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Abstract

We consider the convergence properties of
self-adaptive evolutionary algorithms (EAs).
The self-adaptive search component of these
EAs implicitly adapts the step lengths in re-
sponse to their efficacy for generating im-
proving points. We analyze the convergence
of a (1,\)-EA with simpler mutation up-
dates than are commonly used in Evolution-
ary Strategies or Evolutionary Programming
methods. Although self-adaptive EAs have
been analyzed by several authors, our anal-
ysis provides the first exact proof of conver-
gence for an implicitly self-adaptive EA. Our
experimental and theoretical analysis demon-
strates that this EA robustly converges to
the optimum of a symmetric, unimodal prob-
lem.

1 INTRODUCTION

The distinguishing feature of self-adaptive evolution-
ary algorithms (EAs) is that the control parameters
are evolved by the evolutionary algorithm. This is
particularly important when using EAs to optimize
over continuous design spaces, since an effective search
requires a search over different neighborhoods of the
domain as well as refined search at different length-
scales within interesting neighborhoods [6]. Thus self-
adaptation is a central feature of EAs like evolutionary
stategies (ES) and evolutionary programming (EP),
which are applied to continuous design spaces. Eiben
et al. [6] distinguishes between ezplicit self-adaptation,
in which the success of previous iterations is explicitly
employed to adapt the step length, and implicit self-
adaptation, in which the the step lengths are evolved
along with the search parameters. Eiben et al. [6] dis-
tinguishes these forms of self-adaptation by denoting
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explicit methods as adaptive EAs and denoting im-
plicit methods as self-adaptive EAs. However, this dis-
tinction between adaptive and self-adaptive methods
does not appear to have been widely adopted.

Explicitly self-adaptive EAs have been analyzed by
a number of authors, and a variety of analyses have
proven convergence theories for different explicitly self-
adaptive formulations [1, 7, 10, 9, 11, 12, 13, 15]. By
contrast, Beyer [3, 4] has developed the only theo-
retical investigation of implicitly self-adaptive EAs;
he considers the convergence of the implicitly self-
adaptive (u, A)-ES. Beyer notes that EAs can be de-
scribed by an inhomogeneous Markovian process, and
that the stochastic evolution of the system can be
expressed by Chapman-Kolmogorov equations. How-
ever, he further notes that a direct treatement of these
equations is generally quite difficult, and thus his anal-
ysis treats the (u, A)-ES as a dynamical system from
which simpler dynamical systems are derived and val-
idated.

In this paper we reconsider the convergence properties
of the implicitly self-adaptive (1, A)-ES. We simplify
this EA’s dynamics by considering a mutation opera-
tor that employs a discrete random variable. In this
EA, there are a finite (and small) number of possible
individuals that can be generated in each iteration.
Consequently, the expected behavior of the EA can
be characterized from one iteration to the next. Our
analysis provides a convergence theory for the (1, \)-
ES for one-dimensional symmetric, unimodal objective
functions. Although this is clearly an artificial class of
objective functions, we hope that the techniques used
in this analysis will be applicable to broader problem
domains.

A complete description of our analysis is beyond the
scope of this paper, so we refer the reader to DeLau-
rentis et al. [5] for further details. In addition to our
convergence analysis, we have also identified param-
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eters for which this convergence theory is practically
relevant, and we provide some simple comparisons of
these EAs with an (1, A)-ES using the standard log-
normal mutation operator. Finally, we describe how
this convergence theory can be exploited to show how
non-elitist self-adaptive (1, A)-EAs can fail to robustly
converge to globally optimal solutions. This result fol-
lows from the convergence theory that we have proven,
and thus we believe that this is a broader property of
implicitly self-adaptive EAs.

2 BACKGROUND

Perhaps the most common approach to the analysis
of ESs is to the consider the progress rate, p. Typ-
ical progress rates reflect the expected change of the
ES from one iteration to the next with respect to a
progress metric, which reflects the distance of a point
from a given local optimum. Beyer [3] considers the
progress rate of a standard self-adaptive (1, A)-ES with
log-normal mutation and concludes:

Furthermore, applying the scaling rule 7 =
c1,AV N ensures the linear convergence of the
ES algorithm. (His italics)

Beyer models the (1, A)-ES with an approximate noisy
map, and his analysis considers both first-order and
second-order dynamics of this ES.

Although this analysis provides significant insight into
the dynamics of this ES, it does not provide an exact
convergence theory of this ES. Beyer’s analysis makes
a variety of nontrivial approximations to simplify the
stochastic process underlying this ES. For example,
the approximations that Beyer makes partially decou-
ples the interaction between the step-length param-
eter and position parameter, which may fundamen-
tally affect the convergence of these random variables;
variations in the step-length parameters are modeled
with normally distributed noise, which does not de-
pend upon the position parameters. Further, Beyer’s
analysis does not carefully characterize the type of
stochastic convergence exhibited by the approximate
noisy map. Although the analysis of first- and second-
order dynamics suggests that this ES has linear conver-
gence, Beyer’s results do not state this result in terms
of standard forms of stochastic convergence (e.g. al-
most sure, in probability, etc.) [8].

Thus it is clear that an exact a convergence theory
has not been previously developed for any class of
implicitly self-adaptive EAs. The convergence the-
ory that we describe considers the sequence of best
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points found in each iteration of an implicitly self-
adaptive (1, A)-ES, and we show that these points con-
verge almost surely (i.e. with probability one). If
Y and Y; are random variables, then we say that
the sequence {Y;}¢>o converges almost surely to Y if
P{limy_,o, Y; = Y} = 1. We write this as ¥; =5 Y.
See Grimmett and Stirzaker [8] for a thorough discus-
sion of stochastic convergence.

3 ANALYSIS OF A SIMPLE ES

3.1 OVERVIEW

In this section we describe a class of self-adaptive EAs
that are guaranteed to converge on one-dimensional,
unimodal objective functions. We consider a simpli-
fied (1, A)-ES that generates A new points in each it-
eration and selects the best point generated for the
next iteration. Figure 1 describes Algorithm A, which
updates the mutation scale with the standard update
rule: of = oy_1 - D}. However, this EA is distinguished
by the fact that it uses a discrete random variable for
D} as well as the discrete random variable, B, to
generate ;.

Given zg, 09
Fort=1, ...
Fori=1:\
O'Z =0¢-1* Di )
Ty =x4 1+ 0} - B
End
J =argmin;—1.x f(z})
—
Iy = JIt'
oy =0}
End

Figure 1: Algorithm A: A self-adaptive (1, A)-ES for
one-dimensional problems. The random variables D}
and B! are discrete random variables described in the
text.

Let d! be the realization of the random variable D;:
Di € {v,1,1/~},1/2 < v < 1. Let vy = P{D} = ~},
vy = P{D{ = 1} and v3 = P{Di = 1/~} for all t;
we assume that these probabilities are nonzero. Thus
ol = o4_1di. A step length o} is used to generate
the point ! = z;_1 + o} - b, where b} is the realiza-
tion of the random variable Bf: Bi € {—1,+1} with
probabilities {%, %} respectively. Each point z; with
its corresponding step length o, becomes the parent
point for the next iteration.
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Let X and ¥ be random variables that describe the
distribution of the values of x; and o; respectively
when a population of size A is used by Algorithm A.
Let F: be the sequence of o-algebras that describe the
random events that underly X and £}. The key ob-
servation that underlies our analysis is that the conver-
gence of X} and ¥ are complementary. For example,
¥ tends to grow when X is far from the optimum,
but in this situation X} is moving toward the opti-
mum as much as ¥} grows. Similarly, when X} is
very close to the global optimum then X;' may need
to move away from the optimum. But in this case, the
value of X7 is likely to decrease.

This observation led us to consider the convergence of
the random variable Z} = | X}| + W, 3, where

3y +1
T4l —n)

Our analysis applies when Algorithm A is applied to
objective functions that satisfy the following assump-
tion:

Assumption 1 The function f : R — R has the
property that

1. There exists a unique global minimum z* = 0,

2. f is symmetric about * (i.e. f(x) = f(2z* —x)),
and

3. f is monotonically increasing for x € (z*,00).

Note that we assume that z* = 0 only for convenience
sake, since if an EA converges on a function that sat-
isfies this condition, then we can show convergence for
any other function h with nonzero global optimizer by
optimizing the function f(z) = h(z + z*). Assump-
tion 1 requires that f be unimodal, but it is quite weak
otherwise. Assumption 1 does not require that f be
continuous, and the global optimum can be at an iso-
lated point (e.g., see Figure 2). Finally, note that since
f is monotonically increasing for z € (z*, 00) then be-
cause of symmetry f is monotonically decreasing for
x € (—00,z%).

3.2 ANALYSIS

Our analysis begins by showing that Z;} converges al-
most surely for sufficiently large A\. Given this, we
show that the step lengths ¥ converge to zero, and
finally we show that this implies that X} converges
to z*. A random process X; is a super-martingale if
E[|X¢|] < oo and E[X¢41|F{] < Xy, where F is the
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X

Figure 2: An example of a function satisfying Assump-
tion 1 with an isolated global minimum.

family of o-algebras that describe the events under-
lying Xy [8]. The following lemma provides the key
result for our proof of Proposition 1.

Lemma 1 Let% < v < 1, and suppose that f satisfies
Assumption 1. There exists Ao > 0 such that for all
A> )\0; E(Z{\-H |ft) < Zt)"

The following proposition shows that Z} is a super-
martingale, which roughly shows that Z decreases on
average.

Proposition 1 Let % < v < 1, and suppose that the
function f satisfies Assumption 1. Then there ezists
Mo > 0 such that for all A > Xo, Z} is a super-
martingale with respect to the o-algebras F;.

Proof. Note that FE(Z}) < oo, since there are
a finite number of states that can be reached by
Algorithm A after t iterations, and Z} is finite for
each of these states. From Lemma 1 we know that
E(Z}, | Fi) < Z}. Together, these results show that
Z} is a super-martingale with respect to F. "

In the following results, we use the value A¢ described
by Proposition 1. The following corollary follows im-
mediately from the fact that Z} is a nonnegative
super-martingale.

Corollary 1 Let § < v < 1, and suppose that the
function f satisfies Assumption 1. For all X > g,
there ezists a random variable Z2, such that Z} ==

28

Corollary 1 ensures that X* and ¥} almost surely gen-
erate a convergent sequence. This result confirms the
observation noted above: X} and ¥} converge in a
complementary fashion. However, this result is not
sufficient to demonstrate that both of these random
variables converge to zero. The following theorem uses
Corollary 1 to show that ¥ converges to zero.
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Theorem 1 Let § < v < 1, and suppose that the
function f satisfies Assumption 1. For all X > Ao,

a.S.

) 25 0.

Finally, we prove our main result: X} converges to
zero almost surely. The following technical assumption
is required for this analysis.

