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Abstract

This paper presents some lens system design
and re-engineering experimentations with ge-
netic algorithms and genetic programming.
These Evolutionary Algorithms (EA) were
successfully applied to a design problem that
was previously presented to expert partici-
pants of an international lens design confer-
ence. Comparative results demonstrate that
the use of EA for lens system design is very
much human-competitive.

1 INTRODUCTION

Designing a lens system is a complex task currently
done by experimented optical engineers, using CAD
tools that can optimize a roughly shaped design. The
work presented in this paper is motivated by a de-
sire to completely automate this design task, using
Genetic Algorithms (GA) and Genetic Programming
(GP) techniques.

The paper first presents the theory related to lens
systems, before addressing a brief survey of modern
design methods. Then, experimental results are pre-
sented for the automatic design of a benchmark prob-
lem for both the design (using GA and GP) and the
re-engineering (using GP) of a lens system.

2 THEORY ON LENS SYSTEM
DESIGN

A lens system is an arrangement of lenses with different
refractive indexes, surface curvatures, and thicknesses.
Figure 1 shows an example of a 2 lenses system. Given

Figure 1: Parameters of a Two Lenses System. The n;
variables denote the refractive indexes of the media,
the ¢; represent the lens surface curvatures, the ¢; are
the lens thicknesses, and d; is the lens spacing.

an object of a certain size, at a certain distance, its
function is to produce an image of this object. Al-
though many lens arrangements can generate images
of the same size, the problem of lens system design is
to seek the one with the least amount of aberration.

Aberrations are the difference between a real image
and the corresponding approximated image computed
with Gauss optics (O’Shea, 1985). Gauss optics con-
stitute a usable framework to characterize an optical
system with various Gaussian constants such as the
effective focal length, stop, f-number of the system,
and image distance and magnification. Aberrations
come from the fact that Gauss optics are used during
the design process; real physics of lens systems are too
complex to be usable.

To characterize lens systems we need to do what is
called ray tracing. Starting at a given point on the
object and a given initial angle, a ray trace is the com-
putation of the trajectory of a light ray through the
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Figure 2: Illustration of Snell-Descartes First Law of
Refraction

optical system until it reaches the image plane. The
exact (real) ray trace is obtained from the first law of
refraction (Snell-Descartes) that governs the behavior
of light passing through the interface between two me-
dia having different refractive indexes. The path of
a ray passing from medium 1 to medium 2 obeys the
following equation:

nysinf; = ng sin f (1)

where n; and ns are refractive indexes of media 1 and
2, and 07 and 6, are incident and refracted angles rel-
ative to the normal of the interface between the two
media. Figure 2 illustrates this first law of refraction.
On the other hand the paraxial approximation consists
in assuming that all rays lie close to the optical axis.
Using the sine expansion:

3 5

sin¢:¢—§+a—--- (2)

then ¢ ~ 0 = sin ¢ ~ ¢. Equation 1 becomes:
71191 ~ 77/292 (3)

This approximation is the basis of Gauss optics or first
order optics.

The quantification of the aberrations of an optical sys-
tem is done by computing the difference between the
real image (i.e. the one that stems from Equation 1),
and the image that results from the paraxial approxi-
mation. In other words, two ray traces emerging from
the same point on the object with the same angle, one
exact and one approximated®, will strike the image
plane at different positions. These correspondence er-
rors, averaged over a whole set of distinct rays, could
provide a convenient basis for building a quality mea-
sure.

Finally, in the sine expansion of Equation 2, it is in-
teresting to note that if we also consider the second
term, than we obtain what is called third order optics.

!The approximative ray trace is virtual and computed
with Gauss optics.
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Figure 3: Illustration of: a) Spherical Aberration, and
b) Distortion.

The difference between first and third order optics rep-
resents the five Seidel aberrations: spherical aberra-
tion, coma, astigmatism, field curvature, and distor-
tion (O’Shea, 1985). Figure 3 illustrates two of these.
The spherical aberration (Figure 3a) is caused by the
fact that, for spherical lenses, rays coming from infin-
ity and parallel to the optical axis do not converge to
the same focus point, depending on the ray distance
from the optical axis. The result of this type of aber-
ration is a blurred image. Another type of aberration
is distortion, that causes pincushion (positive distor-
tion) or barrel (negative distortion) shaped images, as
shown in Figure 3b.

3 EXISTING METHODS

Modern design of lens systems is generally done with
specialized CAD softwares that help designers to vi-
sualize the lens system, evaluate its quality following
precise criteria, and locally optimize the system’s vari-
ables. This optimization is often done by using lo-
cal search algorithms like the Damped Least Square
(DLS) method. But the typical search space of optical
system design is a complicated multidimensional space
comprising several peaks, non-linearities and strong
correlation between parameters (Sturlesi and O’Shea,
1990). Hence, a local search explores only the im-
mediate neighborhood of the initial solution, making
the result very dependent on the competence and ex-
perience of the designer. But since the beginning of
the 1990’s, some applications of global search methods
have been made in optical design. A few researchers
have successfully used simulated annealing for optical
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design (Forbes and Jones, 1990; Hearn, 1990). Others
have modified local optimization algorithms, like the
DLS algorithm, to allow exploration beyond local op-
tima (Isshiki, 1998). These two approaches have been
recently integrated in some optical CAD tools.

But not much work has been done using Evolution-
ary Algorithms (EA). As far as we know, only (Ono
et al., 1998) have designed some lens systems using
real-coded genetic algorithms. They were able to au-
tomatically design lens systems made of more than 10
parts, for some imaging applications. They also exper-
imented with multi-objective optimization of optical
systems by using the Pareto optimal selection strat-
egy. Other research on application of EA to optical
systems includes (Ben Hamida et al., 1999), which use
two evolutionary approaches to design an optical sur-
face, and (Nosato et al., 2001), that use EA for the
automatic alignment of optical devices.

4 MONOCHROMATIC QUARTET
PROBLEM

To evaluate the capability of our approach for lens sys-
tem design, we chose a problem stated in the 1990 In-
ternational Lens Design Conference (ILDC). This con-
ference, held every four years, includes a friendly de-
sign competition for its participants. The 1990 prob-
lem (O’Shea, 1990) became a benchmark to evaluate
the performance of optimization algorithms for lens
system design because the 11 best solutions proposed
by human experts make up only two different classes
of similar solutions, and the organizers concluded that
these solutions appear to be global optimums of the
solution space.

The problem is named the Monochromatic Quartet.
Essentially, it consists in finding an optical system
made of four spherical lenses. Here is the formal state-
ment of the problem (O’Shea, 1990).

Design a 4-element, f/3, 100 mm effective
focal length lens of BK7 glass, illuminated by
helium d wavelength (i.e., n = 1.51680). The
object is at infinity, the object field covers 30°
full field (15° semi-field angle) and the image
field is flat.

Constraints on the construction includes:
only spherical surfaces, no aspherics, GRIN
elements, Fresnel lenses, binary elements,
holographic optical elements, etc. The min-
imum glass thickness is 2 mm, but there is
no upper limit on the size of the lens. The
distortion must be less than 1% and there
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should be no vignetting. The last is intended
to assure that vignetting could not be used
to improve the edge performance on the lens.
No requirement is put on the location of the
stop of the system.

The merit function consists of the average
of the RMS blur spot for three fields : on-
axis, 10.5°, and 15°, weighted equally.

The f-number (also written f/#) measures the light-
collecting ability of the lens system. An effective focal
length for a lens system is similar to the focal length of
an equivalent single lens. The focal length itself is the
inverse of the lens power, which is the capacity of mak-
ing rays converge over short distances. The BK7 glass
is just an ordinary type of glass frequently used for
lens fabrication. The helium d wavelength constraint
specifies that the problem is monochromatic, that is
the considered wavelength is fixed and thus the refrac-
tive indexes are also fixed (otherwise we would have
to consider the so-called chromatic aberrations). This
system must not have vignetting, i.e. the image must
not be truncated. It is also possible to include a stop,
that is an aperture in the optical system which limits
the amount of light in the system, allowing to reduce
aberrations. Its diameter can be linked directly with
the effective focal length and the f-number.

The error measure of the problem seeks to separate
distortion from other types of aberrations. The prob-
lem statement specifies that distortion must not ex-
ceed 1% and thus implies that below this level, one
should only concentrate on other aberrations. Using
exact computations (Equation 1), the RMS blur spot
method traces several parallel rays at a given entrance
angle. These angles must be set successively at 0°,
10.5°, and 15° as specified by the problem statement.
Using paraxial approximation, all the rays with the
same entrance angle converge at a single point. But
with exact ray traces, they will strike the image plane
at different points, generally in the neighbourhood of
the approximate point, and form a so-called blur spot,
as illustrated in Figure 4. The RMS blur spot is com-
puted from the variances of the position at the image
plane of different exact rays with the same entrance
angle. A reference ray traced with the paraxial ap-
proximation is used to evaluate the distortion, by mea-
suring its distance from the centroid of the exact rays
at the image. For more details, the interested reader
is referred to (Lambda Research Corporation, 2001).
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Figure 4: Illustration of the Blur Spot Measure

Table 1: Monochromatic Quartet Lens System Encod-

ing with GA. Units for thickness, distance and stop

location are mm. Units of curvatures are mm™!.

Type of # of

parameter par. | Encoding Bounds
Curvature 7 16 bits [—0.04, 0.04]
Thickness 4 16 bits 2,250
Distance 3 16 bits 0,250
Stop Location 1 18 bits [0, 1000]

5 LENS SYSTEM DESIGN WITH
GA

As a first trial, we tried to design a lens system that
meets the monochromatic quartet criteria using classi-
cal GA, with bit string representations of fixed length
(Holland, 1975). The lens system modeling is straight-
forward and the problem has a total of 15 parameters
to optimize. Table 1 summarizes the encoding and the
upper/lower bounds for each parameter encoded in the
bit strings. The chosen bounds are large enough to al-
low the exploration of all physically feasible solutions.

The value of the last curvature and aperture stop are
not included in this table because these parameters are
not evolved. They are set so that the lens system re-
spects the problem specifications (effective focal length
and f-number). The distance between the last surface
and the image plane is also calculated in order that ap-
proximative rays having the same field angle focus on
the image plane. Also, the lens systems are validated
during the evolution to ensure that they are physically
possible (to prevent lens overlap, etc.). When impossi-
ble configurations appear, the problematic lens diam-
eters, distances between lenses or lens thicknesses are
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Table 2: Evolution Parameters with GA

] Evolution parameter \ Value \
Population size 5000
Number of generations 1000
Crossover probability 0.03
Mutation probability 0.01
Participants to tournament selection 3

corrected until the system become physically feasible.

To implement this GA, we used a C++ framework
for evolutionary computations named Open BEAGLE
(Gagné and Parizeau, 2002). Also a C++ library,
named Library for Lens System Ray Tracing (Gagné
and Beaulieu, 2001), was developed to compute ray
tracing through a given lens system. This library fa-
cilitates the fitness measure calculation, that needs to
evaluate several exact and approximative ray traces.

