
[12] S. Jung and B.-R. Moon, “The Natural Crossover
for the 2D Euclidean TSP,” in Proceedings of the
Genetic and Evolutionary Computation Confer-
ence (GECCO-2000), (D. Whitley et al., eds.),
pp. 1003–1010, Morgan Kaufmann, 10-12 July
2000.

[13] K. Katayama and H. Narihisa, “Iterated Local
Search Approach using Genetic Transformation
to the Traveling Salesman Problem,” in GECCO-
1999: Proceedings of the Genetic and Evolution-
ary Computation Conference, (W. Banzhaf et al.,
ed.), pp. 321–328, Morgan Kauffman, 1999.

[14] N. Krasnogor and J. Smith, “A Memetic Algo-
rithm With Self-Adaptive Local Search: TSP as
a Case Study,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-
2000), (D. Whitley et al., eds.), pp. 987–994, Mor-
gan Kaufmann, 2000.

[15] S. Lin and B. Kernighan, “An Effective Heuristic
Algorithm for the Traveling Salesman Problem,”
Operations Research, vol. 21, pp. 498–516, 1973.

[16] K. Mathias and D. Whitley, “Genetic Operators,
the Fitness Landscape and the Traveling Sales-
man Problem,” in Parallel Problem Solving from
Nature - Proceedings of 2nd Workshop, PPSN 2,
(R. Männer and B. Manderick, eds.), pp. 219–228,
Elsevier Science Publishers, 1992.

[17] P. Merz, Memetic Algorithms for Combinatorial
Optimization Problems: Fitness Landscapes and
Effective Search Strategies. PhD thesis, Depart-
ment of Electrical Engineering and Computer Sci-
ence, University of Siegen, Germany, 2000.

[18] P. Merz and B. Freisleben, “Genetic Local Search
for the TSP: New Results,” in Proceedings of the
1997 IEEE International Conference on Evolu-
tionary Computation, (T. Bäck, Z. Michalewicz,
and X. Yao, eds.), (Piscataway, NJ), pp. 159–164,
IEEE Press, 1997.

[19] P. Merz and B. Freisleben, “Genetic Algorithms
for Binary Quadratic Programming,” in GECCO-
1999: Proceedings of the Genetic and Evolution-
ary Computation Conference, (W. Banzhaf et al.,
eds.), pp. 417–424, Morgan Kauffman, 1999.

[20] P. Merz and B. Freisleben, “Fitness Land-
scape Analysis and Memetic Algorithms for the
Quadratic Assignment Problem,” IEEE Transac-
tions on Evolutionary Computation, vol. 4, no. 4,
pp. 337–352, 2000.

[21] P. Merz and B. Freisleben, “Fitness Landscapes,
Memetic Algorithms and Greedy Operators for
Graph Bi-Partitioning,” Evolutionary Computa-
tion, vol. 8, no. 1, pp. 61–91, 2000.

[22] P. Merz and B. Freisleben, “Memetic Algorithms
for the Traveling Salesman Problem,” Tech. Rep.,
Department of Computer Science, University of
Siegen, Germany, 2001. Accepted for publication
in Complex Systems.

[23] P. Moscato, “On Evolution, Search, Optimiza-
tion, Genetic Algorithms and Martial Arts: To-
wards Memetic Algorithms,” Tech. Rep. C3P Re-
port 826, Caltech Concurrent Computation Pro-
gram, California Institue of Technology, 1989.

[24] P. Moscato, “Memetic Algorithms: A Short
Introduction,” in New Ideas in Optimization,
(D. Corne, M. Dorigo, and F. Glover, eds.), ch. 14,
pp. 219–234, McGraw-Hill, London, 1999.

[25] H. Mühlenbein, “Evolution in Time and Space –
The Parallel Genetic Algorithm,” in Foundations
of Genetic Algorithms, (G. J. E. Rawlins, ed.),
Morgan Kaufmann Publishers, 1991.

[26] Y. Nagata and S. Kobayashi, “Edge Assembly
Crossover: A High–power Genetic Algorithm for
the Traveling Salesman Problem,” in Proceedings
of the 7th International Conference on Genetic
Algorithms, (T. Bäck, ed.), pp. 450–457, Morgan
Kaufmann, 1997.

[27] N. Radcliffe and P. Surry, “Fitness Variance of
Formae and Performance Prediction,” in Proceed-
ings of the Third Workshop on Foundations of
Genetic Algorithms, (L. Whitley and M. Vose,
eds.), (San Francisco), pp. 51–72, Morgan Kauf-
mann, 1994.

[28] G. Reinelt, “TSPLIB— A Traveling Salesman
Problem Library,” ORSA Journal on Computing,
vol. 3, no. 4, pp. 376–384, 1991.

[29] A. Sinha and D. E. Goldberg, “Verificiation and
Extension of the Theory of Global-Local Hy-
brids,” in Proceedings of the Genetic and Evolu-
tionary Computation Conference, (L. Spector et
al., ed.), pp. 592–598, Morgan Kaufmann, 2001.

[30] T. Starkweather, S. McDaniel, K. Mathias,
D. Whitley, and C. Whitley, “A Comparison of
Genetic Sequencing Operators,” in Proceedings of
the 4th International Conference on Genetic Al-
gorithms, pp. 69–76, Morgan Kaufmann, 1991.

GENETIC ALGORITHMS 479

How Random Generator Quality Impacts Genetic Algorithm
Performance

Mark M. Meysenburg, Dan Hoelting, Duane McElvain

Computer Science Dept.
Doane College

Crete, NE 68333

James A. Foster

Computer Science Department
University of Idaho

Moscow, ID USA 83844

Abstract

It has been shown that pseudo-random num-
ber generator (PRNG) choice can affect sim-
ple genetic algorithm (GA) performance.
However, these performance impacts are non-
intuitive; PRNGs of poor quality can drive
GAs to superior performance, for certain
problems. The same PRNGs cause worse
performance for other problems. In this pa-
per we present a plausible explanation for
this phenomenon: PRNGs of poor quality
cause higher Vose discrepancy values than do
higher quality PRNGs. Higher Vose discrep-
ancy values could then be manifest as GA
performance differences, as GA populations
move toward fixed points of the Vose heuris-
tic far away from the expectation.

1 INTRODUCTION

Several researchers have examined the im-
pact of pseudo-random number genera-
tor (PRNG) choice on genetic algorithm
(GA) performance. Meysenburg and Foster
[Meysenburg, 1997, Meysenburg and Foster, 1997]
examined several PRNGs, using the Knuth
[Knuth, 1997] and Marsaglia’s Diehard
[Marsaglia, 1993] empirical test suites. They used the
PRNGs to drive a simple GA, applied to a collection
of several well-known GA test functions. Using a
relatively coarse-grained statistical measure, they
found no statistical evidence that PRNG quality
affected GA performance.

In a second study Meysenburg and Foster
[Meysenburg and Foster, 1999b] developed a set
of specific, empirical PRNG quality tests tailored
to the way a simple GA uses randomness. They

used a similar set of PRNGs and the same set of
GA test functions as in the previous work. They
found, however, that there was no correlation between
good performance on the PRNG tests and good
performance by the GA. In the second study, however,
a finer statistical measure was used that did reveal an
interesting phenomenon.

One of the PRNGs used was a version of the Java
language Random generator, limited to a period of
1000 numbers. With such a limited period, this PRNG
(rand1k) failed the PRNG tests miserably. However,
there was evidence that rand1k affected GA perfor-
mance. It would be reasonable to assume that worse
PRNG quality would cause worse GA performance,
but this was not the case.

On several of the GA test functions, rand1k caused
the GA to perform better than other, much better,
PRNGs. On other functions, rand1k caused the GA
to perform worse than the other PRNGs. In sum-
mary, Meysenburg and Foster’s second study found
that there was evidence that PRNG choice could im-
pact GA performance, although in non-intuitive ways.
Similar results have been noted for genetic program-
ming (GP) systems [Meysenburg and Foster, 1999a,
Daida et al., 1997, Daida et al., 1999].

In summary, the research to date on this subject shows
that PRNG choice can impact GA (or GP) perfor-
mance. However, the research shows no direct corre-
lation between improved PRNG quality and improved
GA performance; in fact, better PRNGs can in some
cases cause worse GA performance. No one has yet
been able to explain why PRNG choice can alter GA
performance in this manner.

2 GA THEORY

Vose [Vose, 1999] has developed a general mathemati-
cal theory describing the behavior of simple GAs. Vose

GENETIC ALGORITHMS480

calls the search space explored by the GA Ω. If the
size of Ω is n, then GA populations can be represented
as vectors in n-space. These population vectors are el-
ements of a set that Vose terms the simplex:

Λ =
{

〈x0, . . . , xn−1〉 : 1T x = 1, xj ≥ 0
}

. (1)

Elements of the simplex are column vectors of size n,
where each component of the vector is non-negative,
and all components of the vector sum to one. A vector
p ∈ Λ represents a population as follows: component
pj is the percentage of the whole of the jth element of
Ω in the GA population.

A GA is defined in terms of a transition rule τ : Λ → Λ,
describing how a GA population evolves over time.
Given an initial population vector p, the next gener-
ation would be τ (p); the following generation would
be τ (τ (p)) = τ2 (p); and so on. Unfortunately, we
are unable to say with certainty what τ (p) would be,
because GAs are stochastic algorithms.

To deal with the stochastic nature of GAs, Vose intro-
duces another function G : Λ → Λ, called the heuristic
function. For a population vector p, the result of G (p)
is another vector q ∈ Λ. q is then used as a sampling
distribution to produce the next generation. The jth

component of q is the probability that the jth element
of Ω is selected to be a member of the next generation.
The various operators of the GA (selection, crossover,
and mutation, for example) are implemented in the
particular heuristic G chosen. The GA population is
moved forward by applying G to the initial popula-
tion p, and using the resulting sampling distribution
to create the next population. The process repeats
until termination criteria are met.

Given an initial population vector p, repeated appli-
cations of the heuristic G produce a path through n-
space. This is the expected path the GA population
should follow during a run. Fixed points of G cor-
respond to situations where the GA converges. The
actual path followed by a GA, of course, will vary
to a certain degree from the expectation, due to the
stochastic nature of the process.

Vose has developed a formula for determining how far
away from the expected path a particular GA popula-
tion vector is.

For population vector p, the probability that the next
population vector is q is shown in Figure 1. In the for-
mula, the summations are only done for indexes where
qj > 0, and r is the number of individuals in the GA
population.

In Figure 1, the term
∑

qj log
qj

G(p)j

(2)

is called the discrepancy of q with respect to the ex-
pectation G (p). The discrepancy is a measure of how
far the actual next population vector, q, is from the ex-
pected next population vector, G (p). It is a measure
of the distance between expectation and reality.

Our current research has shown that Vose’s the-
ory can be used to explain the non-intuitive
GA behavior observed in previous studies
[Meysenburg, 1997, Meysenburg and Foster, 1997,
Meysenburg and Foster, 1999b]. Our hypothesis is
that a PRNG of quality poor enough to drive the
GA population far from the path predicted by Vose
theory, would cause the GA to perform differently
than a GA driven by a PRNG of higher quality.
We hypothesized that a PRNG like rand1k would
cause higher Vose discrepancy values for successive
GA populations than a high quality PRNG like the
Mersenne Twister [Matsumoto and Nishimura, 1998]
would. Then rand1k might drive the GA populations
into the basins of attraction of different Vose heuristic
fixed points than the Mersenne Twister would; this
would account for GA performance differences.

3 EXPERIMENT DESIGN

In order to test our hypothesis, we first collected 42 GA
test problems suitable for Vose discrepancy statistic
calculation. Since the complexity of the discrepancy
measure is O(3l), for chromosome length l, the statistic
can only be efficiently computed for chromosomes of
approximate length 20 or less. Our test functions were
created as part of an undergraduate research project.
The functions are based on several different classes of
problems drawn from the literature, adapted to our
chromosome length restrictions. The functions have
chromosome lengths ranging from eight to 20. Our GA
test problems are briefly summarized in Table 1. More
detailed descriptions of each of the problems may be
found on the World Wide Web at the following URL:
http://ist.doane.edu/meysenburg/cooperstuff

/index.html . This page describes each test prob-
lem, as well as the parameters (crossover and mutation
rates, population size, etc.) used for each run.

Next, we ran a simple GA (of the type described by
Vose [Vose, 1999]) on each of the 42 GA test prob-
lems. We repeated the runs for each of 14 differ-
ent PRNGs, ranging in quality from rand1k to the
Mersenne Twister. Finally, to reduce the likelihood
of anomalies caused by poor seed value selection, we

GENETIC ALGORITHMS 481

repeated each of our runs for 32 different PRNG seed
values. For each problem / seed value combination,
we initialized the GA population identically, and then
used the PRNG under test for the rest of the GA run.
In this way, each of the runs for a problem / seed
value pair started at the same point in Ω. The seed
values and initial populations were constructed using
the truly random source at www.random.org .

We then used the Mann-Whitney non-parametric sta-
tistical test to determine if PRNG choice caused per-
formance differences in our GA runs. We compared av-
erage population fitness on a generation by generation
basis in a manner similar to Meysenburg and Foster’s
second study [Meysenburg and Foster, 1999b].

Finally, we calculated the Vose discrepancy statistic
between each generation of each GA run. These calcu-
lations are complete for every GA test function where
l < 20, and are still under way for the problems where
l = 20. We used the Wilcoxson non-parametric statis-
tical test to determine if discrepancy values caused by
the rand1k PRNG were greater than those caused by
the other PRNGs.