Assumption 2 vy, v3 and A are chosen so that
1_(]-_&))\_}—(@)/\2 1+1/1 ’\_ ]_—1/1 A
2 2 2 2
Theorem 2 Let % < v < 1, and suppose that the
function f satisfies Assumption 1. Further, let vy, v3

and X satisfy Assumption 2. There exists Ay > Ao such
that for all X > Xy, X} 225 0.

4 PRACTICAL RELEVANCE

In this section, we consider the practical relevance of
this convergence theory in cases where A < 5. Note
that Theorem 2 is not practically relevant when A > 6.
In this case, the stochastic sampling performed by Al-
gorithm A is unnecessessary, since it is at least as effi-
cient to simply enumerate the six possible new points
that can be generated in each iteration. The follow-
ing section considers the range of parameters for Algo-
rithm A for which the convergence theory applies, par-
ticular when A = 5. Subsequently, we consider some
simple experiments that confirm that the performance
of Algorithm A is roughly comparable to a standard
self-adaptive ES using these parameters.

4.1 FEASIBLE PARAMETERS

We consider values of v; and « for which the conver-
gence theory for Algorithm A (in Proposition 1 and
Theorems 1 and 2) applies for values of A < 6. The
following lemma makes it clear that the convergence
theory does not apply for all possible values of v;.

Lemma 2 Suppose that A < 5. Then there ezists € >
0 such that if vy < € then Z}* is not a super-martingale.

Proof. To ensure that Z} is a super-martingale, we
must have
E(Z{y, | F) < 2} (1)

for all possible values of Z. Consider the case where
Algorithm A is within oy_1/(27) of the optimum. In
this case, the six possible values of |X}\ | that can
be realized are worse than |X;|. Further, of the six
terms in the expectation, only the terms representing
contraction steps can reduce the value of Z}, ;. Thus
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if Equation (1) is satisfied, the probability of the
contraction steps, vi, cannot be arbitrarily small.
But this is what we have assumed, so X} is not a
super-martingale for sufficiently small values of e. =

It is not clear that a simple analytic characteriza-
tion can be developed to describe the different feasible
choices for v; and 7. Consequently, we have numeri-
cally evaluated the set of choices for v; and 7 for which
our convergence theory is applicable. Our numerical
model considers the v; and «y that satisfy (a) Assump-
tion 2, (b) the constraint 1 +v3 < 1, and (c) the four
main cases of the analysis in Proposition 1:

1. |-73t + O't’yb| < |.’L't|,
2. |$t + O'tbl < |$t|,
3. |zt + o¢b/y| < |z¢|, and

4. |zt + opyb| > |z

where z; + o0.db is the best value of z;11 possible for
some d € {7,1,1/7} and b € {—1,1}. Note it is a sim-
ple matter to show that if case (4) does not hold then
one of the other three cases holds. For each of these
four cases we consider the expectation in Equation 1,
which imposes a constraint on the values of v; and 7.
In fact, this equation imposes several constraints on v;
and +, one for each possible rank-ordering of the six
possible values of z;;. The details of how these con-
traints are derived is discussed in a technical report [5].

We enumerated feasible values of v; and ~ with re-
spect to these constraints. For these calculations, we
assumed that no ties could occur in the rank-order of
possible values of x;;1 (for example, this is always true
if xo is irrational). Further, we fixed v and sampled
v; and v3 on a fine mesh. The results of these calcu-
lations are shown in Figure 3. For values of v > 1/+/2
we did not find any feasible parameters in our calcu-
lations, which may simply reflect the weakness of our
approximations in this case. However, if we assume
that v < 1/4/2 then our results clearly indicate that
there is a wide range of feasible parameters for Algo-
rithm A. Further, there is significant overlap between
these figures, which suggests that there may be values
of v; and v3 for which the convergence theory is valid
for 0.5 < v < 1/v/2.

4.2 EXPERIMENTAL COMPARISONS

We compared Algorithm A with a standard self-
adaptive (1,A)-ES on several simple unimodal prob-
lems. These experiments provide further confirmation
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Figure 3: Domains of feasibility for v and vs for (a) v = 0.55, (b) v = 0.60, (¢) v = 0.65 and (d) v = 0.70. The
axes are the expansion probability, v3, and the contraction probability, v;.

of the convergence properties of Algorithm A. Further,
they demonstrate that Algorithm A can have comper-
able performance to standard self-adaptive EAs, de-
spite the fact that Algorithm A uses a discrete random
variables in the step-length adaptation and in the gen-
eration of mutation steps.

The following test functions were used in our experi-
ments:

o fi(z) =2?
o fo(x) = elel/100 _1
e fa(z) = \/W

o fa(z) =10[|z[] + ||

All of these functions satisfy Assumption 1. The func-
tion f; is a standard test problem. Function fs be-
comes much steeper than fi, which stresses some as-
pects of the convergence theory. Function f3 is non-
convex, and function fy is discontinuous in regular in-
tervals (and at the global optimum). These functions
are illustrated in Figure 4.

We compared Algorithm A with Algorithm B, a stan-
dard self-adaptive ES using log-normal self-adaptation
of the step lengths and normally distributed mutation
steps (e.g. see [2, 4]). Figure 5 describes Algorithm B;
N(0,1) refers to a normally distributed random vari-
able with mean zero and variance one. Note that this
algorithm is identical to Algorithm A, except for the
updates to of and z!, which simply employ different
random variables in place of D} and Bj.
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Figure 4: Graphs of functions (a) f1, (b) f2, (¢) f3 and
(d) fa-
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Given xg, 0¢
Fort=1, ...
Fori=1:\
Uz =0y_1 -exp(N(0,1))
.’Ei =T¢-1 —|— (Tti - N(O, 1)
End
J = argmin;=1:) f(zd)
T =1z
gy = O'z
End

Figure 5: Algorithm B: A standard self-adaptive
(1, A)-ES for one-dimensional problems.

Both algorithms were run with 1000 different random
seeds on each test function. Each optimizer has a sin-
gle minimum at z = 0 with f(0) = 0. The optimizers
were terminated after the function evaluation was less
than 1078, except for f4; f4 has an isolated minimum
at £ = 0 and the function approaches 10 as x goes to
zero. Thus we terminated these experiments when the
optimizers found points whose function evaluation was
less than 10+ 10~8. Further, we consider the behavior
of these algorithms for two different initial conditions:
(a) zp = 10 and o9 = 100 and (b) zo = 1000 and
o9 = 100. Preliminary experiments suggested that
Algorithm B worked well on these problems by ef-
fectively contracting the step length. Consequently,
Algorithm A was run with v3 = 0.25, 1 = 0.7 and
v = 0.55.

Tables 1 and 2 compare the mean number of func-
tion evaluations before termination for these two ini-
tial conditions. Additionally, these tables show the
results of a pairwise-comparison between these algo-
rithms: for each random seed we compare the num-
ber of function evaluations needed for each algorithm
and we report the percentage of trials for which Algo-
rithm A is better.

Function || Mean Evals | Mean Evals | Pairwise
A B Score

il 305.8 281.7 53.9

fo 376.7 361.4 57.1

f3 795.7 736.4 67.3

f1 458.5 447.0 63.1

Table 1: Comparison of Algorithms A and B on the
test functions when zy = 1000. The pairwise score is
the percentage of trials that Algorithm A terminated
after fewer function evaluations than Algorithm B.
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Function || Mean Evals | Mean Evals | Pairwise
A B Score

N 174.2 224.1 71.5

fa 242.4 306.7 73.7

I3 649.5 690.8 84.3

f1 312.1 394.6 78.8

Table 2: Comparison of Algorithms A and B on the
test functions when g = 10. The pairwise score is the
percentage of trials that Algorithm A terminated after
fewer function evaluations than Algorithm B.

These results confirm the robustness of Algorithm A;
this method found near-optimal points in every ran-
dom trial of the experiments. Further, these experi-
ments suggest that Algorithm A can perform as effi-
cient a search as a standard self-adaptive EA. In fact,
the experiments indicate that Algorithm A may me
slightly more efficient, but these results are too pre-
liminary to draw conclusions. Finally, we note that
the total run-time of Algorithms A and B appears to
be correlated with the slope of the function near the
origin; when the slope is higher the run-time is longer.
We conjecture that this reflects the fact that the step
length needs to be contracted to a smaller scale to en-
sure convergence on narrower local minima.

5 GLOBAL CONVERGENCE

The analysis in Section 3 provides a concrete basis for
expecting robust behavior from a self-adaptive (1, A)-
ES. This analysis also provides insight into the ques-
tion of whether self-adaptive EAs are guaranteed (with
probability one) to converge to globally optimal solu-
tions in all cases. Rudolph [14] illustrates how self-
adaptive, elitist EAs can fail to converge to glob-
ally optimal solutions with probability one. However,
the EA that Rudolph considers uses an explicit self-
adaptive control mechanism: whenever there is an im-
proving mutation the step length is increased and it is
decreased otherwise. By contrast, Algorithm A uses
implicit self-adaptation, since the step length parame-
ter is adapted through the evolutionary process itself.

In the following analysis, we show that there exists a
function and initial conditions for which Algorithm A
fails to converge to the globally optimal solution with
probability one. Consider the following function:

_{ Il
9(“’)_{ |z — 20| - 1

This function is comprised of two local minima at
z =0 and z = 20. If |z9| < 10 then this point is in

,x < 10
,x > 10
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the basin of attraction of the non-global local minima.
Now if o9 < v(10 — |zo|) then Algorithm A will begin
searching within this basin of attraction (e.g. it cannot
jump out in the first iteration). Locally, this function
satisfies Assumption 1, and so we might expect that
Algorithm A begins to search locally and thus misses
the global optimum. The following theorem proves
that this is true with some nonzero probability. Let
z* = 20 and recall that A\; is defined by Theorem 2.

Theorem 3 Let {x:} be a sequence of points gener-
ated by Algorithm A on g(x) starting with xo and
oo such that |xo| + Wyo0 < 10. If A > A then
P(limy_,oo ¢ = z*) < 1.

Proof. Let Y? and i;\ be the stochastic process,
defined on some probability space ({2, F, P), that de-
scribes the behavior of Algorithm A on g. Consider
the events in 2 for which Algorithm A converges to the

global optimum: A* = {w € N | lim;_, X;\ (w) = x*}.
We wish to show that P(4*) < 1. Let 4; = {w € Q|
max¢>o |7?| < 10}, and note that AS D A*. Thus it
suffices to show that P(A;) > 0.