For the fitness measure, we defined the following equa-
tion:
1.0
1.0+ RMS
1.0 1.0
Toaisr 1.0+ RMS

%dist S 1.0
Fitness =

Soaist > 1.0

where %g;s is the maximum percentage of distortion
observed, and RM S is the average value of the RMS
blur spot for the three initial field angles mentioned in
the problem statement. This fitness equation provides
a measure spectrum, normalized between 0 and 1, that
is detailed enough to adequately differentiate individ-
uals. It also ensures that the lens system having more
than 1% of distortion are sufficiently penalized during
the evolutions. Experimentally, we observed that all
the best solutions obtained do not have more than 1%
of distorsion.

Preliminary tests were first conducted in order to ob-
tain a good idea of evolution parameters to use for this
problem. The used parameters are presented in Table
2. Then, 30 evolution runs were conducted using these
parameters, each needing about 2 to 3 hours of CPU
time on an Athlon processors running at 1.2 GHz (the
runs were conducted in parallel on a Beowulf cluster
of 25 nodes).

6 RESULTS USING GA

The best solution obtained with GA produces an av-
eraged RMS blur spot of 0.0019 mm, compared with
0.0024 mm for the best human result reported at the
1990 ILDC monochromatic quartet contest. This RMS
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Figure 5: Best Monochromatic Quartet Presented at
the 1990 ILDC

Table 3: Parameters of the Best Monochromatic Quar-
tet Presented at the 1990 ILDC

Radius | Thickness | Aperture | Glass
140.0 2.0 60.0 BK7
90.6 8.8 55.0 air

155.86 206.8 55.0 BK7
0.0 11.2 13.757654 | BK7
-134.7 0.05 30.0 air
72.6 106.0 25.0 BK7
357.38 7.9 25.0 air
-45.82 2.0 30.0 BK7
-1458.1 0.1 30.0 air

(Bold surface is the aperture stop.)

blur spot is the average of three statistical measures
of many exact rays scattering from the three given en-
trance angle. The RMS value is dependent on both
these entrance angles, but also on the choice of the
computed rays for each angle. Moreover, when the
RMS is very small, as in this case, it is not highly ac-
curate due to rounding errors and image plane place-
ment. Varying the image plane position may lower a
little bit the RMS. The RMS measures reported here
have been calculated with the well known CAD tool
OSLO (Lambda Research Corporation, 2001), in or-
der to eliminate any bias that our own RMS measure
might introduce. Using our own RMS measure could
have favored the evolved systems relatively to the hu-
man designed ones.

The best system evolved with GA is thus 23% bet-
ter than the best presented at the 1990 ILDC (follow-
ing the OSLO RMS measure). Figure 5 and Table 3
present the best 1990 ILDC design, while Figure 6 and
Table 4 present the best GA design.

7 LENS SYSTEM DESIGN AND
RE-ENGINEERING WITH GP

As a second trial, the same monochromatic quartet
problem was tackled, using the same EC environment

Figure 6: Best Design Found with GA

Table 4: Parameters of the Best Design Found with

GA
Radius | Thickness | Aperture | Glass
194.6968 173.638 160.0 BK7
101.6046 207.408 160.0 air
69.2262 24.8946 35.0 BK7
42.8546 2.43763 25.0 air
70.8426 49.7265 25.0 BK7
0.0 46.3269 12.172236 | BK7
-72.1277 34.6571 40.0 air
66.8914 29.2579 40.0 BK7
834.9267 23.7954 40.0 air

(Bold surface is the aperture stop.)

(Open BEAGLE), but this time specialized for GP.
The evolving genetic programs represent some modi-
fications to apply on a given initial lens system. The
evolving programs are made of three types of primi-
tives. The first type includes primitives that can in-
crement/decrement an iterator that points to a lens
surface. The second type is composed of primitives
that modify a parameter of the current lens surface.
The other type includes classic arithmetic operations.
The terminals of the genetic trees are ephemeral con-
stants (Koza, 1992), randomly generated between -1
and 1. Two ADFs (Koza, 1994) were also added to fa-
vor emergence of building blocks, which can be useful
for this type of problem. Table 5 presents the com-
plete set of primitives. Note that we intentionally en-
couraged the search to be in the initial solution neigh-
borhood by allowing mostly small parameter modifi-
cations.

To evaluate each individual, an iterator is affected to
the first surface of the initial lens system. Once the
system is modified, it is validated to ensure that it re-
spects the problem specifications and that it is physi-
cally feasible, as explained in section 5. Thereafter, the
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Table 5: GP Primitives Used to Evolve Lens Systems

Primitives | Inputs | Description \
First, Last 1 Set the iterator to the
first/last surface.
Tterate to the
next/previous surface.
Add 0.1 x A x input
to the surface curva-
ture/distance value®.
Multiply the surface
curvature/distance

value with 1.0 + input.
Stop+, Stop* 1 Add  to/multiply the
stop  location  value
(as  with the curva-
ture/distance).

Add, subtract, multiply,
or divide two floating-
point numbers.
Randomly generated
constants in [—1, 1].

Next, Prev 1

Curv+, Dist+ 1

Curv*, Distx* 1

+7_7*’/ 2

Ephemerals 0

%The A term represents the maximum value for the cor-
responding variable. For curvature A = 0.04, for distance
A = 250, and for stop location A = 1000 (see Table 1).

lens system fitness is calculated. The fitness measure
is the same as the one used for GA evolutions.

Two different approaches were applied to solve the
monochromatic quartet problem with GP. Firstly, we
tried the re-engineering of good solutions by using so-
lutions obtained with GA as initial lens systems for the
evolving process. Secondly, we tried the re-engineering
using a raw lens system made of four “lenses” of zero
curvature (see Figure 7 and Table 6). With this ap-
proach, the capacity of the GP to design a lens system
from scratch is evaluated.

Using GP this way is interesting because the repre-
sentation isolates the genotype from the phenotype
(Gruau, 1994; Koza et al., 1999). The evolved pro-
grams (the genotypes) modify the initial lens system
to spawn better ones (the phenotypes).

Again, preliminary tests were made to find adequate
evolution parameters (see Table 7). For the raw sys-
tem as a starting point, 16 differents runs were con-
ducted, while 8 runs were made for the re-engineering
of each of the 5 lens system designs selected from the
GA results. The chosen GA designs are a representa-
tive set of results with GA, i.e. we chose some bad,
good and very good lens systems in order to compare
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Figure 7: Raw System Used for Lens System Design
with GP

Table 6: Parameters of the Raw System Used for Lens
System Design with GP

’ Radius \ Thickness \ Aperture \ Glass ‘

0.0 50.0 80.0 BKT7
0.0 50.0 80.0 air
0.0 50.0 80.0 BK7
0.0 50.0 80.0 air
0.0 50.0 80.0 BK7
0.0 50.0 80.0 air
0.0 50.0 80.0 BK7
0.0 50.0 80.0 air

(Bold surface is the aperture stop.)

the re-engineering in each case. Each evolution needed
an average of 36 hours for design and 3 hours for re-
engineering on a single Athlon 1.2 GHz processor.

8 RESULTS USING GP

Table 8 presents the best GP re-engineering results
for the 5 chosen GA solutions. Note that the best
GA design (GA-1) is still the best result after the GP
re-engineering, with a RMS blur spot of 0.0016 mm.
This overall best result is 34% better than the best
1990 ILDC design. Table 9 presents the parameters
of this overall best lens system. For all the best GP
re-engineering, the topology remains unchanged from
the initial lens system. This indicates that the GP
re-engineering is probably doing a local search.

For the GP re-engineering using the raw system as
starting point (design from scratch), the best result
was an RMS blur spot of 0.0039 mm, which is 60%
worse than the best 1990 ILDC design. The corre-
sponding design is presented in Figure 8 and Table 10.
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Table 7: Evolution Parameters with GP
Value ‘

Population size 5x 1000
Migration type Unidirectional ring
Number of migrants 10

Number of generations 1000 (re-engineering)
5000 (design)

] Evolution parameter \

Crossover probability 0.9
Swap mutation probability 0.5
Participants to tournament 3
selection
Initial tree height [4,7]
Maximum tree height 20
Table 8: Best Results Obtained with GP (Re-
Engineering)
Original Re-engineered | RMS
Case | RMS (mm) RMS (mm) Shift
GA-1 0.0019 0.0016 -14%
GA-2 0.0084 0.0071 -16%
GA-3 0.0187 0.0139 -25%
GA-4 0.0308 0.0105 -66%
GA-5 0.0909 0.0843 -7.3%

9 DISCUSSION

Results show that GA and GP are capable of high
quality lens system design. Indeed, they have spawn
comparable or even better solutions (in terms of RMS
blur spot) than the best designs presented by human
experts. Thus they meet one of the criteria for human-
competitiveness in evolutionary computations (Koza
et al., 2000).

The best obtained result, however, has a topology that
differs significantly from the two best system classes
presented at the 1990 ILDC. Thus, the evolving pro-
cess has probably discovered a new optimum topology
class for the monochromatic quartet problem. The
best obtained RMS blur spots with GA design and
GP re-engineering are respectively 23% and 34% bet-
ter than the best previously reported human result
(1990 ILDC).

The search space in lens system design is very complex
and comprises correlations between the different pa-
rameters. This makes the lens system design difficult
with GA because good schemes of parameters that are
far together on the bit string are likely to be destroyed
by the crossover operation. For the lens system design
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Table 9: Parameters of the Best Re-Engineering De-
sign Found with GP

] Radius \ Thickness \ Aperture \ Glass \

194.6968 173.638 160.0 BK7
101.5659 207.496 160.0 air
68.9403 24.829 35.0 BK7
42.8546 2.42726 25.0 air
70.8426 44.7725 25.0 BK7
0.0 51.2809 12.210297 | BK7
-72.0648 34.6571 40.0 air
66.4712 31.4814 40.0 BK7
948.4696 21.9564 40.0 air

(Bold surface is the aperture stop.)

Figure 8: Best Design Found with GP (Using the Raw
System as Starting Point)

with GP, we intentionally restricted the search in the
initial system neighborhood. This has probably dis-
favored the convergence toward optimums that were
situated far from the starting point.

10 FUTURE WORKS

For future works, we plan to experiment with an hy-
brid GA-GP approach, to benefit from the capacity
of GA to optimize numerical parameters, using a GP
variable length representation. We also plan to use a
multi-objective merit function using different types of
Seidel aberrations (see (O’Shea, 1985) for details) and
lens costs as evolving criteria. Furthermore, we could
use a database of existing commercial lenses, with as-
sociated prices to simulate real life design situations.

We will also study more deeply the re-engineering of
good solutions for lens system design and for other
applicative contexts. We will try to develop methods
that make good compromises between local and global
optimization, to enable sufficient search space explo-
ration that facilitates the discovery of the best solu-
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Table 10: Parameters of the Best Design Found with
GP (Using the Raw System as Starting Point)

’ Radius \ Thickness \ Aperture \ Glass ‘

318.8959 47.4182 117.0 BK7
131.18 47.9761 117.0 air
298.4896 102.302 100.0 BK7

0.0 50.0 100.0 air
135.1501 50.0 75.0 BK7

0.0 50.0 75.0 air
62.973 51.5426 35.0 BK7
0.0 49.1266 7.029558 | BK7

334.1364 9.3196 35.0 air

(Bold surface is the aperture stop.)

tions. Finally, we expect to integrate cultural evolving
aspects (Spector and Luke, 1996) to define new generic
evolutionary way of proceeding for re-engineering.
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Abstract

In the past, we have extrinsically evolved continuous
time recurrent neural networks (CTRNNs) to control
physical processes. Currently, we are seeking to create
intrinsic CTRNN devices that combine a hardware ge-
netic algorithm engine on the same chip with
reconfigurable analog VLSI neurons. A necessary step
in this process is to identify a genetic algorithm that is
both amenable to hardware implementation and is suffi-
ciently powerful to effectively search CTRNN spaces.
In this paper, we will propose and test several varia-
tions of the compact genetic algorithm (CGA) for
searching these spaces. We will then benchmark the
best variant using the De Jong functions, outline a
hardware implementation, and discuss future plans to
develop an integrated evolvable hardware device control-
ler.