4 RESULTS

In our experiments, we again found that PRNG choice
impacts GA performance. Our statistical measures
here did not indicate if a PRNG caused better or worse
GA performance than the other PRNGs; the measures
only detected that a difference (in either direction) ex-
isted. Of all our GA runs, we found that the rand1k
PRNG caused performance differences in 68% of the
cases. None of our other PRNGs caused consistent
performance differences across the 42 GA test func-
tions.

Having confirmed that rand1k causes unexpected GA
performance, we next tried to determine if the poor
quality of rand1k caused higher Vose discrepancy val-
ues than our other PRNGs. For the GA test functions
we have had time to calculate Vose discrepancy statis-
tics for, this is indeed the case. Representative results
for three of our shorter-length GA test functions are
shown in Tables 2, 3, and 4.

The DC 19 GA test function has chromosome length
l = 12. The function is an instance of CNF-SAT, for
12 variables, 300 clauses, and five variables per clause.
The bits of the chromosome determine the values of
each variable.

The DC 37 and DC 41 GA test functions have
chromosome length l = 8. These functions are
a modified version of the emergency-unit place-

ment problem described by Haupt and Haupt
[Haupt and Haupt, 1998]. In this case, an emergency
response building must be placed on a city map, rep-
resented as a 16 by 16 grid, with a river cutting across
the map at row seven. A bridge is placed over the river
to allow vehicles to cross the river. For the DC 37 func-
tion, the bridge is in column one of row seven, while
in the DC 41 function, the bridge is in column seven
of row seven.

In the figures, the letter ’W’ represents a case where
the row-label PRNG caused statistically higher Vose
discrepancy values compared to the column-label
PRNG. The figures show that, for these GA test
functions, rand1k causes higher discrepancy values
than any of our other PRNGs. Other PRNGs cause
sporadic Vose discrepancy differences, but rand1k
causes higher Vose discrepancies compared to all other
PRNGs, in all of the GA test functions we have com-
puted the statistics on so far. We speculate that the
sporadic Vose discrepancy differences of other PRNGs
are caused by the small population size of our GA
runs; Vose theory says that higher discrepancy values
are likely in small population GAs.

It is interesting that the infamous RANDU PRNG
[Knuth, 1997], which scores as badly as rand1k in the
Diehard suite of PRNG quality tests, does not impact
the GA in the same way rand1k does. In particu-
lar, RANDU never caused GA performance differences
in our runs (while rand1k did 68% of the time), and
neither did RANDU cause consistently higher discrep-
ancy values than the other PRNGs (while rand1k did).
Therefore, it seems that the Diehard suite is not pre-
dictive for GA use. We have developed a GA-specific
empirical test of PRNG quality (described in a poster
presented at this conference [Meysenburg et al., 2002])
which eliminates this false positive problem. Our new
test, tailored to the specific GA parameters of our
test functions, gives poor scores to rand1k but normal
scores for RANDU.

In summary, for the GA functions we have been able
to examine to date, rand1k does cause higher Vose
discrepancy values than other, higher quality PRNGs.

5 CONCLUSIONS AND FURTHER

WORK

We have shown that poor PRNG quality does correlate
with abnormally high Vose discrepancy values. We
feel that this correlation explains why a poor quality
PRNG, such as rand1k, can cause improved or de-
graded GA performance, compared to other PRNGs.
High enough discrepancy values could cause the GA

GENETIC ALGORITHMS482

to enter the basins of attraction of unexpected fixed
points of the Vose heuristic; this would be manifest as
GA performance differences.

In order to further bolster our confidence in our hy-
pothesis, we are continuing Vose discrepancy calcula-
tions on our larger GA test functions. As the results
become available, we will determine if the correlation
between poor PRNG quality and high Vose discrep-
ancy values continues. In addition, we would like to
determine the fixed points of the Vose heuristic for our
GA test functions, in order to confirm that rand1k
drives GA populations to fixed points different than
other PRNGs do.

Acknowledgments

This work is supported by the Doane College Cooper
Undergraduate Research Program, the Initiative for
Bioinformatics and Evolutionary STudies (IBEST)
at the University of Idaho; by NIH NCRR grant
1P20RR016454-01; and by NIH NCRR grant NIH
NCRR 1P20RR016448-01; and by NSF grant NSF
EPS 809935.

GENETIC ALGORITHMS 483

Pr {τ (p) = q}

= r!
∏

(

G(p)j

)rqj

(rqj)!

= exp

(

−r
∑

qj log
qj

G (p)j

−
∑

(

log
√

2πrqj +
1

12rqj + Θ (rqj)

)

+ O (log r)

)

Figure 1: Vose equation for probability that population q came from population p.

Function Name Length Function Name Length

DC 01 Rastrigin’s Function 20 DC 22 Ackley’s Trap Function 20
DC 02 Michalewicz’s Function 16 DC 23 Ackley’s 1-Max Function 20
DC 03 Whitley’s Function 20 DC 24 Ackley’s Mix Function 20
DC 04 Rana’s Function 20 DC 25 Ackley’s Plateaus Function 20
DC 05 Schwefel’s Function 20 DC 26 Hoelting’s Projectile 16
DC 06 Griewangk’s Function 20 DC 27 Koza’s Cart-Pole 20
DC 07 Schaffer’s Function 20 DC 28 New Light’s Bug Bomb 16
DC 08 McElvain’s Fibonacci 16 DC 29 Haupt’s 4-letter Word Guesser 20
DC 09 Shaffer’s Function 20 DC 30 Koza’s Cart-Pole II 20
DC 10 Keane’s Bump Function 20 DC 31 Koza’s Cart-Pole III 20
DC 11 Shopping Cart Packing 18 DC 32 Koza’s Cart-Pole IV 20
DC 12 Function F9 20 DC 33 6-city TSP 18
DC 13 Schubert’s Function 20 DC 34 Max Clique 16
DC 14 16-200-4 CNF-SAT 16 DC 35 6-city TSP II 18
DC 15 16-50-3 CNF-SAT 16 DC 36 6-city TSP III 18
DC 16 20-80-3 CNF-SAT 20 DC 37 Haupt’s ERU Location 8
DC 17 15-5-5 CNF-SAT 15 DC 38 Haupt’s ERU Location II 8
DC 18 20-80-3 CNF-SAT II 20 DC 39 Real Topology Hill-Climber 9
DC 19 20-300-5 CNF-SAT 20 DC 40 Binary-to-Gray Circuit 17
DC 20 Ackley’s 2-Max Function 20 DC 41 Haupt’s ERU Location III 8
DC 21 Ackley’s Porcupine 20 DC 42 Meysenburg’s DFA 18

Table 1: Doane College GA Test Suite functions

GENETIC ALGORITHMS484

a
d
d

f
s
r

m
e
r
s
e
n
n
e

m
o
t
h
e
r

p
m

r
a
n
d

r
a
n
d
1
k

r
a
n
d
u

s
h
l
e
c

s
h
p
m

s
h
s
u
b

s
u
b

t
a
u
s
s

t
g
f
s
r

add w w
fsr

mersenne
mother

pm w w w w
rand w w

rand1k w w w w w w w w w w w w w
randu w
shlec w
shpm
shsub

sub
tauss w
tgfsr

Table 2: Vose discrepancy results for DC 19

a
d
d

f
s
r

m
e
r
s
e
n
n
e

m
o
t
h
e
r

p
m

r
a
n
d

r
a
n
d
1
k

r
a
n
d
u

s
h
l
e
c

s
h
p
m

s
h
s
u
b

s
u
b

t
a
u
s
s

t
g
f
s
r

add w w w w w w w w w
fsr

mersenne w w
mother w w w w w w w w

pm w
rand w

rand1k w w w w w w w w w w w w w
randu
shlec
shpm
shsub w

sub w w
tauss w w w w w w w w w
tgfsr w w w w w w

Table 3: Vose discrepancy results for DC 37

GENETIC ALGORITHMS 485

a
d
d

f
s
r

m
e
r
s
e
n
n
e

m
o
t
h
e
r

p
m

r
a
n
d

r
a
n
d
1
k

r
a
n
d
u

s
h
l
e
c

s
h
p
m

s
h
s
u
b

s
u
b

t
a
u
s
s

t
g
f
s
r

add w w
fsr

mersenne
mother

pm w w w w
rand w w

rand1k w w w w w w w w w w w w w
randu w
shlec w
shpm
shsub

sub
tauss w
tgfsr

Table 4: Vose discrepancy results for DC 41

GENETIC ALGORITHMS486

References

[Daida et al., 1997] Daida, J., Ross, S., McClain, J.,
Ampy, D., and Holczer, M. (1997). Challenges with
verification, repeatability, and meaningful compar-
isons in genetic programming. In Koza, J. R., Deb,
K., Dorigo, M., Fogel, D. B., Garzon, M., Iba,
H., and Riolo, R. L., editors, Genetic Programming

1997: Proceedings of the Second Annual Conference,
pages 64–69, Stanford University, CA, USA. Morgan
Kaufmann.

[Daida et al., 1999] Daida, J. M., Ampy, D. S.,
Raatanasavetavadhana, M., Li, H., and Chaudhri,
O. A. (1999). Challenges with verification, repeata-
bility, and meaningful comparison in genetic pro-
gramming: Gibson’s conundrum. In Banzhaf, W.,
Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V.,
Jakiela, M., and Smith, R. E., editors, GECCO-99:

Proceedings of the Genetic and Evolutionary Com-

putation Conference, Orlando, FL, USA. Morgan
Kaufmann.

[Haupt and Haupt, 1998] Haupt, S. and Haupt, R.
(1998). Practical Genetic Algorithms. John Wiley
and Sons.

[Knuth, 1997] Knuth, D. E. (1997). The Art of Com-

puter Programming, volume 2. Addison Wesley,
third edition.

[Marsaglia, 1993] Marsaglia, G. (1993). Monkey tests
for random number generators. Computers & Math-

ematics with Applications, 9:1–10.

[Matsumoto and Nishimura, 1998] Matsumoto, M.
and Nishimura, T. (1998). Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Transactions on

Modeling and Computer Simulation, 8(1):3 – 30.

[Meysenburg, 1997] Meysenburg, M. M. (1997). The
effect of pseudo-random number generator quality
on the performance of a simple genetic algorithm.
Master’s thesis, University of Idaho.

[Meysenburg and Foster, 1997] Meysenburg, M. M.
and Foster, J. A. (1997). The quality of pseudo-
random number generators and simple genetic algo-
rithm performance. In Proceedings of the Seventh

International Conference on Genetic Algorithms,
pages 276 – 281. Morgan Kaufmann.

[Meysenburg and Foster, 1999a] Meysenburg, M. M.
and Foster, J. A. (1999a). Random generator qual-
ity and gp performance. In Banzhaf, W., Daida, J.,
Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela,

M., and Smith, R. E., editors, GECCO-99: Proceed-

ings of the Genetic and Evolutionary Computation

Conference. Morgan Kaufmann.

[Meysenburg and Foster, 1999b] Meysenburg, M. M.
and Foster, J. A. (1999b). Randomness and ga
performance, revisited. In Banzhaf, W., Daida, J.,
Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela,
M., and Smith, R. E., editors, GECCO-99: Proceed-

ings of the Genetic and Evolutionary Computation

Conference. Morgan Kaufmann.

[Meysenburg et al., 2002] Meysenburg, M. M., Hoelt-
ing, D., McElvain, D., and Foster, J. A. (2002).
A genetic algorithm-specific test of random gener-
ator quality. In GECCO-2002: Proceedings of the

Genetic and Evolutionary Computation Conference.
Morgan Kaufmann.

[Vose, 1999] Vose, M. D. (1999). The Simple Genetic

Algorithm. MIT Press.

GENETIC ALGORITHMS 487

LINKGAUGE: Tackling hard deceptive problems
with a new linkage learning genetic algorithm

Miguel Nicolau

C.S.I.S. Department
University of Limerick

Ireland
Miguel.Nicolau@ul.ie

Conor Ryan

C.S.I.S. Department
University of Limerick

Ireland
Conor.Ryan@ul.ie

Abstract

A novel approach to obtaining a tight link-
age between genes in a genetic algorithm is
described, and a new system based on that
approach, LINKGAUGE, is proposed. Ex-
periments presented draw a comparison be-
tween the standard messy genetic algorithm
and LINKGAUGE, and show that the latter
avoids deceptive traps and early convergence,
with minimal computational cost. The scal-
ability potential of the new approach is il-
lustrated with results for two hard deceptive
problems.

1 INTRODUCTION

Since they were �rst introduced, genetic algorithms
(Holland, 1975; Goldberg, 1989) have been considered
good all-round general problem solvers, and have since
been applied to a variety of problems, which show their
exibility and adaptability. In the standard approach,
each individual consists of a sequence of values, and
operators are provided to exchange and combine those
values, so that building blocks (short, highly �t se-
quences of values) are constructed, and later combined
to form correct solutions. However, there is no mech-
anism to ensure a tight linkage between the values of
those sequences (Goldberg, Deb, Korb, 1991); when
applying standard genetic operators, this leads to an
easy disruption of building blocks, rather than their
maintenance (Harik, 1997), and therefore to an inabil-
ity to scale-up to more diÆcult problems. Further-
more, an individual's genes are position dependent,
in that a given locus on the genome always codes for
the corresponding bit position in the phenotype. This
can make crossover even less likely to maintain useful
building blocks, especially if they represent geograph-
ically distant positions in the phenotype.

According to (Goldberg, Deb, Thierens, 1993), a suc-
cessful algorithm should not only concentrate on the
production of building blocks, but also on their preser-
vation and exchange between individuals.

In recent years, much work has been done on achieving
a tighter linkage between genes, and a family of algo-
rithms called competent GAs has emerged (Goldberg,

2001); these are mostly based on the idea of genes cod-
ing both the position and the value of each element of
an individual. These algorithms have proven to be
successful when applied to hard problems, such as de-
ceptive linkage problems (Goldberg, Korb, Deb, 1989;
Goldberg, Deb, Kargupta, Harik, 1993; Harik, 1997;
Pelikan, Goldberg, Cant�u-Paz, 1999).