Now Z} is a non-negative super-martingale when Al-
gorithm A is applied to the function ¢'(z) = |z|. Thus
we can apply Kolgomorov’s Theorem [8] to show that

E(Z3) _ |zo| + W00
A 0/ __ Y
P (‘?ﬁ’é‘zt > 10) DT R TR

and from our assumptions we have P(max;>o Z} >
10) < 1 — 6 for some 6 > 0. Now consider the

process Z, = |X,| + W.yfi‘ on the set of events
Ay = {w € Q | maxs>o 7;‘ < 10}. For each event

w € A, the behavior of Z}(w) is identical to 7;\ i
Thus we have P(As) > 0. To conclude, note that

This result provides further theoretical evidence that
we should not expect self-adaptive EAs to robustly
perform global optimization for multimodal objective
functions. This result complements Rudolph’s re-
sult by considering a different form of self-adaptation.
Additionally, our result applies to a non-elitist self-
adaptive EA, and thus our result answers one of the
open questions posed by Rudolph [14].

6 DISCUSSION

Rudolph [14] summarizes theoretical results concern-
ing self-adaptive EAs and notes that the theoretical
underpinnings for these methods are essentially unex-
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plored. Our analysis exactly characterizes the stochas-
tic process that underlies a class of self-adaptive (1, \)-
ESs, and we have developed a convergence theory that
provides a robust guarantee that these methods con-
verge. Our analysis is similar in spirit to Rudolph’s
analysis of non-elitist EAs [11]. The main difference
in our work is the focus on EAs that implicitly self-
adapt the mutation step length by coevolving these
parameters within the EAs evolutionary process; our
analysis appears to be the first result to exactly prove
convergence for these self-adaptive EAs.

We expect that it will be difficult to prove similar re-
sults for general, nonconvex objective functions. How-
ever, we conjecture that you can relax the symmetry
assumption that is made in our analysis. This assump-
tion does not appear to be too critical for our proof
that Z} is a super-martingale. However, this assump-
tion may be more central to our proofs of Theorems 1
and 2, and this assumption is heavily exploited in our
analysis of feasible values of v; and . Similarly, it
should also be relatively straightforward to extend our
analysis to the self-adaptive (u,A)-ES, which gener-
ates X points and keeps the best y for the next itera-
tions. However, this may also weaken our analysis of
the feasible values of v; and . In both of these cases,
the more general convergence theory makes it more
difficult to theoretically confirm that the convergence
theory applies for small values of A.

The use of discrete random variables in our self-
adaptive EA is the key element that facilitates our
analysis. This ‘discrete’ model of EAs on continuous
design spaces is similar in spirit with our previous anal-
yses of evolutionary pattern search methods [9, 10],
where discretization of the mutation steps provides
significant theoretical leverage. Although discrete self-
adaptive EAs are not commonly used when optimizing
continuous search domains, our empirical results sug-
gest that these EAs may perform as well as standard
self-adaptive EAs.

We believe that our result in Section 5 is quite in-
teresting in several ways. First, this result illustrates
the value of the underlying convergence theory that
we have developed; our analysis is much simpler than
Rudolph’s analysis of explicitly self-adaptive EAs [14].
Second, this result confirms that despite their suc-
cess as global optimizers, the self-adaptation in EAs
limits their ability to perform global search. Thus
as Rudolph notes, we should begin to focus on the
global aspects of these methods. Finally, this result
provides further justification for our analysis of evolu-
tionary pattern search methods [9, 10], which focus on
proving a local convegence theory. If we cannot expect
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that adaptation will provide global convergence, then
we should ensure that it does provide local convergence
on a wide range of objective functions.

We conclude by noting several open problems that are
related to this work. First, it would be interesting
to consider the progress rate for Algorithm A. We
imagine that this analysis might follow directly from
Beyer’s analysis of the (1, A\)-ES. However, it may be
possible exploit our use of discrete random variables
to avoid some of the approximations that are made in
that analysis

Next, the basic proof technique should be extensible
to multidimensional problems. However, a significant
complication is that in more than one dimension you
can take a step that both increases the value of the
objective function and the step length. Thus it appears
that the basic convergence result for Z} may not be
possible without further assumptions on the objective
function.

Finally, a similar analysis should be possible for the
self-adaptive (1+ \)-ES, which only replaces x; in iter-
ation ¢ if one of the A points generated is an improving
point. This is an elitist EA, and consequently the dis-
cretized mutation steps would make it possible for this
EA to get stuck near an optimum. Thus it is necessary
to augment the EA to contract the step length with
some fixed, nonzero probability in order to prevent it
from converging to a point that is not locally optimal.
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An Analysis of the Role of Offspring Population Size in EAs
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Abstract

Evolutionary algorithms (EAs) are general
stochastic search heuristics often used to
solve complex optimization problems. Unfor-
tunately, EA theory is still somewhat weak
with respect to providing a deeper under-
standing of EAs and guidance for the practi-
tioner. In this paper we improve this situa-
tion by extending existing theory on the well-
known (141) EA to cover the (1 + \) EA,
an EA that maintains an offspring popula-
tion of size A. Our goal is to understand how
the value of \ affects expected optimization
time. We compare the (1 + \) EA with the
(141) EA and prove that on simple unimodal
functions no improvements are obtained for
A > 1. By contrast there are more complex
functions for which sensible values of A can
decrease the optimization time from expo-
nential to a polynomial of small degree with
overwhelming probability. These results shed
light on the role of A and provide some guide-
lines for the practitioner.

1 INTRODUCTION

Evolutionary algorithms (EAs) are a broad class of
stochastic search heuristics that include genetic algo-
rithms (Goldberg 1989), evolution strategies (Schwe-
fel 1995), and evolutionary programming (Fogel 1995).
While there are countless reports of successful appli-
cations, EA theory is often concerned with either only
isolated aspects of the algorithm or extremely simpli-
fied versions. One example are investigations of the
so-called (1+1) EA, a very simple EA that uses a par-
ent population of size 1 in each generation to create a
single offspring by bit-wise mutation and replaces the
parent by its offspring if the fitness if the offspring

Kenneth De Jong
Krasnow Institute
George Mason University
Fairfax, VA 22030
kdejong@gmu.edu

is not inferior to that of its parent (see, for exam-
ple, Rudolph (1997), Garnier, Kallel, and Schoenauer
(1999), and Droste, Jansen, and Wegener (2002)).

It has been known for some time that a simple (1+1)
EA is often at least as efficient as much more so-
phisticated EAs (Juels and Wattenberg 1995; Mitchell
1995). This motivates the search for situations when
the (1+1) EA is outperformed by more sophisticated
EAs. For example, if we increase the parent population
size p, i.e., a (u + 1) EA and introduce multi-parent
reproduction, there are problems for which the use of
uniform or 1-point crossover can reduce the expected
optimization time from exponential to a polynomial of
small degree (Jansen and Wegener 2001).

In this paper we focus on the role of the offspring pop-
ulation size A in (1 4+ A\) EAs. In particular, we would
like to know when it makes sense to have A > 1, and
if so, what are reasonable values for A\. Our intuition
suggests that, for simple unimodal functions, simple
hill-climbing optimization procedures such as a (141)
EA are efficient and not likely to be outperformed by
(1+ A) EAs. However, as the complexity of the func-
tions to be optimized increases, there should be bene-
fits for having A > 1.

We formally address these issues by extending the
analysis of the (1+1) EA as described in Droste,
Jansen, and Wegener (2002). In particular, we are
able to characterize the slowdown due increasing A
on two well-known unimodal test functions: ONEMAX
and LEADINGONES. In addition, we exhibit a class
of functions for which increasing A in a quite sensible
manner reduces the expected optimization time from
e™ to n?, where n is the dimension of the search space.
The result of this analysis is an improved understand-
ing of the role of offspring population size and a better
sense of how to choose A for practical applications.

In the next section, we give a formal description of
the (1 + A) EA and describe the two well-known test
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functions investigated. In Section 3 we present results
on the expected optimization time of the (1 + A) EA
for these test problems. In Section 4 we present an
example function that allows us to see when the use
of an offspring population can reduce the optimiza-
tion time from exponential to a polynomial of small
degree. However, modifying this example function we
see that also the opposite behavior can be observed,
i.e., the use of a quite small population increases the
optimization from O(n?) to exponential. In Section 5,
we conclude and describe possible future research.

2 DEFINITIONS

The (1 + A) EA to be analyzed is an evolutionary al-
gorithm that maintains a parent population of a size
one to produce in each generation A offspring indepen-
dently and replaces the parent by a best offspring if
the fitness of this offspring is not inferior to the fitness
of its parent. The internal representation is a fixed
length binary string of length n and offspring variation
is the result of bit-wise mutation. For convenience we
assume the optimization goal is maximization. More
formally, we wish to maximize f: {0,1}" — R using:

Algorithm 1 ((1+ \) EA).

1. Choose z € {0,1}" uniformly at random.
2. For i:=1 To A Do
Create y; by flipping each bit
in x independently with
probability 1/n.
m: = maX{f(yl)a"'af(yA)}'
If m > f(z) Then
Replace x by one y; chosen
uniformly at random from
{yi |l A< <) A (yi) =m)}.

5. Continue at line 2.

D w

Clearly, by setting A := 1, we get the well-known (1+1)
EA. Our goal is to analyze the effects that A > 1 has
on optimization performance. As usual in theoretical
analysis we measure the optimization time in terms of
the number of function evaluations needed before x be-
comes a globally optimal point for the first time. If G
is the number of generations, i. e., the number of times
lines 2—4 are executed, before this happens, we have
T = 1+ X-G for the optimization time T'. Note that T
is a fairer measure than the number of generations G.
However, on a parallel machine a speed-up of the fac-
tor A can be achieved. Since 7" obviously is a random
variable, we are mostly concerned with E (7'), the ex-
pected optimization time. Of course, other properties
of T can be of interest, too.
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3 PERFORMANCE ON SIMPLE
UNIMODAL FUNCTIONS

Theoretical analyses of evolutionary algorithms of-
ten begin with simply structured example problems.
The perhaps best known binary string test problem is
ONEMAX, where the function value is defined to be
the number of ones in the bitstring. Another slightly
less trivial example is LEADINGONES, where the func-
tion value is given by the number of consecutive ones
counting from left to right.

One way of analyzing algorithm performance on test
problems is via “growth curve analysis” in which closed
form expressions are sought that express the amount
of time required to solve a problem as a function of
the “size” of the problem (Corman, Leiserson, Rivest,
and Stein 2001). For example, it is known that the
expected optimization time E (7') of the (14+1) EA on
ONEMAX is ©(nlogn), i.e., as the size of the binary
search space {0,1}" increases, the increase in E (T') is
well-approximated by nlogn, and on LEADINGONES
the expected optimization time is © (n?) (Droste,
Jansen, and Wegener 2002).

Both of these functions are examples of unimodal func-
tions that can be optimized efficiently by simple hill-
climbing algorithms such as a (14+1) EA. As a con-
sequence, intuitively, one shouldn’t expect a (1 + \)
EA to outperform a (1 4+ 1) EA on such functions.
Rather, one might expect a decrease in performance
as we increase A. In this section we show this more
formally by extending the (14+1) EA growth curve
analysis to (1 + A) EAs. Interestingly, doing this for
LEADINGONES is far simpler than for ONEMAX.

