the previous best position ip  for this 
individual particle, and the previous best position gp  for 
all those particles in the neighbourhood of this particular 
particle.  We will define this neighbourhood later.   The 
formulas to adjust the particle’s velocity and position are 
then given by 
 ( ) ( ) ( )( )

( )( )
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1
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for the velocity, and 
 

( ) ( ) ( )1i i ix t x t v t= − +  
 
for the position.  Here w is a weighting factor which is set 
to 0.9 at the beginning of the process, and decreases 
linearly to 0.4 at the end of the specified number of time 
steps (Shi and Eberhart 1998).  The other two parameters,  

1ϕ  and 2ϕ  are positive random numbers with upper 
bounds max

1ϕ and  max
2ϕ . 

The other constraint on the system requires that the 
velocity is limited within a certain range so that all the 
particles will not escape from the search area.  This is 
defined by limiting each velocity to maxv± .  Finally, the 
neighbourhood of each particle, mentioned above, refers 
to those particles which are adjacent in the population.  
For example a neighbourhood of 2 particles means that 
the particle in question has one neighbour on either side 
of it.  A neighbourhood of 4 means that there are 2 
particles on either side.  It is understood that the 
population is considered to be a loop with the first and 
last particles in the population connected.  The algorithm 
is then reasonably straightforward. 
 begin PSO 
      g := 0 (generation counter) 
      Initialize population P(g) 

     Evaluate population P(g) (i.e. the cluster    
energy) 
      while not done do 
  g := g + 1 
  Evaluate new velocities  
  Evaluate new positions  
  Determine local and global best 
  Evaluate new population P(g) 
      end while 
 end PSO 
 
 

69ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION



4 GENETIC ALGORITHMS 
 
In order to do some sort of a comparison we have also 
carried out a number of calculations of the Lennard-Jones 
energies using a basic generic genetic algorithm, as well 
as a slightly more involved one.  The first GA we refer to 
as BasicGA, which is described by the pseudocode shown 
below: 

begin BasicGA 
      g := 0 (generation counter) 
      Initialize population P(g) 
      Evaluate population P(g) 
       while not done do 
  g :=g+1 
  Select P(g) from P(g-1) 
  Crossover P(g) 
  Mutate P(g) 
  Evaluate P(g) 
      end while 
 end BasicGA 
This algorithm employed Roulette wheel selection, 
single-point crossover, and the mutation consisted of 
randomly modifying one parameter.  The crossover 
probability was 0.8 and the mutation probability was 0.15. 
In addition we ran a more general genetic algorithm based 
on the Genetic Algorithm Optimization Toolbox (GAOT) 
(Houck) which incorporated three different kinds of 
crossover functions and  also three different mutation 
operators.  Geometric selection was used, the crossover 
methods used were simple, arithmetic, and heuristic, and 
the mutation operators were boundary, uniform, and non-
uniform (Michaleweiz 1992).  In each generation two sets 
of parents were chosen for each crossover method, and 
four individuals were chosen for each of the mutation 
methods.  Hence each generation is able to provide a 
wider search of the parameter space than in the case of the 
BasicGA above. 
 

5 CALCULATIONS 
In order to initially investigate the effect of the various 
parameters in the PSO calculation for the Lennard-Jones 
problem, we have focussed on a fairly simple case, that of 
the 8-atom cluster.  As the best energies for clusters 
having up to 250 atoms are well known, we have 
examined the convergence of the iterations to the best 
known energy for this case (-19.82).  Hence in the first 
part of this study we allow the iterations to proceed until 
the energy of the cluster (the best energy in the swarm) is 
within a small distance of the known value.  Here we have 

required the value of this energy to converge to 4 
significant figures. 
The first calculations examined the effect of the 
neighbourhood size on the rate of convergence.  We 
varied the size of the neighbourhood from 0 (meaning that 
all particles were in the neighbourhood) up to 14.  The 
size of the swarm was kept at 30 particles.  The maximum 
velocity was set at 0.2 and the bounds for max

1ϕ  and 
max
2ϕ  were both set at 2.0.  If the swarm did not converge 

after 10,000 iterations, it was terminated.  We repeated 
the runs 100 times and recorded the number of failures 
(i.e. the number of times that convergence was not 
achieved in the maximum allowed number of iterations), 
as well as the average of the number of iterations required 
for those cases where convergence was achieved.  Figure 
1 shows the behaviour of these two measures as a 
function of the neighbourhood size 
 
 
 
 
 
 
 
 
 
 
 
           Figure 1: Variation with the neighbourhood size 
 
The solid line in Figure 1 represents the number of 
failures, and the dashed line the average number of 
iterations.  Here we see that the average number of 
iterations for the runs which converged did not vary  
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Variation with the log of Max V. 
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significantly from around 5,000.  However there is a clear 
minimum for the number of failures when the 
neighbourhood size was either 2 or 4. 
We proceeded next to investigate the effect of varying the 
value of the maximum velocity (MaxV).  
The neighbourhood size was set to 4, and all other 
parameters were as above.  The maximum velocity was 
varied between 0.003 and 2.5.  With such a large range, 
we plotted the results as a function of the logarithm of the 
maximum velocity.  The same two measures were used as 
above, and are shown in Figure 2. 
The solid line, showing the number of failures for the 100 
trials, shows a broad minimum with the number of 
failures to converge being less than or equal to 20 for 
MaxV in the range from 0.1 to 0.8.  The number of 
average iterations has a minimum when MaxV equals 
0.01.  Hence again there is no common minimum.  
However, with the primary objective of achieving 
convergence, we have tended to focus more on the 
number of failures as opposed to the average number of 
iterations.  The latter quantity does not vary over a large 
range.  Selecting a maximum velocity anywhere in the 
range from 0.1 to 0.8 does not significantly affect the 
number of iterations to convergence.  Hence for the next 
computation, we chose to select a value of 0.1 for MaxV. 
The other variables which we looked at were those for the 
bounds max

1ϕ  and max
2ϕ .  Once again for the 8-atom 

cluster we took the neighbourhood size as 4, and the 
maximum velocity was set at  0.1.  Setting the two bounds 
to be equal to each other, we obtained the results shown in 
Figure 3.   
 

Table 1. 

The value of 2.0 gives the best results in the sense that the 
number of failures is the least and the average number of 
iterations appears to increase with increasing maxϕ . 
While we recognize that there could be some dependence 
on the number of atoms and the nature of the energy 
surface in determining these results, we took these best 
parameters and ran calculations of cluster sizes for N 
varying from 4 to 15.  We wanted to test the ability of the  
 
 
 
 
 
 
 
 
 
 Figure 3:  Variation with maxϕ  
 
PSO to achieve convergence over this range, and compare 
the results with fairly simple Genetic Algorithms applied 
to the same problem.  In addition to looking for 
convergence, we also kept track of the number of function 
evaluations required for each run.  In all cases we took the 
number of particles to be 30 and ran for 20,000 iterations.  
100 trials were run for each value of N and the iterations 
were terminated if the energy matched the best known 
value for that value of N, up to 4 significant figures.  If  
 

           PSO                      GA 

N 
Cluster 
Energy 

No. Of 
Failures 

Av. No. 
iterations 

Av. No. 
Function 
Evaluations

No. Of 
Failures 

Av. No. 
Generations 

Av. No. 
Function 
Evaluations

Best 
Energy
(GA) 

4 -6 0 2500 75008 57 11634 150016  
5 -9.104 0 5982 179487 95 16464 212581  
6 -12.71 96 7439 223177 100 20000 257500 -12.69 

7 -16.51 52 8547 256424 100 20000 256720 -16.49 

8 -19.82 29 9346 280388 100 20000 257482 -19.76 

9 -24.11 67 10143 304293 100 20000 258916 -23.99 

10 -28.42 91 9428 282846 100 20000 256877 -28.16 

11 -32.77 95 11309 339294 100 20000 257706 -30.68 

12 -37.97 96 10728 321855 100 20000 258336 -36.89 

13 -44.33 100 20000 600000 100 20000 256950 -41.94 

14 -47.84 99 16704 501120 100 20000 258426 -42.95 

15 -52.32 97 16885 506550 100 20000 258444 -48.92 
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the run did not converge to this limit under the 20,000 
iteration limit, then the run was counted as a failure. 
Table 1 provides a summary of these results for N = 4 to 
15.  The second column is the known lowest energy for 
each of  these cluster sizes (Leary, 1997).  The next three 
columns show the PSO results:  the number of failures to 
converge out of the 100 total trials; the average number of 
iterations required for those trials which did converge; 
and the average number of function evaluations used in 
the converged runs.  The number of failures to converge 
is also graphed in Figure 4 as a function of N.  Here two 
plots are shown, the solid line shows runs which were 
terminated after 10,000 iterations if convergence was not 
achieved, whereas the dashed line shows the same results 
for 20,000 iterations.  It can be seen that there is not a 
great deal of difference between these two results. 
 
 
 
 
 
 
 
 
 
 
 
                          Fig. 4.  Failures vs N 
  
Table 1 also shows the results of runs using the modified 
GA.  The basic GA was not successful in the sense that  
after 500,000 generations, convergence could not be 
achieved even for N = 4 atoms.  Limiting the runs to 
20,000 generations and using a population size of 30, the 
modified GA did find the known energies for N=4 and 
N=5, but was unsuccessful in 100 trials for the other 
values of N.  The best energies achieved are shown in the 
table, and for the smaller values of N are relatively close 
to the known energies, indicating that allowing the GA to 
continue would likely achieve convergence. 
The PSO method was able to achieve convergence in at 
least one of the trials for all values of N studied here, 
except for N = 13.  In many cases only a few of the trials 
converged, seeming to indicate that the particle “swarm” 
could not get close enough to the fixed point in the set 
number of iterations.    

6 SUMMARY AND CONCLUSIONS 
The Particle Swarm Optimization method has been 
applied to a variety of areas since its introduction only a 
few years ago.  As far as we are aware this is the first time 

that it has been applied to the energy conformation 
problem for atomic clusters.  There has also been some 
other work on comparing the PSO with genetic algorithms 
(Eberhart and Shi 1998; Angeline 1998).  
Genetic algorithms incorporate selection, crossover and 
mutation schemes in order to search the parameter space.  
In the PSO there is no specific selection process, however 
each individual carries with it a copy of its personal best 
value, which serves a somewhat similar role to that of a 
parent.  The offspring of an individual is a function of this 
best value.  The PSO is the only evolutionary algorithm 
that does not incorporate selection of the fittest. 
The role of the crossover function in the GA is to select 
information from parents (usually two) to create 
offspring.  In the PSO the influence on one particle by the 
others comes only in the value of the best position of the 
particles in the defined neighbourhood.   
Mutations are an important aspect of the GA process in 
that they help to break out of the genetic sequence 
generated by  the parents and offspring.  However a 
common limitation of the GA is that as the population 
converges, the average fitness value becomes high so that 
mutations will usually result in a low-fitness chromosome 
which will be rejected by the selection process.  The 
result is that the process may converge to a local optimum 
instead of finding the global one.  There are variations 
which try to circumvent this, including the incorporation 
of local optimization methods. 
Particle swarm uses a highly directional mutation 
operation as each individual’s velocity vector is modified 
using a vector whose direction lies between the personal 
best and the neighbourhood best.  As a consequence the 
PSO may have difficulties when the average local 
gradients point away from the global optima or are 
constantly changing. 
Our calculations here have shown that the PSO is indeed 
an effective optimization method.  Significantly better 
results have been found for the location of the global 
optimum energy value for a cluster of atoms interacting 
via the Lennard-Jones potential than for the case of a 
relatively generic GA.  The potential energy surfaces for 
these problems are known to contain large numbers of 
local minima, often very close to the global minima for 
certain values of N.  Hence it is not unexpected to find 
that many of the runs converge to one of these local 
minima.   
The use of a low value of the maximum velocity in our 
calculations undoubtedly resulted in slow convergence in 
most cases, however it was somewhat necessary in the 
sense that the parameter values for the sizes of clusters 
studied here are in the range [-1, 1].  Small variations in  
these parameter values can shift the energy significantly, 
so that it is important to search over a relatively fine 
mesh. 
The runs with the genetic algorithms quickly converged to 
a limit, and then tended to stay near that value for most of 
the subsequent generations.  Here it would help to have 
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more flexible mutation and selection schemes to prevent 
this from happening. 
Future work will focus on studying possible variations to 
the PSO which can help improve the success rate for this 
type of problem.   
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Abstract

For the valuation of American put options ex-

act pricing formulas haven't as yet been de-

rived We therefore determine analytical ap-

proximations for pricing such options by in-

troducing the Generalized Ant Programming

(GAP) approach applicable to all problems

in which the search space of feasible solu-

tions consists of computer programs. GAP is

a new method inspired by Genetic Program-

ming as well as by Ant Algorithms. Applying

our GAP-approximations for the valuation of

American put options on non-dividend pay-

ing stocks to experimental data as well as

huge validation data sets we can show that

our formulas deliver accurate results and out-

perform other formulas presented in the lit-

erature.

1 INTRODUCTION

In their seminal papers Black and Scholes (1973) and

Merton (1973) derived an analytical solution for the

valuation of European call options on stocks paying no

dividends during the time to expiration. Merton ad-

ditionally showed that premature exercising of Amer-

ican call options on this type of stocks is never op-

timal and that the valuation can also be made using

the Black/Scholes{Merton method. If in the case of an

American call option, dividends are paid, and these are

known with certainty, its value can be obtained using

the analytically exact pricing model of Roll (1977).

In comparison to American call options, premature ex-

ercise of American put options on non-dividend paying

stocks may produce bene�ts, if the stock price falls

below a certain, permanently variable critical value

(killing price). As a result of this di�erence between

the premature exercising of American call options and

of American put options, ascertaining the optimal time

for premature exercising, or the killing price, is a part

of the problem to be solved, for which there was pre-

viously no exact model. Thus, the valuation of Amer-

ican put options is based on numerical procedures or

analytical approximations. The best-known numeri-

cal procedures are the lattice approach of Cox, Ross,

and Rubinstein (1979) and the �nite di�erence method

of Brennan and Schwartz (1977). However, getting

accurate results by using numerical procedures nor-

mally requires long calculation time. A simple analyt-

ical approximation for the valuation of American put

options on non-dividend paying stocks was presented

by Johnson (1983). This simple analytical approxima-

tion, however, is not very accurate, so that many more

ambitious analytical approximations have been devel-

oped. The best-known of these come from MacMillan

(1986) and Geske and Johnson (1984).

MacMillan's analytical approximation for the valua-

tion of American put options consists of raising the

value of a suitable European put option by the value

of the approximately calculated premature exercising

of the option. This method forms the basis for analyt-

ical approximations used to evaluate a range of other

American options, such as index options, currency op-

tions, and options on futures (see, e.g., Barone-Adesi

and Whaley (1987)). Geske and Johnson's analyti-

cal approximation assumes that premature exercise is

possible only at particular, discrete points in time. Ac-

cordingly, for each of these moments an option value is

calculated, and, based on this, the value of the Amer-

ican put option is ascertained using the polynomial

extrapolation method. This method treats American

put options both with and without dividends. The

MacMillan method, however, deals only with put op-

tions on stocks paying no dividend during the maturity

of the options, although it was extended by Barone-

Adesi and Whaley (1988) as well as Fischer (1993) to
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include the dividend paying case. It is characteristic

of most approximations for the valuation of Ameri-

can put options found in the literature that they ap-

proximate either the stochastic stock price process, or

the partial di�erential equation (with the appropri-

ate boundaries) which implicitly describes the option

price. In contrast, Geske and Johnson (1984) as well

as Kim (1990) formulate a valuation equation which

represents an exact solution of the partial di�erential

equation, and then solve it either by analytical approx-

imation or by numerical techniques.

During the last few decades an increasing number of

researchers of various disciplines has been impressed

by the problem-solving power of nature. They devel-

oped optimization algorithms and heuristics based on

the imitation and simulation of admirable natural phe-

nomena. For example, Arti�cial Neural Networks im-

itate the principle of human brains and Evolutionary

Algorithms make use of the Darwinian principle of the

survival{of{the{�ttest. Both methodologies are used

to solve problems which are normally not amenable to

traditional solution techniques and have been applied

to option pricing problems. For instance, Hutchinson,

Lo, and Poggio (1994) employ an arti�cial neural net-

work for the valuation of European options whereas

Chen, Lee, and Yeh (1999), Chidambaran, Lee, and

Trigueros (2000), and Keber (2000) use Genetic Pro-

gramming to solve option pricing problems.

A further example and one of the most recent develop-

ments of nature-based solution techniques is the Ant

Colony Optimization meta-heuristic. Ant Algorithms

originally introduced by Dorigo and colleagues (Dorigo

(1992) and Dorigo, Maniezzo, and Colorni (1991)) as

a multi-agent approach to diÆcult combinatorial op-

timization problems like the travelling salesman prob-

lem (TSP) are inspired by the foraging behaviour of

real ant colonies, in particular, how ants can �nd short-

est paths between two points. Real ant colonies are

capable of solving such problems using collective be-

haviour and indirect communication via a chemical

substance called pheromone deposited on the ground.

It is hardly surprising that for the �rst time ant al-

gorithms have been applied to the travelling salesman

problem because the analogy between the real ants'

problem and the TSP is obvious. In the meantime,

ant-based algorithms have been applied successfully to

a broad �eld of combinatorial optimization problems

(see, e.g., Dorigo, Caro, and Gambardella (1999)).

In this contribution we develop the Generalized Ant

Programming (GAP) approach as a new variant of ant

algorithms and apply the proposed method to the op-

tion valuation problem. GAP enables computers to

solve problems without being explicitly programmed.

It is applicable to all problems in which the search

space of feasible solutions consists of computer pro-

grams. GAP works by using arti�cial ants to automat-

ically generate computer programs. As an acid test for

GAP we derive analytical approximations for the valu-

ation of American put options on non-dividend paying

stocks. We focus on this problem for several reasons.

Firstly, analytical exact solutions for pricing American

puts have not as yet been derived. Secondly, testing

new techniques should not be based on simple prob-

lems because any assessment of the proposed method

would be open to criticism. Furthermore, our results

have to be compared with other approximations pre-

sented in the literature. This can be easily done by

using the most frequently quoted approximations men-

tioned above. Using experimental data as well as huge

validation data sets we can show that the GAP based

formulas for the valuation of American put options on

non-dividend paying stocks deliver accurate approxi-

mation results and outperform other approximations

presented in the literature.

In the second section we focus on the concept of the

Generalized Ant Programming approach. The third

section presents the GAP-approximations for the valu-

ation of American put options on non-dividend paying

stocks. In the fourth section we show the experimental

results. The contribution concludes with a summary.

2 GENERALIZED ANT

PROGRAMMING

2.1 INTRODUCTION

The Generalized Ant Programming (GAP) approach

is a new method inspired by the Genetic Program-

ming approach introduced by Koza (1992) as well

as by Ant Algorithms originally presented by Dorigo

(1992) as a multi-agent approach to diÆcult combi-

natorial optimization problems like TSP. GAP is an

approach designed to generate computer programs by

simulating the behaviour of real ant colonies. When

travelling real ants deposit pheromone on the ground

which in
uence the choices they make. Ants tend to

choose steps marked by strong pheromone concentra-

tions. Pheromone trails can be seen as \public in-

formation" which is modi�ed by ants to re
ect their

experience while solving a problem, e.g., to �nd short-

est paths between the nest and food sources. The

quantity of pheromone left by an ant depends on the

amount of food found. Within a given interval of time,

shorter paths can be travelled more often, which causes

a stronger pheromone concentration. In return, this
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increases the probability of the path to be chosen.

2.2 METHODOLOGY

Generalized Ant Programming is an algorithmic

framework which enables computers to solve problems

without being explicitly programmed. It is applicable

to all problems in which the search space of feasible

solutions consists of computer programs. GAP works

by using arti�cial ants to automatically generate com-

puter programs. Similar to real ants, the arti�cial ants

explore a search space now representing the set of all

feasible computer programs which we describe as paths

through a graph. The pheromone amount deposited by

an arti�cial ant depends on the quality of the solution

found. In other words, it depends on which path (com-

puter program) was chosen. The quality of a path is

measured using the corresponding computer program

as an \input parameter" to an \algorithmic regression

problem". These transpositions lead to our proposed

GAP approach which we describe in a more detailed

way in the next few paragraphs.

Computer programs are usually based on a well de-

�ned programming language. In our GAP{application

we therefore use a programming language L speci�ed

by the context-free grammar G = (N ; T ;R;S), see,
e.g., Aho and Ullmann (1972). L(G) is to be seen sim-

ply as the set of all analytical expressions which can

be produced from a start symbol S under application

of substitution rules R, a �nite set of non-terminal

symbols N , and a �nite set or vocabulary of terminal

symbols T . Thus,

L = fp j S =) p ^ p 2 T �g (1)

where T � represents the set of all analytical expres-

sions which can be produced from the symbols of the

vocabulary T . Using the grammar G a derivation

of an analytical expression p 2 L consists of a se-

quence t1; t2; : : : ; tp of terminal symbols and the corre-

sponding derivation steps (productions) ti ! ti+1 (for

i = 1; : : : ; p� 1). This derivation is denoted by

S �

=)
G

p: (2)

To take a simple example, assume

G = (N = fS; T; Fg;
T = fa;+; �; (; )g;
R = fS ! S + T jT; T ! T � F jF; F ! (S)jag;
S)

and let us express this grammar in an equivalent

graphical representation (syntax diagram).

S -
T

-

T
j+

6

T -
F

-

F
j�6

F - j
a

-

j( S j)-
6

Each derivation in this grammar represents a simple

arithmetic expression including the symbols a;+; �; (;
and ) and can be interpreted as a path through the

syntax diagram. An example of a derivation in our

simple grammar would be

S) S + T ) T + T ) F + T ) a+ T

) a+ T � F ) a+ F � F ) a+ a � F ) a+ a � a
In the sense of GAP, L is the search space of all po-

tential analytical expressions to be generated, p 2 L is

a path which can be visited by ants, and J (t) � L is

a set of paths already visited at time t. Furthermore,

each path p 2 L consists of a sequence of terminal

symbols t1; t2; : : : ; tp and the corresponding derivation

steps ti ! ti+1 (for i = 1; : : : ; p� 1).

In GAP each path pi 2 J (t) can be seen as a derivation

S �

=)
Pi

pi; (3)

where Pi � G. While walking each ant forms a new

path p
0 which is a derivation based on P 0 = [ni=1Pi �

G,
S �

=)
P0

p
0
; (4)

and where all derivation steps contained in p
0 are se-

lected according to the pheromone amounts of the cor-

responding paths pi. In the proposed GAP-application

the pheromone trail is put on whole paths implying

that the derivation steps describing a path are equally

weighted. This is just for simpli�cation and can be ex-

tended to di�erent pheromone amounts along a path.

We are going to present this extension in one of our

next papers.

The amount of pheromone trail on path p at time t is

given by

�p(t) = (1� �) � �p(t) + ��p(t); (5)

where 0 < � � 1 is the coeÆcient representing

pheromone evaporation, and

��p(t) =

KX
k=1

��
k
p (t)
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is the pheromone increase obtained by cumulating the
contributions ��

k
p (t) of each ant k = 1; : : : ;K. In

other words, this is the amount of pheromone de-
posited on path p by the kth ant at time t. This quan-
tity of pheromone trail is given by

��
k
p (t) =

�
Q � Lk(t; p) if kth ant takes path p

0 otherwise
(6)

where Q is a constant and Lk(t; p) is the value of the

objective function obtained by ant k at time t. As

GAP is similar to the Genetic Programming approach

each path p 2 L represents a computer programm (or

an analytical expression) and can therefore be seen as

a function p : E ! A transforming input data E into

a solution or output data A. Accordingly, the func-

tion Lk :A ! IIR has to be de�ned in a way that it

awards higher values to those paths (computer pro-

grams) which represent a good solution to the task in

hand, and lower values to less suitable paths (com-

puter programs). The value of the objective function

is measured using a representative set of test records

Ei, for i = 1; : : : ;D. If these input data are processed

using the computer program p 2 J (t), the result will

be the output data Ai, which can then be compared

to the target output data AS
i . Using a deviation func-

tion Æ(Ai;AS
i ) in a way that it delivers higher values

the more the output data di�er from the target output

data, the aggregated deviation is given by

z(p) =

DX
i=1

Æ(Ai;AS
i ) with Ai = p(Ei): (7)

The objective function Lk(t; p) can be formulated as

Lk(t; p) =
1

1 +z(p)
(8)

so that the values of the objective function lie between

zero and one, and larger values represent better paths

(computer programs).

For the (new) path p
0 2 L(P 0) being built by the

k
th ant, see (4), the probability of selecting derivation
steps describing old paths pi 2 J (t) is given as

P
k
pi
(t) =

8>><
>>:

[�pi(t)]
� � [�pi ]

�X
�2P0

k
(t)

[��(t)]
� � [�� ]�

if pi 2 P 0k(t)

0 otherwise

(9)

where P 0

k(t) � P 0(t) is the set of derivation steps of

path pi that the k
th ant has not visited yet. �pi is a

heuristic value of including derivation steps of pi. The

parameters � and � control the relative importance of

pheromone trail versus visibility.

Using the above de�nitions, GAP can be outlined by

the following (pseudo) computer program.

[ 0] program Generalized AntProgramming;

[ 1] t = 0;

[ 2] Init �; �; �;Q;J (t); �p(t);

[ 3] repeat

[ 4] t = t+ 1;

[ 5] for each ant k do

[ 6] Build a path p
0 according to (4) and (9);

[ 7] Calculate Lk(t; p
0) using (8);

[ 8] J (t) = J (t� 1) [ p
0;

[ 9] end;

[10] Save the best solution found so far;

[11] Update trail levels �p(t) according to (5);

[12] Shrink J (t);

[13] Perform global shaking on �p(t);

[14] until termination;

[15] end.

While most of the programming steps are already dis-

cussed, programming step [12], Shrink J (t), is to be

seen in conjunction with step [8], J (t) = J (t�1)[p0.
Executing [8] repeatedly implies that the set of paths

already visited, J (t), becomes bigger and bigger or

could go to in�nity in worst case which is highly unde-

sirable. On the other hand, J (t) also contains paths

where pheromone trails are completely evaporated so

that they can be excluded in further exploration, i.e.,

when ants choose a new path. Hence, in step [12] we

shrink J (t) accordingly. A second step not yet men-

tioned is the global shaking procedure in [13]. In (1)

we choose a speci�cation (of our language) which is of

�nite size, although the language being speci�ed is not

�nite. Hence, GAP is comparable to dynamic prob-

lems such as the TSP with the insertion or deletion

of cities, see, e.g., Bonabeau, Dorigo, and Theraulaz

(1999) and Guntsch, Middendorf, and Schmeck (2001).

If, in GAP, the pheromone amount on a derivation step

(or path) becomes much higher than all others, this

step (or path) will almost certainly always be chosen.

This would be �ne in a static model but is a prob-

lem in GAP because it prevents ants from taking new

derivation steps. Similar to dynamic approaches we

therefore apply the \shaking technique" to normalise

the pheromone levels. The formula used in our appli-

cation is a logarithmic one and is given by

�p(t) = �
0
p �
�
1 + ln

�
�p(t)

�
0
p

��
; (10)

where �0p is the minimum value for �p(t), forced by the

algorithm, so that �p(t) � �
0
p (Eyckelhof (2001) and

St�utzle and Hoos (2000)). In our GAP-application we

use the initial value as the lower boundary.
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2.3 RELATED WORK

To our knowledge, the �rst attempt using ants for au-

tomatic programming comes from Roux and Fonlupt

(2000). At �rst glance one tends to believe that their

approach can solve symbolic regression problems. But

on a closer view it is doubtful whether the approach

provides accurate approximation results. Hence, we

have retraced and implemented their method. Testing

the approach on several problems we have got poor

approximation results. This is in accordance with the

results presented in their own paper which, from our

point of view, are not very promising. Furthermore,

in the present version of the proposed method the au-

thors focus only on symbolic regression problems. In

comparison, our approach can be used for general \al-

gorithmic regression problems". Thus, we refer to our

approach as Generalized Ant Programming.

3 APPLICATION

3.1 EXPERIMENTAL DESIGN

By applying the GAP approach to option pricing we

have to specify some parameters. For the aggregated

deviations used in the objective function (8) we used a

randomly generated training sample of 1,000 American

put options on non-dividend paying stocks described

by the tuple hP0; S0; X; r; T; �i where S0 > S
�. S� rep-

resents the killing price calculated using MacMillan's

(1986) procedure, P0 refers to the \exact" value of an

American put option on a non-dividend paying stock

at t = 0, S0 denotes the stock price at t = 0, X is the

exercise price, r represents the annual continuous risk-

free interest rate (in %), T is the time to expiration (in

years), and � is the annual volatility of the stock price

(in %). Each option price P0 was calculated by using

the �nite di�erence method1 and served as the exact

value of the American puts. Applying the property

that option prices are linear homogenous in S0 and

X , i.e., 
 � f0(S0; X; r; T; �) = f0(
 � S0; 
 � X; r; T; �)

where 
 is a constant and f0 denotes a function for

calculating the option price, we are able to use a stock

price S0 = 1 for all the options of the training sam-

ple. The remaining parameters were drawn randomly

based on uniform distributions. In accordance with

the literature as well as realistic circumstances we de-

�ned the following domains: 2 � r � 10, 1=360 � T � 1=4,

10 � � � 50, and 0:8 � � � 1:2. The domain of

the moneyness ratio � = S0=X is based on the con-

sideration that option trading always starts near-the-

money. Additionally, Stephan and Whaley (1990) look

at a sample of 950,346 stock option transactions and

1With �t = (1=365)=5, �S = 0:01, and Smax = 2 � S0.

report that the moneyness is between 0.9 and 1.1 in

about 78 % of cases.

In accordance with the Generalized Ant Programming

approach we transformed each tuple hP0; S0; X; r; T; �i
into an input data record Ei (b= hS0; X; r; T; �i) and a

corresponding target output data record AS
i (b= hP0i),

for i = 1; : : : ; 1000. For the aggregated deviations

used in (7) we used the sum of the squared errorsP1000

i=1 (Ai � AS
i )

2. In the terminal symbol set we in-

cluded the variables S0, X , r, T , �, �, ephemeral con-

stants, the commonly used mathematical operators +,

�, �, �, px, ln(x), x2, xy , and the cumulative dis-

tribution function of the univariate standard normal

distribution �(x). For the substitution rules, R, and
the non-terminal symbol set, N , we used subsets of

the grammar de�ning Jensen and Wirth's \Standard

Pascal" (see Jensen and Wirth (1975), pp. 110{118).

This subset was chosen so that simple analytical ex-

pressions can be derived. For the other GAP related

parameters we used the following settings resulting in

a balanced relationship between convergence speed,

calculation e�ort and e�ectiveness of the GAP algo-

rithm. The ant colony includes K = 50 members and

for the relative importance of pheromone trails we used

� = 1. The remaining parameters are de�ned as fol-

lows: � = 1; � = 0:5 and Q = 1. Among other things,

� is used to restrict the formula complexity. Further-

more, we stopped the GAP algorithm after 100,000

cycles.

3.2 APPROXIMATION

Applying the GAP approach as described we get vari-

ous approximations for the valuation of American put

options on non-dividend paying stocks. One of our

best approximations (for options with S0 = 1 and

S0 > S
� as mentioned above) is given by

P0 � P
GAP
0 = X � e��r�T � �(�d2)� S0 � �(�d1) (11)

where

d1 =
ln(S0=X)

�
p
T

; d2 = d1 � �

p
T :

The above formula is as derived by the GAP algo-

rithm without possible simpli�cation. Looking at (11)

it is amazing that our formula can be characterised

as a simple approximation when compared to other

analytical approximations presented in the literature.

Furthermore, our formula shows a strong structural

similarity to the Black/Scholes{Merton equation for

valuing European put options. Both formulas are iden-

tical except for the parameters d1 and d2 as well as �r

given in the appendix.
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4 EXPERIMENTAL RESULTS

To give a �rst impression of the accuracy of the GAP

based analytical approximations for the valuation of

American put options on non-dividend paying stocks

we use the data sets of Geske and Johnson (1984)

and Barone-Adesi and Whaley (1988) because these

data sets are often used as comparisons. Furthermore,

we use a huge sample of 50,000 randomly generated

American put options (validation data set). This en-

sures that the assessment of the approximations will be

highly accurate. The corresponding parameters are in-

dependent from those of the training sample and their

domains are as follows: 10 � S0 � 100, 2 � r � 8,
1=360 � T � 1=4, 5 � � � 50, and 0:8 � � � 1:2. The

numerically exact put option and killing prices P0 and

S
� were calculated using the �nite di�erence method

(with �t = (1=365)=5, �S = 0:01, and Smax = 2 � S0)
and MacMillan's (1986) procedure, respectively. For

the method-related comparison we use the most fre-

quently quoted analytical approximations P J
0 of John-

son (1983), PGJ
0 of Geske and Johnson (1984), and

P
MM
0 of MacMillan (1986).

In Table 1 and 2 the GAP based approximation PGAP
0

as well as the most frequently quoted approximations

P
J
0 , P

GJ
0 , and P

MM
0 are applied to the data sets

of Geske and Johnson (1984) and Barone-Adesi and

Whaley (1988), respectively. P0 denotes the numeri-

cally exact put option price. At the end of each table

the three error measures mean absolute error (MAE),

mean squared error (MSE) and mean absolute percent-

age error (MAPE) are given for each approximation.

The approximation results can be summarised as fol-

lows:

� From Tables 1 and 2 it can be seen that John-

son's (1983) put pricing formula delivers less ac-

curate approximations. The mean absolute er-

rors are about 7 and 71 pence, respectively. The

next best approximation comes from the GAP ap-

proach having mean absolute errors of about two

and three pence, respectively. MacMillan's (1986)

and Geske and Johnson's (1984) approximations

are better than the others because their mean ab-

solute errors are between about four tenths of a

penny and two pence. With respect to the ac-

curacy of the GAP based approximation we have

to keep in mind that only 40 % of the options

are consistent with the parameter domains used

in the GAP application. However, if we look at

these options exclusively the GAP based formula

delivers the best approximations.

The application results just shown cannot be used for

Table 1: Approximations for the value of American put

options on non-dividend paying stocks (S0 = 40; r =

4:88, data from (Geske and Johnson 1984, page 1519)).