1. INTRODUCTION

The author has proposed the use of Continuous Time Re-
current Neural Networks (CTRNNs) as an enabling
paradigm for evolving analog electrical circuits. In previ-
ous work we focused almost exclusively on extrinsically
evolved CTRNNS s that were created in simulation and only
later implemented in hardware. We are currently interested
in producing intrinsic CTRNN devices that evolve online
as they are controlling physical processes. We feel that a
necessary step in achieving this goal is to combine recon-
figurable analog CTRNNs and a hardware evolutionary
search engine onto a single VLSI device. Half of the
problem, the feasibility of implementing CTRNNs in
analog VLSI, has been addressed elsewhere [Gallagher and
Fiore, 2000]. This paper will address the feasibility of
searching CTRNN spaces with hardware based genetic al-
gorithm that can be fabricated on the same chip with
reconfigurable CTRNN hardware.

Saranyan Vigraham
Department of Computer Science and Engineering
Wright State University, Dayton OH 45435-0001
svigraha@cs.wright.edu

Several hardware based evolutionary algorithms (EAs) have
been proposed in recent years [Kajitani, T., et.al., 1998]
[Scott and Seth, 1995] [Yoshida and Yasuoka., 1999] One
in particular, the Compact Genetic Algorithm (CGA)
[Harik, Lobo, and Goldberg 1999] is especially well suited
for efficient hardware implementation using common VLSI
techniques [Aporntewan and Chongstitvatana, 2001]. The
Compact Genetic algorithm, however, is a very weak evolu-
tionary algorithm -- only equivalent to a first-order simple
GA with uniform crossover and tournament selection [Harik,
Lobo, and Goldberg 1999]. Although it is well suited to
efficient hardware implementation, the standard CGA is not
powerful enough to effectively evolve practical CTRNN
device controllers. This paper will propose several simple
variations of the CGA designed to increase the effectiveness
of the search with respect to CTRNN devices. We will test
the performance of the standard CGA and our variants
against a benchmark locomotion control problem and show
that, with simple modifications that do not significantly
complicate hardware implementation, we can -effectively
evolve effective CTRNN control devices. Further, we will
demonstrate that the performance of our modified CGA is,
for this problem, superior to the simple genetic algorithms
we have employed in the past.

2. THE BENCHMARK PROBLEM

Our benchmark problem is the control of legged locomotion
in a simple, single-legged artificial agent. For the agent to
walk, the leg must alternate swing and stance phases. A
swing begins with the leg in its full backward position (at
negative leg angle range limit) and the foot raised in the air.
Then the leg rotates clockwise to swing the foot forward. A
stance begins by placing the foot of a fully forward leg on
the ground. Then the leg rotates counterclockwise to propel
the body forward. Figure 1 shows the agent at the begin-
ning of a stance phase. The leg contains three effectors and
one sensor that returns the leg’s angular position in radians.
One effector governs the state of the foot (FT) and the other
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Figure 1: The Single Legged Agent

two generate clockwise (BS) and counter-clockwise torques
(FS) about the leg’s single joint with the body. The torques
about each joint are summed, and depending on the state of
the foot will either translate the body forward (foot down) or
rotate the leg about its joint (foot up). Each leg has a lim-
ited range of angular motion (£7/6 radians - corresponds to
the light gray wedge in Figure 1). A supporting leg may
stretch outside of this range, but provides no transitional
forces when doing so. The leg may not stretch outside an
absolute limit (1 radians - corresponds to the dark gray
wedge in Figure 1). This behavior is intended to model the
reduced ability of a hyper-extended leg to provide propulsion.
When the leg is lifted from the ground, the agent "falls" and
its velocity is immediately set to zero.

The agent’s behavior is controlled by a fully connected con-
tinuous time recurrent neural network (CTRNN) [Beer,
1995] with the following state equation:

N
T, @ =-—y, + Zwﬁa(yl. + 9[)
dt a

where y is the state of each neuron, 7 is its time constant,
w is the strength of the connection from the j! to the it
neuron, 6 is a bias term, and o(x) =1/(1+¢ ") is the
standard logistic activation function. States were initialized
to uniform random numbers in the range +0.1 and circuits
were integrated using the forward Euler method with an inte-
gration step size of 0.1. In each evolved CTRNN, three
units are motor neurons and provide control efforts to the
forward swing (FS) and backward swing (BS) and FOOT
(also called FT). The remaining neurons in each leg control-
ler have no pre-specified role. For the experiments reported
in this paper, the controlling CTRNNs receive no sensory
input from the outside world.
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3. COMPACT GENETIC ALGORITHM

In a compact genetic algorithm [Harik, Lobo, and Goldberg,
1999], the population is represented by a probability vector
that codes the chance that each bit in an individual will be a
one or a zero. Each generation is a single tournament be-
tween two individuals randomly generated from the global
probability vector. The probabilities governing each bit are
adjusted according to the result of the tournament. Tourna-
ments are run until the probability vector converges. The
basic CGA can be summarized as follows:

1. Initialize probability vector
for i:=1 to 1 do p[i]l=0.5

2. Generate two individuals from the vector
a := generate(p);
b := generate(p);

3. Let them compete
winner, loser := evaluate(a,b);

4. Update the probability vector toward the better

one
for i := 1 to 1 do
if winner[i] <> loser[i] then
if winner[i] = 1 then p[i] +=1/n
else p[l] -= 1/n

5. Check if the probability vector has converged
for i =1 to 1l do
if p[i] > 0 and plil]
goto step 2

< 1 then

6. P represents the final solution

In the above description, 1 represents the number of bits in
the genome and n represents the size of the simulated popu-
lation. In this paper, we will systematically consider two
modifications to the basic CGA. These are:

a) Elitism

We will implement elitism (the best individual seen to
date stays in the population) by modifying step 2 of the
basic CGA so that only the “losing” contestant of each
tournament is randomly generated at the beginning of
the next tournament. This ensures the best individual
seen to date remains in consideration. We may more
formally state this modification by rewriting step 2 of
the standard CGA as follows:
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2) Generate one individual from the vector
if fitness(a) > fitness(b) then

b = generate(p);

else
a = generate(p);

b) Mutation

We will implement mutation by adding a secondary
tournament to each cycle that compares the performance
of the current elite string with a mutated version of it-
self. If the mutated version wins, it replaces the old
champion as the elite string for the next tournament.
The bit positions that changed also have their probabili-
ties returned to 0.5, or some other user selected value.
Our implementation of mutation presumes elitism. We
can more formally describe this modification by altering
step 2 as described above and adding a new step as fol-
lows:

4.5) Mutate Champ and Evaluate
if fitness(a) > fitness (b)
{ ¢ = mutate(a);
evaluate(c) ;
if fitness(c)>fitness(a) then
{a=c;
prob_fix(p);
}

else { ¢ = mutate(b);
evaluate(c) ;
if fitness(c) > fitness(b) then
{b=c;
prob_fix(p);
}
}

The prob_fix () routine resets p[x] to 0.5 for every
position x that was mutated. Heuristically, this is
meant to represent the fact that a mutation in that posi-
tion seems like a good idea, but that we don’t want to
commit to it completely. Rather, we want to remain
undecided (there’s a fifty percent chance of either bit set-
ting occurring) and let a history of evaluations
determine which way that bit position should be set.

It should be noted that with the introduction of muta-
tion, CGA convergence can no longer be guaranteed.
One must modify the end condition appropriately, per-
haps by setting a maximum number of tournaments to
be run.

In later sections of this paper, we will refer to the standard
CGA simply as “CGA”. We will refer to a CGA with the
elitism modification as “eCGA”. We will refer to a CGA
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Search Type Yield Avg. Perform
CGA 0% 0%
ECGA 33.7% 89.0%
MCGA 71.0% 92.9%

Table 1: Relative Performances of CGA Variants

Yield shows the percentage of runs that resulted in a
CTRNN controller that was at least 80% of optimal. Avg.
Performance shows the mean of the performances of all
controllers that achieved better than 80% of optimal. Note
that both the yield and relative quality is greater for mCGA
than for eCGA. Also note that the standard CGA is totally
ineffective for this problem.

with both the elitism and mutation modifications as the
“modified CGA”, or the “mCGA”.

4. PRELIMINARY COMPARISON
OF CGA VARIATIONS

Our first set of experiments was designed to compare the
relative efficacy of the three variations on the CGA described
above. For these experiments, the parameter settings of a
five neuron, fully connected CTRNN were encoded on a bit
string genome using eight bits per parameter. Values were
encoded as fixed-point binary numbers and were simply con-
catenated into a single string. For five neuron CTRNNS,
there were 40 parameters resulting in a bit string of length
320. The fitness of a particular CTRNN was the amount of
distance it caused the agent to walk in a fixed amount of
time. No special scaling was applied to the fitness. One
hundred three (103) searches each were run using CGA,
eCGA, and mCGA. We found that the CGA failed terribly.
Not one of the 103 runs of the CGA produced an agent ca-
pable of locomotion. Approximately 34% of the runs of
eCGA produced agents capable of walking at a speed of at
least 80% of optimal. 71% of the runs of mCGA produced
agents capable of walking at a speed of at least 80% opti-
mal. These results are summarized in Table 1. For this
benchmark CTRNN search problem, mCGA is clearly supe-
rior. Further, mCGA compares very well to the simple
genetic algorithm. Previous results using the simple GA
for the same problem produced a yield of approximately 75%
and an average performance of 91.1% of optimal.

5. mCGA and the CTRNN Benchmark

The preliminary benchmark results of the last section sug-
gest that, of the CGA variants discussed, mCGA is the best
suited to searching CTRNN spaces. Further, those bench-
marks suggest that mCGA is, for searching CTRNN spaces,
at least as effective as the standard simple genetic algorithm.
Our second set of experiments was aimed at producing a
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Arch Set Parameters Bit Length mCGA Yield sGA Yield mCGA Avg sGA Avg
CPG3 18 144 38.8% 40.4% 88.8% 89.1%

CPG4 28 224 61.2% 66.3% 90.3% 91.9%

CPGS5 40 320 71.0% 74.5% 92.9% 93.2%

CPG6 54 432 79.0% 65.4% 92.2% 93.0%

CPG7 70 560 84.5% 63.3% 92.6% 92.0%

CPG8 88 704 87.9% 64.7% 94.4% 89.9%

CPG9 108 864 91.3% 57.0% 93.2% 88.9%

CPG10 130 1040 87.3% 59.8% 93.8% 88.8%

Table 2: mCGA vs. Simple Genetic Algorithm for Varying Search Space Sizes

Yield and avg. performances are as defined in Table 1. mCGA refers to the CGA with mutation and elitism.

sGA refers to a stan-

dard simple genetic algorithm. Mann-Whitney tests show no significant differences in either yield or average performance up
through CPG5. After CPGS5, both yields and average performances drop off sharply and significantly for the standard genetic
algorithm, while both yield and average performance hold steady for mCGA at least up through CTRNNs of nine neurons.

more detailed picture of the efficacy of mCGA in searching
CTRNN spaces.