3.1 PERFORMANCE ON LEADINGONES

Theorem 1.1. For the (1 + X) EA on the function
LEADINGONES: {0,1}" = R, E(T) = © (n +n-\)
holds if X is bounded above by a polynomial in n.

Proof. We begin with the upper bound and distin-
guish two different cases with respect to the number
of offspring A. First, we assume that A < en holds.
Note, that we want to prove that the expected op-
timization time is © (n?). We begin with the upper
bound. Obviously, it is sufficient if the current func-
tion value is increased by at least 1 at least n times
in order to reach the unique global optimum 1™. Dur-
ing the optimization the probability to create an off-
spring with larger function value is bounded below by
(1/n)- (1 —1/n)""t > 1/(en), since it is always suf-
ficient to mutate exactly the left-most bit with value
0. The probability that in one generation no offspring
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has larger function value than x is therefore bounded
above by (1—1/(en))*. Thus, with probability at
least 1—(1 — 1/(en))* > 1—e~*/(e") the current string
« is replaced by one of its offspring with larger function
value. Since we have A < e - n, obviously \/(en) <1
holds. Fort € R with 0 < ¢ <1 wehavel—e > t/2.
Thus, the probability that in one generation at least
one offspring improves upon its parent z is bounded
below by A/(2en) for A < en. Therefore, the expected
number of generations for an improvement of the func-
tion value is bounded above by 2en/A. We see, that
the expected number of generations the (1 + A) EA
needs to optimize LEADINGONES is bounded above by
2en?/). So, the expected optimization time is at most
A-2en?/\ = O (n?) as claimed.

Now, assume that A > en holds. As we noticed above,
the probability that in one generation the (1 + A) EA
creates an offspring with larger function value than its
parent is bounded below by 1 — e~*€"_ Since we as-
sume A > en, this is bounded below by 1 —e~!. Thus,
the expected number of generations until we have n
such generations is bounded above by O(n) implying
O(X - n) as upper bound on E (7).

In order to derive a lower bound, we remember that A
is bounded above by some polynomial. So, there exists
a constant k, such that A < n* holds. We see that
the probability of producing an offspring where k + 2
pre-specified bits are mutated is bounded above by
1/nk*2. Thus, the probability that such an individual
is not created among n - A offspring is bounded below
by 1 — (1/nF*2) - (n-A) > 1 —1/n. Now, we consider
only the first n/(4k + 8) = ©(n) generations. There
at most n**1/(4k + 8) offspring are produced. Thus,
with probability at least 1 — 1/n no such individual
is created. Now, we work under the assumption that
this is the case in the observed run. With probability
1/2, at least n/2 bits in the initial string are 0. It
is known (Droste, Jansen, and Wegener 2002), that
the bits that are to the right of the leftmost bit with
value 0 are random and independent during the run.
Thus, with probability at least (1/2) —1/n, after n/12
generations the global optimum is not reached. This
implies 2(An) as a lower bound on E (T'). O

This theorem confirms our intuition that a (1+ \) EA
will not outperform a (1+ 1) EA on LEADINGONES
since no value of A > 1 will reduce the expected op-
timization time below ©(n?). However, the more in-
teresting implication of this theorem is that, from a
growth curve analysis point of view, there is no signifi-
cant slowdown if A is anywhere in the range 1 < A < n,
since O (n? +n-\) =0 (n?) for A = O(n).
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This is due to the fact that, in each step of the
LEADINGONES function, the probability of creating an
offspring that is better than its parent is ©(1/n) (i.e.,
in ES terminology, the mutation operator has an al-
most constant success probability of ©(1/n)). Thus,
producing up to n offspring in each generation before
checking for improvements results in no substantial
waste of time.

3.2 PERFORMANCE ON ONEMAX

For ONEMAX things are less obvious. Although it is
fairly straightforward to show that a (14+X) EA cannot
do better than a (1 + 1) EA, it is considerably more
difficult to pin down precisely when increasing A be-
gins to significantly affect performance. This is due to
the fact that the success probability of mutation for
ONEMAX varies over time rather than remaining al-
most constant as in LEADINGONES. As we approach
the global optimum of 1™, the probability of creating
an offspring that is better than its parents approaches
©(1/n). Hence, as we saw with LEADINGONES, any
A < n is acceptable.

However, at the beginning, starting with a randomly
generated binary string, the probability of success is
with overwhelming probability larger than 1/¢ for a
constant ¢, much larger than 1/n. Hence, unless A is
a constant independent of n, there will be at least an
initial slowdown. Consequently, we see that there is
no simple intuitive answer as to when an increase in
A degrades performance. But it is possible to bracket
A with useful upper and lower bounds. We begin with
a theorem that establishes an upper bound on E (T')
and indirectly sets a lower bound for A:

Theorem 1.2. For the (1 + \) EA on the function
ONEMAX: {0,1}" — R, E(T) = O(nlogn + nA)
holds.

Proof. Assume that the current string x has Hamming
distance d from the global optimum, i.e., d = n —
ONEMAX(z). The probability to create an offspring y
with ONEMAX(y) > ONEMAX(z) is bounded below by
d/n(1 —1/n)""t > d/(en). Thus, the probability not
to increase the function value of x in one generation
is bounded above by (1 —d/(en))* < e=4*/(en) | So,
the probability to increase the function value of z in
one generation is bounded below by 1 — e~ ¢/ (en) >
1-1/(1+d-\(en)) = (d-N)/(en+d-X). Thus, E(T)
is bounded above by

" en + dA en e 1
A = — | = A+nl .
; o <n+ \ 2 d) O(nA+nlogn)

O
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In particular, if A is bounded above by logn, i.e.,
A = O(logn), then the expected optimization time
is bounded above by nlogn, which is no worse than
a (14 1) EA on ONEMAX. Similarly, a useful lower
bound on E (T") can be obtained that can be used to
establish an upper bound on A:

Theorem 1.3. For the (1 + \) EA on the function
ONEMAX: {0,1}" = R, E(T) = Q(\-n/logn) holds
if A is bounded above by a polynomial in n.

Proof. The probability to create an offspring y by
mutating z with ONEMAX(y) > ONEMAX(x) + d is
bounded above by

<n> Lt (9)

d) nt = d d

for all z € {0,1}" and all d € {1,2, ..., n —
ONEMAX(z)}. Therefore, the probability to create
one such y within n - A independent tries is bounded
above by n-A-(e/d)*. We conclude that the probability
to create one such y within n- A independent tries with
d € {log(n),...,n — ONEMAX(z)} is bounded above
by n-\-(e/log n)'°8" = ¢=Qlog(n)loglogn) Thys, the
probability that within n generations the Hamming
distance to the optimum is not decreased by at least
log(n) in one single generation is 1 — 22 (log(n) loglogn)
Since after random initialization the Hamming dis-
tance to the global optimum is at least n/2 with prob-
ability 1/2, this implies Q ((n/logn)-\) as a lower
bound on E (T') as claimed. O

Hence, if we allow \ to increase faster than log”n,
we begin to see a significant slowdown relative to the
nlogn performance of a (14+1) EA on ONEMAX. Com-
bining this with the previous theorem we see that keep-
ing A < logn means we’ll do no worse than a (1 + 1)
EA. This still leaves open the possibility that there
are values of A < log? n that result in performance im-
provements over a (14+1) EA. However, as our intuition
suggests, this is not the case. We show this formally
by proving that, whenever A grows more slowly than
v/ logn (an upper bound much larger than log® n),
E (T) is bounded below by Q(nlogn):

Theorem 1.4. For the (1 + \) EA on the function
ONEMAX: {0,1}"* —» R, E(T) = Q(nlogn) holds if
A=o0(y/n/logn).

Proof. It is easy to see that at some point of time
the Hamming distance between the current string
z and the global optimum is within {[\/n/2], ...,
[v/n]} with probability very close to 1. We con-
sider a run of the (1 + \) EA after this point of time.
Then, the probability to create an offspring y with
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ONEMAX(y) > ONEMAX(x) + 3 is bounded above by
(‘/3%) -1/n® < 1/n3/2. Thus, the probability to create at
least one such individual within A-nlogn independent
tries is bounded above by 1 — (1 — 1/n3/2)>"n10gn =
O (X-logn/y/n) = o(1). Now, we continue under the
assumption that no such individual is created. Then,
the Hamming distance can only be decreased by 1 or
2 in each generation. Given that the current Ham-
ming distance between x and the global optimum is d,
the probability to create an offspring that decreases
this Hamming distance is bounded above by 2d/n.
Thus, the probability to do so in one generation is
bounded above by 1 — (1 —2d/n)* < 4\ -d/n. Thus,
the expected number of generations is bounded below
by Z&/jl n/(4X-d) = Q((n/A) -logn). This implies
E(T) = Q(nlogn). O

The previous 3 theorems collectively tell us that we can
increase A up to logn without a significant degradation
in performance, but not beyond log2 n, leaving the in-
terval between logn and log® n unresolved. The final
two theorems of this section narrow that gap consid-
erably by increasing the lower bound slightly and de-
creasing the upper bound to within a constant factor
of the lower bound. We begin with the lower bound:

Theorem 1.5. For the (1 + \) EA on the function
ONEMAX: {0,1}"* - R, E(T) = O(nlogn) holds if
A<(nn)-(Inlnn)/(2lnlnlnn).

Proof. The lower bound follows from Theorem 1.4.
For A = O(logn) the upper bound follows from Theo-
rem 1.2. So, we assume A > Inn from now. In partic-
ular, we define v := A\/Inn and have v > 1.

We divide a run of the (1 + A) EA into two disjoint
phases and count the number of function evaluations
separately for each phase. Let 77 denote this num-
ber for the first phase and let 75 denote this num-
ber for the second phase. The first phase starts af-
ter random initialization and continues as long as
ONEMAX(z) < n —n/lnlnn holds for the current
string . The second phase starts immediately after
the end of the first phase and ends when the global
optimum is reached. Obviously, for the expected opti-
mization time E (T') we have E (T') = E (T}) + E (T»)
with these definitions.

In order to get an upper bound on E (1%), we recon-
sider the proof of Theorem 1.2. We see that E (7%)
is bounded above by A - X%/ (en 4 d - N)/(d -
A) =X ((n/lnlnn)+ (en/X) - >,y n/Inlnnl/d) =
O\ -(n/lnlnn) +nlogn) = O(nlogn). Here we
need A = O(log(n)/loglogn).
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Now we consider the first phase. Since we have
ONEMAX(z) < n—n/Inlnn, the probability to create
an offspring y by mutation of z with ONEMAX(y) >
ONEMAX(z) + 7 is bounded below by

n/Inlnn 1\” . 1\

v n n
_n ! 1 — ¢~ (I+yIny+ylnininn)
vy-n-lnlnn e

We conclude that the probability to create at least one
such individual y in one generation is bounded below
by 1— (1 - e*(1+vln’v+'ylnlnlnn))>\ > A/((elnn)+\) >
1/(e + 1) since we have v < (Inlnn)/(2lnlnlnn) by
assumption. Obviously, after less than n/vy such gen-
erations the first phase ends. This implies O(A-n/vy) =
O(nlogn) as upper bound on E (T7). O

We cannot prove that (Inn)(lnlnn)/(2Inlnlnn) is a
sharp upper bound in the sense that any value for A
larger than this implies that the expected optimization
is worse than nlogn. However, we can show that it is
true when A\ grows asymptotically faster than that.