T � X P0 PJ
0

PMM
0

PGJ
0

PGAP
0

0.0833 0.20 35.00 0.0063 0.0062 0.0065 0.0062 0.0063

0.3333 0.20 35.00 0.2001 0.1969 0.2044 0.2000 0.2042

0.5833 0.20 35.00 0.4323 0.4205 0.4415 0.4318 0.4582

0.0833 0.20 40.00 0.8509 0.8406 0.8503 0.8521 0.8533

0.3333 0.20 40.00 1.5787 1.5262 1.5768 1.5759 1.5937

0.5833 0.20 40.00 1.9894 1.8916 1.9888 1.9827 2.0551

0.0833 0.20 45.00 5.0000 4.8403 5.0000 4.9969 5.0000

0.3333 0.20 45.00 5.0875 4.7882 5.0661 5.1053 5.1069

0.5833 0.20 45.00 5.2661 4.8584 5.2364 5.2893 5.3536

0.0833 0.30 35.00 0.0777 0.0777 0.0780 0.0772 0.0773

0.3333 0.30 35.00 0.6967 0.7056 0.7014 0.6972 0.7012

0.5833 0.30 35.00 1.2188 1.2390 1.2281 1.2198 1.2506

0.0833 0.30 40.00 1.3081 1.3047 1.3078 1.3103 1.3104

0.3333 0.30 40.00 2.4810 2.4757 2.4783 2.4801 2.4952

0.5833 0.30 40.00 3.1681 3.1634 3.1667 3.1628 3.2331

0.0833 0.30 45.00 5.0590 4.9910 5.0470 5.0631 5.0578

0.3333 0.30 45.00 5.7042 5.6090 5.6794 5.7017 5.7232

0.5833 0.30 45.00 6.2421 6.1265 6.2150 6.2367 6.3292

0.0833 0.40 35.00 0.2466 0.2499 0.2472 0.2461 0.2461

0.3333 0.40 35.00 1.3447 1.3886 1.3491 1.3461 1.3421

0.5833 0.40 35.00 2.1533 2.2475 2.1619 2.1553 2.1698

0.0833 0.40 40.00 1.7659 1.7763 1.7659 1.7688 1.7670

0.3333 0.40 40.00 3.3854 3.4494 3.3825 3.3863 3.3902

0.5833 0.40 40.00 4.3506 4.4728 4.3494 4.3475 4.3943

0.0833 0.40 45.00 5.2856 5.2706 5.2735 5.2848 5.2847

0.3333 0.40 45.00 6.5078 6.5535 6.4875 6.5015 6.5211

0.5833 0.40 45.00 7.3808 7.4874 7.3597 7.3695 7.4498

MAE 0.0692 0.0082 0.0040 0.0210

MSE (�10�5) 1351.8420 15.4237 4.4433 117.0473

MAPE 0.0217 0.0045 0.0025 0.0096

a general assessment of the accuracy of the approxi-

mation formulas because the underlying data sets are

too small. If we use the 1,000 data records used in the

GAP approach as a basis for a general assessment the

problem arises that this data sample represents train-

ing data, and thus the assessment would be open to

criticism of being a \self-ful�lling prophecy". There-

fore, the de�nitive judgement of the approximation

formulas is to be made from the above mentioned val-

idation data set which is independent of the training

data set. Based on the validation data set Table 3 gives

the error measures and the graph in Figure 1 shows

the accuracy of the GAP based approximations as well

as Johnson's (1983), Geske and Johnson's (1984), and

MacMillan's (1986) put pricing formulas. The accu-

racy is shown in terms of cumulated frequencies of

the absolute deviations between the numerically cal-

culated exact put option price and the approximations

just mentioned.

� Johnson's (1983) put pricing formula delivers the

weakest approximation results. This can be seen

from Table 3 as well as the graph in Figure 1.

While for the other approximations it can be said

with almost 100 % probability that the approx-

imated option prices di�er from the numerically
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Table 2: Approximations for the value of American put

options on non-dividend paying stocks (X = 100, data

from (Barone-Adesi and Whaley 1988, page 315)).

T � S0 P0 PJ
0

PMM
0

PGJ
0

PGAP
0

r = 8:00

0.25 0.20 80.00 20.0000 18.0909 20.0000 20.0012 20.0000

0.25 0.20 90.00 10.0353 9.0470 10.0130 10.0730 10.0456

0.25 0.20 100.00 3.2217 3.0378 3.2201 3.2115 3.2262

0.25 0.20 110.00 0.6642 0.6406 0.6810 0.6647 0.6725

0.25 0.20 120.00 0.0888 0.0865 0.0967 0.0879 0.0863

r = 12:00

0.25 0.20 80.00 20.0000 17.1344 20.0000 20.0112 20.0000

0.25 0.20 90.00 10.0000 8.2620 10.0000 9.9811 10.0000

0.25 0.20 100.00 2.9225 2.6265 2.9251 2.9110 2.9050

0.25 0.20 110.00 0.5541 0.5189 0.5781 0.5541 0.5549

0.25 0.20 120.00 0.0685 0.0654 0.0789 0.0676 0.0609

r = 8:00

0.25 0.40 80.00 20.3196 19.7588 20.2478 20.3699 20.3078

0.25 0.40 90.00 12.5635 12.4222 12.5142 12.5511 12.5769

0.25 0.40 100.00 7.1049 7.1204 7.0999 7.1018 7.1162

0.25 0.40 110.00 3.6968 3.7476 3.7120 3.7017 3.7002

0.25 0.40 120.00 1.7885 1.8310 1.8068 1.7892 1.7824

r = 8:00

0.50 0.20 80.00 20.0000 16.6555 20.0000 19.9402 20.0000

0.50 0.20 90.00 10.2890 8.8392 10.2348 10.3712 10.4406

0.50 0.20 100.00 4.1885 3.7889 4.1933 4.1519 4.3474

0.50 0.20 110.00 1.4095 1.3140 1.4459 1.4121 1.5142

0.50 0.20 120.00 0.3969 0.3768 0.4244 0.3961 0.4239

MAE 0.7083 0.0184 0.0173 0.0256

MSE (�10�4) 14886.3928 7.3752 8.2725 29.2733

MAPE 0.0721 0.0218 0.0034 0.0177

Table 3: Error measures for the approximations for the

value of American put options on non-dividend paying

stocks based on a sample of 50,000 put options.

P
J
0 P

MM
0 P

GJ
0 P

GAP
0

MAE 0.0674 0.0059 0.0031 0.0025
MSE (�10�3) 27.0546 0.1197 0.1008 0.0201
MAX 1.8806 0.0827 1.2102 0.0584

exact option prices by no more than 5 pence, de-

viation to this level is only found in Johnson's

(1983) solution in 72 % of cases. Put another

way, in 28 % of cases there is a deviation of more

than 5 pence. Due to these poor results, John-

son's (1983) approximation is not considered in

further discussions.

� The next best approximations come fromMacMil-

lan (1986) and Geske and Johnson (1984) hav-

ing MAEs of about 6 and 3 tenths of a penny

and maximum absolute deviations of about 8 and

120 pence, respectively. In comparison, the GAP

based formula delivers the best approximations

having a MAE of two and a half tenths of a penny

and a maximum absolute deviation of about 6

pence.

� In option pricing we usally look at the penny ac-

curacy of an approximation. From the graphs in

Figure 1 it can be seen that the penny accuracy

Figure 1: Cumulated frequencies of the absolute devi-

ations between P0 and the approximations based on a

sample of 50,000 put options.

of MacMillan's and Geske and Johnson's, approx-

imations is achieved in about 83 and 94 % of cases,

respectively. In comparison, the penny accuracy

of the GAP approximation is already achieved in

about 96 % of cases.

Summing up, for realistic and frequently observed

option parameters we can conclude that the GAP

based approximation clearly outperforms the approx-

imations of Johnson, MacMillan as well as Geske and

Johnson. Additionally, our approximation consists

only of fundamental mathematical operations and is

therefore easy to use whereas, e.g., Geske and John-

son's formula requires at least the distribution function

of the trivariate, possibly also the multivariate, stan-

dard normal distribution which is normally calculated

using numerical integration. Moreover, the results pre-

sented so far represent work in progress and seem to

be very promising.

5 CONCLUSION

In this paper we have introduced the Generalized Ant

Programming approach as a new method for solving

problems in which the search space of feasible solutions

consists of computer programs. We have shown that

Generalized Ant Programming can be used to derive

accurate analytical approximations for the valuation of

American put options on non-dividend paying stocks.

Based on experimental data as well as huge validation

data sets we have shown that our formula delivers ac-

curate approximation results and outperforms other

formulas presented in the literature.
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and

c1 = 2:190564158 c2 = 1:757516557 c3 = 7:556576426
c4 = 0:219427468 c5 = 0:119453070 c6 = �0:158050093
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Abstract

Game theoretic models are often used to simulate
phenomena observed in the natural world.  It is
generally assumed that the implementation (or
representation) of the agents within a game has
no significant effect on the outcome of
simulations.  To test this assumption the effect of
changing the representation of agents in the non-
reciprocal cooperation game studied by Riolo et
al. (2001) was used.  In addition to the
implementation used by Riolo et al. (2001),
agents were also represented as higher dimension
real vectors, integer values, at bit-strings.  It was
found that the method of agent implementation
used has a highly significant effect on the
cooperation rate and general behavior of the
simulation.

1 INTRODUCTION
Biologists and social scientists have long been interested
in the evolution of cooperation (e.g. Roy, 2000; Sigmund
and Nowak, 1999; Mouston et al., 2000; Hemesath,
1994).  It is not understood how selfishly acting
individuals could evolve cooperative behavior (Axelrod,
1984).  Scientists studying this phenomenon often use
theoretical games to investigate the origin of cooperation.
It is often tacitly assumed that agent representation has
only minor effects on the long-term behavior and results
of the model.  The purpose of this paper is to present the
results of a study in which the method of representing the
agent in the model published by Riolo, et al. (2001) was
altered.
In Riolo et al. (2001)’s game individuals (agents) learned
to cooperate despite the cost of assisting another agent
and without reciprocity.  In brief, this game was designed
so that an agent assisted another agent if identification
tags were sufficiently similar.  The agents had no memory
of previous encounters and were unlikely to play other
agents more than once (a substantial departure from the
usual iterated game used to study the evolution of

cooperation).  Riolo et al. (2001) reported agents to assist
other agents at a rate of 73.6%, after evolution.  A more
detailed description of the Riolo et al. (2001) simulation is
provided in the Experimental Design section.
Agents in Riolo et al. (2001) consisted of two real
numbers: the first served as an identity tag and the other
determining the altruistic behavior.  This study used three
alternate implementations of the agents: multi-dimensional
real vectors, integer value, and bit-strings.  Using a multi-
dimensional vector representation expands the tag space
(the number of possible tags).  The real number
representation of computers is a fine-grained approach
since tags may vary by very small amounts.  When using
integer value tags with a maximum value, the difference
between agents becomes more pronounced.  As the size of
the maximum allowable integer increases, the results
should approach those of the single dimensional real
vector case.  Using bit-strings examines the effect of both
higher dimensionality and the granularity of the
environment.

2 EXPERIMENTAL DESIGN
The experiments in this paper were conducted in the same
manner as described in Riolo et al. (2001).  Specifically,
each simulation used a population of 100 agents which
were evolved for 30,000 generations.  Each agent had a
tag (τ), tolerance threshold (T), and a score.  Every
generation, each agent played three agents selected at
random with replacement.  For each place the first agent
(agent A) determines if it will assist the other agent (agent
B).  If the distance between tags of agent A and agent B
was lower than the threshold of agent A, the score of
agent A was lowered by 0.1, and the score of agent B
increased by 1.0.  This represents a costly contribution by
agent A to agent B.
The next generation was determined with tournament
selection of size two, where the population was randomly
shuffled and two agents were select without replacement
until there were no remaining agents.  if the agents in each
pair had equal scores, each was copied to the next
generation.  If one agent had a higher score, that agent
was copied twice to the next generation and the agent with
the lower score was not copied.  Each copy was then
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subjected to mutation.  Mutation of the tag occured at a
frequency of 0.1, and was performed by generating a new
tag uniformly at random in the tag space.  At the same
frequency, the tolerance threshold mutated by a
representation-dependent function with a distribution
designed to leave the simulation as close as possible to the
original study (Gaussian with mean zero and a standard
deviation of 0.01).  If the new T<0, then it was set to 0.

2.1 MULTI-DIMENSION REPRESENTATION

An agent tag in Riolo et al. (2001) was represented as a
real number, τ ∈  [0,1], with tag distance calculated as the
absolute value of the difference between two tags.
Similarly, the agent tolerance was initialized as a real
number, T ∈  [0,1].  To examine the effect of a larger tag
space on the behavior of the game, tags were represented
as real vectors, τ ∈  [0,1]n, where n is the dimension of the
tag space.  The tolerance was represented as a single real
variable with T ∈  [0,1].  The distance between the tags of
two agents, A and B, is the Euclidean distance,

( )∑
=

−=
n

i
BA iiD

BA
1

2)()( ττττ

Player A assists player B if ATD
BA

≤ττ .

The mutation of T was the same as in Riolo et al. (2001)
except that the standard deviation (σ ) of the mutation
distribution was adjusted so that the ratio of the
hypervolume of the hypersphere of radius σ (Vσ) to the
hypervolume of the tag space (Vt) was constant across
dimensions (Table 1).  This was done in order to insure
that the tolerance mutation was equivalent to theat used in
Riolo et al. (2001).  Runs were performed for n = 1, 2, 3,
4, 5, where n is the number of dimensions of the tag
space.  30 replicates were run for each tag space.  Note
that the case where n=1 is identical to the setup for Riolo
et al. (2001).

Table 1: σ for Higher Dimensions

n σσσσ Vσσσσ:Vt

1 0.01 0.02
2 0.079788456 0.02
3 0.16838903 0.02
4 0.25231352 0.02
5 0.32805473 0.02

2.2 INTEGER REPRESENTATION

Using real values for τ and T is a relatively fine-grained
environment since it is extremely unlikely that any two
agents will have the same τ.  In Riolo et al. (2001), T most
frequently changed by small values relative to the tag
space, creating a fine distinction between agents with an
approximately continuous tag space.  By employing
integer representation of the tag space and tollerance, the
simulation becomes more discrete.  Both τ and T were
initialized as τ, T ∈ [0,1,2,...,I], where I is the maximum
integer. Constraining the tag space and randomly selecting
new tags may result in duplication of the tags of other
agents, especially at low values for I.  The mutation of T

was performed by adding ∑
=

=∆
I

i
i

1
δ , for

[ ]1,0,1 +−∈iδ , δi ∈  [-1, 0, +1], with p(-1) = p(+1) =
0.1, and p(0) = 0.8.  Experiments were run for I=10, 100,
1000, and 10,000.

2.3 BIT-STRING REPRESENTATION
Implementing the tag and tolerance as bit strings both
increases the tag space by using larger strings and
constrains the tag space, reducing the values of each
dimension to one of two states.  The distance between two
agents was measured as the Hamming distance.  The value
of T was implemented as the weight of the tolerance
binary string.  Mutation of the tolerance was performed as
bit flips determined by a Poisson distribution with the
expected probability of each bit-flip set equal to 0.01.
Since it is not possible for T < 0, there were no boundary
effects as there were in the other two representations.
Experiments were performed for string lengths, L of 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100 bits.  The bit-string
for the tag and tolerance were of equal length in all
simulations.

3 RESULTS
An interesting difference between the results of these
experiments and those reported by Riolo et al. (2001) was
the presence of failed states.  A failed state is an
occurrence of donation rates less that 10% for at least one
generation.  The value of 10% was selected from
examination of the reproduction of the results of Riolo, et
al. (2001).  In only one replicate did a population fall to a
donation rate of 10% or lower one without persisting in a
failed state for multiple generations.  The comparisons of
a typical run from Riolo et al. (2001) compared to a failed
state are shown in Figures 1 and 2.  The donation rate is
the proportion of plays per generation that result in one
agent assisting another.  A cooperative state is defined as
an occurrence of donation rates greater than 10%.
Significance levels were calculated using ANOVA and
student-t tests.
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Figure 1:  Tolerance Examples For Cooperative States
(n=1, Replicate 6) And Failed States (n=1, Replicate 0)
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Figure 2:  Example Donation Rate For Cooperative States
(n=1, Replicate 6) And Failed States (n=1, Replicate 0)

3.1 MULTI-DIMENSION REPRESENTATION
Results of the one-dimensional case, a replicate of Riolo
et al. (2001) were consistent with those they reported.  In
this study the mean donation rate was 73.4 ± 0.3%,
whereas Riolo et al. (2001) foud 73.6%.  The average
toleranceswas identical at 0.019.
As the number of dimensions increased the average
number of failed states increased significantly (Table 2)
with p < 0.0001.  The dimensions in which significantly
different proportions of occured failed states are given in
Table 3.

Table 2: Mean Values for Experiments

Experiment Failed
States

Tolerance Donation
Rate

n=1 18.6 0.0185 0.7344
n=2 1853.2 0.1071 0.6837
n=3 3898.3 0.1816 0.6340
n=4 4949.9 0.2394 0.6086
n=5 5630.2 0.2937 0.5913

I=10 0 0.0951 0.7217
I=100 127.7 0.0481 0.7096
I=1000 164.1 0.0229 0.7263
I=10000 23.2 0.0115 0.7420

L=10 0 0.0027 0.9898
L=20 0 0.0068 0.9807
L=30 0 0.0180 0.9730
L=40 0 0.0756 0.9702
L=50 0 0.2557 0.9817
L=60 0 0.4185 0.9953
L=70 0 0.4602 0.9983
L=80 0 0.4675 0.9987
L=90 0 0.4760 0.9988
L=100 0 0.4785 0.9989

The mean donation rate was found to decrease with
increasing dimension (p < 0.0001) with the same
significant groupings as for the average number of failed
states (Table 3).  The mean tolerances of the dimensions
were significantly different (p < 0.0001).

Table 3: Significantly (*) and Insignificantly (⋅) Different
Occurrences of Failed States Between Multi-Dimension

Representations

n 1 2 3 4 5
1 - * * * *
2 - * * *
3 - ⋅ *
4 - ⋅
5 -

3.2 INTEGER REPRESENTATION
The results of the integer representations were compared
with the results of the one dimensional real vector
representation, R (the replication of Riolo et al. (2001)).
ANOVA results indicated that the average number of
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failed states was significantly different from R (p <
0.0230).  Only the mean number of failed states for
I=1000 was significantly higher than that for R.  The
significant comparisons are shown in Table 4.

Table 4: Significantly (*) and Insignificantly (⋅) Different
Occurrences of Failed States for Integer Representations

I=10 100 1000 10000 R
I=10 - * * ⋅ ⋅
100 - ⋅ ⋅ ⋅

1000 - * *
10000 - ⋅

R -

The mean tolerance of the integer representations
decreased with increasing I (p < 0.0001), with each mean
tolerance significantly lower than the previous (Table 2).
At I=10,000, the tolerance was less than R.  The mean
donation rate decreased from I=10 and I=100 and then
increased with I=10,000 having a greater donation rate
than R (p < 0.0001).

3.3 BIT-STRING REPRESENTATION
There were no failed states in any of the bit-string
experiments, so there was no significant difference across
simulations with different values of L.  The mean
tolerance increased with increasing L (p < 0.0001)
beginning at L=30 until L=70, with no significant
difference between R and L=10, 20, and 30.  The mean
donation rate gradually decreased from L=10 to L=50 and
then increased for L=50 to L=70 (p < 0.0001).  The mean
donation rate for bit-strings was never below 97.0%,
significantly greater than R (p < 0.0001).  See Table 2 for
the data.

4 DISCUSSION

4.1 MULTI-DIMENSION REPRESENTATION
The results demonstrated that the frequency of failed
states increased as the tag space increased in dimension.
In the one-dimensional space when a tag becomes the
most prevalent tag the selection for low tolerance is
weakened and the population will move towards higher
tolerance.  Eventually, an agent with a different tag will
fall within the tolerance of the dominant tag. This can
occur through increasing the average tolerance of the
agents with the dominant tag or the generation of agents
with a new tag within the tolerance threshhold of the
dominant tag type.  Over time, agents with the rarer and
less tolerant tag will become dominant through exploiting
the previously dominant agents, as in Riolo et al. (2001).
In the one-dimensional case an exploitative agent will
have a tag either less than or greater than the most
common tag.  When the number of dimensions was

increased there were more axes along which tags may
vary, allowing multiple agents with differing tags to
exploit the dominant tag.  Agents with the dominant tag
will quickly be removed from the population with no new
dominant type to take its place.  This failed state will
persist while numerous agents with low tolerances fail to
assist one another.  Eventually, another dominant type will
emerge.  From the duration of failed states, it is thought
that the average amount of time until a new type takes
over increases as the dimension of the tag space increases.
It is conjectured that the increasing dimension makes it
more difficult for a new tag to be within the tolerance
threshold of an extant tag.
The decrease in donation rate observed as the number of
dimensions in the tag space increased was due to a
reduced donation rate in the failed states compared to the
cooperating states.  Adjusting for failed states by dividing
the mean donation rate by the proportion of cooperative
generations over all generations results in an increase in
the average donation rate (Table 5).  However, the one-
dimensional case is still significantly higher than those of
higher dimensions (p < 0.0001) with the higher
dimensions having mean donations rates of 72.9% or
72.8%.  This seems to indicate that the occurrence of
failed states accounts for most of the decrease in donation
rate.

Table 5: Adjusted Tolerance and Donation Rates for the
Multi-Dimensional Representations

n Tolerance Donation
Rate

1 0.0185 0.7349
2 0.1144 0.7289
3 0.2100 0.7290
4 0.2887 0.7284
5 0.36583 0.7288

The increase in mean tolerance is more puzzling.  Since
the standard deviation of the tolerance mutation function
increased with increasing dimension, it was thought that
there may be a consistent ratio between the two.
Calculating the ration of the standard deviation of the
mutation function to the mean tolerance demonstrate that
this was not the case (Table 6).  The ratios were calculated
with both the mean tolderances from Table 2 and the
adjusted tolerance from Table 5  While the mutation
function likely has some effect, the selection of the game
acts to decreasee the tolerance, weakening the correlation
between the mutation function and the mean tolerance.
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Table 6: Ratio of the Standard Deviation of the
Tolderance Mutation Function to the Mean Tolerance

n E(Tn):σσσσn E(Tn):σσσσn
unadjusted adjusted

1 0.0185 0.7349
2 0.1144 0.7289
3 0.2100 0.7290
4 0.2887 0.7284
5 0.36583 0.7288

4.2 INTEGER REPRESENTATION
The results of the integer representations were expected to
approach those of the one-dimensional real vector
simulations (R) with increasing I.  It was found that the
mean number of failed states and donation rate initially
diverged from R and then approached that of R (Talbe 2).
Examination of the data indicated that the failed states
occurred early in the run and persisted for several
generations before evolving to a cooperative state (Figure
3).  For I=10,000, the initial failed states resemble the dip
in donations rates observed by Riolo, et al. (2001).  Given
the decreased cooperation and increased failed states for I
= 100 and 1000, it is unlikely that the cooperative
behavior seen at I=10 and I=10,000 were due to the same
dynamics.  For I=10, a mutated tag may take on one of
only ten values, so it was likely that the new tag would be
the same as existing agents.  Therefore, if the tag of an
agent with low tolerance was mutated it would cooperate
with agents already present.  This coarse granularity
makes it unlikely for an agent to be in a position to exploit
others.  For I=10,000, the dynamics are similar to those
for R.
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Figure 3:  Example of the Initial Behavior for Integer
Representations (I = 1000, Replicate 0)

4.3 BIT-STRING REPRESENTATION
Of the three types of representations, bit-strings produced
the greatest average donation rate. All tested string lengths

had mean donation rates exceeding 97%.  In the case of
runs with many agents of near zero tolerance, this must
have been the result of identical or nearly identical agents.
When the average tolerance is large (T ≥ 0.47), it is not
necessary for agents to be highly similar.  The process of
generating a new tag results in a tag that by chance will
have 50% similarity to all possible tags.  With an average
T ≥ 0.47, it is likely a tag will be in the tolerance threshold
of the majority of the agents.  Furthermore, since the agent
with the new tag will have a T close to 0.5, most of the
agents will be within its own threshold.
The pattern of populations of short strings evolving low
tolerance while long strings evolve high tolerance remains
to be explained.  For intermediate values of L (lengths of
40, 50, and 60), the populations begin with a tolerance
level similar to those of the longest strings, but changed to
low tolerance levels (Figure 4).  This suggests that a
cooperative state may not be stable if the simulation is run
for a large number of generations.  The stability of high
mean tolerance may be due to the fact that a single bit-flip
in the tolerance string would have a greater impact on the
population dynamics for low values of L than for high
values.
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Figure 4:  Behavior of Bit-Strings for Intermediate Values
of L=50 (Replicate 0)

At the initialization of a population there will tend to be
more exploitative (T < 0.4) and exploitable (T > 0.6)
agents for shorter strings than longer strings (Table 7).
The greater effect of a single bit flip at shorter lengths
often results in a population in which agents with low
tolerances take advantage of agents with high tolerances.
In time, only the agents with low T values remain.  When
a tag is mutated, there is a greater likelihood of agents
being more than 50% dissimilar at shorter lengths.  As
length increases, the number of exploitative and
exploitable agents decreases, leading to the observed trend
of more generations passing before T becomes small.
Eventually, long strings (a length of 40 or greater)
maintain high values for T for the duration of the run,
though this may not be the case if run for more
generations than was done in this study.
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Table 7.  Expected Proportion of Exploitable and
Exploitative Agents at Initialization of Bit-String

Populations

L Proportion
10 0.363
20 0.263
30 0.200
40 0.154
50 0.119
60 0.092
70 0.072
80 0.057
90 0.045
100 0.035

5 CONCLUSIONS
The results of the experiments described in this paper
demonstrate that altering the representation of the agents
in the Riolo et al. (2001) simulation has significant effects
on the outcome.  In the literature, when game theoretic
models of the evolution of cooperation are examined, only
the rules of the game rather than the digital representation
of the agents are modified.  The results described above
caution that generic statements of a game should not be
made from a single implementation.  Furthermore, since
the outcome of this game is partially dependent upon the
representation used, it would not be prudent to present
data as a model for the natural world unless it is either
confirmed by multiple representations or shown that the
chosen representation is a reasonable approximation, such
as fitting the model to data from the natural world.  With
the variety of models used to simulate aspects of the
nature, it would be of interest to test the effect of agent
representation on the behavior of other game theoretic
models.
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Abstract 
 

A distributed GA is designed for the packet 
switched network routing problem under 
minimal information. The requirements of such a 
problem mean that agents are required to possess 
more intelli gence than was previously the case. 
To this end a distributed GA approach is 
developed and benchmarked against the AntNet 
algorithm under the same information 
constraints. 

1 GENERAL FORMATTING 
INSTRUCTIONS 

Network information systems and telecommunication in 
general rely on a combination of routing strategies and 
protocols to ensure that information sent by a user is 
actually received at the desired remote location. In 
addition, the distributed nature of the problem means that 
multiple users can make requests simultaneously. This 
results in delayed response times, lost information or 
other reductions to the quality of service objectives on 
which users judge network service. Routing is the process 
used to determine how a packet travels from source to 
destination. Protocols are used to implement handshaking 
activities such as error checking and receiver 
acknowledgements. In this work, we are interested in the 
routing problem on computer networks. 

The routing problem has several properties, which make it 
particularly challenging. The problem is distributed in 
nature; hence a solution that assumes access to any form 
of global information is not desirable. The problem is also 
dynamic; hence a solution that is suff icient for presently 
experienced network conditions may well be ineff icient 
under other loads experienced by the network. Moreover, 
the traff ic experienced by networks is subject to widely 
varying load conditions, making ‘ typical’ network 
conditions unrepresentative. 

Traditionally, routing strategies are implemented through 
the information contained in routing tables available at 

each node in the network (Forouzan, 2001). That is, a 
table details the next ‘hop’ a packet takes based on the 
overall destination of the packet. This should not be taken 
to imply that a routing table consists of an exhaustive list 
of all destinations – a form of global information. Instead, 
the table consists of specific entries for the neighboring 
nodes and then a series of default paths for packets with 
any other destination – such as OSPF or BGP4 (Halabi, 
1997). Application of a classical optimization technique 
to such a problem might take the form of first assessing 
the overall pattern of network traff ic, and then defining 
the contents of each routing table such that congestion is 
minimized. This approach does not generally work in 
practice as it simply costs too much to collect the 
information centrally on a regular basis, where regular 
updating is necessary in order to satisfy the dynamic 
nature of network utili zation. We, therefore, see the 
generic objectives of a routing strategy to be both 
dynamically reconfigurable and be based on locally 
available information, whilst also satisfying the user 
quality of service objectives (i.e. a global objective). 

Several approaches have been proposed for addressing 
these objectives including: active networking 
(Tennenhouse et. al.,1997), social insect metaphors (Di 
Caro, Dorigo, 1998), (Heusse et al., 1998) cognitive 
packet networks (Gelenbe et. al.,1999), and what might 
be loosely called other ‘adaptive’ techniques (Corne et. 
al., 2000). The latter typically involve using evolutionary 
or neural techniques to produce a ‘ routing controller’ as 
opposed to a ‘ routing table’ at each node, where the 
controller may require knowledge of the global 
connectivity to ensure a valid route. The global 
information assumption may be avoided by framing the 
problem as a reinforcement-learning context (Boyan, 
Littman, 1994). However, the Q-learning method, on 
which this is based, results in single path solutions for 
each destination. Both the social insect metaphor and the 
cognitive packet approach provide a methodology for 
routing, without such constraints; by utili zing 
probabili stic routing tables and letting the packets 
themselves investigate and report network topology and 
performance. 
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All methods as currently implemented, however, suffer 
from one drawback or another. Cognitive packet networks 
and active networking algorithms attempt to provide 
routing programs at the packet level, hence achieving 
scalable run time eff iciency becomes an issue. To date, 
implementations of ‘ adaptive’ techniques and social 
insect metaphors have relied, at some point, on the 
availabilit y of global information (Liang, et al., 2002). 

The purpose of this work is to investigate the application 
of a genetic algorithm (GA) to build on lessons learnt 
from the social insect metaphor. This represents a major 
departure from previous works attempting to utili ze GAs 
to solve the dynamic routing problem e.g. (Corne D.W., et 
al. 2000). In particular, a distributed GA is defined in 
which populations associated with each node of the 
network are required to co-evolve to solve the problem as 
a whole. Moreover, the GA interaction with the 
environment drives the features measured by the routing 
tables, as opposed to the tables predefining the features 
for measurement (a form of a priori information). Section 
2 introduces the ‘ant’ based social insect metaphor against 
which the proposed approach is compared. Section 3 
introduces the proposed GA-agent scheme. Section 4 
summarizes the network on which experiments are 
performed. Results are presented in section 5 and 
conclusions drawn in section 6.  

2 ROUTING USING A SOCIAL INSECT 
METAPHORE 

As indicated above, active networking (Tennenhouse et. 
al.,1997) and cognitive packet (Gelenbe et. al.,1999) 
based approaches emphasize a per packet mechanism for 
routing. The aforementioned ‘adaptive’ techniques (Corne 
et. al., 2000) tend to emphasize adding ‘ intelli gence’ to 
the routers leaving the packets unchanged. A social insect 
metaphor provides a middle ground in which the concepts 
of a routing table and data packet still exist, but in 
addition, intelli gent packets – ants – are introduced that 
interact to keep the contents of the routing tables up to 
date. To do so, the operation of ant packets is modeled on 
observations made regarding the manner in which worker 
ants use chemical trails as a method of indirect stigmergic 
communication. Specifically, ants are only capable of 
simple stochastic decisions influenced by the availabilit y 
of previously laid stigmergic trails. The chemical 
denoting a stigmergic trail i s subject to decay over time, 
and reinforcement proportional to the number of ants 
taking the same path. Trail building is naturally a bi-
directional process, ants need to reach the food 
(destination) and make a successful return path, in order 
to significantly reinforce a stigmergic trail (Forward only 
routing has also been demonstrated (Heusse et al., 1998)). 
Moreover, the faster the route, then the earlier the trail i s 
reinforced. An ant on encountering multiple stigmergic 
trails will probabili stically choose the route with greatest 
stigmergic reinforcement. Naturally, this will correspond 
to the ‘f astest’ route to the food (destination). The 
probabili stic nature of the decision, however, means that 

ants are still able to investigate routes with a lower 
stigmergic trial. 

This approach has proved to be a flexible framework for 
solving a range of problems including the traveling sales 
man problem (Dorigo et al., 1996) and the quadratic 
assignment problem (Maniezzo et al., 1999). The work 
reported here follows the ‘AntNet’ algorithm of Di Caro 
and Dorigo (Di Caro, Dorigo, 1998), and is informally 
summarized as follows, 

•  Each node in the network retains a record of packet 
destinations as seen on data packets passing through 
that node. This is used to periodically, but 
asynchronously, launch ‘f orward’ ants with 
destinations stochastically sampled from the collected 
set of destinations; 

•  Once launched, a forward ant uses the routing table 
information to make probabili stic decisions regarding 
the next hop to take at each node. While moving, 
each forward ant collects time stamp and node 
identifier information where this is later used to 
update the routing tables along the path followed; 

•  If a forward ant re-encounters a node previously 
visited before reaching the destination, it is kill ed; 

•  On successfully reaching the destination node, total 
trip time is estimated and the forward ant converted 
into a backward ant; 

•  The backward ant returns to the source using exactly 
the same route as recorded by the forward ant. 
Instead of using the data packet queues, however, the 
backward ant uses a priority queue; 

•  At each node visited by the backward ant the 
corresponding routing table entries are updated to 
reflect the relative performance of the path; 

•  When the backward ant reaches the source, it ‘dies’ . 