Approximately 100 GA searches were run over each of eight
architecture sets. The base architectures searched were 3, 4,
5,6,7,8,9, and 10 neuron fully-connected CTRNNSs. The
purpose of these tests as to examine how well mCGA scaled
to more difficult searches. The results of these experiments,
as well as the results of previously reported applications of
the simple genetic algorithm to the same problems [Galla-
gher, 1998], are shown in Table 2. mCGA runs were
limited to a maximum of 100,000 tournaments to ensure
that approximately the same number of candidate evalua-
tions were made in both mCGA and simple genetic
algorithm experiments. In terms of either the quality of so-
lutions or yield of successful solutions, there is no
significant difference between the simple GA and mCGA for
small CTRNNs. However, there is a significant difference
in both yield and quality of solution for CTRNNSs of six or
more neurons. The simple genetic algorithm simply can
not cope with longer bit strings, while the mCGA seems
quite capable of searching these larger spaces.

The reason for the relatively poor yields of CPG3 networks
has been identified and discussed extensively in other works
[Beer, Chiel, and Gallagher; 1999][Chiel, Beer, and Galla-
gher; 1999]. In short, three-neuron CTRNNs lack
sufficiently many degrees of freedom to properly solve the
locomotion problem. The relative scarcity of three-neuron
solutions increases the difficulty of the search. It also puts
a cap on the maximum effectiveness of the solutions
evolved. Our data shows that mCGA performs no worse
than the simple GA in the face of these difficulties. Pre-
liminary experiments with single elimination tournaments
in the mCGA, however, show an increase in the yields of
CPG3s to 68%. We are currently engaged in further ex-
perimentation to Dbetter characterize this surprising
phenomenon.

6. mCGA and the De Jong Test Functions

mCGA was developed against a specific CTRNN bench-
mark problem. During that development, we saw that
though both the addition of elitism and mutation were use-
ful, it was the addition of mutation that seemed to provide
the most benefit. Both as a means of evaluating the effect
of differing mutation rates and as means of evaluating the
mCGA against standard benchmarks, we tested it against
the De Jong test functions [De Jong, 1975]. We ran 100
mCGA searches for each of the five De Jong test functions
for bitwise mutation rates of 0.0, 0.5, 0.1, 0.15, and 0.20.
Each objective function parameter was coded with same
precision and range as in De Jong’s thesis. Because mCGA
as formulated above doesn’t converge for higher mutation
rates, we capped the number of generations at 100,000 to be
consistent with the CTRNN benchmarks previously dis-
cussed. Simulated population size was set to 100 for
similar consistency with the CTRNN benchmarks.

mCGA always succeeded in finding the global optimal for
De Jong F1. This is perhaps not surprising, as the uni-
modal and symmetric F1 represents a very easy
optimization problem. We did note, however, that for F1,
small mutation rates allowed for faster searching. On aver-
age, mCGA found the F1 global optimal after about 672
generations with a mutation rate of 0.0. With a mutation
rate of 0.05, this was halved to about 332 generations.
Higher rates, resulted in delayed appearances of the optimal.
At mutation rates of 0.1, 0.15, and 0.2 it took on average
537, 1589, and 13363 generations respectively to find the
global optimal.

Figure 2 shows the average scores, based on 100 runs, of
the best solutions found for De Jong F2, F3, F4, and F5 for
the same bitwise mutation rates listed above. Note that for
F2, F3, and F5, increased mutation leads to an increased
chance of finding the optimal. Also note, however, that
just like with F1, increasing the mutation also increases the
number of generations, on average, that one needs to wait
for the optimal to appear. F4 behaves differently. A little
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For each graph, the y-axis shows the average final error attained based on 100 runs. In all cases, the bottom tick on the y-axis

represents the lowest attainable error score. The x-axis shows setting of the mCGA bitwise mutation rate.

mutation helps, but increasing it too much results in a deg-
radation of the quality of solutions found. F4 is a simple
unimodal function with gaussian noise and is meant to test
how well an optimization algorithm deals with noisy objec-
tive functions. In the simple genetic algorithm, a mutation
of an individual that received a deceptively good score by
random chance would be likely to drop out of the popula-
tion eventually. We would expect it would not receive
deceptively good scores sufficiently often to allow it to
spread through the population. mCGA, however, simulates
a mutated individual having spread widely into the popula-
tion instantaneously by modifying the probability vector
that simulates the population. In a sense, the momentum
effects provided by having a real population are not present
in mCGA, and we could therefore expect it to be quite eas-
ily tricked by deceptive evaluations of individuals. This
effect is magnified as we allow more mutation events to
occur in a search. We will discuss possible fixes to this
problem later in this paper.

7. A Proposed Hardware Implementation

A design for a hardware implementation of the compact
genetic algorithm is in the literature [Aporntewan and
Chongstitvatana, 2001]. A hardware implementation of our
mCGA is not much more difficult to achieve. In this sec-
tion, we will outline one possible hardware implementation
of the mCGA. We will present a data path that supports all
the operations needed to implement the mCGA as described
in section three of this paper. We will also provide a quali-
tative description of the actions that an on-chip
microcontroller needs to take to implement the mCGA.

A proposed data path is provided in Figure 3. The design is
similar to that in [Aporntewan and Chongstitvatana, 2001],
but contains additional machinery to implement elitism and
mutation. The bit probability for a genome position as well
as bits for that position for two candidates are held in a
number of “bit modules”. In figure 3, two bit modules are
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Figure 3: Sample Data Path for the mCGA
A sample data path capable of implementing the mCGA in hardware. Components are defined in the text. Bold gray lines are N

bit busses where N is the number of bits in the genome. For large genomes, these wide busses can be replaced with serialized
communication channels.

shown enclosed in gray boxes and labeled O and 1.

Larger

genomes can be implemented by adding additional modules
as needed. The components in the data path are defined as
follows:

RNG

CMP :

PRB

BUF :

: The probability register.

: A random number generator. When activated, this
device will generate a random eight-bit number

A standard multibit comparator

This register contains an
eight bit value that encodes the probability of that
bit position is a 1. The device also has control lines
that allow incrementing, decrementing, or setting
the probability to 0.5.

A 2x1 memory device. A select line allows one to
load a bit into the “top” or “bottom” bit position.
This device is used to hold bit values at a position
for the two candidates under consideration.

E is a one bit register that encodes which of the two
bits stored in each BUF (top or bottom) is part of
the current “elite individual.

FEV :

MR :

RF:

MUX :

The Function Evaluator. This is hardware that pro-
vides an error score for the bit pattern supplied to it.
This hardware could be on chip or it could obtain the
error evaluation with off-chip circuitry. We encode
the error score as an F bit number.

Mutation Register. This device acts like a normal
register except that it mutates bits according to a
user specified mutation rate.

Register File. A simple register file that stores the
F bit errors for the “top” and “bottom” candidates
stored in the bit modules.

Standard multibit multiplexers. Shown in the data

path as unlabeled trapezoids.

The mCGA would be implemented by augmenting the data
path with a microcontroller that would complete the follow-
ing operations.
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1. The Probability Registers (PRBs) are set to hold their
initial probabilities of 0.5. All registers and buffers are
zeroed.

2. Each RNG generates a random number. This value is
compared with the contents of the corresponding PRB.
Each CMP produces a 1 if the generated random number
is less than the probability and a zero if it is greater.
Each generated bit in each of the bit modules is written
into the “top” slot of the buffer (BUF). The E bit,
which was cleared in step one, designates the “top” slot
as holding the current elite individual.

3. Step 2 is repeated, except this time the bits generated by
each comparator are stored in the “bottom” slots of each
BUF.

4. One at a time, all the bits in the top buffers are routed
to the FEV module. Each string is evaluated and the F
bit errors are stored in the “top” and “bottom” slots of
the register file.

5. The errors sent from the register file to a comparator.
The identity of the best score (top encoded as zero, bot-
tom encoded as 1) is sent back to and stored into the E
bit. We now know which of the two initially generated
individuals is the better.

6. All the bits making up the current elite individual are
routed into the mutation register, creating a mutated
version of the current best individual.

7. The bits making up the mutated candidate string are
routed to a FEV. The error resulting error score is
compared with the previously computed error score of
the best (taken from the register file). If the mutated in-
dividual is better, all the bits from the mutation register
are copied into their corresponding bit modules into the
currently elite buffer slots. The PRBs inside of bit
modules corresponding to bits that changed are also in-
structed to reset to hold a probability of 0.5.

8. Each RNG generates a random number, which is com-
pared with the corresponding PRB to generate a bit as
described in step two. Each new bit is written into the
NON ELITE slot in each bit buffer (BUF).

9. If our end condition is not met, go to step 4.

8. Conclusions and Discussion

We desire to combine reconfigurable analog neurons and a
hardware-based genetic algorithm into a single device to be
used to control and regulate physical processes. For our
application, compact size is vital. The CGA is particularly
amenable to implementation using standard VLSI techniques
and would result in extremely compact circuitry. The CGA,
however, is known to be a weak search method. We have
shown that the unmodified CGA is not sufficiently powerful
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to evolve CTRNN controllers. However, by making simple
modifications that do not require major increases in the
number of gates necessary to implement the CGA in hard-
ware, we can produce a modified CGA that competes well
with the simple genetic algorithm. In fact, we have shown
that our modified CGA, for this problem, is actually pro-
vides superior search performance for approximately the
same computational cost. Additionally, we have shown
mCGA, for the most part, performs well on the five De
Jong test functions. Where it performs less well, specifi-
cally on randomized error functions, we have identified the
problem and are in a position to fix it. These results alone
are significant. At least as significant, however, are the
interesting questions raised by these results

First, we expected that unmodified CGA would not be able
to search CTRNN spaces effectively. We also expected that
with appropriate modification, we would be able to make
CGA work without incurring a great penalty in hardware
cost. We did not expect that the modified CGA would out-
perform methods previously employed. We intend to
carefully study our modified CGA to determine exactly why
we observed this improved performance. We formulated our
modifications based on our experience about what works for
evolving CTRNNs. Did, however, we stumble on some-
thing that searches other spaces well too? We intend to
answer this question by applying the mCGA to difficult
search problems outside of our target problem domain. If
more universally successful, we will more carefully and
formally analyze the algorithm.

Second, the introduction of single elimination tournaments,
unlike the other modifications we proposed, does somewhat
increase the number of gates required for hardware imple-
mentation.  Tournaments are, therefore, somewhat less
attractive for our stated problem domain. However, that we
have already observed a significant gain in yield for the dif-
ficult CPG3 problem is interesting. We intend to study the
tournament modification more carefully in the future. It
may be the case that increases in effective yield might be
well worth the increased hardware costs.