Theorem 1.6. For the (1 + X) EA on the function
ONEMAX: {0,1}" = R, E(T) = w(nlogn) holds if
A=w((Inn)(Inlnn)/lnlnlnn).

Proof. We use a different proof strategy in order to
derive this tighter lower bound. We derive an upper
bound on the expected decreasement in the Hamming
distance in one generation. Then we use this upper
bound in order to prove that it is not likely that the
Hamming distance is decreased by a certain amount
in a pre-defined number of generations.

In analogy to the proof of Theorem 1.4 it is easy to
see that at some point of time the Hamming distance
between the current string x and the global optimum
is within {[n/(2e)],...,[n/e]} with probability very
close to 1. From this point of time on the proba-
bility to create an offspring y with ONEMAX(y) >
ONSMAX(:U) + d is bounded above by (”ée) “1/nt <
1/d*.

Consider g generations of the (1+ ) EA. Let x be the
current string before the first generation and let z’ be
the current string after the g-th generation. Let Dy g .
denote the advance in this g generations by means
of Hamming distance, i.e. Dy 4, := ONEMAX(z') —
ONEMAX(z). Obviously, Dy 4. depends on z and
we have Prob(Dy g4, >d) > Prob(Dy,, >d) for
all d € {0,1,...,n} and all z,y € {0,1}" with
ONEMAX(z) < ONEMAX(y). Since the function value
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of the current string of the (1 + A) EA can never de-
crease, E(Dy g,2) < ¢-E(Da,1,2) holds for all A, g and
x. So, we concentrate on E (Dy 1 ;) now.

Obviously, Dy 1, is a random variable that depends on
A and the current string « at the beginning of the gen-
eration. However, it is clear that Prob (Dy 1, > d) <
A/d? holds for all x with ONEMAX(z) < n — [n/e].
From now on, we always assume that ONEMAX(z) is
bounded above in this way.

We are interested in E (D) 1,,). Since Dy, € {0,1,
..., n}, we have E(Dy1,,) = >, Prob(Dy 1, > d).
For d < (3InA)/Inln X\ we use the trivial estimation
Prob(Dx1,, >d) < 1. For d with (3InA)/Inln A <
d < (AnA)/Inln XA we have

A eln)\
dd < e((3In))/(InIn X))-((InIn \)—InlnIn X))

<

> =

and use the estimation Prob(Dy:1,>d) < 1/A.
Finally, for d > (AlnA)/lnln\ we have
Adé < erferrr < e * and use the estimation
Prob(Dy 1, >d) < e < 1/n. These three estima-
tions yield E (Dy1,,) < 4InA/Inln X for the expected
advance in one generation.

Let G denote the number of generations the (1 + A)
EA needs for optimization of ONEMAX. Of course,
E(G) > t - Prob (G > t) holds for all values of ¢. As
we argued above, with probability at least 1/2 at some
point of time we have that some z with ONEMAX(z) €
{n — [n/e],...,n — [n/(2e)]} as current string z.
Thus, Prob(G >t) > Prob(Dx:. <n/e) holds, if
x is some string with at least n/e zero bits. This
yields E(G) > (t/2) - Prob(Dy ¢z < nfe) = (t/2) -
(1 =Prob(Dytz >nfe)). By Markov inequation
we have E(G) > (t/2) - (1 —E(Datz)/(n/e)) >
(t/2) - (1—e-t-E(Dx1,z)/n). Together with
our estimation for E(Dx;,) we have E(G) >
(t/2) - (1 —4e-t-lnX/(n-lnlnA)). We set t :=
(nlnlnA)/(8eln A) and get E(G) > nlnln A/(32eln \)
which implies E(T) = Q(nAlnln\/In A) for the ex-
pected optimization time E (T'), since T = G - A holds.
It is easy to see, that this implies E(T") = w(nlogn)
for A = w((Inn)(Inlnn)/Inlnlnn) as claimed. O

3.3 SUMMARY

The theorems in this section provide a clear picture
of the performance of a (1 + A) EA on ONEMAX. It
never outperforms a (1 + 1) EA. It’s performance is
about the same if A doesn’t get much bigger than
(logn)(loglogn)/2logloglogn, and performance de-
grades significantly after that.
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4 (14 A) EA Performance On More
Complex Functions

The previous section showed that for simple functions
like ONEMAX and LEADINGONES increasing A does
not improve E (T) over (1 + 1) EA performance. In
this section we focus on cases where increasing A does
improve performance. Intuitively, a necessary condi-
tion for it to be useful to invest more effort in the
random sampling in the neighborhood of the current
population is that the fitness landscape is to some de-
gree misleading in the sense that a (14 1) EA is more
likely to get trapped on a local peak.

In this section we show that the performance improve-
ment due to increased values of A can be tremendous.
We illustrate this with an artificial function for which
we can prove that increasing A from 1 to n reduces
E (T) from e™ to n? with a probability that converges
to 1 extremely fast.

The intuition for this function is quite simple as illus-
trated in Fig. 1. We want it to consist of a narrow
path that leads to the optimum. However, while fol-
lowing that path, the algorithm is confronted multiple
branch points, each with the property that from it
there are a variety of paths leading uphill, but only
the steepest one leads to the global optimum. Hence,
as we increase A we increase the likelihood of picking
the correct branch point path.

The formal definition of this function is more compli-
cated than the intuition. To simplify it somewhat, we
divide the definition into two parts. First, we define
a function f: {0,1}"™ — R that realizes the main idea
but assumes that the initial string is 0™.

Definition 1.1. For n € N we define k := |/n].
We use |z| = ONEMAX(z) and define the function
f:{0,1}" - R for all z € {0,1}" by

4

if x = yOr R 10=Dk gith,
1<i<k/2

and y € {0,1}*

if £ = 0" 717 with
Pi=[j/k], 1<i <k/2,
andi-k #j

\0 otherwise

(20 + 3)n + |z

(2i + 4)n + |z

The core function f contains one main path 0717~
There are about y/n/2 points on this path that are of
special interest. At these points it is not only beneficial
to add another one in the right side. The function
value is also increased by flipping any of the left most
[v/n] bits. Thus, at these points there are a variety
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o point from L

—> direction of

increasing f-values

Figure 1: Core function f.

of uphill paths to chose among. One path of the form
071"~ leads to the global optimum, while paths of the
form inrlnfirfL‘/ﬁJ with y € {0, 1}|-\/EJ all lead to
local optima. Therefore we call these special points on
the path branching points.

Definition 1.2. For n € N we define k := |/n]
and call a point x € {0,1}" a branching point of
dimension n iff x = 07~ G-Dk1G=Dk polds for some
i€{1,2,...,|k/2]| —1}. Let B,, denote the set of all
branching points of dimension n.

At the branching points a (1 + \) EA may proceed
toward a local optima or the global one. It is important
to know what the probabilities are for the two different
possibilities:

Lemma 1.1. Let n € N, k := |\/n], B, the set of
branching points of dimension n as defined in Defini-
tion 1.2, © € By, and \: N — N be a function that has
a polynomial upper bound. Consider a (14+\) EA with
current string x optimizing the function f: {0,1}" —
R as defined in Definition 1.1. Let y = y1y2 -+ -yn be
the first point with f(y) > f(x) reached by the (1 + \)
EA. The probability that ONEMAX(y1y2 - yg) > 0
holds is 1 — e~ ©(M/ V)

Proof. We consider the (1 + A) EA on f with current
string ¢ = xy1@2 - &y € By. Let &’ = 2{ah---x], be
one individual created by mutation of . We consider
several events concerning z'.
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The points in B,, are ordered according to the function
value. The probability that 2’ has a function value
that is equal or greater to the next branching point is

obviously 2=2(v1)  We neglect such an event and take
care of this in our upper and lower bounds by adding

or subtracting 9=(vn)

We denote the event that ONEMAX(z| ---2},) > 0
holds by A. We have

n—1
prob(A)2<’“).l.<1_l> s K
1 n n en

as a lower bound and

Prob (A)

S (SO (Y

< (B)) ity

i=1

for an upper bound. We denote the event that
ONEMAX(z! ---2},) = 0 holds by B and have

1 NN 1
Prob(B)Z—-(l——) > —
mn mn en

as a lower bound and

Prob (B) < (zk: <%) . <1 _ %)n_’) Lo-a(vi) < %

i=1
for an upper bound.

We are interested in the probability of A given
that A or B occur. Since AN B = @, we have
Prob (A|AU B) = Prob(A4)/(Prob(A) + Prob (B)).
Obviously, for each a,b,¢c € R we have that a/(a +
¢) > b/(b+ c) holds iff a > b. This implies that

k/(en) k/(n—k)
k/(en)+1/n k/(n—k)+1/(en)

follows from our upper and lower bounds on
Prob(A) and Prob(B) and we have 1 — e/\/n <
Prob(A|JAUB) < 1 —1/(ey/n). Let C denote the
event that we are really interested in, the event that
ONEMAX(y; -+-yr) > 0 holds for the first point
y = y1---yn with f(y) > f(x) reached by the
(I + X). Since in each generation the A offspring
are independently generated, we have Prob(C) =
1 — (1 — Prob (A|A U B))* and can conclude that

1- <%>A < Prob(C)<1- <$>A

holds. Since (1 —1/z)* < e™! < (1 —1/z)*"! holds
for all x € N, this completes the proof. O

< Prob(A|AUB) <

EVOLUTION STRATEGIES

Assume that the (1 + A) EA happens to continue in
the direction of a y0i1™ ¢~ vl with y € {0, 1}L‘/ﬁJ,
Yy # olvel. Then it is quite likely to reach “the last
point in this direction”, i.e., y0i1"~ i~ V7] with y =
1L‘/EJ It will turn out be convenient to define a set
for those points similar to B,,.

Definition 1.3. For n € N we define k := |\/n] and

L, = {1’“0”‘"’“1“—”’c lie{1,2,...,[k/2] - 1}}.

When considering the (1+1) EA on the core function
f, it is essential that the algorithm is started with 0™
as initial string. Since the (141) EA choose the initial
string uniformly at random this will not be the case
with probability 1 — 2~ ". Therefore, we now relax the
assumption that the initial string is 0" by extending f
to g in a way that any starting point leads to the main
path defined by f.