Although providing for a robust ant routing algorithm 
under simulation conditions, an assumption is made, 
which inadvertently implies the use of global information  
- knowledge of the number of nodes in the network (Di 
Caro, Dorigo, 1998). The definition of routing tables is, 
such that it is assumed that every node has a unique 
location in the routing table, see Table 1, or a total of L 
(number of neighboring nodes) by K (number of nodes in 
the entire network) entries. In practice, this is never the 
case. To do so would assume that it is first feasible, and 
secondly, should the network configuration ever change, 
then all nodes should be updated with the new 
configuration information. Moreover, as forward ants 
propagate across the network, the amount of information 
they need to ‘carry’ also increases (node identifier and 
time stamp).  
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In order to avoid the use of global information, the 
authors modify the information provided at the routing 
tables such that the routing tables only detail the 
neighboring nodes, see Table 2, or a total of 2 by L 
entries. Such a limitation, therefore, places greater 
emphasis on the learning capacity of the ant. This is 
particularly significant during step (2) of the ant forward 
pass (section 2.1). Tables 1 and 2 ill ustrate the difference 
in available information for a node in the commonly used 
Japanese benchmark backbone (NTTNet) routing 
problem. 

Table-2 Proposed Routing Table at any Network Node 
on the NTTnet  

          Neighbor 
           Node 

If used for other 
nodes 

P1,1  P1,d , d 
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The following section summarizes the AntNet algorithm. 

2.1 ANTNET ALGORITHM 

It is assumed that routing tables, Tk, exist at each node, k, 
in which a routing decision is made. Tables consist of ‘ n’ 
rows, one row for each neighboring node/link. As far as a 
normal data packet is concerned, if the destination, d, 
from current node, k, is a neighbor then the routing is still 
a stochastic decision. In all other cases, a route is selected 
based on the neighbor node probabiliti es.  

1. New forward ants, Fsd, are created periodically, but 
independently of the other nodes, from source, s, to 
destination node, d, in proportion to the destination 
frequency of passing data packets. Forward ants 
travel the network using the same priority structures 
as data packets, hence are subject to the same delay 
profiles. 

2. Next link in the forward ant route is selected 
stochastically, p’ (j), in proportion to the routing 
table probabiliti es and length of the corresponding 
output queue. 

 

 

 

where p(j) is the probabilit y of selecting node j as 
the next hop; α weights the significance given to 
local queue length verses global routing information, 
p(j); l j is proportional to the inverse of queue length 
at destination ‘ j’ normalized to the unit interval; and 
Nk is the number of links from node k. 

3. On visiting a node different from the destination, a 
forward ant checks for a buffer with the same 
identifier as itself. If such a buffer exists, the ant 
must be entering a cycle and dies. If this is not the 
case, then the ant saves the previously visited node 
identifier and time stamp at which the ant was 
serviced by the current node in a buffer with the 
forward ant’s identifier. The total number of buffers 
at a node is managed by attaching “an age”  to buffer 
space and allowing backward ants to free the 
corresponding buffer space. 

4. When the current node is the destination, k = d, then 
the forward ant is converted into a backward ant, Bds. 
The information recorded at the forward ant buffer is 
then used to retrace the route followed by the 
forward ant.  

5. At each node visited by the backward ant, routing 
table probabiliti es are updated using the following 
rule, 

IF (node was in the path of the ant) 
THEN p(i) = p(i) + r { 1 – p(i)}  
ELSE p(i) = p(i) – r P(i) 
where r ∈  (0, 1] is the reinforcement factor central to 
expressing path quality (length), congestion and 
underlying network dynamics. 

As indicated above, the reinforcement factor should be a 
factor of trip time and local statistical model of the node 
neighborhood. To this end (Di Caro, Dorigo, 1998) 
recommend the following relationship, 

where Wbest is the best case trip time to destination d over 
a suitable temporal horizon, W; tant is the actual trip time 
taken by the ant; I inf = Wbest; Isup = µkd + { σkd / [W (1 – 
γ)]0.5} . 

The estimates for mean, µkd, and variant, σkd, of the trip 
time are also made iteratively, using the trip time 
information, okd. Thus, 

µkd = µkd + η(okd – µkd) 

(σkd)
2 = (σkd)

2 + η { (okd – µd)
2 – (σkd)

2}  

Trip time information is now updated incrementally based 
on the recorded trip duration between current node, k, and 
ultimate destination, d. This means that it is no longer 

( )1||1

)(
)('

−+
+

=
k

j

N

ljp
jp

α
α

ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION90



AAAA , Ali fe, Adaptive Behavior, Agents, and Ant Colony Optimization 

necessary to carry all node and duration information as a 
‘stack’ to the target duration as in the original model (Di 
Caro, Dorigo, 1998). Only the previous node information 
is therefore carried by each ant. 

3 GENETIC ALGORITHM BASED 
SCHEME TO ROUTING  

Simulation of the above AntNet scheme has been shown 
to provide a robust alternative to six standard routing 
algorithms – OSPF, SPF, BF, Q-R, P-QR and Daemon 
(Di Caro, Dorigo, 1998). However, this is not without 
utili zing routing tables in the AntNet algorithm, which 
provide entries for all nodes on the network. In practice, 
such (global) information is not actually available. In 
(Liang et al. 2002), the AntNet algorithm is benchmarked 
with routing tables configured with information regarding 
their neighbors alone; Table 2 as opposed to Table 1. The 
performance of such a system is then deemed 
unacceptable. Specifically 55% of packets are lost where 
‘ lost’ in this work is defined as any packet (data or ant) 
that visits the same node more than once. In order to 
address this problem, we are, therefore interested in the 
abilit y of route finding packets learning to find paths 
independently from the routing table information. By 
doing so, we do not rely on the capacity of the routing 
tables alone to retain information regarding all nodes in 
the network.  

The objective of this work is to investigate a scenario in 
which the entries themselves are identified dynamically. 
This will be a first step towards a co-evolutionary model 
capable of evolving solutions to the packet switched 
routing problem. The ants, in this case, take the form of 
individuals from a distributed Genetic Algorithm (GA), 
hereafter referred to as GA-agents. Individual 
chromosomes travel the network using a string of next 
hop offsets, e.g., { 1, 5, 0, 4, 2, 3, 5} over the interval [0, 
[0, L], where ‘L’ is selected to enable indexing of node 
connectivity. In all the experiments of section 5, ‘L’ is set 
to 6. On entering a node, genes (offsets) are used to 
identify the next link using a clockwise count, with 
respect to the port the GA-agent entered the node i.e. the 
next link is selected as a modulus of (gene % # of links). 
Such a representation is then independent of the specific 
network connectivity, unlike say the GA approach in 
(Munetomo et al., 1997). For each node encountered, the 
gene, used to select the next link, is incremented and a 
record is made of the node ID. The process naturally 
continues until the GA-agent executes its last gene, at 
which point it becomes a backward agent, returning to its 
original source node. In the special case of a GA-agent 
attempting to return down the same link as it entered a 
node, the router randomly selects the next hop from the 
available links, and changes the gene to the new value 
(deterministic mutation). If no next hop is available, then 
the chromosome is truncated, and the GA-agent becomes 
a backward agent (see the algorithm “processing agents“). 
Note, unlike the AntNet algorithm, modification of 
routing tables only takes place once the GA-agents have 

returned to their original source, and modifications only 
affect the source node routing table. The above 
representation supports single point crossover, resulting in 
variable length individuals. Mutation randomly selects a 
gene and adds/ subtracts an integer such that the new gene 
is still i n the interval [0, 6]. 

Table 3 – GA-agent Routing Table 

Agent ID Agent Fitness Trip Time (ms) and node ID 

95 0.32 (3, J), (9, C), (21, W) 

234 0.39 (1,B), (7, A),…, (432, Y) 

… … … 

31 0.71 (5,C), (9, K), …, (871, X) 

 

At initialization, a router sends out half of the population 
of GA-agents to explore the network. Once the number of 
returned GA-agents reaches four, the fitness of the four 
agents is evaluated; the best two agents are then chosen – 
as in a steady state tournament (See algorithm “updating 
routing table & population” ).  

The fitness function measures the popularity of nodes 
visited as well as the time taken to reach nodes 
encountered by GA-agents. Both of these properties are 
measured with respect to the original source node. 
Popularity of destination ‘ i’ at node ‘k’ (NPk(i)) is a 
dynamic property, measured at the original source node 
by recoding the frequency of different data packet 
destinations as seen by the source node over a fixed time 
window (50 seconds in this case), or 

NPk(i) = Dest(i) / TDk 

Where TDk is the total number of data packets passing 
through node ‘k’ ; and Dest(i) is the number of data 
packets with destination ‘ i’ . 

Chromosomes, which find shortest paths to frequently 
used destinations, are therefore favored. The ensuing 
fitness function taking the form,  

 ∑for each explored node i NPk(i)× trip_timei  

∑for each explored node I  trip_timei  

 

(1) 

The routing table in the GA approach consists of a short 
list of returned agents, every entry corresponds to an 
evaluated returned agent path. On routing a data packet, 
the router checks the table for a path that had experienced 
shortest trip time to the desired destination (third column 
of Table 3); if such an entry is not found, the entry with 
the highest fitness, Table 3 column 2, will be selected as 
the default next node for this data packet. The first two 
columns in the routing table are used during ranking and 
replacement of winning chromosomes. 

The above constitutes our basic GA-agent approach. In 
addition, three further concepts are introduced. The first is 
that of demes. This provides a mechanism for passing 
useful chromosomes between neighboring nodes. To do 
so, every node will propagate best-case chromosomes to 
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neighboring nodes every 500 or 700ms (tunable 
parameter, see “propagate freq” in section 5). Secondly, 
in order to avoid stagnation in the routing tables, an 
incremental penalty is applied to each entry of the routing 
table (see the algorithm “updating routing table & 
population“). The motivation for such an aging 
mechanism is to ensure that routing tables remain 
sensitive to the dynamic nature of the environment (e.g., 
changes to network topology, network node/link failure, 
network congestion). Such a mechanism is introduced 
during updates to routing tables: making every routing 
table entry a bit smaller in fitness, and a bit longer in trip 
time, or 

fitness agent in routing table = original fitness × c2; 

trip_time every node of every entry = original_trip_time / c2; 

where c2 is a constant ∈  (0.0, 1.0)     (2) 

Finally, when initializing the populations of chromosomes 
at each node, nodes with a higher connectivity naturally 
represent a larger search problem. Thus, the number of 
chromosomes per population is initialized in proportion to 
the square of the number of neighbors. 

The algorithm is outlined as follows: (c1, c2, and c3 are 
constants.) 

init 

initialize first generation of agents; 
#agents = #links2 × c1; 
string of offsets of an agent - { 3, 1, 4, 5, 2, …}  
clear routing table; 
clear flow pattern stats; 
send out half population of individuals; 

processing agents 

if (case of backward agent) 
then if (agent arrives at the source) 

then if (agent timeout) 
  then (kill agent); 

else (put into “back” list); 
   end if 

else if (next hop is down) 
then (kill agent); 
else (forward to the link) 
end if 

end if 
 else agent records the trip time info; 

retrieve offset from the next unused 
gene position; 
if (corresponding link is available and 
no loop caused) 

  then (send the agent to the link); 
else (randomly [each available link 
has equal probabilit y] select an available 
link [without entering a loop]); 
end if 

  if (no such link found) 
 then (convert the agent into a 

backward agent) 

  else      (set the offset to the new value); 
   (send agent to the link); 
  end if 

 end if 

updating routing table & population (once 4 agents 
return to the same source, i.e. steady state tournament) 

update the performance table by aging mechanism: 
fitness of agent = original fitness × c2; 
trip time to every node of every entry = original  
trip time / c2; 
use the fitness function to evaluate the fitness of 
backward agents; 
select the best two agents as parents; 
put/update the fitness of parent agents in the 
routing table; 
delete the entries of the worst two agents in the 
routing table; 
use standard crossover and mutation on the parents 
to generate two children; 
put the children into the population; 
delete the worst two agents from the population; 
if (current time > last clear time + c3) 
then (clear flow statistics) 
randomly launch 4 agents from the population to 
explore the network; 

routing data packets 

if (routing table is empty) 
then (randomly choose a link to forward) 
else (search the routing table for the shortest 
trip time to the desired destination) 

if (no entry found for the desired 
destination) 
then (choose fittest entry); 
end if 

end if 
if (no route is found) 
then (discard the packet) 
end if 
 

3.1 DATA STRUCTURES 

Every agent consists of a string of next hop offsets, and 
time stamp records. Every router consists of an incoming 
buffer, a processing buffer (stores a packet at a time), and 
an outgoing buffer for each neighboring router. For the 
GA approach, every router has a population of 
chromosomes, a routing table, a flow pattern statistics 
table, and a fitness table. The number of chromosomes 
per population is in direct proportion to the square of 
number of neighbors. The routing table, which is updated 
whenever four chromosomes return, consists of current 
fittest individuals, c.f (1). The flow pattern estimates the 
popularity of data packets passing through the node, c.f. 
(2). The fitness table stores the fitness of every 
chromosome, currently a member of the routing table.  
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Figure-1: Japanese Backbone - NTTnet (55 nodes) 

 

To simulate and test the GA-agent algorithm, an event 
driven simulation environment is developed (C++ on 
UNIX system). Specifically, the Japanese Internet 
backbone (NTTNET – see figure 1) is modeled, where 
this represents a narrow long configuration in which the 
degree of connectivity is low (from 1 to 5), when 
compared to the US backbone. Hence the Japanese 
network provides a more demanding configuration for 
testing routing algorithms, as higher degrees of 
connectivity lower the possibilit y of packet loss due to 
loops, timeouts, i.e., in a narrow long shaped network, 
once a packet is forwarded in a wrong direction, it might 
never have the chance to be routed to the desired 
destination. 

4 SIMULATION ENVIRONMENT  

The event driven simulation models the network as 
routers (nodes) and links. Every router has an incoming 
buffer, a memory space for processing packets, and an 
outgoing buffer for each link to its neighboring routers. A 
priority queue is used to store the events. Both AntNet 
(local routing table information, Table 2) and GA-agent 
algorithms are simulated under the same environmental 
conditions. That is, an event generator is used to generate 
the events, such as new packet time of generation, or 
routers availabilit y. The following are the parameters used 
in the simulation, 

•  Network topology takes the form of the Japanese 
backbone, figure 1; 

•  Forward ants are launched every 300ms; 

•  The AntNet algorithm is given 5 seconds at the 
beginning of the simulation to converge the initial 
routing tables, during this period, routing packets 
(ants or GA-agents) are the only packets traversing 
the network; 

•  Data packets are generated by Poisson distribution 
(mean of 35ms); 

•  The parameters for the GA based scheme are given as 
the first 5 rows of tables 4 - 7, where 4 (columns 2 - 
5) different GA based agent structures are simulated; 

•  Any packets, including data packets, are kill ed should 
they encounter a previously visted node. Given the 
probabili stic nature of the routing tables this 
represents a rather harsh constraint, but in doing so is 
utili zed to emphasize the properties of different 
routing strategies. In addition packets that are routed 
down links representing a fault condition are 
distinguished separately as lost packets. 

The simulation length is 1250s. As a result, 1985536 data 
packets are generated within 1250s. The queue length is 
the total number of waiting packets per second, which 
includes the data packets and the routing packets. In this 
paper, the routing packets refer to the ants in the AntNet 
algorithm, and to the GA-agents in the GA approach. 

5 RESULTS  

On measuring the performance of a routing algorithm, we 
focus on: 

•  Network throughput, which is defined as number of 
data packet bytes successfully received at their 
destination in a two second window; 

•  Total time to deliver all the data packets (finish time); 

•  Number of arrived data packets; 

•  Number of ‘ kill ed’ and ‘ lost’ packets; 

•  Average trip time of arrived data packets. 

Two sets of experiments are conducted, in both cases 
using a series of network scenarios designed to investigate 
operation under changing network conditions. The first 
set of experiments investigates parameters associated with 
the distributed GA. The second of experiments takes one 
set of these parameters and reduces the degree of 
exploration/ exploitation (mutation/ crossover 
respectively). 

There are a total of 4 scenarios in each set of experiments, 
in the first case all routers remain available. The 
remaining scenarios investigate plasticity of the network 
by removing different router combinations. First, router 
34 is removed at a time step of 500s. From figure 1, it is 
apparent that router 34 represents a significant node in the 
topology, although alternative paths certainly exist. In the 
third scenario, two routers are removed, whereas in 
scenario four the same two routers are removed but 
asynchronously. 

5.1 PARAMETERIZATION OF DISTRIBUTED 
GA 

In the case of routing using GA-agents, there are six basic 
parameters, 

1. Agents / link2 – c1, determines the population of 
chromosomes per node. The implication being that 
there are O(L2) locations in each routing table, 
where L is the number of neighboring nodes; 

6 
13 

19 

34 

42 

49 
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2. Aging – c2, rate by which fitness of individuals 
currently populating the routing tables decay; 

3. Propagate ratio – the number of chromosomes 
exchanged between populations, expressed as a % of 
node population size; 

4. Propagate freq – rate of exchange of chromosomes 
between populations; 

5. Flow clear freq – c3, time interval over which data 
packet destination statistics are collected; 

6. Crossover and Mutation – the results in this section 
utili ze maximum crossover and mutation rates in 
order to encourage continuous investigation of 
alternative routes. Section 5.2 considers the case of a 
more classical section of crossover and mutation 
thresholds. 

These are initially selected to enable quali fication of the 
sensitivity to population size, rate of aging etc. and 
remain the same across all experiments; Tables 4 to 7, 
columns 2 - 5. Table 8 summarizes the same information 
for the AntNet algorithm under a ‘ local’ routing table 
configuration. Thus, Local AntNet utili zes tables of 
length O(L), significantly less than the GA-agent case. 

Table 4 – No Network Failure. 

# Agents / link2 32 32 40 48 

Aging 0.8 0.9 0.9 0.9 

Propagate ratio 5% 3% 3% 2% 

Propagate freq 500ms 500ms 700ms 700ms 

Flow clear freq 50s 50s 50s 50s 

Finish time (s) 1,252 1,253 1,252 1,267 

Arrived Packets 
(AP) (×1000) 

1,619 1,585 1,583 1,560 

Avg. trip time 
for AP (ms) 

742 905 678 1,236 

# kill ed packets 366,533 400,351 402,517 385,750 

# lost packets 0 0 0 0 

# Agents (×103) 1,690 1,028 801 475 

 

Table 5 – Router 34 is Down at 500s. 

# Agents / link2 32 32 40 48 

Aging 0.8 0.9 0.9 0.9 

Propagate ratio 5% 3% 3% 2% 

Propagate freq 500ms 500ms 700ms 700ms 

Flow clear freq 50s 50s 50s 50s 

Finish time (s) 1,417 1,307 1,444 1,494 

Arrived Packets 
(AP) (×1000) 

1,346 1,298 1,333 1,373 

Avg. trip time 
for AP (ms) 

2,014 2,613 3,156 2,668 

# kill ed packets 617,064 665,188 630,479 590,732 

# lost packets 21,922 21,922 21,923 21,918 

# Agents (×103) 1,801 1,087 966 552 

 

Table 6 – Routers 49 & 13 are Down at 500s. 

# Agents / link2 32 32 40 48 

Aging 0.8 0.9 0.9 0.9 

Propagate ratio 5% 3% 3% 2% 

Propagate freq 500ms 500ms 700ms 700ms 

Flow clear freq 50s 50s 50s 50s 

Finish time (s) 1,254 1,445 1,258 1,520 

Arrived packets 
(AP) (×1000) 

1,317 1,369 1,402 1,504 

Avg. trip time 
for AP (ms) 

947 1,301 850 1,759 

# kill ed packets 623,539 571,390 539,747 438,378 

# lost packets 44,466 44,882 43,658 43,496 

# Agents (×103) 1,543 973 754 514 

 

Table 7 – Router 13 is down at 300s, Router 49 is down at 
500s, and both are up at 800s. 

# Agents / link2 32 32 40 48 

Aging 0.8 0.9 0.9 0.9 

Propagate ratio 5% 3% 3% 2% 

Propagate freq 500ms 500ms 700ms 700ms 

Flow clear freq 50s 50s 50s 50s 

Finish time (s) 1,535 1,261 1,496 1,437 

Arrived packets 
(AP) (×103) 

1,410 1,334 1,441 1,458 

Avg. trip time 
for AP (ms) 

2088 1202 470 2018 

# kill ed packets 551,218 627,596 520,989 503,873 

# lost packets 23,953 23,426 23,401 23,085 

# Agents (×103) 1,447 1,043 896 648 

 

Performance is quali fied in terms of two basic parameters, 
time taken for all packets to be received (or lost) and the 
number of packets successfully received. Naturally, the 
former should be minimized and the latter maximized. In 
the case of experiment 1 – no network failures – the time 
for all packets to be accounted for is essentially the same, 
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irrespective of parameter or algorithm. An immediate 
difference is recognized, however, in the number of 
arrived packets. The AntNet algorithm can only 
successfully route 55% of those in the GA-agent 
approach. This observation is repeated across all the 
remaining scenarios. Moreover, in terms of ‘ kill ed’ 
packets this means that less than 50% of the packets in the 
local version of the AntNet algorithm revisit sites 
previously encountered. 

Table 8 – AntNet with Local Information Only 

No network failure 

Finish time (s) 1,267 

Arrived packets (AP) 903 (×103) 

Avg. trip time of AP (ms) 398 

# kill ed packets 1,082,652 

# lost packets 0 

# of Ants 218 (×103) 

Router 34 down at 500s 

Finish time (s) 1,369 

Arrived packets (AP) 813 (×103) 

Avg. trip time of AP (ms) 2,899 

# kill ed packets 1,138,860 

# lost packets 32,763 

# of Ants  219 (×103) 

Routers 49 & 13 down at 500s 

Finish time (s) 1,300 

Arrived packets (AP) 827 (×103) 

Avg. trip time of AP (ms) 1,617 

# kill ed packets 1,114,729 

# lost packets 43,682 

# of Ants 219 (×103) 

Routers 13 down at 300s, Router 49 down at 500s, both up at 
800s 

Finish time (s) 1,272 

Arrived packets (AP) 863 (×103) 

Avg. trip time of AP (ms) 1,254 

# kill ed packets 1,099,283 

# lost packets 23,209 

# of Ants 219 (×103) 

 

In terms of specific parameter settings, the GA-agent 
approach appears to consistently route the most packets 
successfully when the number of agents per link is highest 

and propagation ratio least. (Investigation of GA-agents 
without demes, however, performs very badly.) It is also 
noticed that although a maximum allowable length of 30 
genes per individual is permitted, chromosomes never 
reach this limit. Instead a preference of chromosome 
lengths of 10 or less genes is found for nodes with a low 
level of connectivity and 15 to 25 for individuals with a 
connectivity of 3 or more. 

5.2 PARAMETERIZATION OF CROSSOVER 
AND MUTATION 

As a final experiment, one instance of the distributed 
parameter set is investigated under a classical crossover 
and mutation rate of 90% crossover and 10% mutation. 
As identified in section 5.1, lower agent per link counts 
result in less packets being delivered. Table 9 reports the 
case of 32 agents/ link, an aging factor of 0.9, a 
propagation ration of 3% and a frequency of 500ms 
(column 3 in tables 4 to 7). 

On comparison with the same parameterization under 
100% crossover and mutation, the number of ‘ kill ed’ or 
‘ lost’ packets decreases by 33% to 8%, and the trip time 
improves in each scenario other than no network failure. 
Moreover, the case of 90% crossover and 10% mutation 
betters all combined ‘kill ed-lost’ packet counts of any of 
the distributed GA parameters investigated in section 5.1. 
The implication being that more data packets are routed to 
the destination without either encountering a faulty link or 
a previously visited node. The principle penalty, however, 
appears to be an increase in the number of GA-agents 
introduced. Future work will  naturally investigate whether 
this trend holds for other distributed GA 
parameterizations (the case of 48 agents per link appears 
to utili ze less GA-agents). 

Table 9 – GA-agent with Crossover of 90%, Mutation 
10% 

No network failure 

Finish time (s) 1,252 

Arrived packets (AP) 1,693 (×103) 

Avg. trip time of AP (ms) 1,171 

# kill ed packets 292,723 

# lost packets 0 

# of Agents 961 (×103) 

Router 34 down at 500s 

Finish time (s) 1,507 

Arrived packets (AP) 1,401 (×103) 

Avg. trip time of AP (ms) 356 

# kill ed packets 562,751 

# lost packets 21,924 

# of Agents  1,170 (×103) 
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Routers 49 & 13 down at 500s 

Finish time (s) 1,252 

Arrived packets (AP) 1,417 (×103) 

Avg. trip time of AP (ms) 861 

# kill ed packets 523,673 

# lost packets 44,658 

# of Agents 1,025 (×103) 

Routers 13 down at 300s, Router 49 down at 500s, both up at 
800s 

Finish time (s) 1,252 

Arrived packets (AP) 1,555 (×103) 

Avg. trip time of AP (ms) 1,012 

# lost packets 406,840 

# kill ed packets 23,861 

# of Ants 1,083 (×103) 

6 CONCLUSIONS 

As indicated in the introduction, network routing 
problems force an interesting set of constraints, which 
present a suitable test-bed for problem solving using co-
evolutionary techniques. In this work, we emphasize the 
case in which routing table features, as well as content, 
are evolved. Thus, we are not privy to a priori knowledge 
regarding the number of nodes in the network. The 
AntNet algorithm (Di Caro et al., 1998) does not perform 
eff iciently and the GA representation cannot make use of 
global knowledge of network connectivity, as has been 
the case in the past (Munetomo et al., 1997). Such an 
environment implies that packets responsible for updating 
network connectivity requires more autonomy than were 
previously acknowledged to solve packet switched 
routing problems. As a first attempt at addressing these 
problems directly, we utili ze a representation that is 
independent of specific network connectivity patterns and 
distributed in its operation (multi -population model with 
chromosomes physically traveling the network). Such a 
system improves on the AntNet algorithm when 
constrained to a ‘ local’ table representation, Table 2 (see 
(Liang et al., 2002) for a detailed discussion of AntNet 
under ‘ local’ and ‘global’ routing table constraints), or be 
it whilst utilizing larger routing tables. The principle 
drawback for the GA-agent is the search eff iciency of the 
ensuing routing table where a search as opposed to an 
indexing process is now necessary. Future work will 
expand the interaction between chromosomes to facilit ate 
a more co-evolutionary approach to the development of 
routing policies and develop a better organization to the 
routing table structure. Moreover, the relationship 
between routing table size and performance requires 
further investigation. 
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Abstract

This research focuses on agent migration
strategies and communication behaviors in
a sparse distributed memory implementation
based on the human immune system. Evalua-
tion of various agent strategy/behavior com-
binations is measured in the context of ge-
netic search performance at multiple, in-
dependent system nodes. Results indicate
that agent behaviors which promote and
enhance information exchange between dis-
tributed nodes yield the best performance.

1 Introduction

Our research involves a sparse distributed memory
(SDM) where the theoretical memory capacity far out-
weighs the physical memory space (i.e., the ratio of
memory cells to items represented is 1 to n, where
n >> 1). This model is based in part on the human
immune system, wherein memory persists in the form
of a relatively modest population of antibodies (107

to 108) with a high affinity to a much greater number
(1012 to 1016) of possible antigen strains [5]. An effec-
tive SDM must develop and maintain a sufficient (with
respect to quality) population of memory cells so that
associative recall is not only feasible, but efficient.

The memory cell population in this SDM is sparsely
distributed in representation space and physically dis-
tributed in the execution environment. In this system,
mobile software agents circulate a limited number of
memory cells between system nodes (Figure 1). Dis-
tributed, independent genetic search is leveraged in
order to develop a system-wide memory cell popula-
tion. Emergent behavior at the system level is a result
of interactions between simultaneous and independent
genetic searches, as well as, local feedback decisions.

Significant work has been performed with respect to
agent strategies and enhanced distributed communi-
cation performance [3, 4]. This research differs in that
we seek to examine the impact of mobile agents with
respect to their migration strategies and communica-
tion behaviors to improve genetic search performance.
Improved genetic search performance in turn, results
in a more efficient SDM.

Figure 1: Agent Circulation of Antibodies.

2 Sparse Distributed Memory

This investigation is influenced by previous work that
incorporates genetic algorithms in an immune system
model to explore pattern recognition [2]. We have
modeled the problem space using Hamming space (i.e.,
bit strings). In training the SDM, the objective is to
dynamically develop “immunity” to patterns that are
repeatedly re-introduced from a fixed library of pat-
terns. Immunity is achieved by evolving a memory
cell population that generalizes to adequately repre-
sent a much larger set of random bit string patterns.
The random set of bit string patterns that must be
matched is known here as the antigen library. The
system population of memory cells, known as anti-
bodies, consists of a small (relative to the size of the
antigen library) collection of bit string patterns. Anti-
body evolution (i.e., system level learning) is a result
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of isolated genetic search, local feedback decisions, and
the ability of mobile agents to maintain an adequate
distribution and diversity of antibodies between sys-
tem nodes.

2.1 System Operation

This SDM consists of two core operations. The first is
genetic search, taking place simultaneously and con-
tinuously on each node. The second involves mobile
agents that circulate antibodies between the system
nodes. Genetic search is used to perform pattern
matching at each node, where each node randomly
samples from a common antigen library, similar to For-
rest, et. al. [2]. When an antigen sample is taken, the
resident antibodies in the input queue on each respec-
tive node are compared against the sample. If a match
is found, the search is complete and the node prepares
for a new antigen sample. If a match is not found,
the antibody population in the local input queue is
used to seed the initial population for genetic search.
The sampling of an antigen and searching for a match
constitute a cycle.

The final population for each independent search in-
cludes the solution (i.e., antibody pattern matching
the sampled antigen) and antibodies that are similar to
the antigen, but not necessarily perfect matches. This
provides the opportunity to feed patterns (in the form
of antibodies) back into the system that are similar
to the current antigen sample. The system antibody
population subsequently evolves with representatives
that have high affinity for the antigen library.

In this SDM, the mobile agents operate autonomously.
From the perspective of each node, agents continuously
arrive, deposit antibodies in the input queue, retrieve
new antibodies from the output queue and transport
them to new nodes (Figure 2). Meanwhile, patterns
are continuously sampled from the antigen library as
described above. When a sample is taken from the
antigen library that must be matched, an initial pop-
ulation of 50 individuals is constructed to start ge-
netic search. To take advantage of the system’s learned
knowledge, the initial population is comprised of: 1)
antibodies taken from the local input queue, 2) copies
of antibodies currently waiting in the output queue
and 3) mutated copies of antibodies from steps 1 and
2. Copying and mutating antibodies is repeated until
the initial population is complete.

In order to bound the size of the antibody population
while promoting quality information in the system, we
have introduced a survival scoring mechanism based
on 1) age and 2) affinity to antigen library samples.
This rewards antibodies for survival time (long-term

Figure 2: Simultaneous Activities At Each Node.

reward) and for scoring well against the current anti-
gen sample (short-term reward). The survival score is
the sum of the age and affinity values.

The age of an antibody corresponds to the number of
nodes that it has visited since creation. A new anti-
body has an age of zero, and this value is subsequently
incremented by one for each new search in which it is
used as an initial seed. The affinity is based on the
percentage of bits that match antigen samples. This
value is initially set to 100, giving newly created anti-
bodies a chance to survive infancy. The value is subse-
quently decremented at each feedback step. The affin-
ity value is reset to the affinity for the current antigen
sample if that score is greater than the current affinity.

At the conclusion of every genetic search on each sys-
tem node (when a given antigen sample is matched), a
competition takes place to determine which antibod-
ies are fed back into the system. At each competition,
individuals in the antibody population that were in
the input queue prior to genetic search (i.e., seeds) are
compared with individuals from the final search pop-
ulation. The highest scoring antibodies are fed back
into the system, and the remainder are discarded. A
search feedback threshold allows individuals from the
final search population that are not exact matches to
be competitive in the feedback competition.

2.2 Pattern Matching Application

These experiments were designed to examine the im-
pact of agent behavior and agent mobility strategies on
the performance of this SDM. Performance in this con-
text is measured with respect to the work necessary to
discover the antibody strings that match the antigens
sampled at the nodes in the system over the course of
time. The antibody population consists of bit strings
that are used to seed the population at local nodes for
genetic search in order to match the patterns sampled
from the antigen library.
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Figure 3: Antigen Library Distribution.

In each of these experiments, a parameter space is
defined surrounding a randomly generated bit string,
known as the base antigen string. An antigen li-
brary is generated in a binomial distribution around
the base antigen, bounded by a given Hamming dis-
tance (Figure 3). The distribution reflects the fre-
quency of occurrence of samples based on their Ham-
ming distance from the base antigen. Thus, bit strings
that are closer to the base antigen string are included
in the library less frequently than those that are far-
ther from the base string. This distribution is similar
to that of B and T cell clones as modeled by Smith,
et. al. [6], in simulations of immune system models.

In training the SDM, success is measured by the ability
to generate antibodies quickly (i.e., few trials) that
match strings sampled from the antigen library. A
trivial solution to this problem is to generate one or
more antibodies that match each antigen sampled (i.e.,
specialists). However, in a sparse distributed memory,
the address space can be orders of magnitude larger
than the instantiated address locations[6]. We used an
antigen to antibody ratio in this system of 10:1. This
means that, on average, one antibody must represent
ten antigens. The hypothesis is that good system-wide
performance requires an antibody circulation scheme
that promotes an antibody population comprised of
“generalist” antibodies (as opposed to specialists).

2.3 Migration Strategies and Communication
Behaviors

Within the context of the SDM described, we have de-
vised three agent migration strategies and three agent
communication behaviors for investigation. This re-
sults in nine agent strategy/behavior combinations.
The three agent migration strategies are as follows:

1. RandomMigration - In this migration strategy,
agents circulate antibodies by moving at random
between system nodes.

2. Directed Migration - This migration strategy is
intended to promote maximum diversity by corre-
lating agent movement with the specific antibody
that is being transported. Each node maintains a
most recently sent queue that consists of a single
entry representing every other node in the system.
Each entry associates a node ID with the last an-
tibody transported by an agent to the respective
remote node from the local node. When an agent
retrieves an antibody to transport, the Hamming
distance between that antibody and every other
entry in the queue is measured. The agent selects
the destination node based on the entry that is
furthest away in Hamming space.

3. Cyclic Migration - Cyclic migration agents
move in a fixed pattern between system nodes.
Each agent generates a random itinerary upon
creation that includes a single visit to each node
(i.e., Hamiltonian cycle).

The three communication behaviors are as follows:

1. Always Communicate - This is a simple behav-
ior that requires no thinking, or decision process,
on behalf of the agent. The agent simply deposits
the transported antibody into the input queue of
the node on which it arrives.