In this paper, we present a new system, LINKGAUGE,
which tackles the class of deceptive linkage problems
by using a simple yet e�ective algorithm. This sys-
tem is an extension of GAUGE (Genetic Algorithms
Using Grammatical Evolution), a system described in
(Ryan, Nicolau, O'Neill, 2002) and based on the idea
of encoding a position/value couple on each gene, to
create a position-independent algorithm; GAUGE, in
turn, employs many of the ideas behind Grammati-
cal Evolution (Ryan, Collins, O'Neill, 1998; O'Neill,
Ryan, 2001; O'Neill, 2001). So far, GAUGE has been
successfully applied to both standard and deceptive
ordering problems.

Our aim when running the experiments described in
this paper was to test the aptitude of LINKGAUGE
to solve linkage problems, and its scalability when pre-
sented with more diÆcult problems; to do so, we ap-
plied the system to two hard deceptive linkage prob-
lems, and compare its performance to the standard
messy Genetic Algorithm (Deb, Goldberg, 1991). By
extending GAUGE's mapping mechanism, we have
built a new exible approach to this kind of prob-
lem; our results show by comparison that it �nds a
solution faster, scales better to harder versions of the

GENETIC ALGORITHMS488

problem, and requires far less hardware resources than
the messy GA1.

This paper is organized as follows: we start by briey
introducing Grammatical Evolution in section 2, fol-
lowed by an explanation of how GAUGE works (sec-
tion 3) and its extension into LINKGAUGE (section
4). In section 5 we present the problems used for our
experiments, and in section 6 we present our results.

Finally an analysis of those results is made and con-
clusions are drawn in section 7, followed by the outline
of some future directions of research in section 8.

2 GRAMMATICAL EVOLUTION

GAUGE is based upon many of the techniques imple-
mented in Grammatical Evolution, so we start with an
introduction to this system, to highlight the similari-
ties and di�erences between the two systems.

Grammatical Evolution (GE) is an evolutionary al-
gorithm approach to automatic program generation,
which evolves strings of binary values, and uses a BNF
(Backus-Naur Form) grammar to map the strings into
programs. This mapping involves transforming the bi-
nary individual into a string of integer values, and then
using those values to choose transformations from the
given grammar, so that a start symbol is mapped into
a syntactically correct program.

This process is based on the idea of a genotype to phe-
notype mapping: an individual comprised of binary
values (genotype) is evolved, and, before being eval-
uated, is subjected to a mapping process to create a
program (phenotype), which is then evaluated by the
�tness function. This creates two distinct spaces, a
search space and a solution space.

The degenerate genetic code employed in GE also plays
a role in the performance of the system, as seen in
(O'Neill, Ryan, 1999); by using the mod function to
normalize each integer to a �nite number of produc-
tion rules, di�erent integer values can be used to select
the same rule. The genotype can therefore be modi-
�ed without necessarily a�ecting the phenotype, in a
process known as neutral mutations (Kimura, 1983;
Banzhaf, 1994).

Finally, the functionality of the values in the integer
string is dependent on the values preceding it, as those
determine which non-terminal symbols remain to be
mapped. This creates a linkage between each gene

1Due to its variable length nature, some messy GA
runs required over 1GB of memory to store a popula-
tion, comparing to less than 1MB for the most demanding
LINKGAUGE runs.

Protein

Amino
Acids

RNA

DNA

Phenotypic Effect

Biological System

Integer String

Binary String

Terminals

Rules

Program

GE

Binary String

Integer String

Positions
and Values

Binary String

GAUGE

T
R

A
N

SC
R

IP
T

IO
N

T
R

A
N

SL
A

T
IO

N

Figure 1: Genotype to Phenotype mapping

on the chromosome and all those which precede it,
and helps the individual in preserving good building
blocks during the evolution process, where it is sub-
jected to the harsh e�ects of operators like crossover.
This has been termed the \Ripple E�ect" (Keijzer,
Ryan, O'Neill, Cattolico, Babovic, 2001).

3 GAUGE

GAUGE is based on many of the same ideas behind
the implementation of GE. It uses a genotype to phe-
notype mapping in much the same fashion: an indi-
vidual is composed of a binary sequence (genotype)
which, once ready for evaluation, is mapped onto a
string of integer values, which are decoded as a col-
lection of (position, value) pairs to �nally build a new
binary string (the phenotype), ready to be evaluated.
Figure 1 illustrates this process, and compares it to
GE's analogy to molecular biology.

Another feature of GE upon which GAUGE is based is
that the function of a gene in an individual depends on
the value of the genes preceding it; this creates a tight
linkage between adjacent genes in that individual.

Since the position and value of each bit of the pheno-
type string are expressed on each gene, geographically
disparate values of the phenotype can be grouped to-
gether on the genotype. This leads to the creation of
tight building blocks at the start of the genome that
can be gradually grown by the evolutionary process,
in a process we call competitive building blocks.

GENETIC ALGORITHMS 489

Work by Bean (Bean, 1994) with the Random Keys
Genetic Algorithm (RKGA) hinted that a tight link-
age between genes would result in both a smoother

transition between parents and o�spring when genetic
operators are applied, and an error-free mapping to a
sequence of ordinal numbers.

3.1 EXAMPLE GAUGE MAPPING

In this subsection we take a look at how an individual
is created and evaluated using GAUGE. Let us take as
an example individual the following binary sequence:

0110 0111 0001 0100 0111 1001 0010 0011

The �rst step is to map it onto an integer string. For
the purpose of brevity, we will use four bits to encode
each integer (rather than the standard eight used in
the actual GAUGE code), and therefore end up with:

6 7 1 4 7 9 2 3

This string will be evaluated as a sequence of four
(position, value) pairs, and will be used to �ll in a
string of four bits. We therefore take the �rst position,
6, and map it onto the number of available positions in
the �nal string (i.e., 4), by calculating the remainder
of the division of 6 by 4 (6 % 4), giving the value 2

(i.e., the third position in the phenotype string). We
use the same mapping process to transform the value
for that position, 7, into a binary value: 7 % 2 = 1.
This is the state of the �nal array after the above
steps are executed:

? ? 1 ?

By taking the next pair, (1,4), we again map the
position onto the number of available positions, in
this case 3, which gives us 1 % 3 = 1 (second free
position), and normalize the value 4 onto a binary
value, which gives us 4 % 2 = 0 :

? 0 1 ?

With the next pair, (7,9), we map the position 7 onto
the number of available positions, 2, by calculating
7 % 2 = 1 (second free position, which is the last
position in the string), and the value 9 onto a binary
value, 9 % 2 = 1:

? 0 1 1

Finally, with the last pair, we map the position
2 onto the number of remaining places, in this

case 1, giving the value 2 % 1 = 0, and place the
value 3 % 2 = 1 in it. Note that the last position
will always be mapped onto value 0, since there

is only one free position left in the �nal individual.
Our phenotype, now ready for evaluation, is the string:

1 0 1 1

3.2 EARLY RESULTS

In (Ryan, Nicolau, O'Neill, 2002), GAUGE was ap-
plied to both a standard genetic algorithm problem
and a deceptive ordering problem. On the former,
its performance was as good as that of a simple ge-
netic algorithm, showing that its overhead processing
(namely its mapping process) does not reect in a loss
of performance in simple problems, while on the latter,
its (position,value) speci�cation was shown to provide
the exibility of swapping elements in a solution, help-
ing the system to avoid local optima. The interested
reader is referred to the mentioned paper.

4 LINKGAUGE

In this section the LINKGAUGE system is presented.
The idea is to extend the tight linkage between the
gene positions, as seen in GAUGE, to the gene values
themselves. This is achieved by extending GAUGE's
mapping process: every time a value is to be placed on
the phenotype string, it is calculated by adding all the
previous value �elds in each (position, value) pair and
then normalizing the result over the range of accepted
values. The value each gene will provide can therefore
be calculated by the formula

(

nX

i=0

xi)%v

where
n = order of the gene (i.e. gene 0, gene 1, etc)
xi = number in value �eld for gene i

v = value to normalize (for binary strings, 2 is used)

It should be noted that, theoretically, any function
could be used to introduce dependency between the
values; the suitability of other functions will be the
subject of further research.

4.1 EXAMPLE LINKGAUGE MAPPING

Following the GAUGE mapping example, the pair
(6,7) will generate the same string as before:

? ? 1 ?

GENETIC ALGORITHMS490

In the next pair, however, the value is calculated by
(7+4) % 2 (i.e., the cumulative total of the previous
value �elds normalized over the range of binary num-

bers), giving the value 1. The position calculation is
the same as before (1 % 3 = 1), so we end up with
the string:

? 1 1 ?

In the next pair, the value will be calculated by
(7+4+9) % 1, giving the value 0, and the �nal value
is calculated by (7+4+9+3) % 1 = 1. The �nal string
will be:

1 1 1 0

The objective of this mapping is to create a tight link-
age between the value of the genes. The previously
mentioned "Ripple E�ect" is therefore extended to the
values within the genes themselves.

5 DECEPTIVE PROBLEMS

In this section we introduce the two deceptive prob-
lems which we used on our experiments. These were
used to test the performance of LINKGAUGE, and to
compare it to the messy GA, using the mGA code
available in the IlliGAL web site and described in
(Deb, Goldberg, 1991). We chose to compare our
system to the messy GA as the latter is the origin
of most modern competent GAs, introducing the con-
cepts of primordial and juxtapositional phases, over-
and under-speci�cation, and competitive templates.
Future work should include comparisons to other more
recent competent GAs.

5.1 ORDER-THREE DECEPTIVE

PROBLEM

The order-three deceptive problem was the �rst prob-
lem reported using the original mGA, in (Goldberg,
Korb, Deb, 1989). In the original problem, ten order-
three deceptive sub-functions are concatenated to-
gether to form a 30-bit length problem. We have ex-
tended the problem, and used lengths of 30, 45, 60, 75,
90 and 105 bits.

Each sub-function has a global optimum (000) and
a deceptive local optimum (111). The objective is
to create a series of local optima that will attempt
to keep the systems from reaching the one and only
global optimum; on the 105-bit problem, this means
there are 2105 (4.05e+31) possible solutions, with 235

(3.44e+10) optima (local and global optimum com-
binations within each of the sub-functions), of which

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
 0

 1

0 5321 4

F
u
n
c
t
i
o
n

v
a
l
u
e

Unitation

Figure 2: Order-Five Deceptive Problem Unitation
Graph.

only one is the global solution for the entire string.
Table 1 shows the function values for every 3-bit com-
bination.

Table 1: Order-Three Sub-function Values.

String Value String Value

000 28 100 14
001 26 101 0
010 22 110 0
011 0 111 30

5.2 ORDER-FIVE DECEPTIVE PROBLEM

In (Goldberg, Deb, Kargupta, Harik, 1993), a
performance comparison between the original messy
GA and the Fast Messy Genetic Algorithm is made, by
using both the order-three sub-function and an order-
�ve sub-function; we used the same problems in our
tests.

In this problem, substrings of �ve bits are con-
catenated together, with the global optimum being

(11111) and the local optimum (00000). Figure 2
shows this problem in terms of a unitation graph, i.e.
the number of 1s in a sub-function determines its �t-
ness. This function is fully deceptive, as can be seen
in (Deb, Goldberg, 1994).

6 EXPERIMENTS

In this section we present the results obtained on the
two described problems, using both LINKGAUGE and
the original messy GA. We start by describing the ex-
perimental setup used on each system, follow with an
overview of the results obtained in our experiments,
and conclude this section with a discussion of those
results.

GENETIC ALGORITHMS 491

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

Fitness Evaluations

Order-three Subfunction - messyGA

30-bit
45-bit
60-bit
75-bit
90-bit

105-bit

Figure 3: Order-Three Results For MessyGA; No Re-
sults Were Obtained With String Lengths Over 60
Bits.

6.1 EXPERIMENTAL SETUP

We used a standard con�guration with LINKGAUGE
for this problem. With a population of 800 individ-
uals, the replacement strategy used was steady-state,
and the selection routine was roulette-wheel; proba-
bility of crossover was set to 0.9, and mutation was
set to 0.01, which are the standard Genetic Program-
ming (Koza, 1992) values used in GE; no attempt was
made to optimize these values. The maximum number
of �tness function calls was set to 1.6e+04, on both
systems.

Table 2: Tested combinations of settings for the messy
GA algorithm.

Parameters Set 1 Set 2 Set 3 Set 4

Maximum era 3 3 4 3
Prob. cut 0.02 0.02 0.02 0.02

Prob. splice 1.0 1.0 1.0 1.0
Prob. allelic mut. 0.0 0.0 0.0 0.0
Prob. genic mut. 0.0 0.0 0.0 0.0

Thresholding no yes yes yes
Tie-breaking no yes yes yes

Reduced popsize no yes yes yes
Extra members no no no no

Copies 5,1,1 5,1,1 5,1,1,1 5,1,1
Total generations 20 20 15 100
Juxtapos. popsize 250 250 250 100

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

Fitness Evaluations

Order-three Subfunction - LINKGAUGE

30-bit
45-bit
60-bit
75-bit
90-bit

105-bit

Figure 4: Order-Three Results For LINKGAUGE.

In the messy GA, a range of di�erent sets of param-
eters were tried as seen in Table 2; a detailed expla-
nation of these settings can be found in (Goldberg,
Korb, Deb, 1989; Goldberg, Deb, Korb, 1991). Set-
tings 1 (the standard messy GA values) and 2 behaved
well with the 30-bit string problem, but gave very poor
results with longer string lengths, and were therefore
discarded; settings 3 and 4 gave the improved results,
with setting 3 achieving the best performance on the
harder problems, and so was chosen for our compari-
son.