Third, the single-leg CPG problem was not chosen arbitrar-
ily. It happens to be the best studied, and because the
controller may not make use of sensory feedback, one of the
more challenging, locomotion control problems we have
considered to date. This makes it a reasonable initial
benchmark of mCGA efficacy. We need, however, to apply
the search method to a wider variety of CTRNN control
problems. Initial results are very encouraging. We have
successfully used mCGAs to evolve hexapod locomotion
controllers and controllers correcting arrhythmia in simu-
lated human hearts. These results also represent important
verifications against prior work. However, we desire to be
careful and ensure that all our results possess a high degree
of statistical significance. Therefore, we need to run more
experiments against these other problems before we have
enough instances to report more than anecdotally on wider
success.
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Fourth, we have extensively studied the neural dynamical
principles underlying the operation of CTRNN locomotion
controllers evolved using the simple genetic algorithm
[Beer, Chiel, and Gallagher, 1999][Chiel, Gallagher, and
Beer, 1999]. We have yet to rigorously study the principles
underlying the operations of the mCGA produced control-
lers. One would expect them to operate using similar
principles -- however, we have three mCGA produced
CPG3’s that seem to defy explanation using the dynamical
systems techniques previously developed. Analysis of these
devices is under way. The differences in the resulting prod-
ucts may reveal that the mCGA 1is searching a portion of
CTRNN space difficult for previous methods to reach. The
nature of the “difficult to reach space” may provide impor-
tant clues on why our modifications work so well and
perhaps, suggest additional modifications that might help
us search CTRNN spaces more reliably.

In the future, we intend to expand and optimize the hard-
ware mCGA. This should be a fairly straightforward task
and we expect to have completely validated designs very
shortly.

In conclusion, we have demonstrated that the marriage of
the mCGA and reconfigurable CTRNN hardware is likely to
produce compact, capable EH chips. In addition to provid-
ing an important feasibility result, we have also opened
several interesting new lines of inquiry that will likely pro-
vide equally interesting results as they are pursued. Our
mCGA is almost certainly well suited to CTRNN-EH, and
may be adaptable to other EH efforts as well.
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Abstract

One of the key areas in which evolvable hardware
has been shown to excel is in achieving robust
analogue and digital electronics. In this paper
this domain is investigated further by manipula-
tion of the digital abstraction. Some of the strict
requirements of digital gates are relaxed in or-
der to increase the complexity of the functional-
ity available to evolution in order to evolve fault
tolerant designs. Results from extrinsic evolu-
tion of a 2-by-2 bit multiplier, based on CMOS
technology under various noise and fault condi-
tions, illustrate the suitability of the messy gate
methodology used herein for evolution of a fault
tolerant design.

1 INTRODUCTION

Silicon is not a truly reliable technology. However, by us-
ing a digital abstraction we obtain a more robust platform
against signal variation and noise whilst sacrificing much
intrinsic complexity. That is, above and below the digital
thresholds we are not concerned with signal variations.

Each gate and its connections plays a crucial role in the
overall behaviour of a digital circuit. Unforeseen events
can easily prevent proper operation of a regular digital de-
sign. Why is this? The digital abstraction assumes that
the technology will always operate within the specifications
laid down by the abstraction mechanism and since silicon is
not a truly reliable technology, deviations may be expected.

A number of noteworthy efforts have already been con-
ducted within fault detection and repair based on the
principles of biological development. In the embryol-
ogy work conducted at York [OT99] and Ecole Polytech-
nique Fédérale de Lausanne (EPFL) [MSSTOO0], experi-
ments have been conducted using FPGAs with extended
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Configurable Logic Blocks (CLBs) to contain a complete
genotype of the circuit. Through repeated cell divisions, a
circuit develops from a single cell into a full-grown phe-
notype. An interesting approach was taken in [BOSTO00]
where principles of biological immune systems were
adopted to attain fault-tolerance. Work on achieving toler-
ance to temperature changes includes [TL0O0O] and [SKZ01].

Inherent fault tolerance is present if the design is able to
continue its operation undisturbed by fault inducing events
without the need for explicit mechanisms for fault detec-
tion and recovery. This may be achieved by robust ways
of computation or by an underlying fault-detection and re-
pair from within the technology. The work of Haddow and
van Remortel [HVRO1] considered possibilities for achiev-
ing fault detection and repair from within the technology
as well as more fault tolerant ways of distributing digi-
tal designs onto the technology based on the amorphous
computing concept [Aea99]. Hounsell and Arslan [HAOI]
have developed a fault tolerant hardware platform for the
automated design of multiplier-less digital filters. Tyrrell
et al [THSO1] have used evolutionary strategies to achieve
redundancy thus providing inherent fault tolerance in the
design.

The approach described herein uses the concept of messy
gates [MHO1a]. The messy gate concept may be said to be
a fault tolerant methodology rather than fault detection and
repair methodology. This tolerance is a tolerance to a less
reliable technology. It may not only tolerate less than per-
fect gates but in fact uses evolution to exploit this messiness
i.e. non perfect digital signals. Other work which exploited
features of the technology includes the work of Thomp-
son [Tho96]. Here the focus was not so much on fault tol-
erance but more towards achieving unique solutions to dif-
ficult problems and, as such, illustrating the power of evo-
lution. Messy gates are able to operate in analogue voltage
levels that are outside the normal digital scope. In addi-
tion, the analogue outputs of the messy gates are allowed
to propagate through the circuit.
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Circuit designs are evolved using messy gates as their com-
ponents. As in nature, evolution is not prone to designs
where every part is required for satisfactory behaviour, but
rather to distributed designs where no single point is cru-
cial. Fault tolerance emerges through the abstraction mech-
anism as its functionality is exploited by evolution.

Earlier work of Miller and Hartmann [MHO1a, MHO1b] on
the messy gates approach may be said to be a proof of con-
cept. That is, the model did not take into account any par-
ticular technology but more investigated the possibility of
exploiting non-perfect digital gates to achieve fault toler-
ance. This work showed promising results and, as such, the
model has been extended to a technology specific model.
This paper presents the new model, simulator and the re-
sults of experimentation.

The model for the messy gates and the simulator that was
developed are described in section 2. In section 3, the evo-
lutionary algorithm is explained. Section 4 describes the
experiments and section 5 gives a discussion of the results.
In section 6 we present some ideas for future work and sec-
tion 7 presents our conclusions.

2 MESSY GATES AND THE SIMULATOR
ENVIRONMENT

Introduced in [MHO1a] and elaborated in [MHO1b], messy
gates is an approach which removes some of the digital ab-
straction and investigates the impact on evolution of cir-
cuits using these gates to achieve fault tolerance. While
earlier work is based on an abstraction level not close to
a specific hardware technology, this paper introduces a
model of messy gates which is very close to one technol-
ogy, specifically Complementary Metal Oxide Semicon-
ductor (CMOS). The model is parameterised and can be
tuned to different semiconductor technologies.

The simulator is based on observations made during ana-
logue simulation of digital gates in Simulation Program
for Integrated Circuits Emphasis (SPICE). Each gate was
modelled at the transistor level including various error
sources. Figure 1 shows the model of a NOR gate
which was provided to the SPICE simulator. As shown,
the model incorporates three noise generators (FGEN1
through FFGEN 3), several capacitances (C'1 through C'3),
current leaks (R1 and R2), and output load (LOAD).
NAND, NOR, NOT, MUX and NMUX (multiplexor with
one input inverted) gates were simulated at analogue 5V
CMOS transistor level whilst being exposed to different
configurations of capacitances, resistances and noise. For
the purpose of the experiments herein, only the MUX and
NMUX gates were used.

A sigmoid function was used to approximate the fall and
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rise behaviour of the digital gates. Sigmoid functions
for each gate type were individually tuned to approximate
behaviour shown in SPICE simulations. For instance, a
NOR gate was simulated in SPICE showing a behaviour
as shown in Figure 2. Using a sigmoid function this was
approximated in our model as shown in Figure 3. Approx-
imations were subject to some limitations due to the fact
that a look-up table replaced a full sigmoid function in or-
der to speed up simulations. The size of this table was lim-
ited to 64 KB, in order to allow it to fit into the first level
cache of most modern processors. It should be noted that
the smoothness displayed in Figure 3 is only the core part
of the gate model, and more noisy behaviour like the one in
Figure 2 is likely to be displayed as noise is added.

Output

Figure 2: SPICE simulation of NOR gate

The current simulator focuses on internal faults of types
stuck-at errors, floating outputs and partly random output,



EVOLVABLE HARDWARE

Output 59
0,40
0,30

0,20

0,10

L7
L 754X
0,00 Z~ 0,60 InputB
I

A [=) 3 - [=3

Inpu

Figure 3: Model approximation of NOR gate

in addition to supporting induced signal noise. Input or out-
put stuck-at errors cover the cases of short-circuit to power
or ground and certain cases of inter-signal short-circuits.
Floating output errors covers the case where the output is
completely random, while partly random output covers the
case where the output is correct for one logical value while
random for the other logical value e.g. logical 1 is rep-
resented as 1 whilst logical O is represented as a random
number from O to 1. The simulator uses a real number in-
ternal representation within the range 0 to 1, to represent
the CMOS voltage range of 0 to 5 volts.

The transistor layout used in SPICE simulations allows
analogue signals to propagate through gates and there is no
explicit mechanism for pulling the output signal to either
a completely high or low state e.g. a push-pull stage. As
shown in Figure 3, the sigmoid behaviour will allow prop-
agation of analogue signals and yet be biased towards the
digital endpoints of the analogue scale (the real numbers 0
and 1 in simulation). The model provides evolution with
the possibility to exploit this non-digital feature to achieve
more robustness in evolved designs.

The resulting gate model used in the simulator is illustrated
in Figure 4. E;, E> and E5 generate one of the supported
errors (stuck-at, floating outputs or partly random output)
or let the signal propagate through without error. The prob-
ability of error is preset as a parameter, whilst the type of
error is random with equal probability for each of the four
possible faults. F' is the sigmoid function approximated
to the real behaviour of the corresponding gate in SPICE.
Finally, the output noise IV is superimposed on the signal
to approximate errors that are not explicitly a part of the
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model e.g. thermal noise, radiation, power supply noise,
component variance and cross talk. The errors and noise of
this abstracted model is not directly related to the errors of
the transistor model, but are present to achieve a behaviour
similar to that shown by the transistor model. The simula-
tor currently supports feed-forward networks and realiza-
tion details such as routing and layout are ignored.

1

F = E3 » N =
> E /
2
E, : Inputerror  F : Function generator N : Noise

E, : Inputerror  E,: Output error

Figure 4: Generic 2-input gate

3 EVOLUTIONARY ALGORITHM

The algorithm used is a (1+)) evolutionary strategy with
neutral genetic drift. That is, a generation consists of the
best individual from the former generation and mutations
of it. Neutral drift is obtained when in the case of equal
fitness amongst the best individuals, one not from the for-
mer generation is selected. The work of Vassilev and Miller
[VMOO] illustrates the advantage of this approach.

The target solution is defined simply via its truth table and
the number of inputs and outputs. Under fitness evaluation,
every circuit is subject to the complete set of possible in-
puts and a selection of noise and fault vectors. The outputs
generated by the circuit are compared to the target solution
truth table and any analogue output values are clamped to
their closest digital value for comparability.