2. Just In Time (JIT) Communication - Agents
search for a host that has just sampled an anti-
gen from the library and is ready to begin ge-
netic search. Agents continue to move until a host
in this state is found, and then they deposit the
transported antibody, “just in time” to begin ge-
netic search.

3. Load Balanced Communication - Agents have
a tendency to move away from other agents when
exhibiting a load balancing communication be-
havior. This behavior forces agents to move away
from “busy” nodes, thereby evenly distributing
the antibody population among the system nodes.

2.4 CHC Algorithm

There are numerous genetic search approaches that
could be used in the context of this SDM. We have
chosen to incorporate the CHC adaptive search algo-
rithm for antibody evolution at the local nodes. The
CHC adaptive search algorithm [1] is a generational
genetic algorithm that has been shown to yield very
good performance for optimizing a wide variety of test
problems and requires no parameter tuning [7]. Mat-
ing in CHC is performed by randomly pairing parents
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and applying the HUX crossover operator. HUX ex-
changes exactly half of the bits that differ between the
mates. Crossover is only performed if the differences
between mates is greater than a threshold that is dy-
namically adjusted during the search process. This is
known as incest prevention and serves to slow genetic
convergence appreciably. Selection is performed using
the (µ + λ) strategy, preserving the best N individu-
als from the child and parent populations, where N is
the population size. When the population does con-
verge, the search process is restarted via cataclysmic
mutation. The population is filled with copies of the
best individual and then 35% of the bits in all but one
individual are complemented and search is restarted.

3 Experimental Conditions

For these experiments, the three migration strategies
were paired with all three of the communication behav-
iors. These strategy/behavior combinations were also
compared against the performance of a control strat-
egy wherein no agents were used (i.e., no communi-
cation between nodes was possible). Table 1 identifies
the system parameter values used for all experiments.1

To emulate a sparse distributed memory, we main-
tained a 10:1 antigen to antibody ratio. To adequately
sample the antigen pool, each simulation consisted of
5,000 cycles2 at each of four nodes. This allows ex-
amination of a full range of behavior without spurious
states (due to early termination) and an even sampling
distribution of the patterns from the antigen library.

4 Results

All nine of the agent migration strategy/ communi-
cation behavior combinations were simulated for 30
independent runs. Combining all agent communica-
tion behaviors with all of the agent migration strate-
gies provides a complete factorial design, supporting
analysis of variance (ANOVA) testing. This allowed
us to determine if any of the migration strategies or
communication behaviors resulted in a statistically sig-
nificant performance advantage or disadvantage (i.e.,
significant main effect).

1To support a fair comparison between the migration
strategy/communication behavior pairs, the parameter val-
ues for the total number of agents, antibody mutation rate,
and search feedback threshold were established via a sepa-
rate search using a meta-GA. The purpose of the meta-GA
was to find a good, if not optimal, set of parameter values
for operation of this system.

2Genetic search is used to find an antibody that matches
an antigen sample at each cycle except when a perfect
match resides in the initial genetic population.

Parameter Value
System Nodes 4
Antigen Library Size 320
System Antibody Population 32
Antibody String Length (bits) 32
Parameter Radius (bits) 5
Cycles (antigen samples/node) 5000
Time Between Search at each Node (msec) 20
Total Agents 24
Antibody Mutation Rate (bits) 3
Search Feedback Threshold (bits) 5

Table 1: System Operational Parameters.

Table 2 shows the average number of trials (and stan-
dard error of the means - SEM) to match antigen
samples for each of the strategy/behavior combina-
tions. The random agent migration strategy paired
with the always communicate behavior expended the
least amount of work (i.e, fewest trials), on average, to
discover the antibodies that match the antigens sam-
pled in the simulations. However, this performance
advantage is only statistically significantly better than
a few of the other cells in Table 23 (particularly the di-
rected/JIT combination). The average trials to match
the antigens sampled using the cyclic agent migration
strategy are significantly worse than any of the other
strategy/behavior combinations. ANOVA tests con-
firm this fact as a significant main effect.

Comm. Migration Strategy
Behavior Random Directed Cyclic
Always 283.1 (0.73) 285.1 (1.19) 300.8 (1.69)
JIT 285.5 (0.66) 286.2 (0.72) 301.1 (1.87)
Load Bal 284.3 (1.46) 287.1 (2.61) 306.2 (2.13)

Table 2: Average Trials to Match Antigen Samples.
When no agents are present, 298.7 trials (SEM = 1.49)
are needed to match the pattern, on average.

The cyclic migration strategy combined with the load
balancing communication behavior results in the worst
performance, relative to all other strategy/behavior
combinations. This performance is 10 standard errors
worse than the random migration, always communi-
cate runs and more than 2 standard errors worse than
the experimental runs with the cyclic/JIT implemen-
tation. In fact, it is even inferior to the performance of
simulations where no agents were present in the sys-
tem. The average trials to match the antigens sampled
when no agents are present (i.e., antibodies are not cir-
culated) is 298.7 (SEM = 1.49).

3This may be due to the stochastic nature of the simu-
lations contributing more noise than the variance between
the strategy/behavior combinations.

ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION100



It is important to note that the system learns and per-
forms significantly better than genetic search on an
equivalent problem when a random initial population
is used. For example, on average, CHC solves a 32-bit
one-max4 problem in 504 trials (SEM = 9.12), when
beginning with a random initial population.

4.1 An Emergent Behavior

Although the goal of genetic search at each local node
is to match antigen library samples, the search efforts
combined with the local survival decisions result in a
globally emergent behavior. The communication of in-
formation via agents consistently resulted in an inter-
esting phenomenon, notably the discovery and propa-
gation of the string pattern used to create the antigen
library (i.e., the base antigen string). Table 3 shows
the average percentage of the system’s final antibody
population occupied by copies of strings matching the
base antigen for each respective strategy/behavior ex-
periment. This is referred to as the saturation rate.

Comm. Migration Strategy
Behavior Random Directed Cyclic
Always 100.0% (0.00) 100.0% (0.00) 89.7% (1.04)

JIT 100.0% (0.00) 100.0% (0.00) 89.1% (1.35)
Load Bal 96.1% (0.74) 97.2% (0.68) 82.9% (3.40)

Table 3: Antibody Population Saturation Rate. When
no agents are present, the average saturation rate is
91.1% (SEM = 0.50).

ANOVA testing confirms the trends evident by vi-
sual inspection as significant. First, the load-balancing
communication behavior does not allow the base anti-
gen to saturate the system, regardless of the agent
migration strategy employed. The cyclic agent migra-
tion strategy also prevents the base antigen string from
saturating the antibody population. This seems obvi-
ous in hindsight as the cyclic migration strategy is the
most restrictive of the migration strategies. Visita-
tion by a given agent is not equally likely at all nodes
at each time step for this migration strategy. This
restriction is so severe in fact, that the results were
comparable to runs where no agents were present in
the system. While simulations using no agents did dis-
cover this base antigen string, the simulations yielded
an average saturation rate of 91.1% (SEM = 0.50).

The discovery of antibodies that match the base anti-
gen string cannot be a result of searches in which the
base antigen is sampled from the antigen library. An-

4A one-max problem is equivalent to finding a match-
ing bit-string using an evaluation score that reports the
number (or percentage) of bits matching another pattern.

tibodies fed back to the system must meet or exceed
a feedback threshold of five bits.

In searching for strings to match samples from the anti-
gen library, each node contributes strings to the sys-
tem antibody competition that have a large number
of bits in common with the base antigen. This may
or may not be sufficient for a given antibody to sur-
vive the feedback competition and be propagated to
other nodes. However, those strings that are close to
the base antigen string in Hamming distance will also
likely score well against other antigens, if kept in the
system antibody population. This causes the system
antibody population to accumulate alleles in common
with the base antigen string. When the antibody pop-
ulation is viewed as a probability vector that repre-
sents the percentage of 0- or 1-bits at each locus over
the strings in the antibody population, this vector will
approximate the base antigen string more accurately
over time.

Eventually, an antibody matching the base antigen is
a by-product of a search for another antigen library
sample. Antibody copies of the base antigen string
will likely perform well in the feedback competitions
at each node, and chances of survival in the system
will be better than average. After surviving in the an-
tibody population for several cycles, the age weighting
guarantees future survival.

The base string is very rarely useful in exactly match-
ing any string in the antigen library (a 1 in 320 chance),
yet this string serves as a good seed string for the ge-
netic search. The discovery of the base string may or
may not be an optimal system-wide strategy for learn-
ing how best to reduce the number of trials required
to evolve an antibody that matches an antigen sam-
ple. For example, the discovery of four antibodies that
divide the antigen library into equally sized attraction
basins, based on Hamming distance, might work as
well as, or better than, a single generalist. Regardless,
the discovery of the base string is an interesting exam-
ple of local behavior that facilitates emergent global
behavior.

The best performances shown in Table 2 generally cor-
respond with complete saturation (Table 3), yet there
is not a perfect correlation. For example, the load bal-
ancing/random migration implementation performs
quite well, but does not exhibit complete saturation.
Therefore, saturation of the antibody population with
the base antigen must not be the only factor in obtain-
ing good performance.
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4.2 Propagation of Information

To further explore the correlation between the propa-
gation of quality information and the efficiency of dis-
covering antibody/antigen matches, we measured the
average number of cycles required to: 1) discover the
base string, 2) propagate the base string to all nodes
after it has been discovered, and 3) saturate the sys-
tem after a copy of the base string has been seen at all
nodes. Table 4 shows these results.5

Comm. Migration Strategy
Behavior Random Directed Cyclic

Avg. Cycles to Discover Base String
Always 138.4 (24.5) 234.4 (51.7) 123.4 (19.9)

JIT 147.2 (23.6) 153.0 (26.6) 182.3 (35.7)
Load Bal 195.4 (37.2) 153.6 (32.4) 123.5 (20.9)
Avg. Additional Cycles to Circulate Base String to All Nodes
Always 36.4 (12.4) 60.4 (22.1) 818.7 ( 77.7)

JIT 35.6 (12.4) 58.8 (17.8) 1018.9 (135.1)
Load Bal 19.4 ( 4.3) 89.4 (31.5) 1278.1 (130.3)

Avg. Additional Cycles to Saturate With Base String
Always 1083.9 (154.4) 1106.6 (178.0) *3906 (0)

JIT 865.1 ( 86.8) 973.2 (107.4) *3798.5 (831.5)
Load Bal *2944.5(410.3) *2943.4 (378.5) *2013 (0)

Table 4: Average Cycles (SEM) to Discover, Circulate
and Saturate the Antibody Population.

ANOVA testing shows that there is no significant main
effect in the time taken to discover the base antigen
by any of the strategy/behavior combinations. Sur-
prisingly, the average cycles for the experimental runs
using a cyclic agent migration strategy and the always
and load-balancing communication behaviors are bet-
ter than the other strategies at discovering the base
string (but not significantly so in most cases, due to
large SEM values). The no agent strategy required, an
average of 163 cycles (SEM=19) to discover the base
string. This is comparable with most cells in Table 4.

There is a significant main effect seen in the num-
ber of cycles required to propagate the base string
to all of the nodes after it has been discovered. In
fact, it is at this stage of the simulation that those
strategy/behavior combinations that incorporate the
cyclic agent migration strategy experience a signifi-
cant disadvantage, as compared to the other strat-
egy/behavior combinations. In fact, the number of
cycles needed by the cyclic agent migration strategy
to propagate the base string to all other nodes after
discovery is comparable with having no agents in the
system. On average, the SDM runs where no agents
are employed require 1158 cycles (SEM=102) after the

5The * indicates that all 30 runs did not saturate. Av-
erage cycles reported, include only those runs that did
saturate.

initial discovery of the base string, until all nodes have
independently discovered the base string.

There is also a weak main effect that indicates that
the load-balancing behavior is slower at propagating
the base string to all nodes after discovery than either
the always or JIT communication behaviors. However,
this trend is to be treated carefully, as there is an ob-
vious exception. The random migration strategy that
incorporates the load-balancing behavior appears to
be considerably faster at propagating the base string
among all of the nodes. We performed several repeti-
tions of the complete factorial design and this was the
only occurrence of this rapid propagation of informa-
tion (while all other trends were verified).

The ANOVA tests could not be performed for the av-
erage number of cycles between complete circulation
and saturation due to the fact that all 30 experimental
runs for every strategy/behavior combination did not
saturate. However, it can be observed that the random
and directed strategies that use the load-balancing be-
havior do not propagate the base string nearly as well
as when the always and JIT communication behaviors
were employed.

4.3 Performance at Various Stages of the
Simulation

There is an obvious difference in the ability of the
strategy/behavior combinations to propagate informa-
tion (although that information does not always ap-
pear to expedite search speed). It seemed prudent
to test the hypothesis that the discovery of the base
string does in fact affect the number of trials to match
an antigen. Table 5 shows the average number of trials
(and SEM) required to match an antigen during the
stages relative to: 1) discovering the base string, 2)
propagating the base string to all nodes after the first
discovery, 3) between circulating the base to all nodes
and saturation occurring, and 4) after saturation.5

ANOVA tests show that there is indeed a significant
main effect where the discovery of the base antigen re-
duces the average number of trials required to match
a sampled antigen. This holds true for all strat-
egy/behavior combinations but could not be confirmed
for the final two stages of simulation (i.e., after cir-
culation and after saturation), since all runs did not
saturate. The cyclic migration strategies performed
consistently worse than the random and directed mi-
gration strategies, although it is not statistically sig-
nificant. Therefore, the average cycles for the cyclic
agent migration strategy between base string circula-
tion among all nodes and population saturation (Ta-
ble 4) must account for the significant performance
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Comm. Migration Strategy
Behavior Random Directed Cyclic

Stage 1 - Prior to Base String Discovery
Always 380.0 (5.46) 371.8 (3.96) 392.5 (9.34)

JIT 375.1 (4.60) 381.8 (4.79) 373.7 (2.67)
Load Bal 371.5 (2.98) 390.0 (9.98) 385.7 (5.63)
Stage 2 - Between Base String Discovery & Circulation
Always 346.7 (2.71) 344.6 (2.59) 338.8 (2.51)

JIT 350.6 (2.95) 355.9 (3.19) 337.9 (2.60)
Load Bal 346.3 (2.72) 353.4 (3.18) 339.2 (2.19)
Stage 3 - Between Base String Circulation & Saturation
Always *291.5 (2.70) 291.0 (2.77) *278.3 (0.0)

JIT 290.5 (1.92) 292.7 (2.20) *279.1 (0.7)
Load Bal *282.4 (2.66) *284.1 (1.33) *282.1 (0.0)

Stage 4 - After Saturation
Always *278.2 (0.33) 278.3 (0.29) N/A

JIT 280.8 (0.28) 280.2 (0.30) N/A
Load Bal *276.0 (0.47) *275.3 (0.61) *274.6 (0.0)

Table 5: Average Trials to Match Antigen Samples
During Critical Stages of Simulation.

differences observed in Table 5. This is also consistent
with the infrequent saturation rates exhibited by the
cyclic migration strategy.

Figure 4 shows the number of trials required to match
an antigen for the first 1,500 samples of the 5,000 cy-
cle simulation at one of the four nodes for a single
representative run. Trials are shown on the Y-axis
while cycles are shown on the X-axis. The open cir-
cles indicate the trials required to match an antigen
during a particular cycle, and the black line represents
the running average (lag = 100). The base string is
first discovered at cycle 259. The trials to discover a
match for the antigen samples begins to decrease at
this point. The running average reaches a low of ap-
proximately 250 trials by cycle 410, where the system
antibody population saturates with the base string.

4.3.1 The Effects of Seeding Genetic Search
in the SDM Simulation

An unusual behavior observed in Figure 4 is the occur-
rence of searches that expend two to three times the
normal number of trials to find an antibody/antigen
match. This is indicative of seeding the initial popu-
lation for the CHC search in a biased manner, risking
the incidence where the correct allele is not present
in any member of the initial population. Since CHC
does not employ mutation, except at divergences, the
search will converge to an antibody string that does
not match the antigen sample, and hence cataclysmic
mutation will be performed to restart the search. Such
an event can significantly impact the number of trials
necessary to find the matching string.
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Figure 4: Search Profile At A Single Node For First
1,500 Cycles.

This phenomenon occurs here due to the seeding pro-
cedure. Each genetic search is started by seeding the
population with three-bit mutations of the antibod-
ies available in the input queue, where each antibody
in the input queue seeds an equal fraction of the ge-
netic population. The expected difference between the
base string and an antigen sample is five bits. Hence,
the expected difference between antibodies that are fed
back from the genetic search (i.e., at least Hamming
distance five from the antigen just matched) and a
another antigen sample is ten bits. Therefore, the oc-
currence of restarts is not unexpected. It is important
then, that genetic meta-search was used to discover
the seeded mutation value (i.e., three bits) as opposed
to arbitrary determination.

5 Conclusions

Evidence from this study illustrates that seeding the
initial population with a single “generalist” pattern
can expedite genetic search for other related patterns.
In this context, a generalist pattern can form an ef-
fective sparse representation for a library of patterns.
This SDM learns that a good strategy for reducing
the work necessary to match antigen library samples
is to evolve and propagate antibodies matching the
base antigen string. Performance analysis reveals that
providing feedback from the final population used in
genetic search is sufficient to discover such a general-
ist, even when the genetic material does not contain
precise matches for the antigen samples.

It is clear that the use of mobile agents to circulate ge-
netic material between nodes expedites the discovery
and propagation of the base antigen string. Without
agents to circulate the information, each node must
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discover the base string independently. The number
of trials required to match an antigen is significantly
reduced when the base antigen is discovered and its
representation (antibody copies) is shared in the sys-
tem via mobile agents. This is evident from com-
paring the performances of the simulations using ran-
dom and directed migration strategies with the perfor-
mances of simulations implementing cyclic migration,
where communication is hindered, or those containing
no agents, where communication is non-existent. Sim-
ulations using the cyclic agent migration strategy are
unable to propagate the base string throughout the
system and do not consistently saturate the antibody
population.

Additional analysis of system behavior provides insight
into the operational dynamics of each agent commu-
nication behavior. Although not impacting total tri-
als, the load balancing behavior did not saturate the
population in all instances. The relatively large num-
ber of cycles required for this communication behav-
ior to saturate the population with copies of the anti-
body matching the base antigen (Table 4) gives rise to
the hypothesis that agents implementing this behav-
ior may be hiding quality material while “looking” for
non-busy nodes.

On average, the JIT communication behavior provides
more antibodies to begin each search. This behavior
did in fact expedite the antibody population satura-
tion, as evident from the number of cycles to satu-
rate the population with the base string (Table 4),
although it did not seem to significantly impact the
performance metric used in the experiments. Exam-
ining metrics beyond total average trials suggests that
additional experiments run with different performance
criteria (such as reducing the number of cycles per
node) could very well serve as a significant discrimina-
tor among communication behaviors.

The directed agent migration strategy was designed to
promote maximum antibody diversity in the system.
This objective was not realized with respect to im-
proved genetic search performance (Table 2). In fact,
directed migration did not perform quite as well as ran-
dom migration during several simulation stages (Ta-
bles 4 and 5). We surmise that near real-time knowl-
edge (as opposed to real-time) contained in the most
recently sent queue mitigates the anticipated advan-
tage of antibody diversity promotion. This is a result
of the decentralized implementation, where an instan-
taneous global snapshot of node state is not available.

Thorough study of agent behaviors and migration
strategies is a valuable performance analysis exercise.
This investigation illustrates that various communica-

tion implementations can yield surprising results. A
restrictive agent strategy (cyclic migration), conducive
to uneven visitation, performed worse than simulations
using no agents. Agent implementations employing
more complex strategies and behaviors (such as those
that are based on current system state or require coor-
dination) are not always performance leaders. Our re-
sults indicate that a greater degree of agent autonomy,
where agents make simple, independent decisions, fa-
cilitates expedited genetic search that improves sparse
distributed memory performance.
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Abstract

A deterministic model for Ant Colony Opti-

mization (ACO) algorithms is proposed and

used to study the dynamics of ACO. The

model is based on the average expected be-

haviour of ants. The behaviour of ACO algo-

rithms and the model are analysed for certain

types of permutation problems. It is shown

numerically that decisions of the ants are in-


uenced in an intriguing way by the proper-

ties of the pheromone matrix. This explains

why ACO algorithms show a complex dy-

namic behaviour. Simulations are done to

compare the behaviour of the ACO model

with the ACO algorithm. The results show

that the model describes essential features of

the dynamics of ACO algorithms.

1 INTRODUCTION

Ant Colony Optimization (ACO) has been applied suc-

cessfully to several optimization problems (ACO was

proposed in [1, 2]). Since ACO algorithms are based on

sequences of random decisions of arti�cial ants which

are usually not independent it is diÆcult to analyze the

behaviour of ACO algorithms theoretically. Except

from convergence proofs for types of ACO algorithms

with a strong elite principle [3, 4, 12] not much the-

oretical work has been done. Usually ant algorithms

have been tested on benchmark problems or real world

problems. In this paper we propose and analyze a de-

terministic model for ACO algorithms and use it to

derive exact results on optimization problems with a

simple structure. The analytical results are comple-

mented with empirical tests to compare computations

done with the ACO model with test runs of the ACO

algorithm.

Modelling has been done in the �eld of genetic algo-

rithms (GAs) by several authors in order to better

understand GAs behaviour. One line of modelling is

to use an in�nite population which is often easier to

handle than a �nite population since many proper-

ties of an in�nite population do not 
uctuate due to

few random events [13, 14]. Another method is to

characterize the population by few parameters (e.g.,

mean and variance of the �tness distribution of the

population) which capture important aspects of the

population instead of dealing with a concrete popula-

tion (e.g., [9{11]). Mostly in these studies, GAs are

modelled on problems which are simple but have some

characteristic features of more complicated and real-

world problems (e.g., \Royal Road" functions [8]).

The approach used in this paper is to de�ne a deter-

ministic model for ACO that is based on the expected

decisions of the ants. In the model the pheromone

update in every iteration is done by adding for each

pheromone value the expected update of a random

generation of ants.

In Section 2, we describe the permutation problems

that are used in this paper. The ACO algorithm is

described in Section 3 and the ACO model is de�ned

in Section 4. In Section 5, we discuss how to apply

the model to permutation problems. A �xed point

analysis of pheromone matrices is done in Section 6.

In Section 7, we analyze the dynamic behaviour of

the ACO model. Simulation results are described in

Section 8 and conclusions are given in Section 9.

2 PERMUTATION PROBLEMS

Although the general approach of our ACOmodel does

not depend on a speci�c type of optimzation problems

we give a more elaborated description only for permu-

tation problems. They are also used as test problems.

In particular, we use the following type of permutation
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problems. Given are n items 1; 2; : : : ; n and an n � n

cost matrix C = [c(ij)] with integer costs c(i; j) � 0.

Let Pn be the set of permutations of (1; 2; : : : ; n). For

a permutation � 2 Pn let c(�) =
P

n

i=1
c(i; �(i)) be

the cost of the permutation. Let C := fc(�) j � 2 Png

be the set of possible values of the cost function. The

problem is to �nd a permutation � 2 Pn of the n

items that has minimal costs, i.e., a permutation with

c(�) = minfc(�0) j �0 2 Png.

3 ACO ALGORITHM

An ACO algorithm consists of several iterations where

in every iteration each of m ants constructs a solution

for the optimization problem. It has to be mentioned

that we can not consider here all the variants and im-

provements that have been proposed in recent years

for ACO.

For the construction of a solution (here a permutation)

every ant selects the items in the permutation one af-

ter the other. For the selection of an item the ant uses

pheromone information which stems from former ants

that have found good solutions. The pheromone in-

formation, denoted by �ij , is an indicator of how good

it seems to have item j at place i of the permutation.

The matrix (�ij)i;j2[1:n] of pheromone values is called

the pheromone matrix. In addition an ant may also

use problem speci�c heuristic information. But since

we want to study ACO algorithms in general and not

for some speci�c problem we do not consider heuristics

in this paper.

The next item is chosen by an ant from the set S

of items, that have not been placed so far, accord-

ing to the following probability distribution (e.g. [2])

that depends on the pheromone values in row i of the

pheromone matrix: pij = �ij=
P

h2S
�ih, j 2 S.

Note that alternative methods where the ants do not

consider only the local pheromone values have also

been proposed [5, 7]. Before the pheromone update is

done a certain percentage of the old pheromone evapo-

rates according to the formula �ij = (1��)��ij . Param-

eter � allows to determine how strongly old pheromone

in
uences future decisions. Then, for every item j of

the best permutation found so far some amount � of

pheromone is added to element �ij of the pheromone

matrix (i is the place of item j). The algorithm stops

when some stopping criterion is met, e.g. a certain

number of generations has been done. For ease of de-

scription we assume that the sum of the pheromone

values in every row and every column of the matrix

is always one, i.e.,
P

n

i=1
�ij = 1 for j 2 [1 : n] andP

n

j=1
�ij = 1 for i 2 [1 : n] and � = �.

4 ACO MODEL

In the proposed ACO model the pheromone update

of a generation of ants is done by adding to each

pheromone value the expected update value. This

means that the e�ect of an individual ant in a run

is averaged out. Since the update values in the ACO

algorithm are always only zero or � = � the ACO

model can only approximate the average behaviour of

an ACO algorithm over more than one generation.

In order to determine the expected update for a ran-

dom generation of ants the probabilities for the vari-

ous decisions of the ants have to be determined. Let

M = (�ij) be a pheromone matrix and let �ij be the

probability that a random ant selects item j for place i.

Clearly, this selection probability can be computed as

described in the following. Let Pn be the set of possible

solutions, i.e. the set of permutations of (1; 2; : : : ; n).

The probability to select a solution � 2 Pn is

�� =

nY
i=1

�i;�(i)P
n

j=i
�i;�(j)

(1)

The probability that item i is put on place j is

�ij =
X
�2Pn

�� � g(�; i; j)

where g(�; i; j) = 1 if �(i) = j (otherwise g(�; i; j) =

0).

Given a permutation problem P with corresponding

cost matrix and pheromone matrix let �
(m)

ij
be the

probability that the best of m ants in a generation

selects item j for place i. Let Pmin(P; �1; : : : ; �m) be

the subset of permutations of f�1; : : : ; �mg with mini-

mal costs, i.e., Pmin(P; �1; : : : ; �m) = f�i; i 2 [1 : m] j

c(�i) = minfc(�j) j j 2 [1 : m]gg. Probability �
(m)

ij

can be computed by

�
(m)

ij
=

X
(�1;:::;�m);�i2Pn

(

mY
k=1

��k ) �g(�1; :::; �m; i; j) (2)

where g(�1; :::; �m; i; j) equals

jf� 2 Pmin(P; �1; : : : ; �m) j �(i) = jgj

jPmin(P; �1; : : : ; �m)j
(3)

At the end of a generation the pheromone update is

done in the ACO model by �ij = (1��) � �ij +� ��
(m)

ij
.
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In the following an alternative way to compute the se-

lection probabilities for the best ofm ants is described.

Let C be the set of possible cost values for a permu-

tation or in other words the set of possible solution

qualities. Let �(m;x) be the probability that the best

of m ants in a generation �nds a solution with quality

x 2 C. Let !
(x)

ij
be the probability that an ant which

found a solution with quality x 2 C has selected item

i for place j. Then

�
(m)

ij
=
X
x2C

�
(m;x)

� !
(x)

ij
(4)

An interesting aspect of this formula is that the

pheromone update that is performed at the end of an

iteration is obtained as a weighted sum over the pos-

sible solution qualities. For each (possible) solution

quality the update value is determined by the proba-

bilities for the decisions of a single ant when it chooses

between all possible solutions with that same quality.

The e�ect of the number m of ants is only that the

weight of the di�erent qualities in this sum changes.

The more ants per iteration, the higher becomes the

weight of the optimal quality.

We now consider a variant of the above situation that

is needed in the next section. We introduce the con-

cept of malus values. It is assumed that some ants in

an iteration receive a malus value. This value is added

to the cost of the permutation they found. An ant with

a malus is allowed to update only when the cost of its

solution plus the malus is better than the solution of

every other ant plus its malus (in case it has a malus).

Formally, for i 2 [1 : m] let di � 0 be the malus of

ant i. We always assume that ant 1 has no malus, i.e,

d1 = 0. Let �m;x;d2;:::;dm be the probability that the

best of m ants where ant i 2 [1 : m] has a malus di
has found a solution of quality x 2 C. Then

�
(m;d2;:::;dm)

ij
=
X
x2C

�
(m;x;d2;:::;dm)

� !
(x)

ij
(5)

5 ACO MODEL FOR RESTRICTED

PERMUTATION PROBLEMS

Many real world problems consist of subproblems that

are more or less independent from each other. In or-

der to study the behaviour of ACO algorithms on such

problems we model this in an idealized way. We con-

sider restricted permutation problems which consist

of several small independent problems. De�ne for a

permutation problem P of size n0 a restricted permu-

tation problem P
q that consists of q independent in-

stances of P . Formally, let C1; C2; : : : ; Cq be the cost

matrices of q instances of P and denote by c
(l)

ij
element

(i; j) of matrix Cl, l 2 [1 : q]. Then for problem P
q

the item (l � 1) � n0 + j, l 2 [1 : q], j 2 [1 : n0] can be

placed only at places (l � 1) � n0 + 1, (l � 1) � n0 + 2,

: : : ; (l�1)�n0+n0. The cost to place item (l�1)�n0+j

at place (l�1) �n0+h is cl
hj
. Let C be the correspond-

ing cost matrix of the instance of problem P
q where

cij =1 when j is not of the form (l�1) �n0+h. Note,

that our de�nition of restricted permutation problems

does not allow an ant to make a decision with cost

1. We call P the elementary subproblem of P q and

the q instances of P that form an instance of P q the

elementary subinstances of P q . We consider here only

the case that all cost matrices C1; C2; : : : ; Cq are equal,

i.e. C = C1 = C2 = : : : = Cq for some cost matrix C.

Then P q is called homogeneous restricted permutation

problem and the cost matrix of P q is denoted by C
(q).

In the following we show how the behaviour of the

ACO algorithm for a (possibly inhomogeneous) re-

stricted permutation problem P
q can be approximated

using the behaviour of the ACO model for the elemen-

tary subproblem P . Consider an arbitrary of the q

elementary subinstances of P q | say the rth subin-

stance | and the quality of the solutions that m

ants in an iteration have found on the other elemen-

tary subinstances (which form an instance of problem

P
q�1). Without loss of generality assume that the

quality of the solution found by ant i is at least as

good as the solution found by ant i+1, i 2 [1 : m�1].

Let dmax be the maximum di�erence between two

values in cost matrix Cr of the rth subproblem, i.e.

dmax := maxfc
(r)

ij
j i; j 2 [1 : n0]g � minfc

(r)

ij
j i; j 2

[1 : n0]g. Let di, i 2 [2 : m] be the minimum of

dmax + 1 and the di�erence of the cost of the permu-

tation found by ant i on P
q�1 minus the cost of the

permutation found by ant 1 on P
q�1. Our assump-

tion implies 0 � d2 � : : : � dm. De�ne �
m;d2;:::;dm ,

0 � di � dmax + 1, i 2 [2 : m] as the probability that

for m ants on problem P
q�1 the di�erence of the costs

of the solutions found by the ith best ant and the best

ant is di when di � dmax and when di = dmax + 1

it is the probability that this di�erence is > dmax,

i 2 [2 : m]. Let D be the set of all vectors (d2; : : : ; dm)

with integers d2 � : : : � dm, 0 � di � dmax + 1,

i 2 [2 : m]. Then for the rth elementary subproblem

of P q we obtain �
(m)

ij
equals

X
(d2;:::;dm)2D

�
(m;d2;:::;dm)

� �
(m;d2;:::;dm)

ij
=
X
x2C

wx � !
(x)

ij
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with wx =
P

(d2;:::;dm)2D
�
(m;d2;:::;dm) � �(m;x;d2;:::;dm).

This shows that the e�ect of the subproblem P
q�1 on

the remaining subinstance Pr of P q is to change the

weights between the in
uence of the di�erent solution

quality levels when compared to formula 4 for solving

only the subproblem P = Pr.

We study the case of m = 2 ants in more detail.

For problem P
q let pd>y and pd=y be the probabil-

ities that the absolute value of the di�erence of the

solution quality of two ants on the smaller problem

P
q�1 is > y respectively = y. Then the probability

�
(2)

(l�1)n0+h;(l�1)n0+j
to select item j of the lth elemen-

tary subproblem equals

pd>dmax
� �

0

hj
+

dmaxX
y=1

pd=y � �
0(2;y)

hj
+ pd=0 � �

0(2)

hj

where �
0 refers to probabilities for the elementary

subinstance P . This equation shows the interesting

fact that part of the probability to select the item is

just the probability �
0

hj
of a single ant to select item

j at place h for the elementary subproblem P . This is

the case when the quality of the solutions of both ants

di�er by more than dmax. When the qualities of both

solutions are the same the probability �
0(2)

hj
to select

item j at place h equals the probability that the bet-

ter of two ants on problem P selects item j at place h.

All other cases correspond to the situation that one of

two ants on problem P has a malus.

The larger the number q of subproblems is the larger

becomes the probability pd>dmax
. An important con-

sequence is that the (positive) e�ect of competition

between the two ants for �nding good solutions be-

comes weaker and a possible bias in the decisions of a

single ant has more in
uence.

Let qd=y (q
(q�1)

d=y
) be the probability that the di�erence

of the solution quality found by the �rst ant minus the

solution quality found by the second ant on subprob-

lem P (respectively P
q�1) is y (here we do not as-

sume that the �rst ant �nds the better solution). The

value of this di�erence on subproblem P
q�1 can be de-

scribed as the result of a generalized one-dimensional

random walk of length q � 1. De�ne Iy as the set

of tuples (k�dmax
; k�dmax+1; : : : ; kdmax�1

; kdmax
) with

q� 1 =
P

dmax

i=�dmax

ki, y =
P

dmax

i=�dmax

ki � di where ki is

the number of elementary subinstances of P q�1 where

the di�erence between the �rst and the second ant is

i 2 [�dmax : dmax]. Then q
(q�1)

d=y
can be computed as

follows

X (q � 1)!

k�dmax
! � : : : � kdmax

!
� q

k
�dmax

d=�dmax

� : : : � q
k
dmax

d=dmax

where the sum is over (k�dmax
; : : : ; kdmax

) 2 Iy.