Definition 1.4. For n € N we define m' := [n/2],
m'" = [n/2], and g: {0,1}" = R by

n— ONEMAX(z") if o' #0™ Az’ #0m"

g(x) := < 2n — ONEMAX(z') if &' #0™ A" =0
f") if ' = 0™
for all z = zx2---z, € {0,1}" with z' =

T1y - Ty € 0,11 and 2" = Ty 1 Ty yn - Ty €
{0,1}™ .

We double the length of the each bitstring and define
the core function f only on the right half of the strings.
The first half is used to lead a search algorithm towards
the beginning of the main path of f. The construction
will have the desired effect for all search heuristics that
are efficient on ONEMAX.

Theorem 1.7. The probability that the (1+1) EA op-
timizes the function g: {0,1}"* — R within n°(") steps
is bounded above by 9—@(Vrlogn)

Proof. Our proof strategy is the following. First, we
consider the expected optimization time of the (141)
EA on the function g: {0,1}" — R under the condition
that at some point of time the current string x = z'z",
with #’ and 2" defined as in Definition 1.4, is of the
form ' = 0™, " € Ly, with m’ = |2'|, m" = |2"|,
k= [\/m”J, and 7 € {1,...,k/2]}. Then, we prove
that the probability that such a string becomes current
string at some point of time is (1).

First, assume that such a string x is current string of
the (1+1) EA. Let A be the set of all such strings. Ob-
viously, this string z is different from the unique global
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optimum. Moreover, due to the definition of g, all
points with larger function value have Hamming dis-
tance at least k and there are less than n such points.
Thus, the probability to reach such a point in one gen-
eration is bounded above by n-(1/n)* < (1/n)V"/2=2,
The probability that such an event occurs at least once
in n* generations is bounded above by n~V"/2k+l =
2—9 (\/ﬁlog n)

The initial current string x = z'z" after random ini-
tialization is some string with =’ # 0™ with probabil-
ity 1—2-m' Then, the function value is either given by
n — ONEMaX(z") or 2n — ONEMAX(z'). With proba-
bility 1—272(") the all zero string 0" is reached within
O (n?logn) steps given that no other string y with
g(y) > ¢g(0™) is reached before. There are less than
2% . n such strings, thus, the probability to reach such
a string within O (n2 log n) steps is bounded above by

k .

@) <n2 logn - 2 n) — 9~ntO(vn),

At each branching point, the (1+1) EA comes to a
string x = 2'z"” as new current string with some
bit set to 1 within the first k bits of 2" with prob-
ability at least 1 — 1/(ey/n). This follows from the
proof of Lemma 1.1. The probability to proceed with
such strings instead of returning to a string with k
zero at these bit positions increases. In fact, it is
easy to see that with probability 1 — O (1/y/n) the
(1+ A) EA reaches a point in A before reaching some
point with k zeros at these positions. Since we have
k/2] — 1 > /n/5 branching points, we conclude that
the probability that the (1+1) EA does not reach some

point in A is bounded above by 9~ 2(vVlogn) ynder the
described circumstances. Combining all estimations
completes the proof. O

Theorem 1.8. For all constants € > 0, the probability
that the (1 +X) EA with A =n-X, X € N optimizes
the function g: {0,1}" — R within O (n* - X') steps is
bounded below by 1 — €.

Proof. First, assume that the initial string x = z'z"
is some string with z' # 0™'. Given that the all zero
string is the first string y = y'y” becoming current
string with ' = 0™, we can conclude from Theo-
rem 1.2 that the expected number of steps the (1+ A)
EA needs to reach the all zero string is O (n2 : )\’).
Similar to the proof of Theorem 1.7 we can conclude
that the all zero string is reached within cn? - X steps
with probability at least 1 — €, where ¢ and € are pos-
itive constants. Note, that by enlarging c the failure
probability £ can be made arbitrarily small. Given

that for all following current strings z = x'z” we have
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that " does not contain a bit different from 0 within
the first k& bits, it follows from Theorem 1.1, that the
expected number of steps until the global optimum
is reached is bounded above by O (n2 : )\’). So, un-
der the assumption that no such string is reached, we
have similarly to the reasoning above that the global
optimum is reached within O (n? - X') steps with prob-
ability at least 1 — €, where € is an arbitrarily small
positive constant. We know from Lemma 1.1 that
the probability to reach some x where this assump-

tion is not met is bounded above by e=V7) at each
branching point. Since there are less than y/n branch-
ing points, we have that with probability at least
1—+/n- e (v = 1 — 2V 1o such point be-
comes current point x at any branching point. Com-
bining these estimations completes the proof. O

At the same time, as has been seen in many other
contexts, there is no “free lunch” here in the sense that
the impressive speedup on g achieved by increasing A
is not true for all functions with local optima. For
example, it is quite easy to modify the function of the
previous section so that a (14+1) EA is efficient and a
(1+ A) EA with A > n fails with high probability. To
see how, consider f and all strings z = z'z" where "
is a branching point. Let " be a string of length |z"|
with """ € Ly, . that has k bits with the value 1 at
the beginning and is equal to ' on the rest of the bits.
The proofs of Theorem 1.7 and Theorem 1.8 rely on
the fact the the (14+1) EA reaches some string «'z""
with high probability whereas the (1+ ) EA does not.
Defining a function f’ that has all such point z'z"" as
global optimum and is equal to f on all other points is
obviously optimized within O (nz) steps by the (1+1)
EA with probability converging to 1, whereas the (1 +
A) fails to optimize f’ within a polynomial number
of steps with probability converging to 1, given that
A = Q(n) holds.

5 CONCLUSIONS

We have used growth curve analysis techniques to bet-
ter understand the role of offspring population size in
(14+ A) EAs. As we have seen, increasing A on simple
functions like ONEMAX and LEADINGONES does not
lead to an improvement in the expected optimization
time. However, increases in A do not significantly de-
grade performance as long as A < logn where n is the
dimensionality of the search space. By contrast, for
more complex functions with local optima, increasing
A can result in improvements in performance as illus-
trated in the previous section.
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However, a note of caution needs to be raised. The
growth curve analysis techniques used here focus on
limiting behavior as n increases and view growth
curves that differ only by a constant as equivalent.
Hence, it may be the case that specific values of n and
A produce “contradictory” results to the conclusions
in the previous paragraph.

In spite of this cautionary note we believe that these
insights into the role of offspring population size pro-
vide some guidelines for the EA practitioner. Since
practitioners apply EAs to functions about which they
do not have detailed a priori knowledge, they can
“hedge their bets” by choosing A to be of order logn.
In doing so, they don’t lose too much if the function
turns out to be easy and may improve their perfor-
mance on functions with local optima. An interesting
observation here is that for most practical problems,
logn is not likely to be too far away from the value
of A = 7 recommended by the ES community but de-
rived in other contexts (Schwefel 1995, p. 148). On the
other hand, if the function appears to be quite difficult
in the sense that each run results in convergence to a
different local optima, increasing A to a value of order
n is a plausible thing to try.

This work represents a modest step along to road to
a more general EA theory. It extends some of the
techniques and results known for the (1 + 1) EA to
(1+)) EAs. Clearly, additional steps are required, in-
cluding the extension of these results to (1 + A) EAs.
From a more practical perspective, the heuristic guide-
lines proposed here for choosing values for A need to
be experimentally evaluated and tied more closely to
properties of functions.
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Abstract

In evolutionary multi-objective optimisation
(EMOO) using dynamic weighted aggrega-
tion (DWA), very interesting dynamic be-
haviours of the individuals have been ob-
served [7] [8]. In this paper, the dynamics
of the individuals on fitness space (FS) dur-
ing multi-objective optimisation (MOO) us-
ing evolution strategies (ES) is studied by in-
vestigating the mapping of a normal distribu-
tion in the parameter space (PS) onto the FS.
It is found that the movement of the individ-
uals on the FS is strongly dependent on the
characteristics of the projected distribution.
Results on three test functions are given to
show the good agreement of dynamics pre-
dicted from theoretical calculation with that
observed in MOO using DWA.

1 INTRODUCTION

Evolutionary algorithms (EA) have been shown to
be very successful for multi-objective optimisation
(MOO) problems. Up to now a variety of methods
for MOO have been proposed [2, 3]. In addition, the-
oretical studies on the accuracy of the approximation
of the Pareto front, on the convergence properties and
on the diversity of individuals in a population have
also been reported. However, the dynamics of individ-
uals during optimisation, that is, the characteristics of
the movement of the individuals on the fitness space
(FS) has not yet been investigated to the best of our
knowledge. This might be attributed to the fact that
in our notion the fitness space'! of single objective op-

!This should not be confused with the notion of fitness
landscape, where the fitness values are mapped over the
parameter or more general genotype/phenotype configura-
tions.

timisation problems is one dimensional and it can be
argued that we might not learn much from observing
the dynamics of the population on one axis.

However, in MOO the situation is different, the space
is at least two-dimensional and it is believed that the
investigation of the dynamics of individuals on the
FS will lead to a deeper insight into the properties
of Pareto fronts and to a better understanding of the
working mechanism of MOO algorithms, which will
ultimately enable us to improve the performance of
MOO algorithms.

In this paper, we will study the dynamics of the in-
dividuals on the FS empirically and analytically by
concentrating on the mapping of the mutation distri-
bution from PS to the FS. This approach is motivated
by the way evolution strategies produce offsprings, i.e.,
by adding normally distributed random vectors to the
parent parameter vector. Therefore, by understand-
ing the changes the fitness function induces on the
normal distribution, we can understand some of the
properties of multi-objective evolutionary algorithms
based on evolution strategies. At the same time, the
notion of a search distribution is not restricted to evo-
lution strategies and has been proposed as a unified
approach to the analysis of evolutionary algorithms,
see e.g. [10]. Thus, we are confident that the general
approach presented in this paper is not restricted to
evolution strategies.

The work in this paper is partly motivated by the
behaviours observed in MOO using the dynamically
weighted aggregation (DWA) algorithm [7, 8]. The
basic idea is to combine the optimisation objectives
with different weights, which are changed dynamically
during optimisation so that a set of Pareto-optimal so-
lutions instead of one single solution will be obtained.
It has been shown that the method is not only effec-
tive for problems with a convex Pareto front, but also
for those with a concave Pareto front. In the opti-
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misation, it is found that when the weights change,
the individuals move along the Pareto front once they
reach one point on it, even if the Pareto front is dis-
continuous. To understand why individuals follow the
Pareto front was the initial target of this work. Note,
that this type of movement is even observed for sud-
den large weight changes and after mutation but before
selection. Therefore, the trivial explanation that the
individuals simply follow the Pareto front since it is
the path of “highest fitness” is not sufficient.