6.2 RESULTS

Both systems were applied to each of the problems
over 100 runs, and the graphs presented here show the
cumulative number of successful runs plotted against
the number of �tness evaluations required.

6.2.1 Order-Three Problem

Results for the order-three problem, shown in Fig-
ures 3 and 4, show the messy GA achieving a su-
perior performance with small string lengths. How-
ever, as the string length gets longer, it can be seen
that LINKGAUGE scales better to the problem; with
lengths of 75-bit, 90-bit and 105-bit, all messy GA
runs failed to �nd one instance of the global optimum
(a string composed of all 1s), and therefore they are
not plotted in the graph presented.

GENETIC ALGORITHMS492

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

Fitness Evaluations

Order-five Subfunction - LINKGAUGE

30-bit
45-bit
60-bit
75-bit
90-bit

105-bit

Figure 5: Order-Five Results for LINKGAUGE.

6.2.2 Order-Five Problem

According to results published in (Goldberg, Deb,
Kargupta, Harik, 1993), the original messy GA with
standard parameter settings would need a number
close to 1e+08 function evaluations to �nd an instance
of a global solution for the order-�ve problem, with
a 50-bit string. It is therefore no wonder that in our
tests, the messy GA failed to �nd any instance of the
global solution over 1.6e+04 �tness function calls2.

The results obtained with LINKGAUGE (shown in
Figure 5) are, however, similar to those obtained in
the order-three problem, which suggests that the extra
deceptiveness of order-�ve problems doesn't have as
strong an impact on its performance as one might ex-
pect. Over the allowed number of �tness evaluations,
only in the 105-bit problem did LINKGAUGE not �nd
any solution. It should be mentioned, however, that in
this class of problem LINKGAUGE worked better with
a population size of 1600 individuals using the same
number of �tness function calls (and indeed found solu-
tions for the 105-bit problem), which tends to suggest
that a better trade-o� between number of generations
versus population size can be found; this could, how-
ever, be looked upon as parameter optimization, and
therefore those results are not reported here in detail.

2It also increased its hardware requirements exponen-
tially; on one speci�c run, to specify the contents of a 30-bit
string, the average length of an individual was over 22000
genes.

6.3 ANALYSIS

On the standard order-three problem, a direct compar-
ison with the messy GA shows LINKGAUGE's ability
to adapt to an increasing problem diÆculty; although
with smaller strings the messy GA is faster at �nding
a solution (with any of the parameter sets tested), it
does not present the scalability of LINKGAUGE when
the problem gets harder.

On the order-�ve deceptive problem, the lack of re-
sults for the messy GA, and the only slight loss of
performance of LINKGAUGE, underline the scale-up
properties of the latter. Results obtained (but not re-
ported, for the sake of clarity) have shown that with
larger population sizes and the same number of �tness
evaluations, LINKGAUGE's performance in this prob-
lem increased, which leads to some optimism as to the
system's ability to avoid early convergence.

7 CONCLUSIONS

We have presented a new genetic algorithm based sys-
tem, LINKGAUGE, for the purpose of solving hard
deceptive linkage problems. The results reported show
an interesting scale-up property for our system, which
is remarkable given that it is based on a simple genetic
algorithm; no speci�c genetic operators have been in-
troduced, and parameters such as crossover and mu-
tation rate have been set to standard values. This is
not the case of the system compared to, messy GA,
which has a speci�c implementation that slightly di-
verges from the original implementation ideas of ge-
netic algorithms: although a good approach in itself,
this does make the algorithm harder to use and under-
stand, and parameter tuning was required to achieve
a good performance. It should also be mentioned that
LINKGAUGE's �xed-length, �xed-population size na-
ture results in an algorithm that has very little hard-
ware and over-head processing requirements, espe-
cially when compared to the original messy GA.

8 FUTURE WORK

Future lines of research include numerical and sta-
tistical analysis of the data presented, to e�ectively
measure the performance and the degree of scala-
bility of the system. Also, a rigorous comparison
should be made between the system presented and
other more recent linkage learning genetic algorithms
(Goldberg, Deb, Kargupta, Harik, 1993; Harik, 1997),
to highlight similarities and di�erences, and advan-
tages/disadvantages.

GENETIC ALGORITHMS 493

Acknowledgments

The authors would like to thank Dr. Michael O'Neill
for his advice on writing this paper, and for his driving
force in the initial implementations of GAUGE.

References

Banzhaf, W. 1994. Genotype-Phenotype-Mapping
and Neutral Variation - A case study in Genetic Pro-
gramming. In Parallel Problem Solving from Nature

III, Springler. (pp. 322-332)

Bean, J. 1994. Genetic Algorithms and Random Keys
for Sequencing and Optimization. ORSA Journal on
Computing, Vol. 6, No. 2, Spring 1994. (pp. 154-160)

Deb, K., and Goldberg, D. E. 1991. mGA in C: A
Messy Genetic Algorithm in C. Illinois Genetic Algo-
rithms Laboratory (IlliGAL), report no. 91008.

Deb, K., and Goldberg, D. E. 1994. SuÆcient Condi-
tions for Deceptive and easy Binary Functions. Annals
of Mathematics and Arti�cial Intelligence 10. (pp.
385-408)

Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley.

Goldberg, D. E. 2001. The Design of Competent GAs:
Toward a Computational Theory of Innovation. Tuto-
rial presented at the Genetic and Evolutionary Com-
putation Conference, San Francisco, July 2001.

Goldberg, D. E., Deb, K., Kargupta, H., and Harik,
G. 1993. Rapid, Accurate Optimization of DiÆcult
Problems Using Fast Messy Genetic Algorithms. Illi-
nois Genetic Algorithms Laboratory (IlliGAL), report
no. 93004.

Goldberg, D. E., Deb, K, and Korb, B. 1991. Don't
Worry, be Messy. In Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms (San Mateo,

CA), R. Belew and L. Booker, Eds., Morgan Kaufman.
(pp. 24-30)

Goldberg, D. E., Deb, K., and Thierens, D. 1993. To-
ward a Better Understanding of Mixing in Genetic Al-
gorithms. Journal of the Society of Instrument and
Control Engineers, Vol. 32, No. 1. (pp. 10-16)

Goldberg, D. E., Korb, B., and Deb, K. 1989. Messy
genetic algorithms: Motivation, analysis, and �rst re-
sults. in Complex Systems, 3. (pp. 493-530)

Harik, G. 1997. Learning Gene Linkage to EÆ-
ciently Solve Problems of Bounded DiÆculty Using
Genetic Algorithms. Doctoral Dissertation, University
of Michigan, Ann Arbor.

Holland, J. H. 1975. Adaptation in Natural and Arti-
�cial Systems. Ann Arbor, MI: University of Michigan
Press.

Keijzer M., Ryan C., O'Neill M., Cattolico M.,
and Babovic V. 2001. Ripple Crossover in Genetic
Programming. In LNCS 2038, Proceedings of the

Fourth European Conference on Genetic Program-

ming, Springer. (pp. 74-86)

Kimura, M. 1983. The Neutral Theory of Molecular
Evolution. Cambridge University Press.

Koza, J. 1992. Genetic Programming. MIT Press.

O'Neill, M. 2001. Automatic Programming in an Ar-
bitrary Language: Evolving Programs with Grammat-
ical Evolution. Doctoral Dissertation, University of
Limerick.

O'Neill, M., and Ryan, C. 1999. Genetic Code Degen-
eracy: Implications for Grammatical Evolution and
Beyond. In ECAL'99: Proceedings of the Fifth Euro-

pean Conference on Arti�cial Life.

O'Neill, M., and Ryan, C. 2001. Grammatical Evolu-
tion. IEEE Transactions on Evolutionary Computa-
tion, Vol. 5, No. 4. (pp. 349-358)

Pelikan, M., Goldberg, D. E., and Cant�u-Paz, E. 1999.
BOA: The Bayesian Optimization Algorithm. In Pro-

ceedings of the Genetic and Evolutionary Computation

Conference GECCO-99, Morgan Kaufman. (pp. 525-
532)

Ryan, C., Collins, J.J., and O'Neill, M. 1998. Gram-
matical Evolution: Evolving Programs for an Arbi-
trary Language. In LNCS 1391, Proceedings of the

First European Workshop on Genetic Programming,
Springer-Verlag. (pp. 83-95)

Ryan, C., Nicolau, M., and O'Neill, M. 2002. Genetic
Algorithms using Grammatical Evolution. In Proceed-

ings of EuroGP-2002. (to appear)

GENETIC ALGORITHMS494

Setting the Mutation Rate:
Scope and Limitations of the 1/L Heuristic

Gabriela Ochoa
Universidad Simon Bolivar, Computacion y TI

Sartenejas, Miranda, Apartado 89000, Caracas 1080-A, Venezuela
E-mail: gabro@ldc.usb.ve

Tel.: +58 212 906 32 63, Fax.: +58 212 906 32 43

Abstract

An important decision to make when design-
ing a GA is how to set the evolutionary pa-
rameters. Among these parameters, the mu-
tation rate has been acknowledged as the
most sensitive one. All approaches so far
for a near-optimal setting of the mutation
rate have intrinsic limitations. A promising
guideline is, however, the heuristic suggest-
ing pm = 1/L where L is the string length.
This paper is a first attempt to explore the
scope and limitations of this heuristic on GAs
with bit-string representation. Specifically,
we select two real-world domains as test prob-
lems and explore (i) whether optimal mu-
tation rates change with time; and (ii) the
interactions between the mutation rate and
other evolutionary parameters. Results sug-
gest that a constant mutation rate of 1/L is
useful for a GA with a controlled ‘moderate’
selection pressure. It should be, however, re-
vised for a weak or extremely strong selection
pressure, and for a small population size.

1 INTRODUCTION

It has been suggested that the most sensitive of GA
parameters is the mutation rate [Schaffer et al., 1989,
Bäck, 1996]. Several studies in the literature look for
‘optimal’ mutation rates, or optimal schemes for vary-
ing the mutation rate over a single run [Fogarty, 1989,
Davis, 1989, Bäck, 1991, Mühlenbein, 1992,
Julstrom, 1995, Tuson and Ross, 1998].

We believe that the most useful guideline so far
for an effective and general setting of the mutation
rate in GAs is the heuristic suggesting pm = 1/L
(per bit), where L is the string length. This fig-

ure has appeared several times in the evolutionary
computation literature. The earliest appearance we
can trace back was due to [Bremerman et al., 1966]
as quoted by [Bäck, 1996]. Also, in his dis-
sertation [DeJong, 1975] suggested this value as
quoted by [Hesser and Männer, 1991]. The work of
[Mühlenbein, 1992] states that pm = 1/L is optimal
for general unimodal functions. This setting has also
produced good results for several NP-hard combinato-
rial optimization problems such as the multiple knap-
sack problem [Khuri et al., 1994], the minimum vertex
cover problem [Khuri and Bäck, 1994], the maximum
independent set problem [Bäck and Khuri, 1994],
and others [Bäck and Khuri, 1994]. The work of
[Smith and Fogarty, 1996] found 1/L as the best fixed
setting for the mutation rate, giving results compa-
rable to their best self-adaptive method. Other au-
thors have found a dependence of effective mutation
rates upon the string length L, although they had not
explicitly suggested pm = 1/L [Schaffer et al., 1989,
Hesser and Männer, 1991, Bäck, 1992, Bäck, 1993].

Thus, there may well be some true principle underly-
ing this heuristic. In previous work, we argued that
this principle is related to the notion of error thresh-
old from molecular evolution [Ochoa et al., 1999,
Ochoa et al., 2000]. The error threshold is the min-
imal replication accuracy that still maintains genetic
information in the population.

This paper is a first attempt to explore the scope and
limitations of the 1/L heuristic on GAs with bit-string
representation. Specifically, we select two real-world
domains as test problems and explore (i) whether op-
timal mutation rates change with time; and (ii) the
interactions between the mutation rate and other evo-
lutionary parameters (the selection pressure and the
population size).

The remainder of this document is organized as fol-
lows. Section 2 describes the test problems used in

GENETIC ALGORITHMS 495

this paper: a combinatorial optimization problem —
the Multiple Knapsack problem, and an engineering
problem — the design of an optimal aircraft Wing-
Box. Sections 3 and 4 describe our methods and results
respectively, and, finally, Sections 5 and 6 summarizes
our findings.

2 TEST PROBLEMS

Two real-world domains were selected for study,
namely, a combinatorial optimization problem — the
Multiple Knapsack problem, and an engineering prob-
lem — the design of an optimal aircraft Wing-Box.
The Multiple Knapsack is a maximization problem,
whereas the Wing-Box is a minimization problem.
This selection is somewhat arbitrary, but is consis-
tent with the following criteria. First, both are com-
plex problems: the Wing-Box is an engineering design
problem based on real data and constraints, and the
Multiple Knapsack is a highly constrained combina-
torial optimization problem known to be NP -hard.
Second, both problems were available and relatively
easy to implement, and third, both have a natural
bit string encoding which was a requirement for the
present study. Additionally, these two problems are
completely unrelated, so common results have a good
chance to convey some generality. It is worth noting,
however, that other real-world problems may have very
different characteristics from these two test problems.

2.1 THE WING-BOX PROBLEM

The Wing-Box problem was formulated as part of
the Genetic Algorithms in Manufacturing Engineer-
ing (GAME) project at COGS, University of Sussex
1. An industrial partner, British Aerospace, provided
data from a real Airbus wing box.