Clearly, pd=0 = q
(q�1)

d=0
and due to symmetry, for y 6= 0

pd=y = 2 � q
(q�1)

d=y
. The remarks on analysing the ACO

model for m = 2 ants can be extended to m � 3.

As an example consider the following problem P1 with

cost matrix

C1 =

0
@

0 1 2

1 0 1

2 1 0

1
A (6)

The possible solution qualities for problem P1 are 0,

2, and 4 and the optimal solution is to put item i on

place i for i 2 [1 : 3]. Hence �
(2)

3i+j;3i+h
= pd>4 � �

0

hj
+P

y=2;4
pd=y��

0(2;y)

hj
+pd=0��

0(2)

hj
. Consider the following

pheromone matrix for P1

0
@

�11 �12 �13

�21 �22 �23

�31 �32 �33

1
A =

0
@

0:1 0:3 0:6

0:6 0:1 0:3

0:3 0:6 0:1

1
A (7)

Then the probability for an ant to put, e.g., item 2 on

place 2 can be computed as �22 = 0:1 �0:1=(0:1+0:3)+

0:6 � 0:1=(0:1 + 0:6) � 0:111. The matrix of selection

probabilities for one ant on problem P1 is

0
@

�11 �12 �13

�21 �22 �23

�31 �32 �33

1
A �

0
@

0:1 0:3 0:6

0:714 0:111 0:175

0:186 0:589 0:225

1
A

Since the optimal solution is to place item i on place

i for i 2 [1 : 3] it is seems likely that the correspond-

ing selection probabilities are larger with two ants per

iteration compared to the case of a single ant in an

iteration. But our example shows that this is not nec-

essary. The probability to place item 2 on place 2 is

�
(2)

22
= 0:109 and slightly smaller than �22 = 0:111.

When one of two ants has a malus the selection prob-

abilities are mostly in between the case of two ants per

iteration and a single ant per iteration. But again, the

probability to place item 2 on place is a counterexam-

ple: �
(2)

22
< �22 < �

(2;2)

22
. Although not true in every

case, it can be observed that the selection probabilities

for the better ant become more similar to the matrix

of the selection probabilities for a single ant the higher

the malus is.
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Figure 1: Direction of the vector �eld for changes of

pheromone vectors (�21; �22; �23) for the ACO model

with a single ant and �11 = �12 = �13 = 1=3; possible

pheromone vectors lay in the white area; distance from

right (bottom,left ) line: �21 (�22,�23)

6 FIXED POINTS

Since the pheromone values of an ACO algorithm re-


ect the frequencies of decisions that resulted in good

solutions it is desirable that the selection probabili-

ties used by an ant are equal to their corresponding

pheromone values. As observed in [6] this might often

not be the case since the decisions of an ant are not in-

dependent. We say that there is a selection bias when

the probability of a random ant to choose an item is

di�erent from the corresponding pheromone value. A

pheromone matrix where the probability of a random

ant to choose an item is the same as the corresponding

pheromone value, i.e., �ij = �ij , for all i; j, is called

�xed point matrix. A �xed point matrix can change

in the ACO model only for m � 2 ants. The ques-

tion arises which matrices are �xed point matrices for

a permutation problem.

As an example consider a permutation problem of size

n = 3 where the pheromone matrix (�ij)i;j2[1:3] is de-

�ned by the values �11; �12; �21; �22. Clearly, the se-

lection probabilities for the items in the �rst row are

always equal to their corresponding pheromone values.

It remains to determine the probability of choosing the

�rst and the second item in the second row. The se-

lection probabilities for these items are

�21 :=
�12 �21

1� �22
+

(1� �11 � �12 ) �21

�21 + �22

�22 :=
�11 �22

1� �21
+

(1� �11 � �12 ) �22

�21 + �22

The solutions of �21 � �21 = 0 and �22 � �22 = 0 show

1st row

Figure 2: ACOmodel for P
q

1
, q = 2; 4; 8; 16; 32; 64; 128,

m = 2; change of pheromone values �11; �12; �13 (�rst

row of corresponding �xed point matrix is identical):

starting point at (�11; �12; �13) = (0:1; 0:3; 0:6)

that the �xed points depend only on the pheromone

values in the �rst row of the pheromone matrix:

1. �21 = 0, �22 = (�11 + �12 � 1)=(�11 � 1)

2. �21 = (�11 + �12 � 1)=(�12 � 1), �22 = 0

3. �21 = (�11)=(�11 + �12), �22 = (�12)=(�11 + �12)

4. �21 = 1� 2 � �11, �22 = 1� 2 � �12

Analysing the eigenvalues of the Jacobian matrix of

[�21 � �21; �22 � �22] the stability of the �xed points

was determined. For every pair of possible values �11
and �12 exactly one of the �xed points is stable and

attracting in the range of possible pheromone values.

The cases (1), (2), and (3) are symmetric: for �11 > 0:5

the �xed point (1) is stable, for �12 > 0:5 the �xed

point (2) is stable, and for 1� �11� �12 > 0:5 the �xed

point (3) is stable. In every other case the �xed point

(4) is stable. Thus, there exists always exactly one

stable �xed point matrix. Some of the three unstable

�xed points might lay outside of the allowed parameter

range �21; �22; �23 2 (0; 1), �21 + �22 + �23 = 1.

The directions of the vector �eld for changes of

pheromone vector (�21; �22; �23) when (�11; �12; �13) =

(1=3; 1=3; 1=3) are shown in Figure 1. In this case

the vector �eld is symmetric with respect to rotations

of 60 degree around the �xed point (�21; �22; �23) =

(1=3; 1=3; 1=3). It is interesting to observe that in some

areas of the vector �eld there are points (�21; �22; �23)

with a value �2i > 1=3 for i 2 [1 : 3] that becomes even

larger. This shows that the e�ects of the selection bias

can be complex even for small problems.
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2nd row
fixed points

Figure 3: ACOmodel for P
q

1
, q = 2; 4; 8; 16; 32; 64; 128,

m = 2; change of pheromone values �21; �22; �23 and �x

point matrix: starting at (�21; �22; �23) = (0:6; 0:1; 0:3)

7 DYNAMIC BEHAVIOUR

To study the dynamic behaviour of the ACO model

consider problem P1 with cost matrix given in (6) in

Section 4. Figures 2-4 show the dynamic behaviour of

the ACO model for P
q

1
with di�erent values of q and

m = 2 ants. The pheromone evaporation � is 0:1 and

the initial pheromone matrix is the same as in (7).

In contrast to the situation of one ant where the model

converges to its stable selection �xed point the model

converges for this example to the optimal solution.

During convergence the actual position of the selec-

tion �xed point has a strong in
uence on the system.

Note that for the �rst row of the matrix the pheromone

values always equal the corresponding selection prob-

abilities. Hence all dynamic in the �rst row is only

due to competition (and not due to selection bias).

Therefore, the pheromone values in Figure 2 approach

the optimal values on an almost straight path. This

is di�erent for the pheromone vectors of row 2 and 3

(see �gures 3, 4) where the stable selection �xed point

has a large in
uence and the system moves often more

in direction of the stable selection �xed point than in

direction to the optimal solution. In Figure 4 paths

with q � 8 contain a loop that is clearly in
uenced by

the turn of the selection �xed point. The larger q the

stronger is the deviation from a straight line because

a high number of elementary subproblems leads to a

small in
uence of competition (see Section 5).

In order to investigate the relative in
uence of selec-

tion, pure competition, and weak competition (where

one ant has a malus) we computed the probabilities

for the possible di�erences in solution quality between

the two ants on the smaller problem P
q�1

1
. Recall that

3rd row
fixed points

Figure 4: ACOmodel for P q

1
, q = 2; 4; 8; 16; 32; 64; 128,

m = 2; change of values �31; �32; �33 and �x point ma-

trix: starting at (�31; �32; �33) = (0:3; 0:6; 0:1)
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Figure 5: ACO model for P
q

1
, m = 2, q = 4; change of

pd=y on P
q�1

1
: pd=0, pd=2, pd=4, pd>4
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Figure 6: ACO model for P
q

1
, m = 2, q = 64; change

of pd=y on P
q�1

1
: pd=0, pd=2, pd=4, pd>4
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3rd row

Figure 7: ACO model for problem P
q

2
, m = 2, q =

6; 10; 14; 18; 22, initial matrix de�ned by (�11 = 0:1,

�12 = 0:2, �21 = 0:1, �22 = 0:7; change of pheromone

values �31; �32; �33

the solution quality for the elementary subproblem P1

can be 0, 2, or 4. Figures 5, 6 show the probabilities

pd=0, pd=2, pd=4, pd>4 for a small and a large number

of subproblems. For the large number the cases pd>4,

respectively pd1>4;d2>4, which correspond to selection

by a single ant on the elementary subproblem have a

probability of more than 50% over most parts of the

run. Only when the ACO model starts to converge the

model is driven more by competition (as suggested by

the analysis of the dynamics of the pheromone values).

To show that the selection bias can be so strong that

the ACO model is not able to �nd the optimal solu-

tion consider the following small problem P2 with cost

matrix (cij) where cii = 0, c13 = 100 and all the other

values are cij = 1; i; j 2 [1 : 3].

Figure 7 shows the behaviour of the ACO model for

P
q

2
with initial pheromone values �11 = 0:1, �12 = 0:2,

�21 = 0:1, �22 = 0:7 for di�erent values of q. For

q = 6; 10; 14 subproblems the system converges to the

optimal solution. But for larger numbers q = 18; 22

the in
uence of the selection bias is so high that

the system converges to a non-optimal solution with

(�11; �12; �13) = (x; 1 � x; 1), (�21; �22; �23) = (0; 0; 1)

and (�31; �32; �33) = (1 � x; x; 0). Even for small

numbers the system is driven by a selection bias but

competition becomes stronger early enough to change

the direction of convergence to an non-optimal solu-

tion. We tested the system also for all 666 matri-

ces with a feasible combination of pheromone values

�ij 2 0:1; 0; 2; : : : ; 0:9, for i; j 2 [1 : 3]. Even for

the small problem P
2

2
the optimal solution can not

be found for 83 of the 666 di�erent initial matrices.

This number increases up to 296 for P 60

2
.
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Figure 8: Solution quality on problem P
128

1
withm = 2

over 1000000 (respectively 1000) iterations: averagem

ants: average quality found by m ants in the iteration

of ACO algorithm; expected value m ants: expected

quality found by a random ant on the pheromone ma-

trix in the generation of ACO algorithm; model m

ants: average quality for ACO model

8 SIMULATION RESULTS

Since we have to consider single runs of the ACO

algorithm in our simulation a very small value of

� = 0:0001 was chosen for the algorithm. For the ACO

model � = 0:1 was used. We compare then iteration

t of the model with iteration 1000t of the algorithm.

Note that this establishes an additional di�erence be-

tween the model and the algorithm.

Figure 8 shows the behavior of the algorithm and

model on problem P
q

1
with q = 128. The solution

quality found by a random ant of the ACO model is

nearly the same as the expected behaviour of an ant

in the ACO algorithm (in the �gure the corresponding

curves are nearly identical). The observed average so-

lution quality of the ACO algorithm found by m = 2

ants 
uctuates around the solution quality that can

be expected from the pheromone matrix in that gen-

eration. It is interesting that the expected solution

quality of the ACO model and algorithm can become

worse during the run (This e�ect is not the result of

disadvantageous random decisions but is predicted by

the model).

Figure 9 shows the results of the ACO algorithm on

problems P
q

1
with di�erent values for q. Since ev-

ery curve stems from one run of the algorithm only

(it is not clear how to average in a reasonable way)

the curves are not very smooth. Nevertheless the

�gure shows when compared to �gures 3,4 that the

ACO model predicts very well the development of the

pheromone values of the ACO algorithm.

Of course not all aspects of ACO algorithms behaviour
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Figure 9: ACO algorithm for P
q

1
, q = 2; 4; 8; 16; 32;

64; 128, m = 2: change of pheromone values �21, �22,

�23 starting at (�21, �22, �23) = (0:6; 0:1; 0:3)

can be observed in the ACO model. As an exam-

ple consider the restricted homogeneous permutation

problem P
q where the ACO model shows the same be-

haviour on each of the elementary subproblems. The

ACO algorithm in contrast behaves di�erently on the

elementary subproblems due to random e�ects.

9 CONCLUSION

A deterministic model for ACO algorithms was pro-

posed that uses a pheromone update mechanism based

on the expected decisions of the ants. An interest-

ing feature of the model is that it describes the be-

haviour of ACO algorithms through a combination of

situations with di�erent strength of competition be-

tween the ants. A �xed point analysis of the models

pheromone matrices has given insights into the occur-

rence of biased decisions by the ants. It was shown

analytically that the �xed points in the state space of

the system have a strong in
uence on its optimization

behaviour. Simulations have shown that the model

accurately describes essential features of the dynamic

behaviour of ACO algorithms.
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Abstract

In competitive coevolution, the goal is to es-
tablish an “arms race” that will lead to increas-
ingly sophisticated strategies. However, in prac-
tice, the process often leads to idiosyncrasies
rather than continual improvement. Applying
the NEAT method for evolving neural networks
to a competitive simulated robot duel domain,
we will demonstrate that (1) as evolution pro-
gresses the networks become more complex, (2)
complexification elaborates on existing strate-
gies, and (3) if NEAT is allowed to complexify,
it finds dramatically more sophisticated strate-
gies than when it is limited to fixed-topology net-
works. The results suggest that in order to real-
ize the full potential of competitive coevolution,
genomes must be allowed to complexify as well
as optimize over the course of evolution.

1 INTRODUCTION

In competitive coevolution, two or more populations of in-
dividuals evolve simultaneously in an environment where
an increased fitness in one population leads to a decreased
fitness for another. Ideally, competing populations will
continually outdo one another, leading to an ”arms race” of
increasing sophistication (Dawkins and Krebs 1979; Van
Valin 1973). In practice, evolution tends to find the sim-
plest solutions that can win, meaning that strategies can
switch back and forth between different idiosyncratic yet
uninteresting variations (Darwen 1996; Floreano and Nolfi
1997; Rosin and Belew 1997). Several methods have been
developed to encourage the arms race (Angeline and Pol-
lack 1994; Rosin and Belew 1997). For example, a ”hall of
fame” can be used to ensure that current strategies remain
competitive against strategies from the past. Although such
techniques improve the performance of competitive coevo-

lution, they do not directly encourage continual coevolu-
tion, i.e. creating new solutions that maintain existing ca-
pabilities. Much time is wasted evaluating solutions that
are deficient in this way.

The problem is that in general genomes have a fixed set
of genes mapping to a fixed phenotypic structure. Once a
good strategy is found, the entire representational space of
the genome is used to encode it. Thus, the only way to
improve it is to alter the strategy, thereby sacrificing some
of the functionality learned over previous generations.

In this paper, we propose a novel solution to this prob-
lem. The idea is to complexify or add structure to the dom-
inant strategy, so that it does not merely become different,
but rather more elaborate. This idea is implemented in a
method for evolving increasingly complex neural networks,
called NeuroEvolution of Augmenting Topologies (NEAT;
Stanley and Miikkulainen 2001, 2002b,c). NEAT begins by
evolving networks without any hidden nodes. Over many
generations, new hidden nodes and connections are added,
resulting in the complexification of the solution space. This
way, more complex strategies elaborate on simpler strate-
gies, focusing search on solutions that are likely to maintain
existing capabilities.

NEAT was tested in a competitive robot control domain
with and without complexification. The main results were
that (1) evolution did complexify when possible, (2) com-
plexification led to elaboration, and (3) significantly more
sophisticated and successful strategies were evolved with
complexification than without. These results imply that
complexification allows coevolution to continually elabo-
rate on successful strategies, resulting in an arms race that
achieves a significantly higher level of sophistication than
is otherwise possible.

We begin by describing the NEAT neuroevolution method,
followed by a description of the robot duel domain and a
discussion of the results.
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2 NEUROEVOLUTION OF
AUGMENTING TOPOLOGIES (NEAT)

The NEAT method of evolving artificial neural networks
combines the usual search for appropriate network weights
with complexification of the network structure. This ap-
proach is highly effective: NEAT outperforms other neu-
roevolution (NE) methods, e.g. on the benchmark double
pole balancing task by a factor of five (Stanley and Miik-
kulainen 2001, 2002b,c). The NEAT method consists of so-
lutions to three fundamental challenges in evolving neural
network topology: (1) What kind of genetic representation
would allow disparate topologies to crossover in a mean-
ingful way? (2) How can topological innovation that needs
a few generations to optimize be protected so that it does
not disappear from the population prematurely? (3) How
can topologies be minimized throughout evolution so the
most efficient solutions will be discovered? In this section,
we explain how NEAT addresses each challenge.1

2.1 GENETIC ENCODING

Evolving structure requires a flexible genetic encoding. In
order to allow structures to complexify, their representa-
tions must be dynamic and expandable. Each genome in
NEAT includes a list of connection genes, each of which
refers to two node genes being connected. Each connec-
tion gene specifies the in-node, the out-node, the weight of
the connection, whether or not the connection gene is ex-
pressed (an enable bit), and an innovation number, which
allows finding corresponding genes during crossover.

Mutation in NEAT can change both connection weights and
network structures. Connection weights mutate as in any
NE system, with each connection either perturbed or not.
Structural mutations, which form the basis of complexifi-
cation, occur in two ways (figure 1). In the add connection
mutation, a single new connection gene is added connect-
ing two previously unconnected nodes. In the add node
mutation an existing connection is split and the new node
placed where the old connection used to be. The old con-
nection is disabled and two new connections are added to
the genome. This method of adding nodes was chosen in
order to integrate new nodes immediately into the network.
Through mutation, genomes of varying sizes are created,
sometimes with completely different connections specified
at the same positions.

In order to perform crossover, the system must be able to
tell which genes match up between any individuals in the
population. The key observation is that two genes that have
the same historical origin represent the same structure (al-

1A more comprehensive description of the NEAT method is
given in Stanley and Miikkulainen (2001, 2002c).
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Figure 1: The two types of structural mutation in NEAT.
Both types, adding a connection and adding a node, are illus-
trated with the genes above their phenotypes. The top number in
each genome is the innovation number of that gene. The bottom
two numbers denote the two nodes connected by that gene. The
weight of the connection, also encoded in the gene, is not shown.
The symbol DIS means that the gene is disabled, and therefore not
expressed in the network. The figure shows how connection genes
are appended to the genome when a new connection is added to
the network and when a new node is added. Assuming the de-
picted mutations occurred one after the other, the genes would be
assigned increasing innovation numbers as the figure illustrates,
thereby allowing NEAT to keep an implicit history of the origin
of every gene in the population.

though possibly with different weights), since they were
both derived from the same ancestral gene from some point
in the past. Thus, all a system needs to do to know which
genes line up with which is to keep track of the historical
origin of every gene in the system.

Tracking the historical origins requires very little compu-
tation. Whenever a new gene appears (through structural
mutation), a global innovation number is incremented and
assigned to that gene. The innovation numbers thus rep-
resent a chronology of every gene in the system. As an
example, let us say the two mutations in figure 1 occurred
one after another in the system. The new connection gene
created in the first mutation is assigned the number

�
, and

the two new connection genes added during the new node
mutation are assigned the numbers � and � . In the future,
whenever these genomes crossover, the offspring will in-
herit the same innovation numbers on each gene; innova-
tion numbers are never changed. Thus, the historical origin
of every gene in the system is known throughout evolution.

Through innovation numbers, the system now knows ex-
actly which genes match up with which. Genes that do not
match are either disjoint or excess, depending on whether
they occur within or outside the range of the other parent’s
innovation numbers. When crossing over, the genes in both
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genomes with the same innovation numbers are lined up.
Genes that do not match are inherited from the more fit par-
ent, or if they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover
without the need for expensive topological analysis.
Genomes of different organizations and sizes stay compat-
ible throughout evolution, and the problem of competing
conventions (Radcliffe 1993) is essentially avoided. Such
compatibility is essential in order to complexify structure.

2.2 PROTECTING INNOVATION THROUGH
SPECIATION

Adding new structure to a network usually initially reduces
fitness. However, NEAT speciates the population, so that
individuals compete primarily within their own niches in-
stead of with the population at large. This way, topological
innovations are protected and have time to optimize their
structure before they have to compete with other niches in
the population.

Historical markings make it possible for the system to di-
vide the population into species based on topological simi-
larity. We can measure the distance � between two network
encodings as a simple linear combination of the number of
excess ( � ) and disjoint ( � ) genes, as well as the average
weight differences of matching genes ( � ):

���
	�
 �� 


	�� �� 
 	���� ��� (1)

The coefficients 	 
 , 	 � , and 	 � adjust the importance of the
three factors, and the factor

�
, the number of genes in the

larger genome, normalizes for genome size. Genomes are
tested one at a time; if a genome’s distance to a randomly
chosen member of the species is less than ��� , a compatibil-
ity threshold, it is placed into this species. Each genome is
placed into the first species where this condition is satisfied,
so that no genome is in more than one species.

As the reproduction mechanism for NEAT, we use explicit
fitness sharing (Goldberg and Richardson 1987), where or-
ganisms in the same species must share the fitness of their
niche, preventing any one species from taking over the pop-
ulation.

2.3 MINIMIZING DIMENSIONALITY THROUGH
COMPLEXIFICATION

Unlike other systems that evolve network topologies and
weights (Angeline et al. 1993; Gruau et al. 1996; Yao 1999;
Zhang and Muhlenbein 1993), NEAT begins with a uni-
form population of simple networks with no hidden nodes.
Speciation protects new innovations, allowing topological
diversity to be gradually introduced over evolution.

Figure 2: The Robot Duel Domain. The robots begin on op-
posite sides of the board facing away from each other as shown
by the lines pointing away from their centers. The concentric
circles around each robot represent the separate rings of oppo-
nent sensors and food sensors available to each robot. Each
ring contains five sensors, which appear larger or smaller de-
pending on their activations. From this initial position, nei-
ther robot has a positional advantage. The robots lose energy
when they move around, yet they can gain energy by consum-
ing food (shown as black dots). The food is placed in a hor-
izontally symmetrical pattern around the middle of the board.
The objective is to attain a higher level of energy than the op-
ponent, and then collide with it. Because of the complex inter-
action between foraging, pursuit, and evasion behaviors, the do-
main allows for a broad range of strategies of varying sophistica-
tion. Animated demos of the robot duel domain are available at
www.cs.utexas.edu/users/nn/pages/research/neatdemo.html.

New structure is introduced incrementally as structural mu-
tations occur, and only those structures survive that are
found to be useful through fitness evaluations. This way,
NEAT searches through a minimal number of weight di-
mensions, significantly reducing the number of generations
necessary to find a solution, and ensuring that networks be-
come no more complex than necessary. In other words,
NEAT searches for the optimal topology by complexifying
when necessary.

3 THE ROBOT DUEL DOMAIN

To demonstrate the effect of complexification on competi-
tive coevolution, a domain is needed where it is possible to
develop increasingly sophisticated strategies and where the
sophistication can be readily measured. A balance between
the potential complexity of evolved strategies and their an-
alyzability is difficult to strike. Pursuit and evasion tasks
have been utilized for this purpose in the past (Gomez and
Miikkulainen 1997; Jim and Giles 2000; Miller and Cliff
1994; Reggia et al. 2001), and can serve as a benchmark
domain for competitive coevolution as well. While past ex-
periments evolved either a predator or a prey, an interesting
coevolution task can be established if the agents are instead
equal and engaged in a duel. To win, an agent must de-
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velop a strategy that outwits that of its opponent, utilizing
structure in the environment.

In the robot duel domain, two simulated robots try to over-
power each other (figure 2). The two robots begin on op-
posite sides of a rectangular room facing away from each
other. As the robots move, they lose energy in proportion
to the amount of force they apply to their wheels. Although
the robots never run out of energy (they are given enough
to survive the entire competition), the robot with higher
energy can win by colliding with its competitor. In addi-
tion, each robot has a sensor indicating the difference in
energy between itself and the other robot. To keep their en-
ergies high, the robots can consume food items, arranged
in a symmetrical pattern in the room.

The robot duel task supports a broad range of sophisticated
strategies that are easy to observe and interpret without ex-
pert knowledge. The competitors must become proficient
at foraging, prey capture, and escaping predators. In addi-
tion, they must be able to quickly switch from one behavior
to another. The task is well-suited to competitive coevolu-
tion because naive strategies such as forage-then-attack can
be complexified into more sophisticated strategies such as
luring the opponent to waste its energy before attacking.

The simulated robots are similar to Kheperas (Mondada
et al. 1993). Each has two wheels controlled by separate
motors. Five rangefinder sensors can sense food and an-
other five can sense the other robot. Finally, each robot has
an energy-difference sensor, and a single wall sensor.

The robots are controlled with neural networks evolved
with NEAT. The networks receive all of the robot sensors
as inputs, as well as a constant bias that NEAT can use to
change the activation thresholds of neurons. They produce
three motor outputs: Two to encode rotation either right or
left, and a third to indicate forward motion power.

This complex robot-control domain allows competitive co-
evolution to evolve increasingly sophisticated and complex
strategies, and can be used to benchmark coevolution meth-
ods.

4 EXPERIMENTS

In order to demonstrate how complexification contributes
to continual coevolution, we ran four evolution trials with
full NEAT and three trials with complexification turned off.
The methodology is described below.

4.1 COMPETITIVE COEVOLUTION SETUP

In each evolution trial, 2 populations, each containing 256
genomes, were evolved simultaneously. In each generation,
each population is evaluated against an intelligently chosen

sample of networks from the other population. The popu-
lation currently being evaluated is called the host popula-
tion, and the population from which opponents are chosen
is called the parasite population (Rosin and Belew 1997).
The parasites are chosen for their quality and diversity,
making host/parasite evolution more efficient and more re-
liable than random or round robin tournament.

A single fitness evaluation included two competitions, one
for the east and one for the west starting position. That way,
networks needed to implement general strategies for win-
ning, independent of their starting positions. Host networks
received a single fitness point for each win, and no points
for losing. If a competition lasted 750 time steps with no
winner, the host received 0 points.

In selecting the parasites for fitness evaluation, good use
can be made of the speciation and fitness sharing that al-
ready occur in NEAT. Each host was evaluated against the
champions of four species with the highest fitness. They
are good opponents because they are the best of the best
species, and they are guaranteed to be diverse because their
compatibility must be outside the threshold ��� (section 2.2).
Another eight opponents were chosen randomly from a
Hall of Fame (Rosin and Belew 1997) that contained pop-
ulation champions from all generations. Together, specia-
tion, fitness sharing, and Hall of Fame comprise a state of
the art competitive coevolution methodology. However, as
our experimental results will show, complexification is the
most important ingredient in establishing continual coevo-
lution.

4.2 MONITORING PROGRESS IN
COMPETITIVE COEVOLUTION

In order to track progress in coevolution, we need to be
able to tell whether one strategy is better than another. Be-
cause the board configurations can vary during the game,
networks were compared on 144 different food configura-
tions from each side of the board, giving 288 total compar-
isons. The food configurations included the same 9 sym-
metrical food positions used during training, plus an addi-
tional 2 food items, which were placed in one of 12 dif-
ferent positions on the east and west halves of the board.
Some starting food positions give an initial advantage to
one robot or another, depending on how close they are to
the robots’ starting positions. We say that network � is su-
perior to network � if � wins more comparisons than � out
of the 288 total comparisons.

Given this definition of superiority, progress can be tracked.
The obvious way to do it is to compare each network to oth-
ers throughout evolution, finding out whether later strate-
gies can beat more opponents than earlier strategies. For
example, Floreano and Nolfi (1997) used a measure called
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Figure 3: Complexification of connections and nodes over generations. The graphs depict the average number of connections and
the average number of hidden nodes in the highest dominant network in each generation. Averages are taken over four complexifying
runs. A hash mark appears every generation in which a new dominant strategy emerged in at least one of the four runs. The graphs show
that as dominance increases, so does complexity level on average. The differences in complexity between the average final dominant
and first dominant strategies are statistically significant for both connections and nodes (������� �� ).
master tournament, in which the champion of each genera-
tion is compared to all other generation champions. Unfor-
tunately, such methods are impractical in a time-intensive
domain such as the robot duel competition. Moreover, the
master tournament only shows how often each champion
wins against other champions. In order to track strategic
innovation, we need to identify dominant strategies, i.e.
those that defeat all previous dominant strategies. This
way, we can make sure that evolution proceeds by devel-
oping a progression of strictly more powerful strategies,
instead of e.g. switching between alternative ones.

To meet this goal, we developed the dominance tourna-
ment method of tracking progress in competitive coevo-
lution (Stanley and Miikkulainen 2002a). Let a genera-
tion champion be the winner of a 288 game comparison
between the two population champions of a single genera-
tion. Let !#" be the $ th dominant strategy to appear in the
evolution. Then dominance is defined recursively:

% The first dominant strategy ! 
 is the generation cham-
pion of the first generation;

% dominant strategy !�" , where $'&)( , is a generation
champion such that for all *�+,$ , !�" is superior to
(wins the 288 game comparison with) !.- .

This strict definition of dominance prohibits circularities.
For example, !0/ must be superior to strategies ! 
 through
! � , ! � superior to both ! 
 and ! � , and ! � superior to ! 
 .
The entire process of deriving a dominance hierarchy from
a population is a dominance tournament, where competi-
tors play all previous dominant strategies until they either
lose a 288 game comparison, or win every comparison
to previous dominant strategies, thereby becoming a new

dominant strategy. Dominance tournaments require signif-
icantly fewer comparisons than the master tournament.

The question tested in the experiments is: Does the com-
plexification of networks help attain high levels of domi-
nance?

5 RESULTS

Each of the seven evolution trials lasted 500 generations,
and took between 5 and 10 days on a 1GHz PIII proces-
sor, depending on the progress of evolution and sizes of
the networks involved. The NEAT algorithm itself used
less than 1% of this computation: the rest of the time was
spent in evaluating networks in the robot duel task. Evolu-
tion of fully-connected topologies took about 90% longer
than structure-growing NEAT because larger networks take
longer to evaluate.

We define complexity as the number of nodes and connec-
tions in a network: The more nodes and connections there
are in the network, the more complex behavior it can poten-
tially implement. The results were analyzed to answer three
questions: (1) As evolution progresses does it also contin-
ually complexify? (2) How is complexification utilized to
create more sophisticated strategies? (3) Does complexi-
fication allow better strategies to be discovered than does
evolving fixed-topology networks?

5.1 EVOLUTION OF COMPLEXITY

NEAT was run four times, each time from a different seed,
to verify consistency of results. The highest levels of dom-
inance achieved were 17, 14, 17, and 16, averaging at 16.
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At each generation where the dominance level increased
in at least one of the four runs, we averaged the number
of connections and number of nodes in the current domi-
nant strategy across all runs (figure 3). Thus, the graphs
represent a total of 64 dominance transitions spread over
500 generations. The rise in complexity is dramatic, with
the average number of connections tripling and the aver-
age number of hidden nodes rising from 0 to almost 10.
In a smooth trend over the first 200 generations, the num-
ber of connections in the dominant strategy nearly doubles.
During this early period, dominance transitions occur fre-
quently (fewer prior strategies need to be beaten to achieve
dominance). Over the next 300 generations, dominance
transitions become more sparse, although they continue to
occur.

Between the 200th and 500th generations a staircase pat-
tern emerges, where complexity first rises dramatically,
then settles, then abruptly increases again. The reason for
this pattern is speciation. While one species is adding a
large amount of structure, other species are optimizing the
weights of less complex networks. While it is initially
faster to grow structure until something works, such ad hoc
constructions are eventually supplanted by older species
that have been steadily optimizing for a long period of time.
Thus, spikes in complexity occur when structural elabora-
tion leads to a better strategy, and complexity slowly settles
when older structures optimize their weights and overtake
more recent structural innovations.

The results show more than just that the champions of each
generation tend to become complex. The dominant strate-
gies, i.e. the networks that have a strictly superior strat-
egy to every previous dominant strategy, tend to be more
complex the higher the dominance level. Thus, the results
verify that continual progress in evolution is paired with
increase in complexity.

5.2 SOPHISTICATION THROUGH
COMPLEXIFICATION

To see how complexification contributes to evolution, let
us observe the development of a sample dominant strategy,
i.e. the evolution of the species that produced the winning
network ! 
21 , in the third run. Let us use 354 for the best net-
work in 3 at generation 6 , and 798 for the : th hidden node
to arise from a structural mutation over the course of evo-
lution. We will track both strategic and structural innova-
tions in order to see how they correlate. Let us begin with
3 
<;=; (figure 4, left), when 3 had a mature zero-hidden-node
strategy:

% 3 
<;>; ’s main strategy was to follow the opponent,
putting it in a position where it might by chance col-
lide with its opponent when its energy is up. However,

Figure 4: Complexification of a Winning Species. The best
networks in the same species are depicted at landmark genera-
tions. Over generations, the networks in the species complexified
and gained skills.

?5@<A>A
followed the opponent even when the opponent

had more energy, leaving
?B@CA>A

vulnerable to attack.?5@<A>A
did not clearly switch roles between foraging and

chasing the enemy, causing it to miss opportunities to
gather food.

D ?FE=A>A
. During the next 100 generations,

?
evolved

a resting strategy, which it used when it had signifi-
cantly lower energy than the enemy. In such a situa-
tion, the robot stopped moving, while the other robot
wasted energy running around. By the time the op-
ponent gets close, its energy was often low enough
to be attacked. The resting strategy is an example of
improvement that can take place without complexifi-
cation: it involved increasing the inhibition from the
enemy difference sensor, thereby slightly modifying
intensity of an existing behavior only.

D In
?FE>G=H

(figure 4, middle), a new hidden node, I E=E ,
appeared. Node I E=E arrived through an interspecies
mating, and had been optimized for several genera-
tions already, Node I E>E gave the robot the ability to
change its behavior at once into a consistent all-out at-
tack. Because of this new skill,

?JE>G=H
no longer needed

to follow the enemy closely at all times, leaving it to
focus on collecting food. By implementing this new
strategy through a new node, it was possible not to
interfere with the already existing resting strategy, so
that

?
now switched roles between resting when in

danger to attacking when high on energy. This way,
the new structure resulted in strategic elaboration.