The fitness function used is expressed in Equation 1. A
circuit C' (individual) is tested against the target truth table
(1) anumber of times (7' PI) under different environments.
Noise and fault probabilities are used to generate the differ-
ent environments m for each test.

The average of all tests is computed to yield a penalty for
the number of incorrect output vectors. Another term (G *
G,) penalises the number of gates. Finally, these terms
are subtracted from the maximum obtainable fitness M ax
to yield a fitness score in the range O to the total number of
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nature label select type input A input B
input 0

input 1

input 2

input 3

gate 4 0 MUX 0 3
gate 5 2 MUX 2 0
gate 6 5 NMUX 0 1
gate 7 2 MUX 2 1
gate (0) 8 7 MUX 7 4
gate (0) 9 8 MUX 5 6
gate (0) 10 4 MUX 7 6
gate (0) 11 3 MUX 4 1

Figure 5: Example genotype of a 4 inputs, 4 outputs circuit

output vectors in the target truth table minus 1 e.g. 2* —1in
the case of the 2-by-2 bit multiplier. Thus, the range of the
fitness of the 2-by-2 bit multipliers described in section 4
isOto 15.

SPPLdif f(Coy T)
TPI

F:Ma:v—( +Gc*Gp> (1)

F Fitness of individual

Max Maximum obtainable fitness

TPI Test pr. individual

dif f() Number of incorrect output vectors
Cn Circuit in environment m

T Target truth table

G, Number of gates used

G, Penalty pr. gate used

An example of the genotype used to represent a circuit is
shown in Figure 5. The connections of this specific geno-
type can be seen in Figure 7. Connections refer to labels of
either the inputs of the circuit (0 to 3 in the example) or to
the output of one of the gates in the circuit (4 to 11 in the
example). The last gates in the genotype representation are
considered to be connected to the external outputs of the
circuit (8 to 11 in the example). Only feed-forward con-
nections are allowed. The genotype uses MUX and NMUX
(multiplexor with one input inverted) and as such, each gate
has three inputs (select, input A and input B).

Mutations are done at gate level. If a gate is mutated, one
of its inputs is remapped or its type is changed to a random
type within the predefined set of gate types. The gate types
available to evolution are predefined. The simulator is not
limited to the gates described in section 2, but each new
gate requires handcrafted tuning of parameters.
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4 PERFORMED EXPERIMENTS

The focus of these experiments is to discover the influence
of noise and gate failures on evolution of messy circuits.
2-by-2 bit multipliers were evolved using the algorithm
described in section 3 and the model and simulator envi-
ronment defined in section 2. Only gates of type MUX
and multiplexors with one input inverted, NMUX, were
made available to evolution to maintain comparability with
[MHO1a, MHO1b].

Five sets of experiments were carried out labeled A to E
in Table 1. The noise percentage signifies the amount of
noise relative to full signal strength that was superimposed
at each gate output. Noise is implemented as a random
value within this range. Error probability is the chance of
any given gate failing i.e. being subject to one of the errors
explained in section 2.

All experiments used a gate mutation probability of 15%,
population size of 30 individuals and a maximum gate
count of 9. Termination of each run occurred when an indi-
vidual avoided bit errors at the outputs and its size was less
than 10 gates.

A noteworthy fact is that each circuit is evaluated ten times
under different noise and error conditions. Each of these
evaluations gives rise to a fitness value. Fitness for this cir-
cuit (individual) is an average of these fitness values. This
means that an individual needs to be tolerant to more than
one specific configuration of faults and noise and exhibit an
overall tolerance to the environmental settings in order for
it to survive the selection process.

EXPERIMENT NOISE ERROR PROB.
A 10% 0%
B 30% 0%
C 0% 10%
D 0% 30%
E 35% 10%

Table 1: The experimental set of noise and error probabili-
ties

S RESULTS AND EVALUATIONS

The evolutionary system successfully evolved circuits able
to perform a 2-by-2 bit multiplication in all the specified
environments. Figure 6 illustrates how the average of the
most fit individual for experiments B and E grow towards
100% fitness (15). As expected, the rougher environment
in experiment E made it harder to obtain better fitness when
compared to experiment B.
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Figure 6: Best fitness individuals averaged over several
runs

An example of an evolved multiplier from experiment A is
illustrated in Figure 7. The genotype of this specific multi-
plier is the one shown earlier in Figure 5.
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Figure 7: Example of evolved multiplier

As seen in Figure 6 and 8 the number of generations re-
quired before a correct individual was evolved increased
as noise and error probability got more severe. Experi-
ments A, B and C took on average below 2000 generations.
Experiment E required slightly more computational labour,
around 3000 generations. This may be said to be due to
the combination of severe noise and substantial error prob-
ability. Experiment D clearly separates from the other ex-
periments. The gate error probability presented a difficult
design task. However, the fact that evolution was able to
create such a fault tolerant architecture is quite an achieve-
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ment. The computational time required is not really that
severe, on average the performance is about 100 genera-
tions per second.
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Figure 8: Generations used before termination

In the experiments performed here evolution was not given
much room to play with in terms of gates. The maximum
number of gates was set to nine. Due to this maximum
only a slight variation in the number of gates was seen, as
shown in Figure 9. Also, during the experiments, G, in
equation 1 was so low (0.001) that the output correctness
always had highest priority. In experiment D the average
number of gates used is below the general average. The
reason for this is that evolution avoids extra gates, as each
gate increases the chance of gate failure. In experiment E,
evolution may be assumed to perform similarly where the
rough environment in terms of both noise and gate errors
forces a bias towards small circuits.

8,9

8,7 1

8,5 1

Avg. number of gates

8,4
A B C D E

Experiment

Figure 9: Gates used in final solutions
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6 FUTURE WORK

Several extensions of the work described are planned, pri-
marily exploiting the speed of the simulator in order to
run extensive numbers of experiments. Such experiments
would include allowing evolution to use more gates to in-
crease the genetic variation, evolving with more common
type of logic gates like NAND and NOR, evolving circuits
with different functionality and exploring the suitability
of different evolutionary algorithms. Extensive investiga-
tion of the evolved circuits true fault tolerance compared to
other approaches would also be advantageous. In addition,
verification of the circuits on both digital and analogue lev-
els is important.

A feature of the developed simulator is that its states and
signals are fully observable. Combining this with the in-
creased freedom of the semi digital environment may yield
results that exploit complex intrinsic silicon functionality
not available in a traditional evolutionary digital design
environment. Such exploitation of intrinsic features have
shown stunning results e.g. in [Tho95, Tho96], but the fea-
tures of such circuits have been hard or impossible to ob-
serve and understand [Lay98]. A goal of our project is to
move into hardware implementation with new knowledge
on how to exploit the intrinsic properties of the underlying
technology.

7 CONCLUSIONS

In this work a simulator has been developed that takes the
messy gates approach much closer to real electronic hard-
ware. In this simulated environment evolution is able to
perform circuit design tasks that present a serious chal-
lenge. Within certain limits, noise influence and fault prob-
ability does not even seem to affect evolution. In fact, exter-
nal influences that human engineers view as destructive and
problematic may be exploited by evolution e.g. increasing
the noise may in fact decrease the number of generations
needed to evolve a complete circuit. When faults and noise
influence are increased to severe levels, evolution seems to
find it harder to find solutions. Still, it does in fact manage
to do so and very quickly when compared to a human de-
signer. Just imagine the design task of creating a 2-by-2 bit
multiplier using eight or nine multiplexors in an environ-
ment where almost one third of the gates fail on average.
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Abstract

Un-supervised learning of complex software
projects is still an issue. Additionally, the
objective to create open-ended evolutionary
systems is lacking a confident realization.
Long-term evolutionary behavior results in
noisy regimes or stable fixed points includ-
ing limit cycles. The evolving organizations
are more or less simple or directly reflecting
the programmer’s point of view of a com-
plex organization. One possible way to over-
come these limitations is to drastically in-
crease population sizes and look at longer
timescales. The work reported serves two
purposes: the introduction of an evolving
micro-controller inclusive evolving assembler
code on the new massively parallel config-
urable hardware MereGen™and it provides
new insights on how mutation probabilities
may influence the evolutionary outcome of
evolving populations.

With 648 MBytes of fast SRAM and about a
Gigabyte of SDRAM, millions of programs
and thousands of micro-controllers can be
evolved concurrently in hardware. Typical
speedups are about five orders of magnitude
compared with current day high-end PCs.
Thus, longterm evolution of large popula-
tions is no longer the bottleneck and limi-
tations in our understanding and the observ-
ability of evolving systems immediately grabs
the focus of our attention in evolutionary ex-
periments.

1 Introduction

The study of evolving hardware aims at creating a
new power level of man-made machines. Evolving

hardware is expected to be able to adapt to unknown
environments and to find solutions hardly found by
humans. Evolution, at least in the biological con-
text, is intimately bound to information processing
with strings typically considered as information car-
riers. Machines working on their own description are
especially well suited to study the scope of evolution-
ary concepts.

The idea of information processing machines operat-
ing on themselves was first published in 1842 [1] by
Menabrea in a translation from Ada Augusta, Count-
ess of Lovelace:

Considered under the most general point of
view, the essential object of the machine be-
ing to calculate, according to the laws dic-
tated to it, the values of numerical coefli-
cients which it is then to distribute appro-
priately on the columns which represent the
variables, it follows that the interpretation of
formula and of results is beyond its province,
unless indeed this very interpretation be it-
self susceptible of expression by means of the
symbols which the machine employs. Thus,
although it is not itself the being that reflects,
it may yet be considered as the being which
executes the conceptions of intelligence. ...

Though they didn’t really attempt to build a ma-
chine capable of understanding itself — the idea of such
an endeavor was not completely out of the question.
They had at that time established the principles of a
programmable computer (e.g. conditional execution
and loops have been explicitly mentioned). Today we
have the hardware to really delve into this domain
where electronic hardware is able to self-organize and
to evolve.

Despite the famous book of von Neumann [2] and his
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Figure 1: MereGen™
The 19 inch rack of MereGen™ is shown with 18
boards.

self-reproducing automata — it was not until 1984 that
the extension of the original idea of Charles Babagge
and Ada Augusta was revived — probably not known
to the author then — by Dewdney in his article in Sci-
entific American [3] about Core Wars. Dewdney had
been inspired by the first worms and viruses being ob-
served in the computer labs of Xerox. In the after-
math, several people tried to evolve programs [4, 5, 6]
and seriously attempted to realize self-organized soft-
ware systems. There, non evolvable register machines
determine the artificial physics evolving programs are
subjected to. A special minimalistic evolving system
has been investigated in [7] with only two instructions
available for evolution — replicate the genome or do
nothing.

In a more general context, these register machines
might be approximated by simpler cellular automata,
see e.g. Codd [8] or Langton [9]. The comprehensive
field of genetic programming introduced by Koza also
uses evolving programs but not in a self-organizing
context — they solve optimization problems though
some work has been undertaken to realize these op-
timizations problems in hardware [10].