Of course, we had to choose objective functions for
which we carry out our analysis, we chose three func-
tions (concave, convex, discontinuous). In the course
of our work, it turned out that the presented analysis
can also be used to determine whether and when (e.g.
with respect to the initialisation) a test problem is dif-
ficult or not for a specific algorithm; we will comment
on these findings in Section 5.

The remainder of this paper is structured as follows:
In the next section, we will briefly recall some of the
theoretical work on MQOO. In Section 3, we will con-
cisely outline Evolution Strategy, the DWA method,
the test functions and present some of the empirical
observations. In Section 4, we will analyse the trans-
formation of the mutation distribution and relate it
to the results from Section 3. Further implications of
Section 4, e.g. for the difficulty of test functions are
discussed in Section 5.

2 THEORY FOR EMOO

Results on the convergence of evolutionary multi-
objective optimisation have been presented by
Rudolph [12, 13] based on the Markov chain approach
which has been successfully used for the analysis of
single objective evolutionary algorithms, see e.g. [11]
among others. The work by Hanne [6] is also mainly
concerned with the convergence of evolutionary multi-
objective algorithms. Complexity issues have been ad-
dressed for example by van Veldhuizen [17]. Very re-
cently an interesting approach has been suggested by
Thiele et al. [16] to define a simple problem class for
multi-objective optimisation to facilitate the theoreti-
cal analysis of evolutionary algorithms for this domain.

Teich presented some theoretical investigations for un-
certain objectives for MOO [15], based on which he
developed the Estimate Strength Pareto Evolutionary
Algorithm (ESPEA).

Since the comparison of different algorithms for multi-
objective optimisation is much harder than for single
objective ones, it has also been the focus of some the-
oretical investigations, which are mainly based on a
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statistical approach using an appropriate metric, see
e.g. the work by Fonseca et al. [5] and by Zitzler et al.
[19].

Even though the above list is likely to be incomplete,
compared to the overall number of publications in
MOO, theoretical approaches have been sparse in par-
ticular for the analysis of the dynamics of individuals
during the evolutionary search and of the main factors
which determine the characteristics of this movement.
Surely the approach in this work can only be seen as a
starting point, however, we believe it can be beneficial
to explain some of the empirical observations, which
we will outline in the next section.

3 DYNAMICALLY WEIGHTED
AGGREGATION

3.1 EVOLUTION STRATEGIES

In evolution strategies (ES), mutation plays the major
role in search. The mutation is performed by adding
a random number generated from a normal distribu-
tion N(0,0?), where o; is the standard deviation. In
the standard ES, new individuals are generated in the
following way [1]:

Z(t) =
O'i(t) =

Ft-1)+2 (1)
oi(t — 1) exp(7'z) exp(72;), (2)

where, Z is an n-dimensional parameter vector, Z
is an n-dimensional random number vector with
Z ~ N(0,0(t)?), z and z; are normally distributed ran-
dom numbers with z,2; ~ N(0,1). In ES, the o; are
also called stepsizes, and are evolved together with the
object parameters. This is known as self-adaptation,
which is an important feature of the ES.

The parameters 7 and 7’ in equation (2) are constants
that are given as follows:

T = (3)

¥ = — (4)

In the ES usually a deterministic selection method is
used. In the non-elitist (u, A) method, the best u indi-
viduals from the A offspring are chosen as the parents
of the next generation.

3.2 BASIC IDEA OF DWA

Jin et al. [7, 8] proposed dynamically weighted aggre-
gation as an efficient method to easily apply any evolu-
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tionary algorithm (and evolution strategies in particu-
lar) to multi-objective optimisation problems. Since
our empirical observations are based on the DWA
method, we will explain it briefly in the following.

The basic idea is to linearly combine all objec-
tives like in the conventional aggregation method:
f= Z _q W; f;. Here m, w; and f; are the number of
objective functions, the weights for the f; and the ob-
jective functions, with 7" | w; = 1. In order to obtain
the whole Pareto front, the weights w; are changed dy-
namically in each generation using a periodical func-
tion between [0, 1], for example, the sine function. To
achieve the whole Pareto front, it is necessary to main-
tain an archive of non-dominated solutions.

Whereas conventional weighted aggregation methods
with restart cannot obtain concave Pareto fronts, it
has been argued and empirically demonstrated in [8]
that the DWA methods indeed can (at least if some
mild assumptions about the changing functions for the
w;(t) are made).

3.3 TEST FUNCTIONS

Several test functions for multi-objective optimisa-
tion have been proposed in the literature, see e.g.
[9, 18, 4, 14]. Here we chose three functions whose
Pareto front can be calculated analytically and which
represent the three important cases of convex, concave
and discontinuous Pareto fronts.

3.3.1 Function 73 (Convex Case)

The first test function 7} is defined as follows [9]:

A 3 )
f2 =

The convex Pareto front can be calculated analytically
with the following result:

fo=fi—4/fi+4 (7)
0<f1i<4,0< fr<4

3.3.2 Function T, (Discontinuous Case)

The second test function 75 is defined as follows [18]:

i = = (8)

g x (1 - \/g S sin(10m fl)) (9)

f2 =
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( =1+ 23

g(za,...,Ty) = n—1,2$z

=
€ [0,1]
The discontinuous Pareto front is:

fg =1.0- \/ fl fl sin 107Tf1) (10)
where f; can be from the following intervals:

f1 €10.0000,0.0830], (0.1823,0.2579], (0.4095, 0.4541],
(0.6187,0.6528], (0.8237,0.8523]. These constraints on
f1 were not obtained analytically, but from simula-
tions. As it is evident, the Pareto front is discontinu-
ous.

3.3.3 Function 75 (Concave Case)

The third test function T3 is defined as follows [4, 14]:

A= 1—exp(—g(wi—%>2) (11)
fo = 1—exr><—§<xi+%)2) (12)

This original test function (n = 8) was proposed by
Fonseca and Fleming in 1993. Here we generalised it
to the n-dimensional case. The concave Pareto front
is given by:

fo = 1- _fl

f1 [0,1—6 ]

exp (4/~log(1 = f1)) (13)

3.4 DYNAMICS OF THE DWA
ALGORITHM

When we apply the DWA algorithm to the three test
functions described in the previous section and observe
the dynamics of the individuals in particular during
the movement along the Pareto front, some interest-
ing phenomena can be observed. Unfortunately, we
cannot show the dynamics directly, therefore, we have
to present snapshots for different generations and de-
scribe the behaviour in between.

For all experiments, the following weight change func-
tion was used:

1 1
w1 = gsign (—sin(0.17 1)) + , (14)

where t is the number of generations.

In this paper, we use standard ES with (u,A) =
(15,100), and the archive size is 200. The initial stan-
dard deviation is 0.1, 0.01 and 0.1 for test functions
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T1, T3 and T3 respectively. Two dimensional cases, i.e.
n = 2, are shown.

In Figure 1 the distributions of individuals (circles) af-
ter mutation and before selection® are shown for test
function T7. Whereas in Figure 1(a) the distribution
is fairly widespread, in Figure 1(b) is concentrated on
the Pareto front. In both cases selection has little in-
fluence on the shape of the individual’s distribution
which is mainly determined by the shape of the muta-
tion distribution of the parents. Even though, one can
argue that the diversity is considerably decreased in
later parent generations, this does not account for the
non-isotropic nature of the distribution, which is par-
ticularly evident from Figure 1 (b), where nearly all
offspring - before selection - are located on the Pareto
front. Indeed if we observe the continuous dynamics,
we see that the individuals move nearly perfectly along
the Pareto front, which makes the search very efficient.

Figure 1: Distribution of the individuals after muta-
tion and before selection for test function 77 for the
DWA algorithm after generation 1 in figure (a) and
generation 18 in figure (b).

Similar dynamics can be observed for the second test
function 75, for which snapshots of the distribution
of the individuals before selection are shown in Fig-
ure 2. The solution to equation (10) is given by the
thin curve and the Pareto front (all non-dominated so-
lutions), which consists of parts of this curve, is given
by the thicker curve elements. Again we see that when
the parents are located near (f1, f2) = (1,0) at gener-
ation 18, (Figure 2(a)), the individuals are restricted
to the set of non-dominated solutions, whereas near
(f1,f2) = (0,1) at generation 29, (Figure 2(b)), the

2In each generation the complete evolution cycle (muta-
tion and selection) is carried out. However, our snapshots
are shown for one generation, say t1, and the distribution
is shown after mutation;, and before selections, in order
to highlight that the non-isotropic distribution of the in-
dividuals is to a large degree a result of mutation and not
just of selection.

EVOLUTION STRATEGIES

distribution of individuals is rather wide spread. In-
deed, dynamically one can nicely observe, how the
individuals move from (fi, f2) = (0,1) to (f1,f2) =
(1,0) and back along the thin curve being wider dis-
tributed near the left end and strongly concentrated
near the right end of the curve in Figure 2. This move-
ment can be observed several times during the periodic
change of the weights, according to equation (14).

F2
e
F2
-
%
.

Figure 2: Distribution of the individuals after muta-
tion and before selection for test function 73 for the
DWA algorithm after generation 18 in figure (a) and
generation 29 in figure (b).

For the third test function the results for generation
16 and 26 are shown in Figure 3(a) and (b). We ob-
serve that individuals are clustered near three points:
(1,£2) = (0,1), (fu, f2) = (1,0) and (fi, fo) = (1,1).
The interior of this “triangle” bounded from below by
the Pareto front, is very sparsely represented. Dur-
ing the dynamical observation, the peculiarity of the
three points becomes even more evident, since in some
generations nearly all individuals are concentrated in
these points irrespective of the weight changes.

Figure 3: Distribution of the individuals after muta-
tion and before selection for test function 73 for the
DWA algorithm after generation 16 in figure (a) and
generation 26 in figure (b).

‘We can summarise our observations as follows:

e The distribution of individuals strongly depends
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on the position in search space nearly irrespective
of selection.

e The movement of individuals between points on
the Pareto front follows a very distinctive pattern
which is also not only controlled by selection.

4 THE SHAPE OF THE
MUTATION DISTRIBUTION IN
FITNESS SPACE

We have argued in the previous section that the char-
acteristics of our empirical observations for all three
test functions is to a large extent independent of selec-
tion. Therefore, it has to depend on the shape of the
mutation distribution which is for evolution strategies
in PS the normal distribution. Of course, when we ob-
serve the movement of individuals in FS, we must con-
sider what the shape of the normal distribution looks
like in FS. We will see that the transformed distribu-
tion can have very distinctive features which help to
explain our empirical observations. The fitness values
at generation t after mutation are given by

@) = f(a(t—1) +2), 2~ NO,0})  (15)

Here f, z(t) and o; are the objective function, the
design variable at generation £, and the standard de-
viation at generation f. In this section, we neglect
self-adaptation, which implies o; = 0. We will take it
into consideration in the future work.

Without loss of generality, we restrict the following
analytical investigation to the case n = 2.