D In
?FK @2L

(figure 4, right), I @2H=E split a link between an
input sensor and I E>E . Replacing a direct connection
with a sigmoid function greatly improved

? K @2L
’s abil-

ity to attack at appropriate times, leading to very ac-
curate role switching between attacking and foraging.? K @2L

would try to follow the opponent from afar fo-
cusing on resting and foraging, and only zoom in for
attack when victory was certain. This final structural
addition shows how new structure can greatly improve
the accuracy and timing of existing behaviors.
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The analysis above shows that in some cases, weight op-
timization alone can produce improved strategies. How-
ever, when those strategies need to be extended, adding
new structure allows the new behaviors to coexist with old
strategies. Also, in some cases it is necessary to add com-
plexity to make the timing or execution of the behavior
more accurate. These results show how complexification
can be utilized to produce sophistication in competitive co-
evolution.

5.3 COMPLEXIFICATION VS.
FIXED-STRUCTURE EVOLUTION

To see whether complexifying coevolution is more pow-
erful than standard non-complexifying coevolution, we ran
three trials with fixed, fully-connected topologies. To make
the comparison fair, the fixed-topology networks in the first
two trials had 10 hidden nodes, as did the winning networks
of complexifying runs on average. In the third trial, fixed-
topology networks had only five hidden nodes, which gives
them the same number of connections as the complexify-
ing trials. In the first trial, the hidden nodes were fully
connected to the outputs. In the other two trials, the inputs
were also fully connected to outputs. In all standard runs,
the hidden layer was fully recurrent, because complexify-
ing runs were found to evolve recurrent connections. Al-
though topologies were fixed, evolution continued to spe-
ciate using weight differences.

Fixed-topology Run Highest Equivalent Equivalent
Dom. Dom. Level Generation

(out of 16) (out of 500)
1: 10 Hidden Node 12 5.5 17.75
2: 10 Hidden Node, 14 9.25 39
Direct Connections
3: 5 Hidden Nodes, 10 10.75 65.5
Direct Connections

Table 1: Comparing the dominant strategies in the fixed-
topology (i.e. standard) coevolution with those of complexi-
fying coevolution. The second column shows how many levels
of dominance were achieved in the standard coevolution. The
third column gives the highest dominance level in complexifying
runs that the dominant from the standard run can defeat and the
fourth column shows its average generation. The main result is
that the level of sophistication reached by standard coevolution
is significantly lower than that reached by complexifying
coevolution.

In Table 1, the relative sophistication of the strategies de-
veloped are compared to those in complexifying coevolu-
tion. We compared the highest dominant network from
each of the standard runs with the entire dominance hier-
archies of all the complexifying runs. The table reports the
highest dominance level within the complexifying runs that
the best fixed-topology network can defeat on average. In
all cases, the standard strategy reaches only the middle lev-
els of the hierarchy, i.e. 5.5, 9.25, and 10.75 out of possible

16. Complexifying coevolution on average found 7 lev-
els of dominance above the most sophisticated strategies of
standard coevolution. Considering that high levels of dom-
inance are much more difficult to attain than low levels, it
is clear that complexifying coevolution develops a dramat-
ically higher level of sophistication.

Another significant result is that NEAT developed equiva-
lent strategies very early in evolution. For example, the sec-
ond standard run stopped producing new dominant strate-
gies after the 169th generation, followed by 331 consec-
utive generations without any additional dominant strate-
gies. This network can defeat about the 9th dominant from
complexifying coevolution, which was found on average in
the 39th generation. In other words, standard coevolution
is considerably slower in finding even the first few steps in
the dominance hierarchy.

In summary, complexifying coevolution progresses faster
and discovers significantly more sophisticated solutions
than standard coevolution.

6 DISCUSSION AND FUTURE WORK

Evolution in nature acts as both an optimizer and a com-
plexifier. Not only do existing genes express different
alleles, but new genes are added occasionally through a
process called gene amplification (Darnell and Doolittle
1986). Therefore, we should expect to find that complexi-
fication can also play a role in models of open-ended evo-
lution, such as competitive coevolution, thus strenghening
the analogy of evolutionary computation with nature.

Indeed, as the results confirm, complexification does en-
hance the capability of competitive coevolution to find so-
phisticated strategies. Complexification encourages contin-
ual elaboration, whereas evolution of fixed-structures pro-
ceeds primarily by alteration. When a fixed genome is used
to represent a strategy, that strategy can be optimized, but
it is not possible to complexify without sacrificing some of
the knowledge that is already present. In contrast, if new
genetic material can be added, then sophisticated elabora-
tions can be layered above existing structure.

Complexification can find solutions that are difficult to find
by evolving fixed structure. In fixed evolution, the com-
plexity must be guessed just right: too little structure will
make it impossible to solve the problem and too much will
make the search space too large to search efficiently. A
complexifying system saves the user from such concerns.

Complexification is a new and still largely unexplored re-
search area. How complexifying systems work in general,
and what the best ways are to describe such systems are
open questions at this point. Although evolution is the best
known complexifier, that does not mean it is the only one.
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Organizations (such as corporations and governments) are
also complexifying systems, with new positions being cre-
ated that only have meaning relative to positions that pre-
viously existed. We need to develop an abstract descrip-
tion of complexification, from which we can derive theories
and rules for understanding and utilizing complexification
in different domains.

7 CONCLUSION

We hypothesized that complexification of genomes can
lead to continual coevolution of increasingly sophisticated
strategies. Experimental results showed three trends: (1)
as evolution progresses, complexity of solutions increases,
(2) evolution uses complexification to elaborate on exist-
ing strategies, and (3) complexifying coevolution is sig-
nificantly more successful in finding highly sophisticated
strategies than evolution of fixed structures. These results
suggest that complexification is a crucial component of
continual coevolution.
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L�d c d�T<_^� y tD\^d�h^d�RU\ csr gDRUh^d�páZUTáQ�OD�a_z`aR w d�T<_ l gDRUh^d�p�h^`aQ�OF�qR l
_^`qZUTà×���ZUh^h/R]TFp���Ro�v`apDh^h�ZUT�t k �U��|oÙCZU\�R w d�Tv_ l gFRUh^d�p¤h^`aQ l
OD�aRU_^`qZUTN×[I#Þ<d��a\^Zvp	t�|s}U}��jÙ r R]h%RU_^_^\^R c _^d�pâR��qZU_�ZUYPRU_z_^d�T l
_^`qZUTãZjÕ/`aT w _zZ TDZU_*Z]TF� y `aQS�D\^Zj��d�QSd�T<_^hH`aT c ZUQS�DOD_^R l
_^`qZUTFR]���uZjÕAd�\�R]TFp h^`aQ�OD�aRU_z`aZUTÈ_^d csr TD`! <ODd�h�gFOD_�RU�qh�Z _^Z
_ r dWRo�oR]`a�aRUgD`a�q`¼_ y ZUYPR]TØRU�a_^d�\^TDRU_^`a�UdÆÕAR y ZUYPOFTDpDd�\^h^_^R]TFp l
`aT w c ZUQS�F�qd�Þ h^Z c `qRU�%� r d�TFZ]QSd�TDRui b O csr \^d�h�d�RU\ csr
r RUh
d�QS�F�qZ y d�p c ZUQS�DOD_^RU_^`qZUTFR]�P_zd c¶r TD`! vOFd�hÅ_^Zâ�D\^Zo�v`apDd�_^ZvZU�ah
Y¾ZU\�RUTDRU� yvÃ `qT w h^Z c `aR]��p y TDRUQS` c h�RUTDp r R]h c ZUT<_z\^`agDOF_^d�p�_^Z
_ r d c \^d�RU_z`aZUTÄZ]YK_ r d�Z]\^`ad�h�g y c �aR]\^`aY y `aT w �oR w OFdvt�`qT<_^OF`q_^`a�Udvt
ZU\8OFTDpDd�\ l h^�ud c `qÚFd�pâ`ah^h^OFd�h8`aT c ZUT<�Ud�T<_^`qZUTFR]��R]�F�D\^ZUR csr d�hoi
IP�q_ r ZUO w r t�QSR]T y ODh�d�Y¾OF�K`qQS�F�a` c RU_^`aZUTDh r Rj�Ud%gud�d�THY¾ZUODTFp
_ r \^ZUO w r�c ZUQS�FOD_^d�\�h^`aQ�OD�aR]_^`aZUT�tF_ r d�¸²¹�ºÐ»[½�¹�¿m»¾³�À�"WZUYKh^`aQ l
OD�aRU_^`qZUTá\^d�h^OF�q_^hfRUTFp c ZUQS�FOD_^RU_z`aZUTDRU�­QSZvpDd��ah�\^d�QSRU`aTDhPRUT
ZU�ud�Tâ`qh�h^ODdviÆJ	Z"Zo�Ud�\ c ZUQSd8_ r d�h^dÆ�D\^ZUgD�ad�QShot�IPÞv_^d��a��RUTDp
r `ah c Z]�a�ad�R w ODd�h c �aRU`qQ°_ r dÄ`qQS�uZU\^_^RUT c d¤ZUYf`aT<�Ud�h^_^` w R]_^`aT w
Õ r d�_ r d�\Å_XÕAZÄpF`qÉud�\^d�T<_ÅQSZvpFd��ah c RUT �D\^ZvpFO c dá_ r d�h^RUQSd
\^d�h�OD�a_zh%`aT*_^d�\^QSh�ZUY/�oRU�q`apDRU_^`aT w _ r dÅ\^d�h^OF�q_^h%RUTDp*QSZvpDd��ah
×[I#Þ<_^d��a��d�_CR]�Xiat?|s}U}U{DÙ^i #
VX_ h r ZUOF�qp gud3TDZU_^d�p�t r ZjÕAd��Ud�\jt"_ r RU_ \^d�h^OF�q_^h pFd�\^`a�Ud�p
g y c ZUQS�DOD_^d�\Wh^`aQ�OD�aR]_^`aZUT§RU\^d�h^d�TDh^`a_^`a�Udá_^Z r ZjÕ R w d�T<_^h
RU\^dHQSZvpDd��qd�p�i®J r `qh�`aTDpD` c RU_^d�h�_ r RU_�_XÕAZßQSZ<pDd��ahÄQSR y
TDZU_�h r ZjÕ _ r dßh�RUQSdØ\^d�h^OF�q_^hHd��Ud�T�`qYWRÈpF`qÉÓd�\^d�T<_��DRU\^_
gud�_XÕAd�d�T _XÕAZNQSZ<pDd��ahß`qhß�Ud�\ y h^Q8R]�a�Xi �KÞvRUQS�D�ad�hß`qT l
c �aODpFdß_´Õ�ZÈQSZ<pDd��ah¤Õ r ` csr pF`qÉud�\^d�T c dØ`ah*ZUTD� y ºÐÊ¶¹�±sÀF»[ÀoË
Ì�Ê¶¯²Í�¹�ÀF»[µ�Ì%µÅZ]\ Î²ÀF³�ÏCºÐÊ¶½ÑË�Êß±zÊ´ÒÓ±zÊ�µ¶Ê²ÀF¿m¹�¿m»[³�À�¯¶¹ÑÒ�¹%$�»[ºÐ»[¿m»[Ê�µ
ZUY%R w d�T<_^hji J	Z c �aR]\^`aY y h^O csr �FRU\^_zhotf_ r `qhá�FR]�ud�\Äh^_^RU\^_^h
g y c ZUQS�FR]\^`aT w _´Õ�Z c ZUQS�DOF_^R]_^`aZUTDRU�(QSZvpFd��ah�_ r RU_/RU\^d�`aQ l
�D�ad�QSd�T<_zd�pØpD`aÉud�\^d�T<_^� y `aTØ_^d�\^QSh�ZUYP_ r dÅ�qd�R]\^TF`qT w QSd c¶r l
&(' î�ìXòXô²ùÈézì*)²î�ë¶í ò¡õ?ézò�ú¶ô²ðfê�î�ò�ézòXñ¼ô²ùÓézýCüvézý¼ñÐóvñÐò ÿHñ¼í�éSï?ézýÐþ

ézù�ú¶ëSô
�Ôò¡õvìXë¶ëSë¶ýÐë¶ðfë¶ù]òXí,+-�*.
�KòXõ�ë0/]î�ë¶íXòXñ¼ô²ùáô²ì�êvî�ìXê<ôjíXë213�Xö
�
òXõ�ë�ú¶ô²ðfê�î�ò�ézòXñ¼ô²ùÓézý�ðfôoóvë¶ý41Dézù�ó5�*6
��òXõ�ë�ë87oê�ë¶ìXñ¼ð�ë¶ù]ò�ézý<ó�ë¶í´ñ9)²ù
� ' î�ìXòXô²ù�ézù�ó5		ï�ë¶ý41�.
:
:
;2�*<=?> õ�ë¶ÿAú]ézýÐýoòXõ�ñ¼íuú¶ô²ù�ú¶ë¶ê�òuò¡õvëA@zé^ýÐñB)²ù�ðfë¶ù]òFô
�Uú¶ô²ð�êvî�ò�ézòXñÐô²ùÓé^ý
ðfôoó�ë¶ý¼í*C�ô²ìD@¾óvôoúFEoñ¼ù%)
CG<
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RUTD`ah^QSh�R]TFpàn<TDZoÕ/�qd�p w d¤\^d��D\^d�h^d�T<_^RU_z`aZUT c RU�FR]gF`q�a`a_^`qd�h"ZUY
R w d�T<_^hji H M#d�\^dvtÆÕAd c R]�a��_ r `qhØ_ y �udÈZUYá`aT<�Ud�h^_^` w R]_^`aZUT
¯²±´³�µ¶µ�·X¸²¹�ºÐ»[½�¹�¿m»¾³�ÀDt I®Õ r ` csr QSd�RUTDhØ_zZÇ�oR]�a`apDRU_^d _ r d§\^d l
h^OF�q_^h�RUTFpHQSZvpFd��ah�R w RU`qTFh^_�pD`aÉud�\^d�T<_�`qQS�F�ad�QSd�T<_^RU_z`aZUT*ZUY
R w d�T<_^hji � ZU_^d�_ r RU_/_ r `ahPpD`aÉud�\^h�Y[\^Z]Q _ r d�ODh^OFR]�(QSd�R]TF`qT w
ZUY c \^ZUh^h l �oRU�a`qpFR]_^`aZUTH_ r RU_ csr d c n<h�_ r dÅ\^d�h^OF�q_^h�Z]Y�R�h^`aT w �ad
�ad�RU\^TD`aT w RU� w ZU\^`a_ r Q ZU\%RÄh�`qT w �qdÅn<TDZjÕ/�ad�p w dW\^d��F\^d�h^d�Tv_^R l
_^`qZUTNZUT�Rß\^d�h^d�\^�Ud�pNh�d�_áZ]YSpDRU_^R�i I#h�R c Z]T c \^d�_^d¤pDZ l
QSRU`aT�t	ÕAdÅd�QS�F�qZ y R�gDRU\ w RU`qTF`aT wáw RUQSd�×���OF_ r ZvZut k �U�U�DÙ
Y¾ZU\�_ r `ah c ZUQS�DRU\^`ah^ZUT�t�gud c RUODh�dW_ r `ah w RUQSdÅ`ahSZUTDd8ZUY�_ r d
Y¾OFTDpDRUQSd�T<_zRU�Ód�ÞvRUQS�F�qd�hARUTDpÆgud c RUODh�d#\^R]_^`aZUTDRU�Ógud r Rj�<`qZU\^h
ZUYKR w d�Tv_^h r Rj��d�RU�a\^d�RUp y gud�d�T�RUTDRU� yvÃ d�p�`aT w RUQSd�_ r d�Z]\ y
×FJ�h�g�ZU\^TDdfRUTFp"L�ODgF`aTDh^_^d�`aT�t�|¶}U}�KDÙ^i
J r `ah �DRU�ud�\S`ah ZU\ w RUTD` Ã d�p RUh8Y[ZU�q�aZjÕ/hoi b d c _^`aZ]T k h^_^RU\^_^h
g y d�Þ<�D�aR]`aTF`qT w _ r d�gFRU\ w RU`aTD`aT w%w RUQSdvi�I c ZUT c \^d�_zd�`qQS�F�ad l
QSd�T<_^RU_^`qZUT�ZUY<R w d�T<_^h	`ah�pFd�h c \^`agud�p�`aT b d c _z`aZUT���i b d c _^`aZ]T�K
�D\^d�h^d�T<_^h c ZUQS�DOD_^d�\�h^`aQ�OF�qRU_^`aZ]TFh�R]TFp b d c _^`aZ]T-L�pD`ah c ODh^h�d�h
_ r d c \^ZUh^h l �jRU�a`qpFRU_z`aZUT�ZUYF\^d�h�OD�a_zhKRUTDp%QSZvpFd��ahjiNM­`aTDRU�a� y t²ZUOD\
c ZUT c �qOFh^`aZUTDh/RU\^d�QSRUpDd�`qT b d c _^`aZUTÆ{ui

O P «�ª�QÔ«R� � � � QSQÔ«RTSU

I°gDRU\ w RU`qTF`aT w3w RUQSd ×���OF_ r ZvZut k �U�U�DÙWÕAR]h*h^_^ODpF`qd�p `aT
_ r d c Z]T<_^d�Þ<_�Z]Y w RUQSdf_ r d�ZU\ y ×FJ�h�g�ZU\^TDdfRUTFp"L�ODgF`aTDh^_^d�`aT�t
|s}U}2KuÙ^i�J r `ah�h^_^ODp y RUpDpF\^d�h^h�d�p�_ r d�h^`a_^ODRU_^`qZUTÄÕ r d�\^d%_XÕAZ
ZU\8QSZU\^d��D�aR y d�\^h�×¾ZU\8R w d�T<_^hjÙf_^\ y _zZ�\^d�R csr RHQ�OF_zOFR]�a� y
gud�TDd�Ú c `aRU�­R w \^d�d�QSd�Tv_P_ r \�Z]O w r TDd w ZU_^`qRU_^`qZUTFhjtFRUTDpá`qT<��d�h l
_^` w RU_^d�p Õ r d�TWRUTDp8Õ r RU_Ôn<`qTFpDhCZUY?ZUÉud�\^hCZUY?RUT `qTFpD`a�v`apDOFR]�
�D�aR y d�\ c RUT�gud�R c�c d��D_^d�p�g y Z]_ r d�\��F�qR y d�\^hji
J­ZÅOFTDpDd�\^h^_^R]TFpÄ_ r d�gDRU\ w RU`qTF`aT wÆw R]QSd<t?�ad�_?V h w `a�Ud�RUT�d�Þ l
RUQS�D�advi VXT L�ODgF`aTDh^_^d�`aTWV hWÕ�ZU\^nN×¾L#ODgD`aTDh�_zd�`qT	t?|s} �Uk Ùzt r d
`a�q�aODh�_z\^RU_^d�páRÅ_ y �F` c R]��h^`a_zOFR]_^`aZUT�OFh^`aT w _ r d�Y[ZU�q�aZjÕ/`aT w h c d l
TDRU\^`aZuÖ?_´Õ�Z��F�qR y d�\^hjt(X " R]TFpYX # t r Rj�Ud�_^Z�\^d�R csr RUT%R w \^d�d lQSd�T<_?ZUT�_ r d��FRU\^_z`a_^`qZUTfZ]Y�R5Z �D`ad,[ui\MuZU\?_ r `ah?�FOD\^�uZUh^dvt�_ r d y
RU�q_^d�\^TDRU_zd/ZUÉud�\^hKpFd�h c \^`qgF`qT w �uZUh^h^`agD�ad�pD`a�v`ah^`aZUTDh­ZUYu_ r d/�D`advt
h^O csr RUh]Z^X " \^d c d�`a�Ud�h`_HRUTDpaX # \^d c d�`a�Ud�h8|`bc_HRU_P_z`aQSdd [ut(Õ r d�\^de_ `qh�R]T y �oRU�qOFd `aT¤_ r dÅ`qT<_^d�\^�oRU��f ��gU|ih¡iDj r d�T
R"�D�aR y d�\P\^d c d�`q��d�h�RUT�ZUÉud�\jt?_ r d8�D�aR y d�\�pDd c `qpFd�h�Õ r d�_ r d�\
_^Z�R c�c d��D_/`q_CZU\/TFZU_²i	VXY�_ r d��F�qR y d�\AR c�c d��D_^hC_ r d�ZUÉud�\jt�_ r d
TDd w ZU_^`aR]_^`aZUT"�D\^Z c d�h^hCd�TDpDhot�RUTDpÆd�R csr �F�qR y d�\�\^d c d�`a�Ud�hC_ r d
h r R]\^dCZUYu_ r d/�D`ad�pDd�_zd�\^QS`qTFd�p%g y _ r d c ZUT c �aODpDd�p c ZUT<_^\^R c _ji
J�_ r d�\^Õ/`ah^dvt<_ r df\^d c d�`a�<`qT w �F�qR y d�\AQSRUnUd�h/R c ZUODT<_^d�\ l Z]ÉÓd�\jt
RUTDp R]�a��ZUYu_ r d#RUguZj�UdCh^_^d��Fh�RU\^d/\^d��ud�RU_^d�p OFTv_^`a�FR�h^ZU�aOD_^`qZUT
`ahK\^d�R csr d�pSZ]\K_ r d#�F\^Z c d�h�hK`ahKRUguZU\^_^d�pSpDODdP_zZ�h^ZUQSd�d�Þ<_^d�\ l
TDRU�K\^d�RUh^ZUTà×^Ê
k ËGk t?_ r dST<OFQ�gud�\�ZUYATDd w ZU_^`aR]_^`aZUT��D\^Z c d�h^h^d�h
`ah�ÚDTF`q_^d Z]\�ZUTDd ZUYA_ r dÅ�D�aR y d�\^hf�qd�Rj�Ud�h�_ r dÅ�F\^Z c d�h^hjÙ^iÅVXT
_ r d c RUh^d�_ r RU_/_ r d�TDd w ZU_^`qRU_^`aZUT"�D\^Z c d�h^h#`qh�RUguZU\^_^d�p�t<guZU_ r
lnm ô²íXí�ú¶ý ézíXí´ñ9ovë¶íKòXõ�ë/üvézýÐñ¼óÓézòXñ¼ô²ù�ñ¼íXíXî�ë¶íPézí��p.?�uêvìXë¶ó�ñÐú¶òXñ¼ô²ù�í,1

�Xö
�(é�)²ë¶ù]òCézù�ó�ðfë¶úzõ?ézù�ñÐí´ð ó�ë¶í´ñ9)²ù�íq1<ézù�ó�ìXë¶íXîvýÐòXñ¼ù%)Cô²îvòXê�î�òXí/ézí
ó�ë¶í´ú�ì´ñÐê�òXñ¼ô²ù�ír� m ô²í´í,1Föz÷²÷G.2�*<ts<ìXô²ð
òXõ�ñ¼íÔü]ñÐë8uÔê�ô²ñÐù]ò,1�ô²îvìv�aôoú¶î�í
ñ¼íKìXë¶ýmézòXë¶ó%òXôfò¡õvëCíXë¶ú¶ô²ùvó%ê<ô²ñ¼ù]ò�ñÐùSõ�ñÐíKú¶ýmézí´íXñBo�ú]ézòXñÐô²ùt<w ��ézìXý¼ë¶ÿ�ézýÐí´ôÔú¶ýmézñ¼ðfí�òXõ�ë	í�ézðfë	ê�ô²ñÐù]òÓî�í´ñÐù%)�òXõ�ë	òXë¶ìXðyx{z}|?~�~��
� |{�?�i���i�?���!�?�?���!|?�0�*�ÔézìXý¼ë¶ÿWézù�ó�ø/ézíXí´ë¶ì,1n.
:
:
:��*<

�D�aR y d�\^h c RUTWTFZ8�qZUT w d�\A\^d c d�`a�UdfR]T y h r RU\^d�ZUY�_ r d��D`advi
MPd�\^dvt�ÕAd c ZUTDh�`qpFd�\%_ r dÅÚFTD`a_^d l r ZU\^` Ã ZUTØh^`a_zOFR]_^`aZUT�t�Õ r d�\^d
_ r d QSR]Þ<`aQ�OFQ�T<ODQ�gud�\àZ]Yáh^_^d��Dh ×������ �����(�ÓÙ¤`qT _ r d
w RUQSd�`ahCÚDÞ<d�pWR]TFpÆR]�a�Ó�F�qR y d�\^hAn<TDZjÕ _ r `ahA`aTDY[Z]\^Q8R]_^`aZUTWRUh
c ZUQSQSZUTHnvTFZjÕ/�ad�p w dÄ× b _��R r �Xt(|¶}�� k Ù^i�VXTH_ r d c RUh�d Õ r d�\^d
���(� �(������� |Ä×[RU�qh�Z�nvTFZjÕ/TØRUh _ r d��<º¼¿m»[Ì�¹�¿4��Ì Ë<¹�Ì%Ê�Ùzt
R w d�T<_�X " c RUTÅQSR]n�d�_ r d#ZUTD� y ZUÉud�\�RUTDpÆ_ r d�TcX # c RUTÅR c lc d��D_fZU\f\^d�Y[ODh^d `q_ji�VXYrX # \^d�Y¾ODh�d�h�_ r d�ZUÉud�\jt?guZU_ r R w d�T<_^h\^d c d�`a�Ud�TDZU_ r `aT w i b `qT c dÄRH\^RU_^`qZUTFR]�fR w d�Tv_Æ`qhWgDRUh^d�p ZUT
_ r d�TDZU_^`qZUTWZUY�Z RUT y _ r `aT w `qh#g�d�_z_^d�\#_ r RUT"TDZU_ r `aT w [utvR8\^R l
_^`qZUTFR]�`X " _^d�TFpDh�_zZ"nUd�d���QSZ]h�_fZUYK_ r dS�F`qdS_^Z r d�\^h^d��aY�g yZUÉud�\^`aT w Z]TF� y R8QS`aTD`aQ�ODQ h r RU\^d�_^Z�X # i b `aT c d�_ r d�\^d�RU\^dTDZ"Y¾OF\^_ r d�\Ph�_zd��Dh�_^ZÅgud8�D�aR y d�pá`aT¤_ r d w RUQSdvt?RÆ\^R]_^`aZUTDRU�
X # `qTFd��v`a_^RUgD� y R c�c d��F_^h _ r d"_z`aT y ZUÉud�\ji�� y RU�D�F� y `qT w RgDR c n<Õ�RU\^p�`qTFpDO c _^`qZUTá\^d�RUh�Z]TF`qT w _^ZÅ_ r d�h^`a_^ODRU_^`qZUTÄRUguZj�Udvt
`a_�`qh#��ZUh^h�`qgF�qd�_^ZÅ�ud�\^Y[ZU\^Q h^`aQ�OD�aR]_^`aZUT�Y[Z]\������ �(�����5�
|Ui
MuZU\­_ r d#h^RUQSd�\^d�RUh^ZUT%ZUY�_ r dCOF�q_^`aQSRU_zOFQ w RUQSd<tU_ r d/R w d�T<_
Õ r Z c RUT§QSRUnUdÄ_ r d��qRUh^_WZ]ÉÓd�\W`qhWgud�_^_zd�\W�uZ]h�`q_^`aZUTDd�p _^Z
\^d c d�`a�UdÅ_ r dW�aRU\ w d�\%h r RU\^dÆg y ZUÉud�\^`aT w R�QS`aTD`aQ�OFQæZUÉud�\
× b _��R r �Xt�|s}�� k Ù^iKVXTá_ r `qh c RUh^d<t�_ r d��qRUh�_/ZUÉud�\C`qh w \^R]T<_^d�pW_^Z
_ r d�R w d�T<_­_ r RU_­pDZvd�h­TDZU_­QSRUnUd�_ r d/ÚD\^h^_�ZUÉud�\�`qY������ �(�����
`ahKd��Ud�T�tog�d c RUODh^d#d�R csr R w d�T<_­`qh�RU�q�aZjÕAd�p8_^Z�QSRUnUdCRU_KQSZUh^_
���(� �(������� k ZUÉud�\^hji�JAT _ r d#ZU_ r d�\ r R]TFp�tU_ r d��aRUh^_KZUÉud�\�`qh
w \^RUT<_zd�pÆ_^Z�_ r dfh^RUQSdfR w d�T<_A_ r RU_/QSRUnUd�hA_ r dfÚD\^h^_�ZUÉud�\C`aY
���(� �(����� `qh#ZvpDp	i
IPY¾_^d�\â_ r `qh*h^d�h^h^`aZUT�tSÕAd ODh^dà_ r dß_^d�\^QSh�Z �FR y ZUÉR[NRUTDp
Z R w d�T<_�[%`aTDh�_zd�R]pWZUY�_ r d�_^d�\^QSh�Z h r RU\^dq[%RUTDp Z �F�qR y d�\F[�Y¾ZU\
_ r d�`a\/Õ/`qpFdfQSd�RUTD`aT w h#`qTW_ r d�gFR]\ w RU`aTD`aT w w RUQSd<i

¡ ¢ ����U¤£�� � Q
«RQ�U � ©v¨

J­Z�`aQS�D�ad�QSd�T<_ÔR w d�T<_zhA`qT _ r d#Y[\^RUQSd�ÕAZ]\^nSZ]Y�_ r d#gDRU\ w RU`qT l
`aT wSw RUQSd<t<_ r `qh�h^d c _^`qZUTÆh^_^RU\^_^h�g y QSZvpDd��q`aT w R8gDRUh^` c �DRU\^_
ZUY�R w d�T<_zh#RUTFpÅ_ r d�T"QSZ<pDd��a`aT w _ r d��FRU\^_zh/ZUY­ZUOD\�Y¾Z c ODhji

¥ ��¦ § �?E	:�¨>;>¢ª©���«PB���BF��;�¬�­	BF�j�
MuZU\ÔRfgDRUh^` c �DRU\^_�ZUYuQSZ<pDd��a`aT w R w d�T<_^hjtoÕAd/`aQS�D�ad�QSd�T<_Ô_ r d
Y¾ZU�a�aZjÕ/`aT w c Z]Q8��ZUTDd�T<_zh�ZUY�R w d�Tv_^h#RUhPh r ZjÕ/T�`qTYM­` w OD\^dW|Ui
� ZU_zdf_ r RU_/d�R csr R w d�Tv_ r RUh/_ r d�h�RUQSdfRU\ csr `a_zd c _^OD\^dvi

® §�:<G¤���oä �
¯ �	���oBD��:�©u;[:<�ÈG¤:<G¤���oä h^_^ZU\^d�h�Ràh�d�_"ZUY h^_^\^R]_^d w `ad�h
×[_ r d�T<OFQ�gud�\(ZUY<h�_z\^RU_^d w `ad�h�`qhN°8`qT�_ r `qh�Ú w OF\^dvÙ^t�Õ r ` csr
c ZUTFh^`ah^_KZUY�ÚDÞ<d�p T<ODQ�gud�\^hCZUY?�FRU`q\^hKZUY�ZUÉud�\^h�×FJ�Ù?RUTDp
_ r \^d�h r ZU�apDh¤×[J�Ù^tKRUTDp _ r dÄÕ�ZU\^_ r ZUY�_ r d�h^_^\^R]_^d w `ad�h
×[Õ�Ù^i�J r d�h^dfh^_^\^RU_^d w `qd�h#RU\^dfh^`aQS`a�qRU\C_^Z8_ r ZUh^d�OFh^d�pÆ`aT
×FJ��a`a�Ud�\jt?|s}U}]{FÙ^i�J r d/ZUÉud�\�R]TFp%_ r \^d�h r ZU�qp �oRU�qOFd�hKRU\^d
d�T c ZvpFd�pÅg y²± ZURU_z`aT w �uZ]`aT<_CT<ODQ�gud�\^hK`aT _ r df`qT<_^d�\^�oRU�
f �ng]|ih¡tjÕ r `a�ad#_ r d�ÕAZU\^_ r �oRU�qOFd�hKRU\^d c RU� c OD�aRU_^d�pÅRUhARj� l
d�\^R w d�h�ZUYKR c  vOF`q\^d�pá�FR y ZUÉuhji#VXTÄ_ r `ah�QSZvpDd��XtuR w d�T<_^h
`aTDpFd��ud�TDpFd�T<_^� y h^_^Z]\^dCpF`qÉud�\^d�T<_­h^_^\^R]_^d w `ad�hot]Õ r ` c¶r RU\^d
`aTD`a_^`qRU�a� y w d�TFd�\^RU_^d�p�RU_A\^RUTFpDZUQ�i
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¯ �	:�¨>:(¬���:<E �����oBD��:�©uä G¤:<G¤�u�jä h^_^ZU\^d�h
_ r d ZUTDd
h^_^\^RU_^d w y h^d��qd c _^d�pf_^Z c ZUTDY[\^ZUTv_�_ r dÔh^_^\^R]_^d w y ZUY�R]T�ZU� l
�uZUTDd�T<_�R w d�T<_ji¤M­` w OF\^dS|Ch r ZjÕ/hÔ_ r d#h^`a_^ODRU_z`aZUTÅÕ r d�\^d
R w d�T<_³X " h^d��qd c _^hP_ r d³_Ó_ r h�_z\^RU_^d w y Õ r `q�ad�R w d�T<_³X #h^d��qd c _^h�_ r d�´v_ r h^_^\^R]_^d w y i

® §�:(¬o£	BF¢�;>��G �
¯ ��:<BD�j¢	;>¢ª© G¤:(¬o£	BD¢	;>��G �oR]\^`ad�h3guZU_ r ZUÉud�\NRUTDp
_ r \^d�h r ZU�ap �jRU�aODd�hC`qTÅZ]\^pFd�\C_^Z w d�TDd�\^R]_^d w ZvZvpÅh^_^\^RU_zd l
w `ad�há_ r RU_�R c  <OD`a\^dâRà�aRU\ w d¤�DR y ZUÉ�i,J r dâpDd�_^RU`a�qd�p
QSd c¶r RUTD`ah^Q `qhCpFd�h c \^`agud�p��qRU_^d�\ji

Agent 1

Strategies

Learning Mechanism

O T O T O T
O T O T O T
O T O T O T

O T O T O T

1 w
w
w

w

2
3

O T O T O T wx

Agent 2

Strategies

Learning Mechanism

O T O T O T
O T O T O T
O T O T O T

O T O T O T

1w
w
w

w

2
3

O T O T O T w y

Selected Strategy Selected Strategy

n n

M­` w OD\^d |UÖ¶µ ©u:v¢��8BD�?¬]£	;[��:(¬U���	�j:

IPh�R c ZUT c \^d�_^d TDd w ZU_^`qRU_^`qZUT*�D\^Z c d�h^hjt­R w d�T<_^h��F\^Z c d�d�p*RUh
Y¾ZU�a�aZjÕ/hji\�fd�ÚDTD`aT we·2¸ gF¹0º
»¤¼i½p¾ ¿*ÀÁ RUh�_ r d�Â´_ r ZUÉud�\�ZU\�_ r \^d�h r l
ZU�qp �oR]�aODdHZUY�R w d�T<_�X " ZU\�X # t�R w d�T<_�X " h�_zRU\^_^h�Õ/`q_ r_ r dÄÚF\^h^_"ZUÉud�\ ¸ » ½" i6MPd�\^dvt�Õ�d c ZUODT<_WZUTFdàµ�¿mÊzÒâÕ r d�Td�`a_ r d�\�R w d�T<_#QSRUnUd�h/RUT�Z]ÉÓd�\jiÔJ r d�T�t¤X # R c�c d��D_^h�_ r d�ZUY lY¾d�\�`aY ¸ » ½"ÄÃ ¹ » ¿" ÝÓZU_ r d�\^Õ/`ah^dvt�`a_�QSR]n�d�hPR c Z]OFT<_^d�\ l ZUÉud�\¸ » ¿# t	»Åk[Ê
k tF_ r d%Z]ÉÓd�\�ZUY�X # i�J r `qh c y c �qd�`qh c ZUT<_^`qT<OFd�p�ODT l_^`q��d�`a_ r d�\ÆR w d�T<_ÅR c�c d��D_^hW_ r dÄZUÉud�\ÆZUY�_ r dÄZU_ r d�\WR w d�T<_
ZU\Æ_ r d�QSR]Þ<`aQ�OFQ T<ODQ�gud�\ÅZUYfh^_^d��Dh�×����(� ���(���ÓÙ�`ahÆd�Þ l
c d�d�pDd�p	i§J­ZHOFTDpDd�\^h^_^R]TFp§_ r `ah h^`a_^ODRU_z`aZUT�tC�qd�_
V h c ZUTDh�`qpFd�\
_ r dÄh^`aQS�F�qd�d�Þ<RUQS�D�adÄÕ r d�\^dÆ����� ���(���t�Á|s�ut/RUhÆh r ZjÕ/T
`aTyM­` w OD\^d k iÇM�ZU�a�aZjÕ/`aT w _ r `ahád�Þ<R]QS�F�advteX " h^_^RU\^_zhág yZUÉud�\^`aT w �nÈ ��|Å_^ZÉX # i¤MPZjÕ�d��Ud�\jt�X # c RUTDTDZU_%R c�c d��F_�_ r dÚD\^h�_/ZUÉud�\Pgud c RUODh^d�`a_�pDZvd�h�TFZU_#h�RU_z`ah^Y y _ r d�`aTDd, <ODRU�a`a_ y ZUY
¸ » ½" ×[�nÈ ��|UÙ Ã ¹ » ¿" ×[�nÈ }U}uÙ^i�J r d�T�t¤X # c Z]OFT<_^d�\ l ZUÉud�\^hP�nÈ �u|_^ZAX " i b `aT c d`X " c RUTFTDZU_(R c�c d��D_(_ r dÔh^d c Z]TFp�ZUÉud�\�Y[\^ZUQSX #gud c RUODh�d#ZUYu_ r d#h^RUQSd�\^d�RUh^ZUT�to_ r `ah c y c �ad�`ah c ZUT<_^`aT<ODd�pSODT l
_^`q��X " R c�c d��D_^h�_ r dá|s�]_ r ZUÉud�\�Y¾\^ZUQÊX # Õ r d�\^d%_ r d�ZUÉud�\h^RU_^`ah^ÚDd�h�_ r dÅ`aTDdq vOFR]�a`a_ y ZUY ¸ » ¿"�Ë ×¾�nÈ �u|]Ù Ã ¹ » ½"�Ë ×[�nÈ ��|UÙ^iWVXY_ r d#TDd w ZU_^`aR]_^`aZUTÅY[RU`q�ahjtUÕ r ` csr QSd�RUTDhAd�Þ c d�d�pF`aT w _ r d#QSR]Þ l
`aQ�OFQ T<ODQ�gud�\#ZUYKh^_^d��DhotDguZU_ r R w d�T<_^h c RUTÄTDZÅ�aZUT w d�\�\^d l
c d�`q�Ud�RUT y �FR y ZUÉ�tÔ»Åk[Ê
k tÓ_ r d y \^d c d�`a�Ud%�Å�FR y ZUÉ�i#MPd�\^d<tuÕAd
c ZUODT<_8Z]TFdâ¯¶³�À^Ìj±´³�ÀF¿m¹�¿m»¾³�ÀáÕ r d�T§_ r d"R]guZo�Ud�TDd w ZU_^`qRU_^`aZUT
�D\^Z c d�h^h#d�TFpDhCZ]\�Y¾RU`a�ahji
MuOD\^_ r d�\^QSZ]\^d<tF_ r d�ÕAZU\^_ r ZUY�d�R csr h^_^\^RU_^d w y `ah c RU� c OF�qRU_^d�p
g y _ r d8Rj�Ud�\^R w d8ZUYA�FR y ZUÉuh�R c  vOF`q\�d�p¤`qT¤R"ÚDÞ<d�p¤T<ODQ�gud�\
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ZUY c ZUTFY¾\^ZUT<_^R]_^`aZUTDh8×�Ï�Ð�Ñ�Ò(Ó�Ð�Ñ(�����¤Ô,Ð�ÑÓÙ^tFÕ r d�\^d�_ r d�h^_^\^RU_zd l
w `qd�h/ZUY�_ r d�ZU_ r d�\#R w d�Tv_^h/RU\^d�\^RUTFpDZUQS� y h^d��ad c _zd�p"`qTWd�R csr
c ZUTDY[\^ZUT<_zRU_^`aZ]T	i�MuZU\8d�Þ<RUQS�D�advtÔ_ r d�_Ó_ r h^_^\^RU_zd w y ZUY0X "`aT�M­` w OD\^dÅ| c ZUTFY¾\^ZUT<_^hC_ r df\^R]TFpDZUQS� y h^d��ad c _^d�p�h^_^\^R]_^d w `ad�h
ZUYA_ r d�ZU_ r d�\�R w d�Tv_^hf`qT¤_ r dDÏ�Ð�Ñ(Ò�Ó�Ð�Ñ(�����¤Ô,Ð�Ñ"T<ODQ�gud�\�ZUY
c ZUTDY[\^ZUT<_zRU_^`aZ]TFh RUTDp§_ r d�TØ_ r d�ÕAZ]\^_ r Z]Y�_ r d-_Ó_ r h^_^\^RU_ l
d w y `ah c R]� c OF�qRU_^d�p"g y _ r d�Rj��d�\^R w d#ZUY��DR y ZUÉuhAR c  <OD`a\^d�pW`aT
_ r d�h�d c ZUTFY¾\^ZUT<_^R]_^`aZUTDhji b `aT c d%d�R csr R w d�T<_ r RUh�°ßT<ODQ�gud�\
ZUY�h^_^\^RU_zd w `qd�hot�_ r d8×�Ï�Ð�Ñ(Ò�Ó�Ð(Ñ������¤Ô,Ð�Ñ�Õ²°ÉÕ k Ù	T<OFQ�gud�\/ZUY
c ZUTDY[\^ZUT<_zRU_^`aZ]TFhC`qh�\^d, <OD`a\^d�pÆ_zZ c RU� c OD�aR]_^dP_ r dfÕ�ZU\^_ r ZUY?RU�a�
h^_^\^RU_^d w `qd�h#ZUY�_´Õ�Z8R w d�T<_zhoiÔMPd�\^dvt�Õ�d c ZUODT<_#ZUTDd"»¾¿mÊ²±´¹�¿ »¾³�À
Õ r d�T _ r d#Õ�ZU\^_ r Z]Y�RU�q��h�_z\^RU_^d w `ad�hKZ]Y�_XÕAZ�R w d�T<_zhA`qh c RU� c O l
�aR]_^d�p�i

¥ ��Ö § �?E	:�¨>;>¢ª©���«�­	BD�o���8��«����	�D«¡�\¬����
MuZU\#ZUOF\fY¾Z c ODhfZUY­QSZvpFd��a`qT w R w d�Tv_^hjtuÕAd�RUpDpF\^d�h^hf_ r d�Y[ZU� l
�aZjÕ/`aT w _XÕAZÈ�FR]\^_^hH`qTãQSZvpDd��q`aT w R w d�T<_^hjÖ ×^|UÙW�ad�RU\^TD`aT w
QSd csr R]TF`qh�QShÅRUTFp�× k Ù�n<TDZjÕ/�ad�p w d�\^d��D\^d�h�d�T<_^R]_^`aZUT c RU�FR l
gD`a�a`q_^`ad�hji

¥ ��Ö���¦ ��:<BF�j¢�;>¢ª©�G¤:(¬]£�BF¢�;>�²G¤�
j r d�Tà`qQS�F�ad�QSd�T<_^`qT w �ad�RU\^TD`aT w QSd csr RUTD`ah^QShÆZUY�R w d�Tv_^hjt
ÕAd c RUT c Z]TFh^`apDd�\	h^d��Ud�\^R]�<QSd csr RUTD`ah^QShoi�IPQSZ]T w _ r d�QSRUT y
ODh�d�Y¾OF���ad�RU\^TD`aT w QSd csr R]TF`qh�QShjtFÕAd�d�QS�F�qZ y _ r d�Y¾ZU�a�qZoÕ/`qT w Ö
×^|UÙ�d��UZU�qOF_z`aZUTDRU\ y h^_^\^RU_^d w y ×[� b Ù�×Å�CR c nÆd�_CRU�¡iat?|s}U} k Ù	RUTDp
× k ÙC�ad�RU\^TD`aT w c �aRUh^h^`aÚDd�\�h y h^_^d�Q°×[eAÜ b Ù�×F×AZU�apDgud�\ w t�|s} � }Ft
MPZU�q�aRUTDp"d�_CR]�Xiat?|s} � {DÙ^i J r dH\^d�RUh^ZUTDh�Y¾ZU\�_ r `ahád�QS�D�aZ y l
QSd�T<_ÅRU\^d�h^ODQSQSRU\^` Ã d�pàR]hÆY[ZU�q�aZjÕ/hoÖ ×^|UÙ�_ r d�� b QSd c¶r l
RUTD`ah^Q �ud�\^Y¾ZU\^QSh8ÕAd��a��Õ/`a_ r RH\^d�RU�CT<ODQ�gud�\S\^dq vOF`q\^d�pâ_^Z
\^d��F\^d�h^d�Tv_#ZUÉud�\#R]TFp"_ r \^d�h r ZU�ap"�oRU�qOFd�h�`qT�_ r d�gFR]\ w RU`aTD`aT w
w RUQSdvÝoRUTDpÄ× k Ù�_ r d#eCÜ b RU\ csr `a_^d c _^OF\^dA`ahK`aQS�D�ad�QSd�T<_^d�p%g y
QSZvpFd��a`qT w r ODQSRUT�gud�`qT w hK×[M#ZU�a�aR]TFp"d�_�RU�Xiat?|s} � {FÙ�RUTDp�h^d�� l
d�\^RU� c Z]T<��d�T<_^`qZUTDRU��\^d�h^d�R]\ c¶r ÕAZU\^nvh/d�QS�D�aZ y `qT w eAÜ b"r Rj�Ud
RU�q\�d�RUp y `qT<��d�h^_^` w RU_^d�p"h^Z c `qRU�?� r d�TFZUQSd�TDR�×�Ê
k ËGk¾t�RUTÆRU\^_^`qÚ l
c `aRU��h^_^Z c nÆQSRU\^nUd�_S×[I#\^_ r OD\�d�_CRU�¡iat�|¶}U}��jÙ^Ù^i�VXT�pDd�_zRU`a�XtDÕAd
d�QS�F�qZ y _ r d c ZUT<�Ud�T<_^`aZ]TFRU�P×ÙØÛÚÎÜ?Ù�d��UZU�aOD_^`aZUTâh^_^\^R]_^d w `ad�h
×[� b ÙK×��CR c n d�_#R]�Xiat?|s}U} k Ù	Y¾ZU\�� b RUTFp8R��K`a_z_^h^gFOD\ w r l h^_ y �qd
× b QS`a_ r t�|s} � �FÙ c �aRUh^h�`qÚFd�\�h y h^_^d�Q `qTFh^_^d�RUpWZUY­R²��` csr ` w RUT l
h^_ y �ad ×[M#ZU�a�qRUTFp�t?|s}��8LFÙ c �aRUh^h�`qÚFd�\�h y h^_^d�Q Y[Z]\CeCÜ b i
�PTDpDd�\ _ r d�h^d �qd�RU\^TD`aT w QSd csr RUTD`ah^QShot"RÇh^_^\^RU_^d w y t"_ r d
ÕAZ]\^_ r ZUY�R h^_^\^RU_zd w y t/R]TFp3_ r d¤h�_z\^RU_^d w `ad�h"ZUY�RUT3R w d�T<_
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RUhfh r ZjÕ/TÄ`aTÝM­` w OF\^d�| c Z]\�\^d�h^�uZUTDp¤_^ZWR w d�TDd<t�R"ÚD_^TDd�h^hjt
RUTDp RH�uZU�DOF�qRU_^`aZ]T§`aTØd���Z]�aOD_^`aZUTDRU\ y c ZUQS�DOF_zRU_^`aZ]T�×¾��Ü/Ù
�a`q_^d�\^RU_^OD\^d<to\^d�h^�ud c _z`a�Ud�� y iN�CRUh^d�p8ZUT%_ r d�h^d#�ad�RU\^TF`qT w QSd c¶r l
RUTD`ah^QShjtA��Ü l gDRUh^d�p R w d�Tv_^hÅR c  <OD`a\^d w ZvZvpàh^_^\^RU_^d w `qd�hÅg y
�oRU\ y `aT w _ r dfT<ODQSd�\^` c RU�(�oRU�qOFd�h�Z]Y�ZUÉud�\CR]TFp"_ r \^d�h r ZU�ap"RUh
h r ZjÕ/T�g y _ r d/Y¾ZU�a�qZoÕ/`qT w ZU\^pD`aTDRU\ y �D\^Z c d�pDOF\^dvÖK×^|]Ù?RfÚDÞ<d�p
T<ODQ�gud�\%×ÙØ*ZU\rÞ��(Ñ���Ó(���\Ô,Ð(Ñ Þ(���vÕ¤°�ÙKZUY­_ r d�gud�h^_Ph^_^\^RU_zd l
w `qd�h�×>Ò�¹�±´Ê²ÀF¿mµ�Ù�\^d�QSRU`qTFh/`aTW_ r d�h�d�_AY¾\^ZUQ Z]TFdf`a_zd�\^RU_z`aZUTÆ_^Z
_ r dÔTDd�Þ<_jÝF× k ÙvR#ÚFÞvd�p�T<ODQ�g�d�\�×�ÜPZU\ªÞ(��Ñ���Ó(���\ÔqÐ�Ñ Þ(���vÕ¤°AÙ
ZUY<TFd�Õ¤h^_^\^R]_^d w `ad�hC×�³pßfµmÒu±s»[ÀoË<ÙD`ah��D\^ZvpFO c d�p�Y¾\^ZUQN_ r d�h�d�_�ZUY
�DRU\^d�T<_^h�R]_Kd�R csr `q_^d�\^RU_^`aZ]TSg y RU�D�F� y `qT w _ r dCQ�OD_^RU_^`qZUT%ZU� l
d�\^RU_^`aZ]T `qT�×ÙØ0Ú�Ü?Ù l � b RUTDp%_ r d c \^ZUh�h^Zj�Ud�\jtoQ�OD_^RU_z`aZUT�tjRUTDp
`aT<�Ud�\^h^`aZUT�ZU��d�\^R]_^`aZUTDh�`qT¤_ r d8�K`q_^_^h^gDOF\ w r l h^_ y �adSeAÜ b ÝÔ×[��Ù
TDd�Õ h^_^\^RU_^d w `ad�h�\^d��D�aR c dS_ r dSh^RUQSd T<ODQ�gud�\�Z]YCh^_^\^R]_^d w `ad�h
Õ/`a_ r �qZoÕãÕAZ]\^_ r �oR]�aODd�hjiSJ r d8pFd�_^R]`a�ad�p�`qQS�F�ad�QSd�T<_^RU_z`aZUT
ZUY�guZ]_ r �ad�RU\^TD`aT w QSd csr R]TF`qh�QShA`qh�pFd�h c \^`qgud�p�gud��aZjÕ�i

¯ ��àÓ��¨>����;>��¢	BD�jäÄ�²���jBF��:�©�ä�å J/ÕAZfgDRU\ w RU`qTF`qT w R w d�T<_^h
RU\^d d, <OD`a�D�ud�p Õ/`q_ r _ r d�`q\°ZjÕ/T ×ÙØáÚâÜ?Ù l � b Ý
_ r d5Y¾\^RUQSd�Õ�ZU\^n `ah7gDRUh^d�p ZUT _ r d5ÕAZU\^nvh ZUY
×F×Ad�\^pF`qT w d�_CRU�¡iat k �U�U�Dt��A\^R w _#d�_CRU�¡iat k �U�U�DÙ^iãj r d�T
�F\^ZvpDO c `qT w ZUÉuh^�D\^`aT w h�_z\^RU_^d w `ad�hjt�_ r d"Q�OF_zRU_^`aZ]TØZU� l
d�\^RU_^`aZUT R]pFpDh8_^ZHZU\Æh^ODgF_z\^R c _^h8Y¾\^ZUQ'_ r d"Z]ÉÓd�\ RUTDp
_ r \^d�h r ZU�ap3�oRU�qOFd�hji,J r d�h�dHRUpDpFd�pNRUTDp3h^OFgD_^\^R c _^d�p
�oRU�qOFd�hÆRU\^d c RU� c OF�qRU_^d�pÈY[\^ZUQ'Ry×CR]OFh^h^`aRUT§pD`ah^_^\^`agDO l
_^`aZ]TÄÕ/`a_ r h^_^RUTDpFR]\^pÄpDd��v`aRU_z`aZUT�ä(tÓÕ r ` csr `ahPnUd��D_�g y
d�R csr h�_z\^RU_^d w y i­IPY¾_^d�\C_ r d�h^d�ZUÉuh^�F\^`qT w h^_^\^R]_^d w `ad�hPRU\^d
�F\^ZvpDO c d�p�tj_ r d/h^_^RUTDpDRU\^p�pDd��<`aR]_^`aZUTDh	ZUYu_ r dAZ]ÉÓh^�D\^`aT w
RU\^d�h^d�_PR]hP_ r d%Rj�Ud�\^R w d�h#ZUYK_ r ZUh^d�`aTá_ r d��DRU\^d�T<_^hPRU_
d�R csr `q_^d�\�R]_^`aZUT�tAÕ r `a�qd�_ r d�h^_^RUTDpFR]\^pàpDd��<`qRU_^`aZUTDhÅZUY
_ r d��DRU\^d�T<_^hPRU\^d�QSRU`aT<_zRU`aTDd�p�i � Z]_^d�_ r RU_/`aY�RUT"ZUÉud�\
ZU\�_ r \^d�h r Z]�ap��oR]�aODd�gud c ZUQSd�h�`aTDRU�D�F\^Z]�F\^`qRU_^dÆ×^Ê
k ËGk t<R
QS`aT<ODh��oRU�qOFd#Z]\CR��oRU�qOFd#QSZ]\^d�_ r RUTá|UÙzt<`q_�`qhC\^d�h�d�_K_^Z
�8ZU\�|UtDÕ r ` csr d���d�\A`qh c �aZ]h�d�\�_^Z�_ r d c OD\^\^d�T<_A�oRU�aODdvi

¯ ��:<BD�j¢	;>¢ª©å¬%¨>BF����;�æ	:v� ��ä�����:vGHå J/Õ�Z gFR]\ w RU`aTD`aT w
R w d�T<_^hSRU\^d"d, <OD`a�D�ud�pßÕ/`q_ r _ r d�`q\8ZjÕ/T§�K`q_^_^h^gDOF\ w r l
h^_ y �ad�eCÜ b i�J­Z c ZUTFpDO c _ c Z]Q8�DOD_^d�\ h�`qQ�OD�aRU_^`qZUTDhÅ`aT
_ r dfh^RUQSdPY¾\^RUQSd�ÕAZU\^n%ZUY�� b t�ÕAd#h^d�_AZU\AQSZvpD`aY y d�R csr
eAÜ b RUh%Y¾ZU�a�aZjÕ/hjÖá×^|UÙ#_ r dWeAÜ b `aT*ZUOD\%h^`aQ�OD�aR]_^`aZUTDh
RU�D�F�q`ad�h�_ r d c \^ZUh^h�Zj�Ud�\�ZU�ud�\^RU_z`aZUT*R]_Sd�R csr `a_zd�\^RU_z`aZUT
_^Z��F\^ZvpDO c dKZUÉuh^�F\^`qT w h^_^\^RU_zd w `qd�h�_ r d�d��Ud�\ y `q_^d�\^RU_^`aZ]T	i
�áOD_^R]_^`aZUTSR]TFp8`aT<�Ud�\^h�`qZUT8ZU�ud�\^RU_^`qZUTFhÔRU\^d/�F\^Z]gFRUgD`a�q`ah l
_^` c RU�q� y R]�F�D�a`qd�p§_^Z¤_ r d�ZUÉuh^�F\^`qT w h^_^\^R]_^d w `ad�h w d�TDd�\ l
RU_^d�pWg y _ r d c \^ZUh^h^Zo�Ud�\CZU�ud�\^RU_^`qZUT	Ý?× k Ù	RU�q_ r Z]O w r _ r d
�FR]`a\�ZUY/ZUÉud�\�RUTDpØ_ r \^d�h r ZU�ap c R]Tâgud c Z]TFh^`apDd�\^d�p*RUh
ZUTDdH» Ì²·X¿mÍ�Ê²À�\^OD�adÅY[\^ZUQÛ_ r dÅ�<`qd�Õ/��ZU`aT<_SZUY�eAÜ b t(_ r d
h^d��qd c _^d�pÆZU\^pDd�\CZUY�_ r d�h^df\^OF�qd�h�×[�DRU`q\^hoÙ�`ahCpDd�_^d�\^QS`aTFd�p
`aTØRUpF�jRUT c dvÝ­RUTFp3×[�uÙ#_ r d c ZUT c d��D_8Z]Y%½�³�ÀGç ¿�¯¶¹�±´Ê�`qh
TFZ]_Pd�Q8�D�aZ y d�pá`aTáZUOD\Ph^`aQ�OD�aRU_z`aZUTDhoi�MuZU\P_ r d�h^d c ZUTDp
�uZU`qT<_jt<`aTÆ�FRU\^_z` c OF�qRU\jt<R8�D\^d��a`aQS`qTFR]\ y \^d�h^d�R]\ c¶r Y¾ZUODTFp
_ r RU_PeAÜ b l gFRUh^d�p�R w d�T<_^h c RUTFTDZU_#�ad�RU\^T w ZvZvp�h^_^\^RU_zd l
w `ad�h­`aYF_ r d y RU\^dARU�q�aZjÕAd�p%_^Z#h^d��ad c _­_ r dC\^OF�qd�h/×¾_ r d��FR]`a\
ZUY�ZUÉud�\#R]TFp"_ r \^d�h r ZU�ap�Ù(`aT�_ r d�ZU\^pD`aTDRU\ y eCÜ b ÕAR y i

¥ ��Ö���Ö 9�¢	�D e¨>:<EW©u:"�j:(­��o:v��:<¢���BD��;>��¢ã¬�Bn­	BD�	;�¨>;[��;>:v�
j r d�TW`aQS�D�ad�QSd�T<_z`aT w R w d�T<_^hjt�ÕAd r Rj�Ud�_^Z c ZUTFh^`apDd�\�_ r d�`a\
n<TDZjÕ/�ad�p w d�\^d��F\^d�h^d�Tv_^RU_^`qZUT c RU�DRUgF`q�a`a_z`ad�hoi�VXTÆ_ r d�gDRU\ w RU`qT l
`aT w w RUQSdvtu`qTÄ�DRU\^_^` c OD�aRU\jt�R8\^d��D\^d�h^d�T<_^RU_^`qZUTáZUYKh^_^\^R]_^d w `ad�h
ZUY<R w d�T<_^h(Q�OFh^_?gud c ZUTDh�`qpFd�\^d�p�tj_ r ZUO w r _ r d�\^dKRU\^dÔTDZ/h^_^RUT l
pDRU\^p w OD`apDd��a`aTDd�hoiNMu\^Z]Q _ r `qh�Y¾R c _jtUÕ�d/h^_^RU\^_�g y d�QS�D�aZ y `qT w
_ r d�Y¾ZU�a�qZoÕ/`qT w _´Õ�ZH_ y ��d�hÆZUYfn<TDZoÕ/�qd�p w d�\^d��D\^d�h^d�T<_^RU_^`qZUT
c RU�DRUgF`q�a`a_z`ad�hoÖ è�×^|UÙ(R]T�ZU\^pD`aTDRU\ y d�Þv�F�qRUTFR]_^`aZUT"Z]Y�T<OFQ�gud�\^h
×�Ê
k ËGk¾t	�ui �u|2é2éqé ÙCRUTDpN× k ÙCR��a`aQS`q_^d�p*d�Þ<�D�aR]TFRU_z`aZUTâZUY�T<ODQ l
gud�\^hjt(Õ r ` c¶r RU\^d8\^d�h^_^\^` c _^d�pH_^Z�RW\^d�RU��T<ODQ�g�d�\�Õ/`a_ r _XÕAZ
pDd c `aQSR]�ApF` w `a_^hÆ×�Êqk ËGk t(�ui �u|UÙ#`qT¤_ r `ah%h^`aQ�OD�aR]_^`aZUT�i�j¤d Y[Z l
c OFh�ZUT�_ r `ah�nvTFZjÕ/�ad�p w d \^d��F\^d�h^d�T<_zRU_^`aZ]T*gud c R]OFh^dá×z|UÙ/h^Z l
c `aRU�/h c `ad�T<_^`qh�_zh8QSR y _^RUnUd"_ r d"�qRU_^_^d�\ c RUh^d�Y¾ZU\SR c ZUT c `ah^d
\^d��F\^d�h^d�Tv_^RU_^`qZUTâ×[VXTDpDd�d�p�t�ÕAd r Ro�Ud�QSd�_/h^O csr h^`a_^ODRU_z`aZUTDhoÙzÝ
RUTDp*× k Ù	R8\^d�RU�	T<ODQ�gud�\C`aT�ZUÉud�\#R]TFp"_ r \^d�h r ZU�ap"�oRU�qOFd�h�`qh
c \^`a_^` c R]�?`aT�_ r d�gFR]\ w RU`aTD`aT w w RUQSd<i

ê ë ��T���£´«­©(��� �

ì ��¦ ��;>GÄ�ª¨>BD��;>��¢ßE	:v�²;�©u¢
Ü	ZUQS�DOD_^d�\�h^`aQ�OF�qRU_^`qZUTFh�RU\^d c ZUTFpDO c _zd�p¤_zZ c ZUQS�FR]\^d _ r d
Y¾ZU�a�aZjÕ/`aT w _´Õ�Z c RUh�d�hji � ZU_^d8_ r RU_�_ r d8ÚD\^h�_fh^`aQ�OD�aRU_z`aZUTÄ`qh
�ud�\^Y¾ZU\^QSd�p Õ/`a_ r ZUOD_ÆRUT y \^d�h^_^\^` c _z`aZUTàZUY�Râ\^d�RU��T<ODQ�gud�\
\^d��F\^d�h^d�Tv_^d�p `qTSh^_^\^RU_^d w `qd�hÔZUY�R w d�Tv_^hP×�»Åk[Ê
k t]_ r d#h^`aQ�OF�qRU_^`aZ]T
Õ/`a_ r RUTÆZU\^pD`aTDRU\ y \^d�RU�ÓT<ODQ�gud�\jÙ^i

¯ �P�íà?�²�ß�¶îS�	å IPTÄ`aT<�Ud�h�_^` w RU_^`qZUT�ZUT�_ r dS`aT ± ODd�T c d
ZUY�pD`aÉud�\^d�T<_/�qd�R]\^TF`qT w QSd c¶r RUTD`ah^QSh/ZUY­R w d�T<_^hji

¯ µ ¢Ä���oE�;>¢	BD�oäá�j:vBn¨�¢��	GÄ��:v��à?����BÅ�j:<B�¨�¢��	GÄ��:<�
��«P�s ��HE�:(¬�;>G¤Bn¨AE�;�©�;>��� ;>¢§����å IPTW`aT<�Ud�h^_^` w R]_^`aZUT
ZUT�_ r d8`qT ± OFd�T c dSZUYApD`aÉud�\^d�Tv_fn<TDZoÕC�ad�p w d%\^d��D\^d�h�d�T l
_^RU_z`aZUT c RU�DRUgF`q�a`a_z`ad�h�ZUY­R w d�T<_^hji

VXT8d�R csr h^`aQ�OF�qRU_^`aZ]T	t]_ r d#Y¾ZU�a�qZoÕ/`qT w _ r \^d�d c RUh^d�hARU\^d/`qT<��d�h l
_^` w RU_^d�p�i � Z]_^d%_ r RU_�RU�a��h�`qQ�OD�aRU_^`qZUTDh�RU\^d c ZUTDpFO c d�pÄOFT<_z`a�
LU�U�]�H`q_^d�\�R]_^`aZUT RUTFp _ r d�`a\S\^d�h^OD�a_^h8h r ZjÕ Ro�Ud�\^R w d"�oRU�qOFd�h
Zj��d�\�|¶�S\^ODTDhoi

¯ îSBF��:ÛïXBnð�å I �DR y Z]É
¯ îSBF��:ÛïX�ªð�å IPTWRo�Ud�\^R w dfTDd w ZU_^`aR]_^`aZUTÅ�F\^Z c d�h^h�h�` Ã d
¯ îSBF��:íï*¬%ð�å IPT¤R c�c ODQ�OD�aRU_zd�p*T<OFQ�gud�\�ZUY�d�R csr TDd l
w ZU_^`qRU_^`qZUTW�F\^Z c d�h�hCh^` Ã d�RU_A_ r d#ÚDTFRU�K×�L]�U�U�uÙ�`a_zd�\^RU_z`aZUT

IPh#_ r d��DRU\^RUQSd�_^d�\#h^d�_^_^`qT w tF_ r d��oRU\^`qRUgD�ad�h#RU\^d%h^d�_�R]hPY[ZU� l
�aZjÕ/hji � ZU_^d�_ r RU_#�F\^d��a`qQS`aTDRU\ y d�Þ<R]QS`aTFR]_^`aZUTDhPY[ZUODTDpÄ_ r RU_
_ r d/_zd�TDpDd�T c y Z]YÓ_ r dC\^d�h�OD�a_^hÔpFZvd�h�TDZU_KpD\^RUh^_^` c RU�q� y csr RUT w d
R c�c ZU\^pF`qT w _^ZS_ r df�DRU\^RUQSd�_^d�\�h^d�_^_z`aT w i
ñ�ò ùáézó�óvñÐòXñ¼ô²ù òXô�ò¡õvë¶íXë�ñ¼íXíXîvë¶í,1(u	ëPí´õ�ô²î�ý¼ó�ézý¼íXô%ñÐù]ü²ë¶í´òXñ9)�ézòXë

ézù8ñÐù%óvî�ë¶ù�ú¶ë#ô
�KéCðfôoó�ë¶ý¼ñÐù�)�ô
�(í´ò¡ì�é^ò¡ë8)²ñ¼ë¶í�òXõÓézòfézìXëCú¶î�ìXìXë¶ù]òXý¼ÿ
ú¶ô²ðfê<ôjíXë¶ó ô
��òXõ�ë�ú¶ô²ð#ï�ñ¼ùÓézòXñ¼ô²ù ô
�fô
ô�ë¶ì¤ézù�óßò¡õvìXë¶íXõ�ô²ý¼ó�ézí
íXõvô{uÔù�ñ¼ùes�ñ9)²î�ìXë³.
<
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h^` Ã d�RU_A_ r d�L]�U�U�S`a_^d�\^RU_^`qZUT	Ù h^` Ã d�R]_�_ r drLU�U�U�S`a_^d�\^RU_z`aZUT�Ù

Ü	RUh^dÆ× c Ù

M­` w OD\^d��uÖ �	;[G��W¨>BF��;>��¢à�j:<���ª¨[���%��«P�P�aà����8�¶îS��å µ àu:<�jBn©�:�à<Bn¨>��:<�8��àu:v�²¦�õH�j�	¢��SBD�8��£�:�ö�õ�õ�õ¤;[��:v�oBD��;>��¢	�
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¯ îS��GHG¤��¢ ­	BF�jBDGH:v��:v�o��å ° ×[_ r d,T<ODQ�g�d�\ ZUY
h^_^\^RU_^d w `ad�hjÙ�`ah÷L]�uÝv�(��� �(�����ß×[_ r dWQSR]Þ<`aQ�OFQæT<ODQ l
gud�\ßZUY�h�_zd��Dhâ`aT ZUTFd c ZUTFY¾\^ZUT<_^R]_^`aZUT�Ù"`ah |¶�uÝ�RUTDp
Ï(Ð�Ñ�Ò�Ó(Ð�Ñ��(���\ÔqÐ�Ñ ×[_ r dCT<ODQ�g�d�\�ZUY c Z]TFY¾\^ZUT<_^RU_z`aZUTDh	Y¾ZU\
d�R csr h�_z\^RU_^d w y Ù	`ah k �ui

¯ �P� ­	BF�jBDGH:v��:v�o��å Ø ×¾_ r d��FR]\^d�T<_���ZU�FOD�aR]_^`aZUTáh^` Ã dvÙ
`ah k LuÝNÜ¤×[_ r d�ZUÉuh��D\^`aT w �uZ]�FOD�aRU_z`aZUTáh^` Ã dvÙ­`qh k LuÝDRUTDp
ä
×[_ r dÄ`qTF`q_^`aRU��h^_^R]TFpDRU\^p§pFd��v`aRU_^`qZUTÈZUY�Ry×CR]OFh^h^`aRUT
pF`qh�_z\^`agDOF_z`aZUT�Ù­`ahC�nÈ Lui