A common problem faced in the design of aircraft
structures, is to define structures of minimum weight
that can withstand a given load. Figure 1 sketches the
elements of a wing relevant to this problem. The wing
is supported at regular intervals by slid ribs which run
parallel to the aircraft’s fuselage. On the upper part
of the wing, thin metal panels cover the gap separat-
ing adjacent ribs. The objective is to find the num-
ber of panels and the thickness of each of these panels
while minimizing the mass of the wing and ensuring
that none of the panels buckle under maximum op-
erational stresses. More details, and the equations
for calculating the fitness function, can be found in
[McIlhagga et al., 1996].

1http://www.cogs.susx.ac.uk/projects/game/

Fuselage

Top panel

Cavity

Ribs

Rib pitch

Figure 1: Relevant elements of a wing. Wing dimensions
are fixed. The variable elements are the number of ribs
and the thickness of the top panels.

A full description of a potential solution to the Wing-
Box problem requires the definition of the number of
ribs N and the thickness of the N − 1 panels. There
is a constraint on the thickness of these panels which
is that adjacent panels should not differ in thickness
by more than 0.25 mm. The simplest way to accom-
plish this, is to encode the differences in thickness be-
tween adjacent panels rather than the absolute thick-
ness of the panels. If we know the difference in thick-
ness δth(i) between panels i and i+1 for i ∈ (1, N−1),
the absolute thickness of the first panel is enough to
define everything else.

Originally, the Wing-Box parameters were encoded fol-
lowing the order described by Figure 2. For the exper-
iments in this paper we fixed the number of panels in
50 (i.e N = 51 ribs, since the number of ribs is 1 +
the number of panels), thus our genetic encoding is
the same, but excluding the first gene. The thickness
of the first panel was allowed to vary between 10 and
15 mm by steps of 10−3 mm. This requires 5 × 103
values which can be represented with a minimum of
13 bits. For all subsequent N − 2 panels the differ-
ence in thickness with the previous panel is encoded.
According to manufacturing tolerance considerations,
only five values were allowed for these differences in
thickness: {−0.25,−0.125, 0.0, 0.125, 0.25}. Three bits
are needed to encode these five values. Notice that a
change in δth(i) leads to changes in the thickness of
panel i+ 1, and of all subsequent panels up to the tip
of the wing. Notice also that in both the encoding of
the first section, and the remainder N − 2 sections,
there is an amount of redundancy in the genotype to
phenotype mapping. To sum up, the number of bits
needed for encoding an individual is 13 for the first

GENETIC ALGORITHMS496

panel, and 3 for each of the others 49 panels, that is
13 + 3× 49 = 160.

N: Number of ribs

th(i): Thickness of i panelth

th(2)-th(1) th(N-1)-th(N-2)
. ∆ ∆th(i)= th(N-2)=

th(i+1)-th(i)
th(1)=∆

N th(1)

Figure 2: Genetic representation of the wing parameters.

2.2 THE MULTIPLE KNAPSACK
PROBLEM

The combinatorial optimization problem described
here, called the 1/0 multiple knapsack problem, follows
the specifications given by [Khuri et al., 1994]. This
problem is a generalization of the 0/1 simple Knap-
sack problem where a single knapsack of capacity C,
and n objects are given. Each object has a weight
wi and a profit pi. The objective is to fill the knap-
sack with objects producing the maximum profit P .
In other words, to find a vector x = (x1, x2, . . . , xn)
where xi ∈ {0, 1}, such that ∑n

i=1 wixi ≤ C and for
which P (x) =

∑n
i=1 pixi is maximized.

The multiple version consists of m knapsacks of
capacities c1, c2, . . . , cm and n objects with profits
p1, p2, . . . , pn. Each object has m possible weights:
object i weighs wij when considered for inclusion in
knapsack j (1 ≤ j ≤ m). Again, the objective is
to find a vector x = (x1, x2, . . . , xn) that guaran-
tees that no knapsack is over-filled:

∑n
i=1 wijxi ≤ cj

for j = 1, 2, . . . ,m; and that yields maximum profit
P (x) =

∑n
i=1 pixi.

This problem leads naturally to a binary encoding.
Each string x1x2 . . . xn represents a potential solution.
If the ith position has the value 1 (i.e. xi = 1) then the
ith object is in all knapsacks; otherwise, it is not. No-
tice that a string may represent an infeasible solution.
A vector x = (x1, x2, . . . , xn) that over-fills at least one
of the knapsacks; i.e., for which

∑n
i=1 wijxi > cj for

some 1 ≤ j ≤ m, is an infeasible string. Rather than
discarding infeasible strings and thus ignore infeasible
regions of the search space, the approach suggested by
[Khuri et al., 1994] is to allow infeasible strings to join
the population. A penalty term reduces the fitness of
infeasible strings. The farther away from feasibility,
the higher the penalty term of a string. Thus, the fol-
lowing fitness function was defined (s is the number of
over-filled knapsacks):

f(x) =
n∑

i=1

pixi − s × max(pi) (1)

Hence, the fitness function uses a graded penalty term
max(pi). The number of times this term is subtracted
from the fitness of a infeasible solution is equal to the
number of over-filled knapsacks that the solution pro-
duces.

A Multiple Knapsack instance, taken from the litera-
ture (termed Weish 30), was used as test problem. It
has 90 objects and 5 sacks. This (and several other)
problems are available online from the OR-library by
[Beasley, 1990]. Weish 30 is among the biggest and
more complex Multiple Knapsack instances available
in the library.

3 METHODS

For estimating optimal mutation rates in GAs we need
to define what an optimal or near-optimal mutation
rate is. The working definition used here is: an op-
timal mutation rate is that producing optimal perfor-
mance. But then, we need a good way of measur-
ing GA performance. Given the randomized nature of
GAs, conclusions can never be drawn from a single run.
Instead, the common practice is to consider statistics
from a sufficiently large number of independent runs.
So, the standard performance measures for GAs are
the average and best fitness values attained after a
prefixed termination criterion, averaged over several
runs. Within a given run, the best fitness could be
either the current best in the population, or the best
fitness attained so far. These measures are considered
after a fixed termination criterion, or over fixed inter-
vals throughout the GA run. For the experiments in
this paper, we will consider the best fitness attained
so far after a fixed termination criterion. This crite-
rion will be carefully selected in each case to be long
enough to stabilize the best and average fitness of the
population. The average of several runs will be con-
sidered (typically 50) and the standard deviation will
be shown in most cases. The first empirical section,
however, studies the time dependency of the mutation
rate. In this case best-so-far fitness values are reported
at fixed intervals.

To study the applicability of the 1/L heuristic, we ex-
plore the effect of modifying some relevant evolution-
ary parameters on the magnitude of optimal mutation
rates. Specifically, we explore the effects of modify-
ing the selection pressure and population size. Unless
otherwise stated, experiments use a generational GA

GENETIC ALGORITHMS 497

with tournament selection (tournament size = 2), a
population of 100 members, and both mutation and
recombination (two-point with a rate of 1.0). Table
1 summarizes these default settings. Further details
on the experiments and departures from the default
settings are given in the respective results subsections.

Population replacement Generational
Selection scheme Tournament (T. Size = 2)
Population size 100
Recombination rate 1.0
Recombination operator Two-point
Termination criterion 2,000 Generations
Number of runs 50

Table 1: GA default parameters used in the experiments.

4 RESULTS

Three groups of experiments were performed with the
aim of exploring: (i) the time-dependency of the mu-
tation rate, (ii) the effect of modifying the selection
pressure, and (iii) the effect of modifying the popula-
tion size. Experiments were run on both test prob-
lems (Wing-Box and Knapsack). For analyzing the
results, it is worth remembering that the Wing-Box
is a minimization problem whereas the Knapsack is a
maximization problem.

4.1 TIME-DEPENDENCY

The first set of experiments studies the behavior of
different mutation values over the generations of a GA
run. The evolutionary parameters used are those sum-
marized in Table 1. Results are presented in three
stages. First the “interesting” part of the search, from
generation 100 to generation 2,000 (Figure 3). Then,
the first stage of the search, the first 100 generations
(Figure 4); and, finally, the last stages of the search,
from generation 2,000 to 5,000 (Figure 5). The plots
show the average best-so-far fitness attained over fixed
intervals throughout the GA run on both test prob-
lems (the Wing-Box and Knapsack problems). Four
mutation values were explored: 0.5, 1.0, 2.0, and 3.0
mutations per genotype. Standard deviations are not
shown in these plots for the sake of clarity.

For the intermediate stage of the search, on the Wing-
box problem the mutation rates of 1/L and 2/L pro-
duced the best results and performed similarly (Figure
3, top). On the Knapsack problem, a mutation rate
of 1/L seems to produce the best performance in this
stage (Figure 3, bottom).

Wing-Box Problem

13300

13320

13340

13360

13380

13400

13420

13440

13460

13480

10
0

25
0

40
0

55
0

70
0

85
0

10
00

11
50

13
00

14
50

16
00

17
50

19
00

Generations

B
es

t-
so

-f
ar 0.5

1
2
3

Knapsack Problem

11450

11500

11550

11600

11650

11700

11750

11800

10
0

25
0

40
0

55
0

70
0

85
0

10
00

11
50

13
00

14
50

16
00

17
50

19
00

Generations

B
es

t-
so

-f
ar 0.5

1
2
3

Figure 3: Comparing the performance of different mu-
tation rates over a GA run on both test problem. The
curves show the average best-so-far fitness over fixed in-
tervals throughout the GA run for various mutation rates
(expressed as mutations per genotype).

The initial stage of the search is rather similar for
both test problems (Figure 4, recall that the Wing-Box
problem is a minimization problems whereas the Mul-
tiple Knapsack is a maximization problem) . All the
mutation values explored performed similarly. How-
ever, the mutation values of 0.5 and 1.0 mutations per
genotype seem to produce the best results in this stage.

Again, the final stage of the search is rather similar for
both test problems. A mutation rate of 1/L produced
the best performance in both cases (Figure 5).

GENETIC ALGORITHMS498

Wing-Box Problem, First 100 Generations

13400

13500

13600

13700

13800

13900

10 20 30 40 50 60 70 80 90 10
0

Generations

B
es

t-
so

-f
ar 0.5

1
2
3

Knapsack Problem, First 100 Generations

10100

10300

10500

10700

10900

11100

11300

11500

11700

10 20 30 40 50 60 70 80 90 10
0

Generations

B
e
st

-s
o
-f

a
r 0.5

1
2
3

Figure 4: Comparing the performance of different muta-
tion rates over a GA run on both test problems for the first
100 generations. The curves show the average best-so-far
fitness over fixed intervals throughout the GA run for vari-
ous mutation rates (expressed as mutations per genotype).

4.2 SELECTION PRESSURE

This subsection explores the effect of increasing the
selection pressure on the magnitude of optimal muta-
tion rates. The experiments use tournament selection
because this scheme allows the selection pressure to
be explicitly controlled. A common tournament size
is 2, but selection pressure increases steadily for grow-
ing tournament sizes. Two tournament sizes, 2 and 4,
were tested. Additionally, on the Knapsack problem,
results using proportional selection are also presented
for the sake of comparison. Figure 6 compares optimal
mutation rates (per genotype) on the two selected test

Wing-Box Problem, Final Stages of the Search

13280

13290

13300

13310

13320

13330

13340

13350

13360

13370

13380

20
00

23
00

26
00

29
00

32
00

35
00

38
00

41
00

44
00

47
00

50
00

Generations

B
es

t-
so

-f
ar 0.5

1
2
3

Knapsack Problem, Final Stages of the Search

11600

11620

11640

11660

11680

11700

11720

11740

11760

11780

11800

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

50
00

Generations

B
es

t-
so

-f
ar 0.5

1
2
3

Figure 5: Comparing the performance of different muta-
tion rates over a GA run on both test problems for the final
stages of the search (from generation 2,000 until 5,000).
The curves show the average best-so-far fitness over fixed
intervals throughout the GA run for various mutation rates
(expressed as mutations per genotype).

problems. The strength of selection had a noticeable
effect on the magnitude of optimal mutation rates: on
the Wing-box problem and for a tournament size of 2,
the optimal mutation rate was around 1.0 − 2.0 mu-
tations per genotype, whereas for a tournament size
of 4 it was around 2.5 − 3.0 mutations per genotype.
Similarly, on the Knapsack problem the optimal mu-
tation values were around 1.5/L for tournament size
of 2; and around 2.0 − 3.0 for tournament size of 4.
Moreover, the curve using proportional selection on
the Knapsack problem (Figure 6, bottom), strikingly
shows the difference in magnitude of optimal mutation

GENETIC ALGORITHMS 499

rates for a weak selection pressure. In this case, the
optimal mutation rate was as low as 0.05 mutations
per genotype.

Wing-Box Problem, Selection Pressure

13285

13305

13325

13345

13365

13385

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Mutations per Genotype

B
es

t-
so

-f
ar

T = 2
T = 4

Knapsack Problem, Selection Pressure

11550

11600

11650

11700

11750

11800

11850

0.01 0.1 0.5 1.5 2.5 3.5 4.5

Mutations per Genotype

B
es

t-
so

-f
ar Prop.

T = 2
T = 4

Figure 6: Comparing optimal mutation rates (per geno-
type) for different selection pressures on the two test prob-
lems. Tournament selection with two tournament sizes (2
and 4) was tested. Additionally, proportional selection was
tested on Knapsack problem. The curves show the aver-
age best-so-far fitness attained after 2,000 generations for
various mutation rates.