The work reported in this paper solely focuses on the
self-organizing context without any optimization prob-
lems in mind. These are to be tackled in a subsequent
step when self-organizing systems are better under-
stood. The rational behind this work is not only to
try to understand the transition from the non-living to
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The two distributors (Xilinx xcv300e) each control a block
of four agents (Xilinx xcv600e).

mgt ©

Backplane
e
Backplane

The evolving micro-
controllers (1Cs) are configured into the agents. A further
pC, configured into each of the distributors, is dedicated
to the sequential part of controlling the experiments. All
agents are working continuously and simultaneously with
a 64 MHz clock. Attached to the agents four fast 7.5ns
9 MBit SRAMs are used to store the evolving program
data.

the living world but more importantly to lay the foun-
dation for sparsely controlled nano-systems. Massively
parallel dynamical systems in the nanometer range can
no longer be controlled in a detailed manner. They
cannot even be observed in a detailed manner. In or-
der to cope with these types of systems we must allow
them to organize themselves — otherwise we will not
be able to use dynamical nano-systems.

Independent of the description level used, pro-
grammable machines being physically realized have
to obey certain constraints. Most often conservation
laws are mentioned. Taking into account dissipative
structures, conservation of energy can be abstracted
relatively easily. The results of this work show the
great importance of the following aspects: 1) physical
properties like limited space — physical entities require
space to be situated, 2) timing delays — information
traversing from point A to point B needs a certain
amount of time and 3) routing — why does point X
know that point C' is in need of exactly this data and
of nothing else? Of course these physical properties
might be simulated easily on current day PCs or work-
stations — paying the price of slower simulations. What
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is not easily simulated, is the inherent explicit paral-
lelism of chemical or biological systems. The overhead
for these to simulate is considerable. Fine grained mas-
sively parallel machines have a great advantage in this
respect. The more the simulations become hardware
dependent, the less effort has to be made to model
physical properties — they are inherent. Of course, the
price is now a restriction in the number of possible
physical model systems.

The work described here has been done on MereGen™
[11], fig. 1, a massively parallel configurable hardware
using up to 144 high performance field programmable
gate arrays from Xilinx [12] dedicated solely to user
designs. With MereGen speedups of up to 200.000
(five orders of magnitude, two to three orders due to
parallelism and another two to three orders due to ex-
ploitation of hardware instantiated physics) have been
realized.

MereGen™  uses field-programmable-gate-array
(FPGA) and VMEG64x-bus technology and was espe-
cially designed for the simulation of biological model
systems and for doing research on evolving hardware.
With an approximated four tera instructions per
second and over 600 MByte of high speed static
memory, MereGen™ allows research which has not
been possible with computer hardware in the quarter
million dollar regime. The eighteen boards provide
more than 8.5 million gates equivalents for user de-
signs. In fig. 2, the organization of a board is shown.
A Linux operated 400 MHz PowerPC connects via
the VME-bus standard to the bus-interface at each
board and controls the chip configuration as well as
the readout and experiment scheduling.

2 The hardware model

Having studied evolving Boolean hardware [13, 14] the
apparent mismatch between the needed length of de-
scription and the computational power of the resulting
Boolean apparatus made us use micro-controller (uC)
type machines. It was hoped that the brittleness [15]
observed in the evolving Boolean hardware could be
managed more easily in a micro-controlling context.

The idea of the evolvable uC is derived from [16] a
minimalistic form of a RISC machine with only one
instruction (MOV) left. Manipulating data is realized
here through side effects when moving data from the
input port to the output port or a register. Several
thousand pCs (the maximum achieved were 3456 uCs
in MereGen™) are chained up in such a way that each
1C has access to the upper element of the stack of the
neighboring uCs and to one of their registers. This
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Figure 3: The evolving micro-controller (uC)
Only one instruction (MOV) is available for programs us-
ing this 8-bit uC. With just one instruction left, only the
parameters are coded in one byte of the program code.
The upper four bits of the instruction stream determine
the location from where data is moved towards the loca-
tion determined by the lower four bits of an instruction.
Whether flags are tested or functions are executed depend
only on the particular location addressed. With an addi-
tional mapping of the possible 16 input (input map) and
16 output (function map) locations to different input ports
and different functions, extremely dense code can be real-
ized. This mapping is defined at runtime and can therefore
be subjected to evolution. In addition, two arbitrary func-
tion generators (lookup-tables I and II) which are able to
realize any unary function with 8 bit wide I/O can be used
to be changed by the evolving system at runtime. Thus a
plastic puC is available for the hardware evolution experi-
ments. The program size can be varied between 128 mem-
ory partitions at 8 instructions each and two partitions at
512 instructions each. Two special side-effects SWI_SRC
and SWI_DEST are available to change the active parti-
tions.

chain actually is a closed loop like in the work of Ras-
mussen [4]. In the experiments reported, 16 uCs per
chip were used. These 16 uCs share the four SRAMs
available at each agent. Each uC gets access — in a
round robin fashion — to the attached SRAMs for a
period of 1024 clock cycles and writes its programs
or stack values in the SRAMs which are operated as
shift-registers. The SRAM data on the other hand
is available to all 4Cs on the chip at the same time.
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up to 144 agents

Figure 4: Chain of up to 3456 uCs

Up to 24 pCs configured into a chip give a chain of up
to 3456 uCs working in parallel and at a clock rate of 64
MHz with a minimum number of one instruction per clock
cycles. The design for 16 puCs is shown which has been
used in most experiments. The four SRAMs attached to
each agent are operated as 64 Bit memory and each word
containing 8 instructions which are serially fed into the uCs
at a special input port.

This means that a program in principle could be easily
replicated by a factor of 16 if and only if the uCs on
the chip are listening,.

As already mentioned, routing of information is a cen-
tral issue for evolving spatially extended information
processing systems. To test the capabilities of the
evolving uCs and to find a measure for evolutionary
abilities [17] the topology of the system is made scal-
able in the range of more than two orders of magni-
tude. This means that by pure parameterization of the
system at runtime the chain of uCs can be partitioned
in 144, 36 and 18 pieces or used with full length. When
designs are used with only eight uCs per chip even
smaller evolving chain partitions can be investigated.
According to [17] a shadow model is defined as an evo-
lutionary model with interactions between individuals
in the evolving population disabled. Here, isolating
1Cs serves the same purpose. Comparing the different
topologies with each other, the experiment with the
larger number of partitions can be seen as a shadow
model. Experiments with special disabled functions
allow to grab the semantics in the system as it is a
typical procedure in (gene-) knock-out experiments in
micro-biology.

181

3 Observing the system — complexity
measures

Observing a self-organized evolution system is not at
all trivial. In contrast to Ray [5] and others, the system
is not seeded with a known self-replicator. The reason
for this is that functional cells are NOT thought to
exist a priori like the evolving systems of the Tierran
type. Thus, it is not known what to expect in the sys-
tem. The next problem connected with observation is
the sheer amount of data being processed by the ma-
chine — several tera-bytes per second! Both problems
ask for an independent area of research.

A preliminary attempt to observe the system
follows the idea that what is important will
be existent in several copies in the evolving
system!

An algorithm has been designed to extract all patterns
in the genomic data which occur at least k¥ = 14 times
[18] and minlen = 30 instructions. The patterns
themselves are arbitrary. This algorithm is part of a
compression algorithm and approximates Kolmogorov
entropy [19] to a certain extent. The maximum length
of the pattern searched for is restricted to 270 instruc-
tions — the reason being a limited amount of main-
memory in the host computer.

All complexity measures used in this work are taking
this pattern analysis data as their base and not the
original genomic data. Of course, tera-bytes per sec-
ond cannot even be written in the main-memory of the
computer. Only a small fraction of programs is read
out of the agent chips via the distributors in a regular
fashion. These programs are then picked up by the
host and are used for the pattern analysis.

The complexity measures used are as follows:

e EXPENSE: The pattern searching algorithm
searches for repeating pairs of instructions in all
picked up programs. From these pairs of in-
structions repeating quadruple instructions are
searched until no further repeats with a mini-
mum occurrence are found. In a last step it is
attempted to elongate the longest patterns found
so far. Every attempted combination of new pat-
terns is recorded as a unit effort and counted. The
total number of unit efforts divided by the total
number of instructions gives the complexity mea-
sure EXPENSE.

e DIVERSITY: This is the most simple complex-
ity measure used here. The frequency of all in-
struction pairs is counted. There are 2!¢ different
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Comparison between classical mutation and self-poisoning algorithm expense
36 T T T T T T T

'p = 10e-2‘ +
self-poisoning -----r- .:

expense
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time [program executions / 10]

Figure 5: Two different variation systems

Two different mutation processes are shown. The classical
mutation procedure with a fixed mutation probability, in
this case p = 1072 is used, is shown with the curve '+'.
With the second mutation procedure the frequency of each
instruction in the genomic data is determined. In the next
program iteration the most frequent instruction is replaced
by a random value. Not only can different longterm evolu-
tionary behavior be observed but also a higher value of the
complexity measure EXPENSE is achieved. This means
that the pattern search algorithm has increasingly more
difficulties to determine repeats in the genomic data.

instructions pairs possible. The diversity is calcu-
lated as:

(max — min) x nr_pair

diversity = ,

nr_inst

with min the count of the instruction pair with
minimum frequency, max the count of the instruc-
tion pair with maximum frequency and nr_pair
the number of all different instruction pairs found
in the genomic data of the system.

e PATCOMP: The number of pattern levels (pair,
quadruple ...) in the sequence data times the
number of patterns of min_len = 30 instructions
found in the first iteration of the pattern search
algorithm.

4 Mutations — what’s new?

So far, in almost all evolutionary models published,
e.g. [20] and followers, mutation is thought to be a
random event, like a cosmic ray changing the infor-
mation content of a sequence of letters in a uniformly
distributed manner. Of course, in molecular biology it
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is well known that mutational events are only in rare
cases evenly distributed over the genomic sequences
which is thought to be a consequence of the selection
pressure subjected to the system investigated. Mu-
tation in this work always means exchange of an in-
struction by a random instruction if a mutational event
occurs. It is futile to try and carry out bit-mutations
because the fitness consequences per bit-change cannot
be expected to be smooth!

Realizing a first C-simulation to test different pC-
variants, it soon turned out that the evolving system
more or less immediately got trapped in a station-
ary behavior, fig. 5 (curve at p = 1072). Considering
the Gaya-hypothesis and the role oxygen might have
played at that time, the idea of mutation as a self-
poisoning process emerged. The idea is simple: the
most successful sequence or species produces so much
waste (waste is useless or even toxic per definition)
that it destroys its own base of existence.

In the pC-model this could easily be established, e.g.
by counting the number of instructions used in all pro-
grams. After determining the instruction with the
highest frequency this instruction is destined to be
completely randomized in the following round of pro-
gram execution. Whenever this instruction is encoun-
tered in the pC, a uniformly distributed random num-
ber is taken instead. Other mutational events have
been completely abandoned. The resulting behavior
of the system changed dramatically, fig. 5 (increasing
curve), non-trivial longterm evolution could immedi-
ately be observed. The reaction of the evolving sys-
tem is to develop increasingly complex strategies to
avoid dominance of only one program part in the sys-
tem because this program would almost certainly be
destroyed.