¯ �¶îS� ­�BF�jBFG¤:<��:<�j��å Þ(��Ñ��(Ó����¤Ô,Ð�Ñ Þ��(� ×[_ r d
�ud�\ c d�T<_zR w d Z]Y7\^d��F�qR c d�p h^_^\^RU_zd w `qd�hoÙ7`qhøLU��ùSÝ
Ï(Ó�Ð����(Ð�ú��(Ó Ó��(��� ×¾_ r d,�ud�\ c d�T<_zR w d ZUY c \^ZUh^h�Zj�Ud�\
ZU�ud�\^RU_^`qZUTDhoÙ�`qh3|¶�U��ùSÝ���û��(���\ÔqÐ�Ñ Ó����(� ×¾_ r dà�ud�\ l
c d�T<_zR w d Z]Y Q�OD_^RU_z`aZUT ZU�ud�\^RU_^`qZUTDhoÙN`qhSL�ùSÝÇRUTDp
ÔqÑ�ú���Ó(�\Ô,Ð(Ñ Ó��(���¤×[_ r d��ud�\ c d�T<_zR w d�Z]Y�`qT<��d�\^h^`aZUT"ZU� l
d�\^RU_^`aZUTDhjÙ�`ah`L�ùSi

ì ��Ö ��;>GÄ�ª¨>BD��;>��¢ß�j:<���ª¨>���
M­` w OD\^dA�fh r ZjÕ/h	h�`qQ�OD�aRU_^`qZUT�\^d�h�OD�a_zhKZUYFg�ZU_ r � b RUTDp�eAÜ b i
VXTHpDd�_zRU`a�Xt?Ú w OF\^d�hÅ×¾RuÙ^t�×[g�ÙCRUTDp§× c ÙA`aTDpF` c R]_^d _ r d8\^d�h^OF�q_^h
ZUYu_ r d/�DR y Z]É�to_ r d#Ro�Ud�\^R w d/TFd w Z]_^`aRU_z`aZUT%�D\^Z c d�h^h�h^` Ã d<tjRUTDp
_ r dÅR c�c OFQ�OF�qRU_^d�pâT<ODQ�gud�\�ZUY/d�R csr TDd w ZU_^`qRU_^`qZUT*�D\^Z c d�h^h
h^` Ã dÄRU_"_ r dÄÚFTDRU� ×�LU�]�U�uÙ�`a_^d�\^RU_^`qZUT	t/\^d�h^�ud c _^`a�Ud�� y i6J r d
�Ud�\^_^` c RU�	R]Þ<`ah#`qT�RU�a�	ZUY­_ r d�Ú w OF\^d�hP`aTDpF` c RU_zd�h#_ r d�`qTFpDd�Þ<d�h
`aT�_ r d8RUguZj�UdS_ r \^d�d c RUh�d�hjt�Õ r `a�qd8_ r d r ZU\^` Ã Z]T<_^RU�KR]Þ<`ah�`aT
Ú w OF\^d�h#×¾RuÙDRUTDp�×[g�ÙF`aTDpF` c RU_zd�h	_ r dA`q_^d�\^RU_^`aZ]TFh�RUTDp%_ r d r ZU\ l
` Ã ZUT<_zRU�ÓR]Þ<`ah�`qTWÚ w OF\^d%× c Ù(`aTDpF` c R]_^d�hA_ r d#TDd w ZU_^`aR]_^`aZUTÅ�F\^Z l
c d�h^h	h^` Ã dÔÕ/`q_ r TDd w ZU_^`aR]_^`aZUT�Y[R]`a�aOD\^dK\^d��D\^d�h^d�T<_^d�p�R]h�ZiJA�Ud�\F[
RU_�_ r d�QSZUh^_�\^` w r _�h�`qpFdvi�VXT��DRU\^_^` c OD�aRU\jt?M­` w OD\^dK�u×[R�Ùuh r ZjÕ/h
_ r d8�DR y Z]ÉâZ]Y�R w d�T<_÷X " `aT¤_ r dS�aZjÕAd�\��a`aTDd�h�RUTDp*_ r RU_�ZUYX # `aT�_ r d/OD�F��d�\­�a`aTDd�hoi�J r d�pF`qÉud�\^d�T c dAgud�_´Õ�d�d�T�_ r d/h^ZU�a`qpRUTDp��q` w r _?pFR]h r �a`aTDd�h	`qTFpD` c RU_^d�h(_ r RU_?_ r dAY¾ZU\^QSd�\�h r ZoÕ/h(_ r d
gud�h^_%\^d�h�OD�a_^h%R]TFpH_ r d"�qRU_^_^d�\�h r ZjÕ/h%_ r dÅRj�Ud�\^R w dÆ\^d�h^OF�q_^h
Zj��d�\f|s�%\^OFTDhjiRMuOD\^_ r d�\^QSZU\^d<t%M­` w OD\^drK�h r ZjÕ/h/h^`aQ�OF�qRU_^`aZ]T
\^d�h�OD�a_zhKZUY?� b \^d�h^_^\^` c _^d�p8_^Z�R�\^d�RU�FT<ODQ�gud�\ÔÕ/`q_ r _XÕAZ�pFd c l
`aQSRU�?pD` w `q_^hjiCÜ	RUh^d�h�×[R�Ù^t(×[g�Ù	RUTDp¤× c Ù­`aT�M­` w OD\^düK r R]h�_ r d
h^RUQSd�QSd�RUTD`aT w ZUY�_ r ZUh^d�`aT5M­` w OD\^d��ui
Mu\^ZUQ _ r d�h�d�\^d�h^OD�a_^hjtFÕAdfÚDTDp�_ r RU_/h�`qQ�OD�aRU_^`qZUT�\^d�h^OF�q_^h/pFZ
TDZU_%h r ZjÕ _ r dÅh^RUQSd�_zd�TDpDd�T c y Õ r d�TßpD`aÉud�\^d�Tv_%�ad�RU\^TD`aT w
QSd csr R]TF`qh�QSh8ZU\%n<TDZjÕ/�ad�p w d�\^d��D\^d�h�d�T<_^R]_^`aZUT c RU�DRUgD`a�a`q_^`ad�h
RU\^dfR]�F�D�a`qd�p�_^Z�R w d�T<_^hji

ý þ �´¨<¬\�P¨<¨(��� �

ö���¦ ��:vBF�j¢	;[¢ª©�GH:�¬]£�BF¢	;>��G¤�
M­`a\^h^_jtFÕ r d�TÄY¾Z c ODh^`aT w ZUT�_ r d�h^`aQ�OD�aRU_z`aZUTÄ\^d�h^OF�q_^hPZUTápD`aY l
Y¾d�\^d�T<_P�qd�R]\^TF`qT w QSd csr RUTD`ah^QShPZUYKR w d�Tv_^h#`aT�M­` w OD\^d��utD_ r d
Y¾ZU�a�aZjÕ/`aT w `aQS�D�a` c RU_z`aZUTDh%RU\^d8\^d��Ud�R]�ad�p	ÖÅ×^|UÙC_ r dÅ�FR y ZUÉßZUY
� b l gFRUh^d�páR w d�T<_zh#ÚFTDRU�a� y c ZUT<�Ud�\ w d�hPR]_P_ r d�QSZUh^_^� y QSR]Þ l
`aQ�OFQ®ZU\�QS`qTF`qQ�ODQ®�oRU�qOFd�×^»�k¾Ê
k¾tC|SZU\%�uÙ^t�Õ r `q�adÅ_ r RU_%ZUY
eAÜ b l gDRUh^d�pÆR w d�T<_^h�TDd�`q_ r d�\ c ZUT<�Ud�\ w d�h�RU_AR c d�\^_^RU`qTW�oR]�aODd
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M­` w OD\^d�KuÖ �	;[G��W¨>BF��;>��¢H�j:v�²�W¨>������«A�P�â %;>��£*�Ñ ��"E�:(¬{ÿ
;>G¤Bn¨ÔE�;�©�;>����å µ àu:v�oB�©u:-à<Bn¨>�	:v�%�GàÓ:v�e¦�õ��j�	¢���BF����£�:
ö�õ�õ�õ�;>��:v�jBF��;>��¢��
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TDZU\ c �aZUh^d�_^ZS_ r d�QSRUÞ<`qQ�ODQ ZU\PQS`qTF`qQ�ODQ �oRU�qOFdvÝ�× k Ù	_ r d
Rj��d�\^R w dfTDd w ZU_^`qRU_^`qZUTáh^` Ã d�ZUY�� b l gDRUh^d�p"R w d�T<_^h#`qT c \^d�RUh^d�hjt
Õ r `a�adÅ_ r RU_�ZUY�eAÜ b l gDRUh^d�pâR w d�Tv_^h�pFZvd�h8TDZU_�gFOD_�h�`qQS�F� y
ZUh c `a�a�qRU_^d�hoÝ�RUTFp ×[�uÙ�R]�a_ r ZUO w r _ r d8R c�c ODQ�OD�aRU_^d�p¤T<ODQ�gud�\
ZUY­_ r dÆ|s�U_ r TDd w ZU_^`aR]_^`aZUT��F\^Z c d�h�h�h^` Ã d�RU_/_ r d0LU�U�U�S`a_^d�\^R l
_^`qZUTÄ`qh r ` w r g�ZU_ r `qTÄ� b l gDRUh^d�p�RUTDpáeAÜ b l gFRUh^d�pÄR w d�Tv_^hjt
_ r dÅR c�c OFQ�OF�qRU_^d�pâT<ODQ�gud�\�Z]Y�RUTDZU_ r d�\�TFd w ZU_z`aRU_^`qZUTH�F\^Z l
c d�h^h�h^` Ã d�ZUY?� b l gDRUh^d�pÆR w d�T<_^h�`ahKQSZUh^_^� y c �aZUh^d�_^Z��utUÕ r `a�ad
_ r RU_/ZUY�eAÜ b l gDRUh^d�p�R w d�T<_^h/`qh�TFZU_²i
J r d8\^d�RUh�Z]TFh�Y¾ZU\�_ r d8RUg�Zo�UdS\^d�h^OF�q_^h�RU\^d8h^ODQSQSRU\^` Ã d�pHRUh
Y¾ZU�a�aZjÕ/hjÖ�×z|UÙ	_ r d�h^_^RUTDpFRU\^p�pDd��<`aR]_^`aZUTWZUY­R�×CR]OFh^h^`aRUT�pD`ah l
_^\^`qgFOD_^`aZ]T
`qTã� b pFd c \^d�R]h�d�h¤RUh�_ r dâ`a_^d�\^RU_^`qZUTFh�gud c ZUQSd
�aR]\ w d<tvÕ r `q�ad�_ r d c \^ZUh^h^Zo�Ud�\jt<Q�OD_^RU_z`aZUT"RUTDp"`aT<�Ud�\^h�`qZUTÆZU� l
d�\^RU_^`aZ]TFh�`aTWeAÜ b RU\^d c ZUTDh�_zRUT<_^� y �ud�\^Y¾ZU\^QSd�p�i b `aT c dfQSZUh^_
ZUYF_ r d�h^dÔZU�ud�\^RU_^`qZUTFh­ÕAZ]\^nfRUh�R#pF`q��d�\ w d�T<_�ZU\­d�Þv�F�qZU\^d�p�Y¾R c l
_^ZU\jt²_ r dÔpFd c \^d�RUh�dAZ]YFh^O csr `aT ± ODd�T c dKQSRUnUd�h�h^`aQ�OD�aRU_z`aZUT�\^d l
h^OF�q_^h c Z]T<��d�\ w dvÝ�× k ÙÓ_ r d#ZUÉud�\KRUTDp _ r \^d�h r ZU�qpS�oR]�aODd�hK`qT RU�a�
ZUÉuh^�F\^`qT w RU\^d8QSZvpD`aÚDd�pÄRU_fd���d�\ y `a_zd�\^RU_z`aZUT�`aT¤� b tFÕ r `a�ad
_ r d y RU\^d8QSZvpF`qÚFd�p*ZUTF� y g y R"Q�OF_^R]_^`aZUTHZ]�ud�\^RU_^`aZUT�d�Þ<d l
c OF_zd�pâ`qTßR��qZoÕ6�F\^Z]gFRUgD`a�q`a_ y `aT*eAÜ b iªMuOF\^_ r d�\^QSZU\^dvt�� b
QSZvpF`qÚFd�h h^O csr �oRU�aODd�h �a`qn�dW`aTßR w \^RUpF`qd�Tv_ h^d�RU\ csr t�Õ r `a�ad
eAÜ b QSZvpF`qÚFd�h�_ r d�Q \^RUTDpDZUQS� y i
MPd�\^dvtKÕAd c ZUTFh^`apDd�\ _ r RU_ w RUQSd�_ r d�ZU\ y �D\^Zo�Ud�hÅ_ r RU_8\^R l
_^`qZUTFR]�fR w d�Tv_^hÝX " R]TFpSX # \^d c d�`q��dÄ_ r dÄQSRUÞ<`qQ�ODQÂRUTDp
QS`aTD`aQ�OFQ �FR y ZUÉuhPRU_f_ r d8ÚDTFRU�­TDd w ZU_^`qRU_^`qZUT��F\^Z c d�h�hjt�\^d l
h^�ud c _z`a�Ud�� y i#J r `ahf`ah�g�d c RUODh^d5X " `qTÄZ]OF\fh^`aQ�OD�aR]_^`aZUTDh r RUh_^ZÅR c�c d��F_�RUT y h^QSRU�a�	ZUÉud�\��D\^ZU�uZUh^d�pág y X # R]_P_ r d�|¶�U_ rTDd w ZU_^`aR]_^`aZUT��F\^Z c d�h�hjÝDZU_ r d�\^Õ/`ah^dvt¤X " c RUTDTFZ]_/\^d c d�`a�Ud�RUT y�DR y ZUÉ�t�»Åk[Ê
k t�`a_�\^d c d�`q��d�h��"�DR y ZUÉ�i0jHd%_ r d�\^d�Y¾ZU\^d8d�Þ<��d c _
_ r d�Y¾ZU�a�qZoÕ/`qT w h^`aQ�OF�qRU_^`aZ]Tà\^d�h�OD�a_zhoÖâ×z|UÙ��ad�RU\^TF`qT w R w d�T<_^h
c RUTHR c  vOF`q\^d8_ r d8QSRUÞv`aQ�ODQ RUTFpHQS`aTD`aQ�OFQ �FR y ZUÉuhjÝA× k Ù
_ r dWRo�Ud�\^R w dÆTDd w ZU_^`qRU_^`qZUTØh^` Ã dW`aT c \�d�RUh^d�h�`aYPR w d�T<_^h��ad�RU\^T
h^_^\^RU_^d w `qd�h/RU�D�F\^Z]�F\^`qRU_^d�� y Ý�RUTDpâ×¾�uÙ(�ad�RU\^TD`aT w R w d�Tv_^h c ZUQ l
�D�ad�_^d�_ r d�`a\#TDd w ZU_^`qRU_^`aZUT��D\^Z c d�h^h�RU_�_ r d�ÚDTFRU�(ZUÉud�\#ZUY�X #RUTDp _ r d#R c�c d��F_zRUT c d�ZUYvX " i(VXTÅRUTDRU� yvÃ `qT w _ r d#h^`aQ�OF�qRU_^`aZ]T\^d�h�OD�a_zh�R c�c ZU\^pD`aT w _^ZW_ r d8RUguZj�Ud�_ r \^d�d8RUh^h�ODQS�D_^`aZUTDhjtÓÕAd
c RUT c Z]TFh^`apDd�\�_ r RU_P_ r d�� b l gFRUh^d�p"R w d�T<_^h#h r ZjÕÈ_ r d�h^RUQSd
_^d�TDpFd�T c y `aT w RUQSdÅ_ r d�Z]\ y gDOD_�_ r RU_�eAÜ b l gFRUh^d�p*R w d�T<_^h
c RUTDTFZU_²iªMu\^Z]QÇ_ r `ah/RUTFR]� y h^`ahjt�ÕAd c RUT"ÚD\^h^_ c ZUT c �aODpFd�_ r RU_
h^`aQ�OD�aR]_^`aZUT \^d�h^OD�a_^h/RU\^dfh^d�TFh^`a_z`a�Ud#_^ZS_ r d#�ad�RU\^TD`aT w QSd csr R l
TD`ah^QSh�RU�F�D�a`qd�pÆ_^Z8R w d�T<_zhoi
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� d�Þ<_²tuÕ r d�T�Y¾Z c ODh^`aT w ZUT�_ r d%h^`aQ�OF�qRU_^`qZUT�\^d�h^OF�q_^hPZUTápD`aY l
Y¾d�\^d�T<_PnvTFZjÕ/�ad�p w d�\^d��D\^d�h�d�T<_^R]_^`aZUT c RU�DRUgD`a�a`q_^`ad�hPZUYÔR w d�T<_^h
`aTÉM­` w OD\^dÆ�§×[_ r dWTDZU\^QSRU� c RUh^d�d�QS�D�aZ y `aT w R]TØZU\^pF`qTFR]\ y
\^d�RU��T<ODQ�g�d�\jÙ�RUTFpyM­` w OD\^d�K�×[_ r dÄ\^d�h^_^\^` c _^d�p c RUh^dád�Q l
�D�aZ y `aT w R�\^d�RU��T<ODQ�gud�\SÕ/`a_ r _XÕAZÄpFd c `aQSRU�/pD` w `a_zhoÙztK_ r d
Y¾ZU�a�aZjÕ/`aT w `aQS�D�a` c RU_z`aZUTDh%RU\^d8\^d��Ud�R]�ad�p	ÖÅ×^|UÙC_ r d8�DR y ZUÉ*`aT
_ r d�TDZU\^QSRU� c RUh�dfÚFTDRU�a� y c ZUT<�Ud�\ w d�hPR]_�_ r d�QSZUh^_^� y QSRUÞv` l
Q�ODQ ZU\­QS`aTD`aQ�ODQ
�jRU�aODd�×^»�k¾Ê
k¾tF|/Z]\��uÙztUÕ r `q�ad/_ r RU_	`aTS_ r d
\^d�h�_z\^` c _^d�p c RUh�d%pFZvd�h�TDZU_ c Z]Q8�D�ad�_^d�� y c ZUT<�Ud�\ w dvÝ�× k Ù�_ r d

Rj��d�\^R w d�TDd w ZU_^`aR]_^`aZUT�h^` Ã d�`qTÄ_ r d�TDZU\^QSRU� c RUh^dS`qT c \^d�RUh^d�hjt
Õ r `a�ad#_ r RU_Ô`aT _ r d#\^d�h^_^\^` c _^d�p c R]h�d�pDd c \^d�RUh^d�hoÝURUTDpÄ×[��Ù?_ r d
R c�c OFQ�OF�qRU_^d�pHT<ODQ�g�d�\�ZUYAd�R csr TFd w Z]_^`aRU_z`aZUTH�F\^Z c d�h�h�h^` Ã d
d�Þ c d��F_�_ r d%ÚDTDRU�C×�»Åk[Êqk¾tF_ r dÆ|¶�U_ r ÙÔ�F\^Z c d�h^h�`aTá_ r d�TFZ]\^QSRU�
c RUh^dS`ah�QSZ]h�_z� y c �aZUh^d8_zZ"�utÓÕ r `q�ad8_ r RU_f`qT¤_ r d8\^d�h^_^\^` c _^d�p
c RUh^d�`ah�TDZU_ji
J­Z#h^d�d�n�_ r dC\^d�RUh�Z]TFh�Y¾ZU\�_ r dAR]guZo�UdCpD`aÉud�\^d�T<_­\^d�h�OD�a_zhot²�ad�_?V h
QSZj��d�ZUOF\AY¾Z c ODhAZ]TÆ_^Z�_ r d8|s�U_ r Z]ÉÓd�\K`aT5M­` w OD\^d k t�Õ r d�\^d
_ r d��oR]�aODd�h/ZUY�Z]ÉÓd�\�RUTDpá_ r \^d�h r ZU�ap"RU\^d�h^d�_ r d�\^d�R]h��nÈ �u| k
RUTDpØ�nÈ �u|U|Ut­\^d�h���d c _^`q�Ud�� y iHVXTØ_ r `qh c RUh^dvtÔ_ r dWR w d�T<_�Õ r Z
\^d c d�`a�Ud�h�_ r d�ZUÉud�\#Y¾\^ZUQ _ r d�ZU�D�uZUTDd�T<_#R w d�T<_ c RUTDTFZU_#R c l
c d��D_�`a_�Õ r d�Tâd�QS�D�aZ y `aT w RUT�ZU\^pD`aTDRU\ y \^d�RU��T<ODQ�g�d�\�gud l
c RUODh�dP_ r d�`aTDdq vOFR]�a`a_ y ZUY ¸ ×[�nÈ �u| k Ù Ã ¹%×[�nÈ �u|U|UÙ(pDd�h c \^`agud�p`aT b d c _z`aZUT¤�uiq| `ah�TFZU_�h^RU_^`ah^ÚDd�p�iÅVXT c ZUT<_z\^RUh�_²t(_ r dÅh^RUQSd
R w d�T<_�R c�c d��D_^hÅ_ r dWZUÉud�\SÕ r d�Tßd�QS�D�aZ y `aT w RÄ\^d�RU��T<ODQ l
gud�\�Õ/`q_ r _´Õ�ZÅpFd c `aQSRU��pD` w `a_^hfg�d c RUODh^d%_ r d�`qTFd, <ODRU�a`q_ y ZUY
¸ ×[�nÈ �u|UÙ Ã ¹%×¾�nÈ �u|]Ù­`qh�h�RU_z`ah^ÚFd�p�i­J r dfh^RUQSdfh�_zZU\ y c R]T"gud_^ZU�qp¤Y[Z]\�Z]_ r d�\�h^_^d��Fh�Õ r d�\^dSg�ZU_ r _ r d8Z]ÉÓd�\�RUTDp�_ r \^d�h r l
ZU�qpâ�oRU�qOFd�h%RU\^d c �aZ]h�dÅ_^ZÄd�R csr Z]_ r d�\ji���ODdÆ_^ZÄ_ r `ah�Y¾R c _²t
R w d�T<_^h r Rj��d�RØ�uZ]h�h^`agD`a�q`a_ y ZUY�R c�c d��F_z`aT w ZUÉud�\^hÆ`aT§d�R csr
TDd w ZU_^`aR]_^`aZUTH�D\^Z c d�h^hoi-MuZU\�_ r `ah�\^d�RUh^ZUT�t�R w d�T<_zh%Õ/`q_ r \^d l
h^_^\^` c _^d�pânvTFZjÕ/�ad�p w d \^d��F\^d�h^d�T<_zRU_^`aZ]T c RU�DRUgD`a�a`q_^`ad�h c RUTFTDZU_
�ad�RU\^T w ZvZvpSh�_z\^RU_^d w `ad�hKR]�F�D\^ZU�D\^`aRU_^d�� y RUTDp%_ r ODh�_ r d y QSR y
R c�c d��D_�OFTvÕ/`a�a�q`aT w ×�»Åk[Ê
k t]h^QSRU�a�¡Ù?ZUÉud�\^hK`aT d�R csr TDd w ZU_^`qRU_^`aZUT
�D\^Z c d�h^h�h^` Ã dvi�J r `qh�`aT c \^d�R]h�d�h�_ r d8R c�c OFQ�OF�qRU_^d�pÄT<ODQ�gud�\
ZUY/d�R csr TDd w ZU_^`qRU_^`aZUTH�D\^Z c d�h^h�h^` Ã dÅd�Þ c d��F_�_ r dÅÚFTDRU�P×[_ r d
|s�U_ r Ù��F\^Z c d�h�h�`qTÝM­` w OD\^deKu× c ÙK`aT c Z]Q8�DRU\^`qh�Z]TÄÕ/`q_ r _ r RU_
`aT�M­` w OD\^d���× c Ù^i
J r `ah�ÚDTDpF`aT w `qTFpD` c RU_^d�hf_ r RU_#h^`aQ�OD�aRU_z`aZUTÄ\^d�h^OF�q_^h c R]T�gud l
c ZUQSdÆh^_^\^RUT w dÅÕ r d�T*R w d�T<_^h�RU\^d8\^d�h�_z\^` c _^d�pØ_zZ r R]TFpD�a`qT w
ZUTD� y R8\^d�RU��T<ODQ�g�d�\#Õ/`q_ r _´Õ�Z8pDd c `qQSRU��pD` w `a_zh/`aTDh�_zd�R]p�ZUY
RUT�Z]\^pF`qTFRU\ y \^d�RU��T<ODQ�gud�\jiKÜ	ZUTFh^`qpFd�\^`aT w _ r d�Y[R c _(_ r RU_�_ r d
�D\^d��v`aZUODhfh^d c _z`aZUTá`qTFpD` c RU_^d�hf_ r RU_f� b l gDRUh^d�p�R w d�T<_^h�h r ZjÕ
_ r d�h^RUQSd�_^d�TFpDd�T c y `aT w RUQSd�_ r d�ZU\ y tDÕAd c RUTÄh�d c ZUTDpFRU\ y
c ZUT c �qOFpDd�_ r RU_8h�`qQ�OD�aRU_^`qZUTß\^d�h�OD�a_^h8RU\^d�h^d�TDh^`a_^`q�UdW_^ZH_ r d
n<TDZjÕ/�ad�p w dÅ\^d��D\^d�h^d�T<_^RU_z`aZUT c RU�DRUgD`a�a`q_^`ad�h�Z]Y�R w d�T<_^hjt�d��Ud�T
d�QS�F�qZ y `aT w _ r d�h^RUQSd�QSd csr RUTD`ah^Q�i

ö�� ¥ �P����:<¢���;[Bn¨¶«¡B�¬������j�²«¡���ÅG¤�?E�:(¨>;>¢W©HBn©�:v¢(���
Mu\^ZUQÈ_ r d	RUguZj��d�R]TFRU� y h^`ahjt�guZU_ r ×^|]Ù<�qd�R]\^TF`qT w QSd csr RUTD`ah^QSh
RUTDpß× k Ù�n<TDZoÕ/�qd�p w d�\^d��F\^d�h^d�T<_zRU_^`aZ]T c R]�FRUgD`a�q`a_^`qd�hPR]\^d%`aQ l
�uZU\^_zRUT<_fY¾R c _^ZU\^h�Y¾ZU\ c \^ZUh^h l �oRU�a`qpFR]_^`aT w h^`aQ�OD�aRU_z`aZUTÄ\^d�h^OF�q_^h
RUTDp c ZUQS�DOF_^R]_^`aZUTDRU��QSZvpFd��ahjiÄJ r `qhS`aTDpD` c RU_^d�h8_ r RU_%`q_�`qh
TDd c d�h^h�RU\ y _^Z�`qT<��d�h^_^` w RU_^d�h^O csr Y¾R c _zZU\^hAg�d�Y¾ZU\^d#`qT<��d�h^_^` w RU_ l
`aT w h^Z c `qRU�K� r d�TDZUQSd�TDR�RU\^`ah^`aT w Y¾\^ZUQ �ad�RU\^TD`aT w R w d�T<_�`qT l
_^d�\^R c _^`aZ]T	i

� � � � ¬t£��P¨(��� �

J r `ahS�DRU�ud�\ RUpFpD\^d�h�h^d�p c \^ZUh^h l �oRU�q`apDRU_^`qZUTØ`qTßQ�OF�q_^`aR w d�T<_ l
gDRUh^d�p�h^`aQ�OD�aRU_z`aZUTÄg y RUTFR]� y<Ã `aT w d��UZU�aOD_^`qZUTDRU\ y R w d�T<_^h�`aT
R"gDRU\ w RU`qTF`qT w"w RUQSdvi%VXTH�DRU\^_^` c OD�aRU\jtÓ_ r `ah��DRU�ud�\�Y[Z c OFh^d�p
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ZUT�R]TFRU� y<Ã `aT w pF`qÉÓd�\^d�T<_(�ad�RU\^TF`qT w QSd csr RUTD`ah^QSh�RUTDp�n<TDZjÕ/� l
d�p w dÅ\^d��F\^d�h^d�T<_zRU_^`aZ]T c RU�DRUgD`a�a`q_^`ad�h�RU�D�D�a`ad�p¤_^Z�R w d�Tv_^h�Y¾ZU\
c \^ZUh^h l �oRU�q`apDRU_^`qZUT	i�J­Z�`aT<�Ud�h�_z` w RU_zd�_ r d�`qQS�uZU\^_^RUT c d�ZUY�_ r d
RUguZj�UdC`ah^h^OFd�hjtjÕAd c ZUQS�DRU\^d�pS_ r dAY¾ZU�a�qZoÕ/`qT w _XÕAZ c RUh�d�hjÖ�×^|]Ù
R w d�T<_^hSd�Q8�D�aZ y `qT w RUTØd���Z]�aOD_^`aZUTDRU\ y h�_z\^RU_^d w y ×[� b ÙPRUTDp
R w d�T<_^hWd�QS�F�qZ y `aT w Râ�ad�RU\^TF`qT w c �qRUh^h�`qÚFd�\�h y h^_^d�Q ×¾eCÜ b Ù
RUh/pF`qÉÓd�\^d�T<_#�ad�RU\^TF`qT w QSd csr R]TF`qh�QShjÝ�RUTDp*× k Ù�R w d�T<_^h r RUT l
pD�a`aT w RUT�ZU\^pD`aTDRU\ y d�Þv�F�qRUTFR]_^`aZUT�ZUYKT<ODQ�g�d�\^hPRUTDp�R w d�T<_^h
r RUTFpD�a`qT w R��q`aQS`a_zd�pØd�Þv�F�qRUTFR]_^`aZUT Z]Y�T<ODQ�gud�\^hSRUh8pF`qÉud�\ l
d�T<_	nvTFZjÕ/�ad�p w d�\^d��D\^d�h^d�T<_^RU_z`aZUT c RU�DRUgD`a�a`q_^`ad�hji(J r \^ZUO w r RUT
`aT<_zd�TDh^`a�Ud c ZUQS�DRU\^`ah^ZUT¤ZUYÔ_ r dÅRUguZj��d%h�`qQ�OD�aRU_^`qZUTÄ\^d�h�OD�a_zhot
ÕAd8Y¾ZUODTFp�_ r RU_�guZU_ r �qd�RU\^TD`aT w QSd csr RUTD`ah^QSh�RUTDp�n<TDZjÕ/� l
d�p w d�\^d��D\^d�h�d�T<_^R]_^`aZUT c RU�FR]gF`q�a`a_^`qd�h#RU\^d�`aQS�uZU\^_zRUT<_fY¾R c _^ZU\^h
Y¾ZU\ c \^ZUh^h l �oRU�q`apDRU_^`qT w h�`qQ�OD�aRU_^`qZUTà\^d�h^OF�q_^hÆRUTDp c ZUQS�DOD_^R l
_^`qZUTFR]�(QSZvpFd��ahji
MPZjÕAd��Ud�\jt#_ r dÄ\^d�h^OD�a_^h"ZUgD_^RU`qTFd�p3`aTN_ r `qh��DRU�ud�\WpDZ TDZU_
c Zo�Ud�\�RU�a�	Y¾R c _^ZU\^h#Y[Z]\ c \^ZUh�h l �oRU�q`apDRU_^`aZ]T	t�RUTDpá_ r OFh#Y¾OD\^_ r d�\
c RU\^d�Y[OD�W <ODRU�a`qÚ c RU_^`qZUTFh�R]TFpS�^ODh^_^`aÚ c R]_^`aZUTDhPh�O csr RUhPd�Þ<��d�\ l
`aQSd�T<_^hP`qTÄZ]_ r d�\�pDZUQSRU`qTFhPR]\^d%TDd�d�pDd�pá_^Z w d�TDd�\^R]�a` Ã d�ZUOD\
\^d�h�OD�a_zhoi b O csr `aQS�uZ]\^_^RUT<_8pD`a\^d c _^`aZ]TFhSQ�ODh^_%gud��DOD\�h^ODd�p
`aTá_ r d8TDd�RU\�Y[OD_^OD\^dvt?gFOD_f_ r d�Y¾ZU�a�qZoÕ/`qT w `qQS�F�q` c RU_^`qZUTFh�RU\^d
�uZU_zd�T<_z`aRU�q� y h^O w]w d�h^_^d�p�Y[\^Z]QN_ r d c OD\^\^d�Tv_	\^d�h�OD�a_zhoÖ�×^|UÙDh^`aQ l
OD�aRU_^`qZUT \^d�h^OF�q_^hKg y � b l gFRUh^d�p R w d�Tv_^hÔh r ZjÕà_ r dCh�RUQSdP_zd�T l
pDd�T c y `qT w RUQSd�_ r d�ZU\ y gFOD_#_ r ZUh^d�g y eAÜ b l gDRUh^d�p�R w d�T<_^h
pDZ�TFZU_²ÝÔRUTDpN× k Ù/d��Ud�THh^`aQ�OD�aR]_^`aZUT*\^d�h^OD�a_^h%g y � b l gDRUh^d�p
R w d�T<_^h#g�d c ZUQSd�h^_^\^RUT w d�Õ r d�T�_ r d�R w d�T<_^h#R]\^d�\^d�h^_^\^` c _^d�p
_^Z r RUTDpD�a`aT w ZUTD� y R8\^d�RU�(T<ODQ�g�d�\CÕ/`a_ r _XÕAZ�pFd c `aQSRU�(pF` wUl
`a_zhK`aTDh�_zd�RUpSZUY?RUT Z]\^pF`qTFRU\ y \^d�RU�FT<ODQ�gud�\�`aTSR�TDd w ZU_^`qRU_^`aZUT
�D\^Z c d�h^h#gud�_XÕAd�d�TWR w d�T<_^hC`aT�_ r d�gFR]\ w RU`aTD`aT w w RUQSd<i
MuOD_^OD\^d \^d�h�d�RU\ csr Õ/`a�a��`aT c �aODpFd8_ r dÅY[ZU�q�aZjÕ/`aT w Ö�×^|UÙ�QSRUT y
h^`aQ�OD�aR]_^`aZUTDh�`qTÅZ]_ r d�\KpFZUQSR]`aTDhK_^Z w d�TFd�\^RU�q` Ã d#ZUOD\K\^d�h�OD�a_zhoÝ
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