4.3 POPULATION SIZE

This subsection explores the effect of modifying the
population size on the magnitude of optimal mutation
rates. Three population sizes: 10, 50, and 100, were
tested. The number of generations used as a stop cri-
terion varied according to the population size since
the smaller the population, the more generations were

needed for equilibrating the best-so-far fitness. So the
termination criteria used were 20,000, 4,000, and 2,000
generations for population sizes 10, 50, and 100 re-
spectively. Figure 7 shows results on the two selected
test problems. Optimal mutation rates tended to be
smaller, the smaller the population size, this tendency
was clearer on the Knapsack problem (bottom plot),
where optimal mutation rates were around 0.5−1.0/L
for a population size of 10, and around 1.0− 1.5/L for
population sizes of 50 and 100. Notice that for popu-
lation sizes of 50 and 100, differences in performance
for the various mutation rates tend to stabilize. This
was also the case for preliminary experiments on larger
populations.

5 DISCUSSION

This paper has been a first attempt to explore the va-
lidity of the heuristic suggesting a mutation rate of 1/L
for GAs with bit-string encoding. Two completely un-
related and complex real-world domains were selected
as test problems. Some common behaviors were found,
so these findings may convey some generality. Three
aspects were studied: (i) the time-dependency of the
mutation rate, and the effect (on the magnitude of op-
timal mutation rates) of modifying (ii) the selection
pressure, and (iii) the population size. Our main re-
sults are summarized below:

Time-Dependency: It has been suggested elsewhere
that mutation rates should not be constant, but should
decrease over the GA run. Results in this paper, how-
ever, suggest that a mutation rate of 1/L will produce
optimal or near optimal results throughout the whole
search process. So, on the specific but rather standard
GA settings used here (generational GA, population
size of 100, two-point recombination with a rate of
1.0, tournament selection of size 2, best-so-far fitness
as performance measure), a constant mutation regime
with a rate of 1/L would produce very competitive
results.

Selection pressure: The strength of selection had
a pronounced effect on optimal mutation rates. The
stronger the selection pressure, the higher the magni-
tude of optimal mutation rates. The use of propor-
tional selection (where there is no control over the se-
lection pressure) may produce much smaller optimal
mutation rates as compared to tournament selection.
An interesting observation is that for tournament se-
lection with tournament size of 2 (and a population
of size 100), optimal mutation rates occurred between
1.0 and 2.0 mutations per genotype, whereas for tour-
nament size of 4 they increased to 2.5 - 3.0 mutations
per genotype (Figure 6). This result suggests that se-

GENETIC ALGORITHMS500

Wing-Box Problem, Population Size

13280

13330

13380

13430

13480

13530

13580

0.25 0.5 1 1.5 2 2.5 3

Mutations per Genotype

B
es

t-
so

-f
ar

10
50
100

Knapsack Problem, Population Size

11300

11400

11500

11600

11700

11800

0.25 0.5 1 1.5 2 2.5 3

Mutations per Genotype

B
es

t-
so

-f
ar

10
50
100

Figure 7: Comparing optimal mutation rates for various
population sizes (see legends) on both test problems. The
curves show the average best-so-far fitness attained after
a fixed number of generations for various mutation rates.
These fixed number of generations varied according the
population size (20,000, 4,000 and 2,000 generations for
population sizes 10, 50, and 100 respectively).

lection pressure is an important component in deter-
mining the magnitude of optimal mutation rates.

Population size: The effect of population size on the
magnitude of optimal mutation rates was not found
to be marked. However, the evidence suggests that
optimal mutation rates are smaller, the smaller the
population size. These differences in the magnitude of
optimal mutation rates tend to stabilize for population
sizes of 50 and larger.

6 CONCLUSION

It is very difficult to suggest general principles for set-
ting evolutionary parameters. The evidence gathered
in this paper, however, suggest that for a controlled
selection pressure (tournament selection, with tourna-
ment size of 2), a mutation rate of 1/L throughout the
whole GA run, will be a good setting, producing op-
timal or near-optimal results. In general, we suggest
that mutation rates should be expressed as mutations
per genotype instead of as mutations per bit.

The heuristic of setting a mutation rate of one mu-
tation per genotype (1/L) has been proposed be-
fore within the evolutionary computation community.
However, results in this paper set bounds to the valid-
ity of this heuristic. A mutation rate of 1/L would be
sub-optimal in the following cases:

• a weak selection pressure,
• an excessively high selection pressure, and
• a very small population.

ACKNOWLEDGEMENTS

Many thanks to the anonymous GECCO reviewers for
their useful comments, insight and critical reading.

References

[Bäck, 1991] Bäck, T. (1991). Self-adaptation in ge-
netic algorithms. In Varela, F. J. and Bourgine, P.,
editors, Proceedings of the First European Confer-
ence on Artificial Life. MIT Press, Cambridge, MA.

[Bäck, 1992] Bäck, T. (1992). The interaction of mu-
tation rate, selection, and self-adaption within a ge-
netic algorithm. In und R. Manderick, B. M., edi-
tor, Parallel Problem Solving from Nature 2. North-
Holland.

[Bäck, 1993] Bäck, T. (1993). Optimal mutation rates
in genetic search. In Forrest, S., editor, Proceedings
of the 5th ICGA. Morgan Kaufmann.

[Bäck, 1996] Bäck, T. (1996). Evolutionary algorithms
in theory and practice. The Clarendon Press Oxford
University Press. Evolution strategies, evolutionary
programming, genetic algorithms.

[Bäck and Khuri, 1994] Bäck, T. and Khuri, S.
(1994). An evolutionary heuristic for the maxi-
mum independent set problem. In Proceedings of
the First IEEE Conference on Evolutionary Com-
putation, pages 531–535. IEEE Press.

GENETIC ALGORITHMS 501

[Beasley, 1990] Beasley,
J. E. (1990). OR-library: Distributing test prob-
lems by electronic mail. Journal of the Operational
Research Society, 41(11):1069–1072. Also available
at http://www.ms.ic.ac.uk/info.html.

[Bremerman et al., 1966] Bremerman, H., Rogson,
M., and Salaff, S. (1966). Global properties of evo-
lution processes. In Natural Automata and Useful
Simulations, pages 3–41. Spartan.

[Davis, 1989] Davis, L. (1989). Adapting operator
probabilities in genetic algorithms. In Schaffer,
J. D., editor, Proceedings of the Third International
Conference on Genetic Algorithms, pages 61–69,
George Mason University. Morgan Kaufmann.

[DeJong, 1975] DeJong, K. A. (1975). An Analysis of
the Behavior of a Class of Genetic Adaptive Sys-
tems. PhD thesis, University of Michigan, Ann
Arbor, MI. Dissertation Abstracts International
36(10), 5140B, University Microfilms Number 76-
9381.

[Fogarty, 1989] Fogarty, T. C. (1989). Varying the
probability of mutation in the genetic algorithm. In
Schaffer, J. D., editor, Proceedings of the 3rd ICGA.
Morgan Kaufmann.

[Hesser and Männer, 1991] Hesser, J. and Männer, R.
(1991). Towards an optimal mutation probability for
genetic algorithms. In Schwefel, H.-P. and Männer,
R., editors, Parallel Problem Solving from Nature.
Springer-Verlag, Lecture Notes in Computer Science
Vol. 496.

[Julstrom, 1995] Julstrom, B. A. (1995). What have
you done for me lately? Adapting operator proba-
bilities in a steady-state genetic algorithm. In Es-
helman, L. J., editor, Proceedings of the Sixth Inter-
national Conference on Genetic Algorithms, pages
81–87, San Francisco, CA. Morgan Kaufmann.

[Khuri and Bäck, 1994] Khuri, S. and Bäck, T.
(1994). An evolutionary heuristic for the minimum
vertex cover problem. In Hopf, J., editor, Genetic
Algorithms within the Framework of Evolutionary
Computation, pages 86–90, Saarbrücken, Germany.
Max-Planck-Institut für Informatik.

[Khuri et al., 1994] Khuri, S., Bäck, T., and
Heitkötter, J. (1994). The zero/one multiple knap-
sack problem and genetic algorithms. In Deaton, E.,
Oppenheim, D., Urban, J., and Berghel, H., editors,
Proceedings of the 1994 ACM Symposium of Applied
Computation, pages 188–193. ACM Press.

[McIlhagga et al., 1996] McIlhagga, M., Husbands,
P., and Ives, R. (1996). A comparison of search tech-
niques on a wing-box optimisation problem. Lecture
Notes in Computer Science, 1141.

[Mühlenbein, 1992] Mühlenbein, H. (1992). How ge-
netic algorithms really work: I. mutation and hill-
climbing. In Männer, B. and Manderick, R., edi-
tors, Parallel Problem Solving from Nature 2. North-
Holland.

[Ochoa et al., 1999] Ochoa, G., Harvey, I., and Bux-
ton, H. (1999). Error thresholds and their relation to
optimal mutation rates. In Floreano, J., Nicoud, D.,
and Mondada, F., editors, Proceedings of the Fifth
European Conference on Artificial Life (ECAL’99).
Springer-Verlag.

[Ochoa et al., 2000] Ochoa, G., Harvey, I., and Bux-
ton, H. (2000). Optimal mutation rates and selec-
tion pressure in genetic algorithms. In Proceedings
of the Genetic and Evolutionary Computation Con-
ference, pages 315–322.

[Schaffer et al., 1989] Schaffer, J., Caruana, R., Eshel-
man, L., and Das, R. (1989). A study of control
parameters affecting online performance of genetic
algorithms for function optimization. In Schaffer,
J. D., editor, Proceedings of the 3rd ICGA, San Ma-
teo CA. Morgan Kaufmann.

[Smith and Fogarty, 1996] Smith, J. E. and Fogarty,
T. C. (1996). Self adaptation of mutation rates in
a steady state genetic algorithm. In Proceedings of
the IEEE Conference on Evolutionary Computation,
pages 318–323, New York. IEEE Press.

[Tuson and Ross, 1998] Tuson, A. and Ross, P.
(1998). Adapting operator settings in genetic al-
gorithms. Evolutionary Computation, 6(2):161–184.

GENETIC ALGORITHMS502

A Comparison of Two Competitive Fitness Functions

Liviu Panait
George Mason University

http://www.cs.gmu.edu/∼lpanait/

Sean Luke
George Mason University

http://www.cs.gmu.edu/∼sean/

Abstract

Competitive fitness is the assessment of an in-
dividual’s fitness in the context of competition
with other individuals in the evolutionary sys-
tem. This commonly takes one of two forms:
one-population competitive fitness, where com-
petition is solely between individuals in the
same population; and N-population competitive
fitness, often termed competitive coevolution.
In this paper we discuss common topologies
for one-population competitive fitness functions,
then test the performance of two such topologies,
Single-Elimination Tournament and K-Random
Opponents, on four problem domains. We
show that neither of the extremes of K-Random
Opponents (Round Robin and Random-Pairing)
gives the best results when using limited com-
putational resources. We also show that while
Single-Elimination Tournament usually outper-
forms variations of K-Random Opponents in
noise-free problems, it can suffer from premature
convergence in noisy domains.

1 INTRODUCTION

Traditional evolutionary computation assesses the fitness of
an individual independently of other individuals in the sys-
tem. But there also exist evolutionary procedures where
this is not the case: an individual’s fitness is dependent
on cooperation or competition with peers in the evolution-
ary run, and thus may change depending on the makeup of
those peers.

Such procedures have several attractive features. First, they
permit evolution to search for solutions to problems in the
absence of any obvious way to gauge an objective (peer-
independent) fitness. Consider: how does one determine
the quality of a soccer player program a priori? Second,

they can gradually ramp up problem difficulty as evolu-
tion finds better solutions. This promises to smooth out the
search gradient. Third, they seem a natural match for find-
ing solutions to problems that naturally require teamwork
or that are most easily discovered through competition.

We are tempted to bring all these procedures under the
aegis of coevolution, but there are nomenclature difficul-
ties with the use of this term. In biology, coevolution is best
reserved for situations where there is more than one popu-
lation, and an individual’s fitness is assessed in the context
of individuals in other populations. Such multi-population
coevolution is usually used as a self-adaptive mechanism
to increase problem difficulty as members of the popula-
tion become more adapt at solving the given problem. The
classic example of multi-population competitive coevolu-
tion is [Hillis 1991], which coevolved a population of sort-
ing networks and a population of problem sets. The fitness
of sorting networks was based on the number of problem
sets they properly solved, and the fitness of the problem sets
was based on the number of sorting networks they stumped.
[Rosin and Belew 1995] also used a two-population com-
petitive system to evolve players for the games of Nim,
Tic-Tac-Toe, and Go with a 7x7 board. Multi-population
coevolution is also useful as cooperative coevolution. Here
individuals from different populations each learn subparts
of a common solution, and their fitness is based on the
combination of those subparts. Examples of cooperative
coevolution include [Eriksson and Olsson 1997; Potter and
De Jong 2000; Wiegand et al. 2001].

One-population “coevolution” rarely if ever takes coopera-
tive form. Instead, this technique is nearly universally used
to evolve game players by competing amongst themselves.
For lack of a standardized term for one-population tech-
niques, we call these one-population competitive fitness
functions; for the rest of this paper, whenever we say “com-
petitive fitness functions” we imply the one-population
sort. [Luke 1998] used such competitive fitness to evolve
soccer-playing softbot teams, and [Fogel 2001] used the
technique to evolve a highly human-competitive check-

GENETIC ALGORITHMS 503

ers program, Blondie24. One-population competitive fit-
ness has also been used to find solutions to the Iterated
Prisoner’s Dilemma [Axelrod 1987], Tic-Tac-Toe [Ange-
line and Pollack 1993], Backgammon [Pollack et al. 1997;
Pollack and Blair 1998], Othello [Smith and Gray 1993],
pursuit-evasion [Cliff and Miller 1995], Go [Lubberts and
Miikkulainen 2001] and Tag [Reynolds 1994].