In the two-dimensional case, the normal distribution
on PS is given by:

1 _(m1—p1)?  _ (mo—po)?

f($1,$2)=2m7102€ i e % (16)

Here, f(z1,z2), 0 and p are the probability density
function (pdf), the standard deviation and the mean,
respectively.

Now, let us firstly assume that f; and f> are one-to-
one functions, i.e. z = f~1(f(z)). The other case, e.g.
test function 77, will be dealt with later. From this
assumption, we can get the following equation:

fi+Af1 fe+Af2
/ / o1, F5)dfydf] =

z1+Az1 To+Axo
[ r@adsas o)
1 )
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Here g(f1, f2) is the pdf in the FS. The area (z1,z2)

- (1 + Az, 2 + Azs) corresponds to (f1, f2) - (f1+
Afy, fo+ Afs). From equation (17) we obtain
1
9(f1, f2) = 7 f (@1, 22), (18)

7]

where J is the Jacobian matrix.

Now we can calculate the mutation distribution in F'S
for each of the three test functions and compare the
results with the observations of Section 3.

4.1 FUNCTION T; (CONVEX CASE)

Sy U@ aa) + faae)} (19)

1
(T1,22) = 4 (fl -
with ¢ given by

_ i\/—ff —f2—16+2f1f2+8f1+8f2 (21)

In order to obtain equation (19), we had to slightly
modify equation (17) to take the fact into account that
T is not one-to-one:

fitAft pfatAf2
[ e i =
1
r1+Az;  prot+Azs
/ / f(ah, z5)dzydzy
—x1 —x2
/zl Axy /:l:g Azo
The results for some points in the FS are shown in Fig-
ure 4, the standard deviations are given by (o1,03) =
(1,1).
Figures 4 demonstrate that once one solution on the
Pareto front is found the individuals will move along
the Pareto front with a high probability - indepen-
dent of selection - solely because the shape of the nor-
mal distribution which defines mutation in evolution
strategies is mapped to the shape shown in figures 4
(a)-(c). However, when the Pareto front has not been
reached yet, i.e. the individual is concentrated in the
interior, the search distribution is nearly isotropic and
the success solely depends on selection, as shown in
Figure 4(d).

g(.flaf?) =

f2+4)(1,1) + (dc, Fc), (20)

f(z}, zh)dzydz) (22)

4.2 FUNCTION T, (DISCONTINUOUS
CASE)

1
79\/5]0(.%1,.%2) (23)
T 2y/1+932

g(flva) =
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Figure 4: The shape of the normal distribution in FS
for test function Ty. (a) (z1,z2) = (0,0), (f1, f2)
(0,4); (b) (z1,22) = (1,1), (f1,f2) = (L,1); (c
(T1,22) = (2,2), (fr,f2) = (4,0); (d) (z1,22)
(_1’3)v (flafZ) = (575)'

2 4 6 8 10 12 14 16 0.00
F:

~—

(z1,22) =

(fl, S+ Dt psin(ors) + c))

\/f1f2+ + fEsin(107fy) —

From the shape of the transformed mutation distri-
butions in Figure 5 (a) and (b) we conjecture that
individuals located at (f1, f2) = (1,0) are very likely
to move along the curve of non-dominated solutions
and discover the discontinuous Pareto front. Whereas,
the opposite direction, i.e. the movement of individuals
starting at (f1, f2) = (0,1) along this curve, is much
less likely since the distribution is more isotropic.

3 20 3 20

Figure 5: The shape of the normal distribution in FS
for test function T». (a) (z1,z2) = (0,0), (f1,f2) =

(07 1); (b) (w17z2) = (170)7 (flan) = (170)'
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4.3 FUNCTION T3 (CONCAVE CASE)

g(fi, f2) = |J| {f(z1,22) + f(z2,71)} (24)
J = 4V2exp(-2(z} + 25 +1)) (21— z2)
V2
(.’131,£Ez) = ?(hl — hz)(l, 1) + (:I:c, :FC) (25)

Here, ¢, h1 and hsy are:

\/~h% — B3 — 16+ 2hyhy + 8hy + 8hy
(—log(1 — f2), —log(1 — f1))

C

(h1,h2)

Figure 6 shows the logarithm of the transformed mu-
tation distribution in FS for different individuals po-
sitioned on the Pareto front as well as on the interior.
We observe that in all cases the “boundaries” have a
very high probability whereas the interior of the shown
part of the fitness space has a very small probability.
Thus, even without selective pressure individuals are
very likely to move along the concave Pareto front,
simply due to the shape of the transformed mutation
distribution.

10

10

Figure 6: The shape of the normal distribution in
FS for test function T3, logarithmic values are shown.

(a) (@1,2) = (25— L), (fi,fa) = (1 - e=*,0);
) = ( 70)a ( 1af2) = (1 _67171 _eil);
)a (flaf2) = (051 - 674); (d)

=(1-e31-¢e3);
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5 FURTHER STUDIES ON
FUNCTION T}

In order to better understand the constraints which
lead to the “compression” of the mutation distribu-
tion onto the Pareto front in some cases, we look at
Function 73 again in a bit more detail.

The Pareto front in the parameter and the fitness space
for function T} is shown in Figure 7 by the thick curve,
which is a straight line in PS. The parallel lines x5 =
1 £ ¢v2,(0 < z1 + ¢v/2/2 < 2), above and below
the PS-Pareto line in a distance c are projected to the
following curves:

f2:f1_4,/f1_%c2+4. (26)

Equation (26) can be written as follows:

1 1 / 1
f2 — 502 = fl — 562 —4 fl — 562 +4, (27)

with the constraints

1
0 < f1—§c2 < 4 (28)

1
0 < f2—§c2 < 4 (29)

. Parameter Space Fitness Space
X2 N f2

Pareto Front
Y x1 ' '%cz
Pareto Front %cz f1

(a) (b)

Figure 7: (a) The Pareto front in PS and parallel lines
with distance ¢; (b) the Pareto front in FS and the
images of the parallel lines in F'S.

From the above considerations and from Figure 7, we
can better understand in which way the mutation dis-
tribution is changed. The distance to the Pareto front
in PS for individuals which lie on one of the parallel
lines is ¢, in FS it is \/iicz. Therefore, for ¢ = /2

this distance remains unchanged. Whereas for ¢ < /2
the distance is decreased or “compressed” under the
mapping of function T3, it is increased for ¢ > v/2.

In the context of the probability distribution, it means
that if the individual is located below the thin curve
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%02 for ¢ = v/2 in Figure 7 (b), the probability of the
area closer to the Pareto front is increased. The op-
posite holds for individuals above this curve for which
it becomes more unlikely to move towards the Pareto

front.

For function T7 the recommended initialisation [9] of
the parameters is —2 < ;3 < 2 and -2 < z9 < 2.
Therefore, the uniform probability density is given by:

0.0625
P(fﬂl,fﬂz) = 0

,—2<x; <2
,else

(i=1,2)

(30)
In fitness space this probability density is projected as
follows:

1 _ 1
shnt) = {F m T ey
a = fi—fr+4
b o= \/—ff—f§—16+2f1fz+8f1+8f2

Equation (31) is shown in Figure 8 with logarithmic
scale, it agrees well with simulations which we carried
out.

Figure 8: The shape of the probability density in fit-
ness space for individuals, which have uniform distri-
bution on [—2,2] in parameter space for function 7;.

We observe that the probability is very high for points
on or close to the boundary including Pareto front
and that it decreases with increased distance from the
boundary. From our considerations above, this can be
easily understood. For all points, which lie within the
corridor show in Figure 7 for ¢ = \/5, their distance
to the boundary (the Pareto front is the section of
the boundary between the two coordinates) is reduced
under the mapping. For the square —2 < z; < 2,
(1 =1,2), these are 3/4 of all points, thus the probabil-
ity density is increased near the boundary, see Figure
9.

In Figure 9 the thick lines represent the Pareto front
on PS and the gray areas are “compressed” regions.
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(a)

Figure 9: The area of initialisation on 7. (a) shows
the initialisation [—2,2]. The gray ( “compressed” )
area covers 3/4 of the total region. (b) shows [—4,4].
The gray area covers 7/16 of the total region.

We conclude that the initialisation of the individuals,
even if it is uniform in parameter space, might result
in an important bias in fitness space. In particular for
problem 77 we can conclude that the proposed initial-
isation will lead to an initial population where it is
rather likely that some individuals are already located
on or very near the Pareto front. If this initialisation
is e.g. used together with the DWA method the per-
formance of the algorithm will be very high, however,
mostly because of the specific relations between PS
and FS. Generally, we would advise to use an initialisa-
tion —4 < z; < 4, (i = 1,2), at least, where the num-
ber of points whose distance is decreased is roughly
equal to the ones whose distance is increased (relation
7/9) to reduce the probability that initial individuals
are already located near the Pareto front. The shape
of the probability density in the fitness space is shown
in Figure 10 when the parameters are initialised on
[—4, 4] in parameter space.

F1

Figure 10: The shape of the probability density in
fitness space for individuals, which have uniform dis-
tribution on [—4,4] in parameter space for function
T:.

EVOLUTION STRATEGIES

6 CONCLUSION

In this paper, we investigated the dependence of the
dynamics of the individuals in fitness space on the
properties of the mapping of the probability density
function for mutation or more general for the popula-
tion of the next generation from parameter space to
fitness space. The analysis which we presented here is
restricted to evolution strategies or at least to those
evolutionary algorithms where a normally distributed
mutation is the main operator, e.g. evolutionary pro-
gramming. Although we did not explicitly test this,
we are very confident that the results of this paper
are valid for any selection method, indeed the analyt-
ical investigations in Section 4 and 5 are completely
independent from selection.

We believe our approach can be a starting point for
a more general investigation of the influence of the
PS-FS mapping on the search distribution which is
usually only discussed in the PS. In particular for
multi-objective optimisation where FS is at least two-
dimensional, the movement of the individuals on this
space can show a much richer dynamics. Although the
importance of the PS-FS mapping on all aspects of
evolutionary algorithms is widely accepted, the anal-
ysis of its influence on the search without selection
has not received much attention so far. The fact that
in some cases the Pareto front is a local attractor for
the population (in a probabilistic sense, see Figure 4)
without the influence of selection seems to be worth
noticing.

We started our analysis with the observation of some
dynamic behaviour of the DWA method under some
conditions. However, as we have shown in the former
section, the results are not restricted to the DWA or
related methods, but bear strong implications on such
important questions, like “When is a test function dif-
ficult?”. In the literature this question is usually dis-
cussed in the context of such properties like decep-
tiveness, ruggedness, etc., however, the much simpler
notion of the relation of distances in PS and in FS is
hardly addressed. Nevertheless, as Figure 8 and 10
shows, it might have a very direct influence on the
algorithm’s performance, without telling much about
the true strength of the algorithm.
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