5 Experimental setup and results

A typical experiment lasts about seven minutes. At
the beginning all the chips (distributors and agents)
are configured and the parameters are written to lo-
cal registers of the designs. Then the agents are ac-
tivated and for 400 seconds a 64MHz clock continu-
ously drives all chips in parallel. Micro-controllers in
the distributors read out the programs evolving in the
agents and when necessary count the frequency of in-
structions in the programs. Instructions, according to
the parameters chosen, with the highest frequency are
then written back into the agents in a certain regis-
ter. If the system is working in a self-poisoning mode
these instructions are exchanged by random instruc-
tions. The total design is constructed such that the
evolving agents are not directly coupled with the ob-
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Figure 6: Different mutation probabilities
Each plot comprises eight series. Each two series have dif-
ferent connection partitions (autist = 128 partitions, block
= 36 partitions, simple = 18 partitions and complete =
1 partition). JMP curves have a JMP-operator in the
mapped function space and '4xIN’ curves have four input
lanes for reading the SRAM data. The top-down sequence
is EXPENSE, DIVERSITY and PATCOMP at the bot-

tom.

183

serving host. Because of the continuous behavior and
the lack of naturally defined generations (what are the
species and how long do they live?) in the system the
time-base chosen is real-time.

In fig. 6, a bunch of experiments on MereGen™ is
shown. Each plot needed about one and a half day of
operation time on MereGen™ . The values plotted are
average values of the last twenty complexity measure
evaluations per run. A variation of the mutation rate
has been investigated. As expected, it has turned out
that the system depends on the mutation rate which
is changed from rare mutations p = 0, 2%6, .. towards
high mutation rates p = 1. Taking e.g. the upper
plot in fig. 6, the effort needed to find all repeats is
highest at low mutation rates. This is quite natural
because if all instructions are identical, many different
levels of repeats exist. Below two evolved program
are shown. The first one is taken with a mutation
rate of p ~ 107 the second with a mutation rate of
p ~ 107! when PATCOMP has its maximum value.
The listing only reflects one brief glimpse on an evolved
program. Though it could be observed that programs
might dominate the system for several seconds, trivial
stationary behavior is not apparent.

# p = 1.5e-5 pattern length = 270 inst.

(maximum)

input section (4 bits)
_coM_
_IN_B_

function section (4 bits)
_IF_CF_ZF_PUSH_
_SWI_SRC_A_

-> _WRI_REGA_A_

-> _WRI_REGA_A_

-> _IF_CF_ZF_PUSH_
-> _IF_CF_ZF_PUSH_
-> _IF_CF_PUSH_

=> _SWI_SRC_A_

-> _IF_CF_ZF_PUSH_
-> _IF_CF_ZF_PUSH_
-> _IF_CF_ZF_PUSH_
=> _IF_CF_ZF_PUSH_
-> _IF_CF_ZF_PUSH_
-> _IF_CF_ZF_PUSH_
-> _IF_CF_ZF_PUSH_
-> _IF_CF_ZF_PUSH_
-> _IF_CF_ZF_PUSH_
=> _SWI_SRC_A_
e.g. take value of register _COM_ and store this value
in register _REGA_

-> _WRI_REGA_A_

L N T A T O

# _coM_ -———-

In the second listing two commands are sometimes de-
picted on the input section. This is a consequence of
the possibility to execute more than one instruction
per clock cycle. The notation "WRI_REGA_A_ means
that the value taken from the input section is written
into register A with command mapping A. In addi-
tion, most of the commands can be executed via the
command mapping B which is activated if the com-
mand EXE_COM._ is encountered. This allows, at the
price of lower execution probabilities, the increase of
the possible command set.

# p = 1.26e-1 pattern length = 210 instructions

-> _IF_CF_ZF_PUSH_

-> _IF_CF_ZF_PUSH_
_IN_B_ -> _WRI_COM_A_
_0AP[7:0]_ _IF_ZF_POP_ -> _WRI_COM_A_

#* 3 o
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# _COM_ ===-- -> _IF_CF_ZF_PUSH_
# _CoM_ --——-—- -> _IF_CF_ZF_PUSH_
# _COM_ ===-- -> _IF_CF_ZF_PUSH_
# _coM_ --——-—- -> _IF_CF_ZF_PUSH_
# _0AP[7:0]_ _IF_ZF_POP_ -> _WRI_REGC_A_
# _COM_ ===-- -> _IF_CF_ZF_PUSH_
# _COM_ ----- -> _IF_CF_ZF_PUSH_
# _COM_ ===-- -> _IF_CF_ZF_PUSH_
#* _coM_ ---—- -> _IF_CF_ZF_PUSH_
# _COM_ ----- -> _IF_CF_ZF_PUSH_
#* _coM_ ----—- -> _IF_CF_ZF_PUSH_
# _COM_ ----- -> _IF_CF_ZF_PUSH_
# _REGA_ ----- => _WRI_REGB_A_
#* _coM_ ----—- -> _IF_CF_ZF_PUSH_
# _COM_ ----- -> _IF_CF_ZF_PUSH_
# _0AP[7:0]_ _POP_ -> _ADD_VAL_A_
# -> _IF_CF_PUSH_
# -> _PUSH_
# =-> _IF_CF_ZF_PUSH_

6 Discussion

In the research on self-organized dynamical systems
there are two basic questions: firstly the question on
the transition from the non-living to the living world
and secondly the need to abandon detailed control
of complex nano-systems. Though the first question
might sound academic, the opposite is the case. If we
know how artificial life can be created we probably will
know much more about creativity as such and other
higher mental processes. The second question springs
to mind when e.g. in DNA-computing [21] the I/O of
data becomes an extraordinary issue.

The use of dedicated hardware in the research of bi-
ological model systems has both benefits and draw-
backs. The benefits are obvious — the systems to be
investigated are closer to real biological systems — in
scale and because physics are inherently present. On
the other hand, the large amounts of data processed
by the hardware and its speed forbid the detailed anal-
ysis of all sequences in the machine. Now, as it is
the case with molecular biology, filtering the essential
data, realizing experimental controls and being con-
tent with much less powerful tools is the prize which,
inevitably, has to be paid. The work reported truly
lies on the verge between computer science, electron-
ics and molecular biology.

A short discussion of the results:

e It could be shown that it is indeed possible
to realize pure computer science models of self-
organizing systems in hardware. It can be argued
what self-replication really means. Looking at
the sequences sometimes gives the impression that
these are selected because of their bit-properties
and not of their functional behavior. Neverthe-
less, these repeats occur in high numbers and are
not random at all. There are a lot of intermedi-
ate pattern forming processes between the repeat-
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ing structures found in crystals and e.g. bacterial
cells.

A highly parameterizable and evolvable uC has
been presented with a minimum number of one
instruction per clock-tic and thus a power of 64
MIPS. Optimizing the design should allow for uCs
in the 80MHz range within MereGen™. With
e.g. 3456 processors, a total power of 221 GIPS
of customized pCs have been realized.

The view on mutational events has broadened in
the sense that self-poisoning promises to open up
a new class of evolutionary power. Certainly, it is
different from fitness sharing [22] or resource con-
strained evolutionary systems, see the appendix
below.

The task to build artificial living systems still re-
mains. Longterm experiments done so far did not
exhibit an escape from stationary behavior. The
scaling experiments, fig. 6, did not show any de-
pendency on the connection topology. All differ-
ent partitions resulted in more or less exactly the
same complexity measures. It seems that the se-
lection pressure towards robustness of the evolv-
ing programs is so strong that inputs from other
processors are deferred as much as possible. Look-
ing at the sequences of the evolved programs (data
not shown), no essential differences between the
partition sizes can be observed. Another reason
might be that no substantial organization devel-
oped and the resulting inhomogeneous sequences
are a pure consequence of the physical constraints
being felt by the system.

Though this is bad news, the good news are that
if one finds the means to let the evolving system
display a particular scaling behavior then some-
thing important has been learned. Up to now, a
statement often made that only the system size
has to be sufficiently large to realize the emergent
behavior desired cannot be validated.

With this hardware realization, even non-
hardware designers are able to investigate com-
plex hardware models because the flexible uCs
are suited to many different applications. With
the additional broadband interconnect available
on each board, even external apparati might be
attached.
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7 Conclusions

With MereGen™, several absolute measures become
feasible: Firstly, simulation time is no longer the bot-
tleneck — the speedup due to the hardware is sufficient
to analyze the systems in the asymptotic limit. Evo-
lutionary time scales — comparable to the evolution on
earth — can be established. Secondly, due to the hard-
ware resources scaling behavior can be measured. If a
system does not scale appropriately it can not be ex-
pected to show something different if the system size is
doubled (the combinatorics involved in these systems
are far beyond any hope to achieve exhaustive search),
thus a strong limit on possible biological models is es-
tablished. Thirdly, physical properties like routing de-
lays and routing of information as such can now be
studied in extenso and and might help — besides bio-
logical applications — in optimizing network traffic or
other systems where routing is the limiting constraint.

We succeeded in the construction of an information
processing machine with the ”interpretation be itself
susceptible of expression by means of the symbols
which the machine employs. Thus, although it is not
itself the being that reflects,” [1] we now might hope
to build and understand self-reflecting machines.

Appendix: Fitness sharing!

Fitness sharing [22] is probably the concept most simi-
lar to self-poisoning proposed in this article. Though a
detailed comparison is out of scope of this work, some
distinguishing properties should be mentioned:

e Fitness sharing is a phenotypic concept. Whether
an individual in the population shares the avail-
able fitness for its sequence with other individu-
als of the same or similar type or is only in an
indirect manner (via e.g. mutation or crossover)
determined by the genotype of this individual.

e With self-poisoning the frequency of instructions
or genes throughout the population is counted.
The parameter oz, see tab. 1, should thus be
maximized. This would disrupt the ability of the
genetic algorithm to adapt to multi-modal fitness
landscapes.

e With self-poisoning only dominant genes are af-
fected. Individuals not using these dominant
genes or using them as a genetic pool do not suffer
from the consequences of randomization or even

!Thanks to the two referees who made me aware of this
research
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Fitness sharing Self-poisoning

fi = f(4)

ny; = number of

fi = ()
instructions or genes
of type j

1- ( dij )"‘sh
sh(d;;) = %sh
0
N = number of

N instruction or gene

m; = E sh(d;j) types

- if (ny; = max(nrj),
J=1 0< j < N) then

fi

i

ifdjj < ogp
otherwise

fi ~ 0 in most cases

fshyi =

Table 1: Fitness sharing [22] versus self-poisoning
The formulas on fitness sharing are taken from [23]. With
fi the original fitness of an individual, d;; the Hamming-
distance between two genomes and fgp ; the effective
shared fitness of an individual. The two parameters ogp,
and agp determine the behavior of the genetic algorithm
applied to a usually multi-modal problem. With 0 <
osn, < 1 and agp, # 0 only identical sequences are reduced
linearly in fitness. To compare with self-poisoning ogp
should be chosen as oz, = max(dij) with the consequence
that only unimodal fitness landscapes can be adapted prop-
erly. The main difference between both concepts is the tar-
get of fitness reduction: in fitness sharing the total fitness
receivable by a sequence (phenotype) is constrained, but
with self-poisoning the genotype is affected through ran-
domization of the most abundant instructions or genes in
the population of sequences.

better, are perhaps able to utilize the newly gen-
erated genetic information. Thus, self-poisoning
is a genotypic concept.

Whether the problem of using explicit fitness as in
genetic algorithms or implicit fitness used here as in
many other artificial life models is of importance has
to be evaluated further.
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