One important part of a competitive system’s success is its
topology: how the fitness-evaluation context is established
for a given individual. Do all individuals play against all
other individuals in the population? Are they simply paired
up for a single game each? Some topologies require a large
number of games to evaluate an individual, but may be
more accurate than those requiring fewer games.

This paper compares two topological families in one-
population competitive-fitness games. We begin by dis-
cussing common topologies in the literature and their ad-
vantages and disadvantages. Then we introduce four prob-
lem domains, and show how various topologies fare in
these domains and under different amounts of noise in the
fitness-assessment process.

2 COMPETITION TOPOLOGIES

Not all competitive fitness topologies are appropriate for
all problems; the primary issue breaks down along lines
of fitness-assessment methodology. Imagine if one were
trying to evolve chess players. How does one establish
that player A is better than player B? The duel method-
ology states that A is better than B if and only if A usually
beats B in a match. This is the methodology behind single-
and double-elimination tournaments. The rennaisance-
man methodology says that A is better than B if A beats
more competitors than B does on average (or scores against
competitors by a wider margin on average), even if A
would lose to B in a match. This is the methodology behind
chess rankings, for example. It is interesting to note that
many sports use a combination of these two methodologies,
usually by using average success against opponents during
the season to determine the entrants to a single elimina-
tion tournament, which then determines the final champion.
Whether there is some innate superiority to this combina-
tion is questionable: more likely it is due to the excitement
of duels: after all, “in the end there can be only one”.

There are other interesting issues in designing topologies
which we will not delve into save to mention them here.
One issue is whether or not individuals should play against
themselves as part of their evaluation. Another is whether
or not to permit statistical dependencies in fitness assess-
ment: when individual A plays against individual B, should
the outcome affect individual A’s fitness alone, or should it
also affect individual B’s fitness?

2.1 ROUND ROBIN

One simple topology is Round Robin, where each indi-
vidual plays every other individual in the population. An
individual’s fitness is the average of its scores against ev-
ery other individual in the population [Axelrod 1987; Koza
1992]. The primary drawback to this method is the rela-
tively large number of games necessary to evaluate a pop-
ulation of size N. The number of games is (N2 − aN)/b,
where a = 0 if individuals may play against themselves,
else a = 1, and b = 2 if a game contributes to the fitness
of both individuals, else b = 1. At first glance it would
appear that Round Robin topologies would promote the
rennaisance-man methodology. At the beginning of an evo-
lutionary run, this is plausible. But as the run progresses,
the trajectory of the run might shift to the “better” players,
so to speak, so that near the end of the run it is searching
not for individuals who win the most points on average, but
oddly for individuals who win the most points on average
against other such individuals.

2.2 RANDOM-PAIRING

The other extreme in the number of games is to pair all
individuals up and play one game for each pair. This is
the approach used in [Luke 1998] for evolving soccer team
strategies. The justification for this low number of games
was the extreme computational cost of a game: to be evalu-
ated, the two teams were plugged in a simulator, and a stan-
dard game could last for up to 10 minutes. Random-Pairing
requires only N/2 games for a population of size N. The
cost savings is dramatic: for a population of 100 and ten
minutes per game, Axelrod’s Round Robin approach would
require 833 hours per generation, whereas Random-Pairing
would require about 8 hours. Smith and Gray [1993] also
used this technique to evolve Othello players. The danger
of Random-Pairing is that noisy evaluation might make it
all but impossible to determine the real quality of an in-
dividual based on a single trial. Note too that like Round
Robin, Random-Pairing has a similar tenuous claim to pro-
moting the rennaisance-man methodology.

2.3 SINGLE-ELIMINATION TOURNAMENT

[Angeline and Pollack 1993] proposed using single-
elimination tournaments (“SET”) rather than Round Robin
or Random-Pairing. Here, individuals are paired at ran-
dom, and play one game per pair. The losers of the games
are eliminated from the tournament; ties are broken by ran-
dom decision. The winners are again paired off at random,
and play one game per pair, with the losers again elimi-
nated. This continues until the tournament has only one
“champion” left. The fitness of an individual is the number
of games it played. Single-Elimination Tournament is sim-

GENETIC ALGORITHMS504

plest to implement when the population is a power of two.
Angeline and Pollack reported good initial results when us-
ing SET to evolve players for the game of Tic-Tac-Toe.

SET has interesting properties. First, it would seem to pro-
mote the duel methodology rather than the rennaisance-
man methodology. However, it only truly promotes the
duel methodology under the strong transitivity assumption:
that if player A beats player B, and player B beats player
C, then player A must beat player C. Without this assump-
tion, Single-Elimination Tournament’s real dynamics can
be murky. The other interesting property of SET is that
it seems to allocate games to those players that most need
them. A population of size N needs only N−1 games. But
“fitter” players will be evaluated in more of these games
than the “less fit” players — the worst individuals play only
one game each, while the champion plays ln(N) games.
Since selection will tend to pick the fitter players, SET
would seem to proportion more games, hence more accu-
racy, among those players more likely to be selected.

2.4 K-RANDOM OPPONENTS

In K-Random Opponents, each individual plays against K
individuals picked at random from the population. If a
given game between two individuals affects the fitness of
just the first individual, then a total of K(N−1) games must
be played. This is the approach taken in evolving tag play-
ers [Reynolds 1994]. K-Random Opponents can also be
used to affect the fitness of both individuals in a game. For
example, to evolve the Blondie24 checkers player, Fogel
[2001] had every individual play as red against five oppo-
nents chosen at random with replacement from the popula-
tion. An individual’s fitness was based not only on its five
games as red, but also as its additional games as a black
opponent.

This approach does not distribute games very evenly
throughout the population, however. With some fore-
thought, it’s possible to adapt K-Random Opponents so that
a given game affects both individuals, with each individual
using the same number of games per evaluation. The tech-
nique, which we will use in experiments below, works as
follows. Each individual maintains a count of the num-
ber of games it has played, and who it has played against.
When an individual I is to be evaluated, an opponent is cho-
sen at random from the population to play against I with the
constraint that no individual may play against I more than
once. At the end of the game, the number-of-games coun-
ters for I and for the opponent are incremented. If either
counter reaches K, then that individual is “removed” from
the population in the sense that it may no longer be con-
sidered as a future opponent. A new opponent for I is cho-
sen, and this process continues until individual I has been
removed. Then a new player J is picked, and evaluation

continues similarly. At some point, for some individual K,
there may exist no individuals in the population which can
play K. When this occurs, opponents for K are picked at
random, without replacement, from among the removed in-
dividuals in the population. This approach yields between
d(KN)/2e and d(KN)/2e+ bK2/2c games.

Round Robin and Random-Pairing may be viewed as ex-
tremes of K for this second kind of K-Random Opponents.
When K = N − 1, K-Random Opponents is identical to
Round Robin. When K = 1, K-Random Opponents is iden-
tical to Random-Pairing. Later in the paper, we will exam-
ine K-Random Opponents to determine what value of K
seems to give the best results: as it will turn out, it is nei-
ther of these extremes.

2.5 HALL OF FAME

One last approach in the literature is a family of “hall of
fame” techniques, where individuals in the population are
evaluated against the good individuals discovered so far in
the evolutionary run. Karl Sims used a simple hall of fame
when evolving creatures which competed to snatch a cube
[Sims 1994]. Individuals were evaluated against the fittest
individual discovered in the previous generation.

3 PROBLEM DOMAINS

The problem domains we will test against fall into two
categories. First, we use two true competitive fitness do-
mains, namely versions of the Nim game. Second, we
have adapted two standard evolutionary algorithm prob-
lems and cast them into a competitive fitness form. They
are the well-studied Rosenbrock and Rastrigin problem
sets. These algorithms are cast into competitive form using
a technique proposed by Ken De Jong: each individual’s
Rosenbrock (or Rastrigin) value is assessed, and an indi-
vidual’s score in a game against an opponent is based on
difference in their values.

3.1 THE INTERNAL ROSENBROCK DOMAIN

The Rosenbrock function is a well-known minimization
problem widely used to study properties of different evolu-
tionary algorithms [De Jong 1975]. The Rosenbrock func-
tion for genomes of n variables is:

Ros(x1, ...,xn) =

n∑

i=1

100(xi
2− xi+1)

2
+(1− xi

2)

GENETIC ALGORITHMS 505

Rosenbrock is converted to the “Internal Rosenbrock”
competitive fitness function as follows. When a player
A plays an opponent B, the score for A, known as
Reward(A : B), is given by the following normalizing for-
mula:

Reward(A : B) =
Ros(B)−Ros(A)

max(Ros)−min(Ros)

...where max(Ros) and min(Ros) are the maximum and
minimum values of the Rosenbrock function over the
entire domain, which we had precomputed. Thus
Reward(A : B) ranges from -1 to 1, where 0 represents
a draw. Note that this is a zero-sum, transitive game,
hence Reward(B : A) =−Reward(A : B). Keep in mind
that Rosenbrock is a minimization function: therefore the
smaller Ros(A) is compared to Ros(B), the higher the re-
ward for A.

Parameters Internal Rosenbrock experiments used a
genome of 100 real values each between -5.12 and 5.12, a
population size of 32, a 0.5 probability of mutation, 1-point
crossover with a probability of 1.0, 5-individual elitism,
binary tournament selection, and a maximal run limit of
50,000 games.

3.2 THE INTERNAL RASTRIGIN DOMAIN

The Rastrigin function is another well-known test in func-
tion optimization; it is considered difficult to minimize be-
cause it has a single global optima with numerous local op-
tima in its vicinity [Cervone et al. 2000]. The Rastrigin
function is defined as

Rastrigin(x1....xn) =

n∑

i=1

xi
2 +a(1− cos(2πxi))

...where a is a constant (set to 10.0 in our experiments).
Like Rosenbrock, Rastrigin is a minimization problem.
Rastrigin is converted to the “Internal Rastrigin” compet-
itive function in exactly the same way as Rosenbrock was
converted (though max(Ras) was estimated).

Parameters Internal Rastrigin experiments used a
genome of 100 real values each between -5.12 and 5.12,
a population size of 32, a 0.5 probability of mutation,
1-point crossover with a probability of 1.0, 5-individual
elitism, binary tournament selection, and a maximal run
limit of 100,000 games.

3.3 THE NIM VERSION 1 DOMAIN

There are many variations on the game of Nim, and we
have chosen two different versions as competitive fitness
function domains. The Nim Version 1 domain follows the
Nim game as described in [Rosin and Belew 1995, 1996].
This version uses 4 heaps containing 3, 4, 5, and 4 stones
respectively. Players take turns removing stones from these
heaps. A player may remove as many stones as he likes
from any single heap. Whichever player takes the last
stone wins the game. Given these rules, there exists a well-
understood optimal player strategy for the first player.

A genomic representation for a player behavior in this
game is a vector of 599 bits, one for each possible situa-
tion (4×5×6×5−1, because the 〈3,4,5,4〉 position does
not ever need to be considered). A player makes its deci-
sion as follows: for each pile p from 1 to 4, and for each
number x of stones for the given pile in decreasing order
down to 1, the individual considers whether or not to re-
move x stones from pile p. Removing these stones yields
a new game state which corresponds to one of the 599 bits
in the genome vector. If this bit value is 1, then the player
commits to making that move, and no other consideration
is made. If all such valid states have 0 bit values, the player
makes the first valid move it had considered.

As the existence of a perfect strategy depends on who goes
first, a competition between two individuals consists of 2
games, each player starting one of them. Reward(A : B) is
the sum of scores for player A in these two games. For each
game, a 0.5 is rewarded for a win and a -0.5 for a loss. The
sum of the rewards for the two games is therefore -1, 0, or
1.

Parameters Experiments in this domain used a genome of
599 bits, a population size of 128, a 0.003 probability of
mutation, 1-point crossover with a probability of 1.0, 10-
individual elitism, binary tournament selection, and a run
limit of no more than 100,000 games.

3.4 THE NIM VERSION 2 DOMAIN

The second version of Nim used in this paper contains a
single heap, but the number of stones a player can remove
is bounded by a minimum and a maximum value. For these
experiments, the heap starts at 200 stones, and each player
is allowed to pick 1, 2 or 3 stones at a time. In this con-
figuration, the second player has an optimal strategy which
will force a win.

Just as in Nim Version 1, in this game the individuals are
represented as vectors, with a similar mapping of bits to the
199 possible states (excepting the initial state). Decision-
making is also similar. The player first considers removing
3 stones (assuming that 3 stones are left in the heap). If 1

GENETIC ALGORITHMS506

SET K=1 K=31
SET and K-Random Opponents

0.98

0.985

0.99

0.995

1
E

xt
er

na
lF

itn
es

s
SET K=1 K=31

Figure 1: Ranking of SET and K-Random Opponents for
Internal Rosenbrock Domain with 0% noise

SET K=1 K=31
SET and K-Random Opponents

0.98

0.985

0.99

0.995

1

E
xt

er
na

lF
itn

es
s

SET K=1 K=31

Figure 2: Ranking of SET and K-Random Opponents for
Internal Rosenbrock Domain with 30% noise

SET K=1 K=31
SET and K-Random Opponents

0.98

0.985

0.99

0.995

1

E
xt

er
na

lF
itn

es
s

SET K=1 K=31

Figure 3: Ranking of SET and K-Random Opponents for
Internal Rosenbrock Domain with 40% noise

SET K=1 K=31
SET and K-Random Opponents

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

E
xt

er
na

lF
itn

es
s

SET K=1 K=31

Figure 4: Ranking of SET and K-Random Opponents for
Internal Rastrigin Domain with 0% noise

SET K=1 K=31
SET and K-Random Opponents

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

E
xt

er
na

lF
itn

es
s

SET K=1 K=31

Figure 5: Ranking of SET and K-Random Opponents for
Internal Rastrigin Domain with 30% noise

SET K=1 K=31
SET and K-Random Opponents

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

E
xt

er
na

lF
itn

es
s

SET K=1 K=31

Figure 6: Ranking of SET and K-Random Opponents for
Internal Rastrigin Domain with 40% noise

GENETIC ALGORITHMS 507

is in the bit position corresponding to the resulting state af-
ter removing those 3 stones, then the player will make that
move. Otherwise, the player considers removing 2 stones.
Barring that, it will consider removing 1 stone. If all three
resultant states have 0 in their bit positions, then the player
will remove the most stones permissible. A competition
between two individuals is done identically to the Nim Ver-
sion 1 problem.

Parameters Experiments in this domain used a genome of
199 boolean values, a population size of 128, a 0.03 prob-
ability of mutation, 1-point crossover with a probability of
1.0, 10-individual elitism, binary tournament selection, and
a run limit of no more than 100,000 games.

4 EXPERIMENTS

The experiments presented here probe the following ques-
tion. You have 3 months until the deadline to submit
an evolved game player to a computer gaming competi-
tion. Evaluation is expensive and you’ll only get one shot.
With a fixed maximum number of games playable until
competition-time, what topologies are likely to get good
results?

We will compare SET and various K-random opponents
topologies over the four problem domains, using a single-
population, generational genetic algorithm, with binary
tournament selection, mutation, crossover, and elitism. Ex-
perimental runs are done by evaluating individuals up to
some maximal number of games; the maximal number was
previously specified in the parameters for each domain.
Keep in mind that an evaluation is not the same thing as a
game. Some topologies require a great many games played
before an individual’s fitness is determined. Thus each
graph compares different topologies’ performances given
the same number of resources.

Ultimately we are trying to determine what topology is
likely to give the “best results”. To compare topologies,
we need a final external fitness used for comparing best-
of-run results between topologies, as opposed to the sub-
jective internal fitness used to select individuals during the
runs themselves. For the Internal Rosenbrock and Internal
Rastrigin problems, the external fitness of an individual is
clearly objective and clearly computable: it’s just the indi-
vidual’s performance on the Rosenbrock or Rastrigin func-
tions.

For the Nim games however, we are faced with the classic
external-fitness conundrum: the only obvious external fit-
ness measures available are subjective, that is, they’re de-
termined in the context of other individuals. In the absence
of any clear objective measure, we must resort to a subjec-
tive way to score the final performance of the best-of-run
individuals for any given Nim topology. To do this, our

SET K=1 K=25 K=50 K=127
SET and K-Random Opponents

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

F
in

al
R

ou
nd

R
ob

in
S

co
re

SET K=1 K=25 K=50 K=127

Figure 7: Ranking of SET and K-Random Opponents for
the Nim Version 1 game

SET K=1 K=25 K=50 K=127
SET and K-Random Opponents

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

F
in

al
R

ou
nd

R
ob

in
S

co
re

SET K=1 K=25 K=50 K=127

Figure 8: Ranking of SET and K-Random Opponents for
the Nim Version 2 game

approach is to determine the better topologies by literally
playing their “best” individuals against each other. For any
given application of a topology, we perform 50 indepen-
dent runs. For each run, we determine a “best of run” by
taking the best-of-generation individuals from each gener-
ation, and placing them in a single elimination tournament.
Thus for each application of a given topology, we have 50
best-of-run individuals. To compare several topologies for
a particular problem domain, we then take the 50 best-of-
run individuals of each topology and play all of them in a
Round Robin tournament. The “quality” of a best-of-run
individual in the final tournament is equal to its average
score against others in the tournament. Thus the “qual-
ity” of a particular topology is the mean of the qualities
of its best-of-run individuals. This may not necessarily be
an ideal comparison metric (we don’t know if an ideal even
exists), but we feel it is a reasonable one.

GENETIC ALGORITHMS508

4.1 RESULTS

We ran all experiments on the ECJ 7 evolutionary compu-
tation system [Luke 2001]. Figures 1 through 8 show box-
plots1 comparing SET with K-Random Opponents. Figures
1 through 6 use values of K ranging from 1 to 31; Figures 7
and 8 use K values of 1 to 25, 30, 35, 40, 45, 50, 60, 70, 80,
90, 100, 127. The vertical access plots external fitness val-
ues of the best-of-run individuals for various topologies. In
the Rosenbrock and Rastrigin domains, the external scores
were the actual Rosenbrock or Rastrigin function values for
the best-of-run individuals. In the Nim domains, the final
Round Robin competition to determine external scores con-
sisted of every best-of-run individual plotted in the com-
bined graph.

Figures 2 and 3 show the effects of adding noise to the
Rosenbrock domain, and Figures 5 and 6 show similar ef-
fects for the Rastrigin domain. Noise was added by flip-
ping a coin with the given noise probability that the play-
ers’ scores were to be swapped. Noise was not used in the
display of external fitness results.

K-Random Opponents Results We found that the over-
all layout of the graphs is very similar across all four do-
mains: as the value of K increased, external fitness rose,
then dropped. The dome-like results for K-Random Oppo-
nents suggests that neither Random-Pairing (where K = 1)
nor Round Robin (where K is large) is likely to yield a
good result. Indeed, we imagine that Round Robin will
often come in dead last! In the Internal Rosenbrock and
Internal Rastrigin domains with no noise, Random-Pairing
performed reasonably well, but with more noise, it did in-
creasingly poorly.

Why is this happening? Our hypothesis is that in noisy or
intransitive domains, only a few games per evaluation is not
sufficient to cut through the noise, and evolution proceeds
slowly. Then as the number of games per evaluation in-
crease, at some point it becomes overkill: more games are
simply cutting the total available evolution time.

This result is similar to the one obtained for non-
coevolutionary EAs [Grefenstette and Fitzpatrick 1985]
when determining the optimal number of evaluations of an
individual in a noisy environment, where the fitness was
calculated as the average of the results of several evalua-
tions. Grefenstette and Fitzpatrick too reported that one
sample might not provide enough information, while too
many samples might not leave enough generations for good
results when the total number of evaluations is bounded.
They reported that ten samples per evaluation gave the best

1In a boxplot, the rectangular region covers all values between
the first and third quartiles, the stems mark the furthest individual
within 1.5 of the quartile ranges, and the center horizontal line
indicates the median. Dots show outliers, and × marks the mean.

0 10000 20000 30000 40000 50000
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Number of competitions

Ex
te

rn
al

 F
itn

es
s

Evolution for Internal Rosenbrock Domain with 0% noise

Single−Elimination−Tournament
3−Random−Opponents

Figure 9: Best-so-far curves for Internal Rosenbrock Do-
main with 0% noise

0 10000 20000 30000 40000 50000
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
Evolution for Internal Rosenbrock Domain with 30% noise

Number of competitions

Ex
te

rn
al

 F
itn

es
s

Single−Elimination−Tournament
5−Random−Opponents

Figure 10: Best-so-far curves for Internal Rosenbrock Do-
main with 30% noise

0 10000 20000 30000 40000 50000
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Ex
te

rn
al

 F
itn

es
s

Number of competitions

Evolution for Internal Rosenbrock Domain with 40% noise

Single−Elimination−Tournament
7−Random−Opponents

Figure 11: Best-so-far curves for Internal Rosenbrock Do-
main with 40% noise

GENETIC ALGORITHMS 509

results in an image registration problem. While we typi-
cally found fewer samples were necessary in our coevolu-
tionary approach, ten gave reasonable results in most cases.

Single-Elimination Tournament Results The SET re-
sults were surprising. When the amount of noise is small,
SET performs as good as or better than all other methods
presented, even though it has relatively few games per eval-
uation. As noise is increased to 40% in the Rosenbrock
domain, though, SET’s performance loses its luster. Why?

Figures 9, 10 and 11 compare the external fitness best-so-
far curves of SET and the best performing K-Random Op-
ponents topology, with 0%, 30% and 40% noise respec-
tively. These figures suggest that SET is converging too
rapidly: as the field improves, this becomes a hindrance. In
Figure 11, ultimately 7-Random Opponents is statistically
significantly better (using a t-test at 95%).

It seems that K-Random Opponents might be a better
choice than SET, particularly if noise is high. The trick,
though, is determining what value of K to use. In the ab-
sence of any prescience, SET might be the best option.

5 CONCLUSIONS AND FUTURE WORK

Our experiments showed that the extremes of the K-
Random Opponents method usually lead to worse final
results than intermediate (preferably small) values for K.
Even if games are very expensive, the concern that led
to Random-Pairing in [Luke 1998], we still think 5 to 10
games per evaluation is likely to yield a better result. A
full Round-Robin tournament appears to be always a bad
choice. Our data suggests that the Single-Elimination Tour-
nament may be too aggressive in noisy competitions, lead-
ing to premature convergence relative to 5- to 10-Random
Opponents. Otherwise it seems to be a good choice.

Though many graphs are similar, nonetheless interesting
features stand out. One surprise is the very strong perfor-
mance of Single-Elimination Tournament in the Nim Ver-
sion 1 game. This suggests dynamics special to this domain
which, on closer investigation, may shed light on SET’s
performance in general. Does Nim Version 1 promote the
duel methodology in a way not found in Nim Version 2, for
example? Except for noise, the Internal Rastrigin and Inter-
nal Rosenbrock domains are fully transitive: might this ex-
plain the deterioration of SET under noise? In future work
we hope to examine the dynamics of such topologies in
these and other domains more closely.

Acknowledgments

The authors would like to thank Ken De Jong, Paul Wie-
gand and Jeff Bassett for helpful comments and sugges-

tions, and Vlad Staicu for his considerable help in running
the experiments. We would also like to thank our reviewers
for their helpful comments.

References

Angeline, P. and Pollack, J. (1993). Competitive envi-
ronments evolve better solutions for complex tasks. In
Forest, S., editor, Proceedings of the Fifth International
Conference on Genetic Algorithms (ICGA), pages 264–
270, San Mateo, CA. Morgan Kaufmann.

Axelrod (1987). The evolution of strategies in the iterated
prisoner’s dilemma. In Davis, L., editor, Genetic Algo-
rithms and Simulated Annealing. Morgan Kaufmann.

Cervone, G., Michalski, R., Kaufman, K., and Panait, L.
(2000). Combining machine learning with evolution-
ary computation: Recent results on LEM. In Proceed-
ings of the Fifth International Workshop on Multistrat-
egy Learning, pages 41–58.

Cliff, D. and Miller, G. F. (1995). Tracking the red queen:
Measurements of adaptive progress in co–evolutionary
sumulations. In Proceedings of the Third European
Conference on Artificial Life, pages 200–218. Springer–
Verlag.

De Jong, K. (1975). An Analysis of the Behavior of a Class
of Genetic Adaptive Systems. PhD thesis, University of
Michigan, Ann Arbor, MI.

Eriksson, R. and Olsson, B. (1997). Cooperative coevo-
lution in inventory control optimisation. In Smith, G.,
Steele, N., and Albrecht, R., editors, Proceedings of the
Third International Conference on Artificial Neural Net-
works and Genetic Algorithms, University of East An-
glia, Norwich, UK. Springer.

Fogel, D. (2001). Blondie24: Playing at the Edge of Artifi-
cial Intelligence. Morgan Kaufmann.

Grefenstette, J. J. and Fitzpatrick, J. M. (1985). Genetic
search with approximate function evaluations. In Pro-
ceedings of an International Conference on Genetic Al-
gorithms and Their Applications, pages 37–46.

Hillis, D. (1991). Co-evolving parasites improve simulated
evolution as an optimization procedure. Artificial Life II,
SFI Studies in the Sciences of Complexity, 10:313–324.

Koza, J. (1992). Genetic Programming: on the Program-
ming of Computers by Means of Natural Selection. MIT
Press.

Lubberts, A. and Miikkulainen, R. (2001). Co-evolving
a Go-playing neural network. In Coevolution: Turn-
ing Adaptive Algorithms upon Themselves, (Birds-on-a-
Feather Workshop, Genetic and Evolutionary Computa-
tion Conference).

GENETIC ALGORITHMS510

Luke, S. (1998). Genetic programming produced competi-
tive soccer softbot teams for RoboCup97. In Koza, J. R.,
Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fo-
gel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., and
Riolo, R., editors, Genetic Programming 1998: Proceed-
ings of the Third Annual Conference, pages 214–222,
University of Wisconsin, Madison, Wisconsin, USA.
Morgan Kaufmann.

Luke, S. (2001). ECJ 7: An evolutionary computation re-
search system in Java. Available at
http://www.cs.umd.edu/projects/plus/ec/ecj/.

Pollack, J. and Blair, A. (1998). Coevolution in the success-
ful learning of backgammon strategy. Machine Learn-
ing, 32(3):225–240.

Pollack, J., Blair, A., and Land, M. (1997). Coevolution of
a backgammon player. In Artificial Life V. MIT Press.

Potter, M. and De Jong, K. (2000). Cooperative coevolu-
tion: An architecture for evolving coadapted subcompo-
nents. Evolutionary Computation, 8(1):1–29.

Reynolds, C. (1994). Competition, coevolution and the
game of tag. In Brooks, R. A. and Maes, P., editors,
Artificial Life IV, Proceedings of the fourth International
Workshop on the Synthesis and Simulation of Living Sys-
tems., pages 59–69. MIT Press.

Rosin, C. and Belew, R. (1995). Methods for competitive
co-evolution: Finding opponents worth beating. In Es-
helman, L., editor, Proceedings of the Sixth International
Conference on Genetic Algorithms (ICGA), pages 373–
380. Morgan Kaufmann.

Rosin, C. and Belew, R. (1996). New methods for competi-
tive coevolution. Evolutionary Computation, 5(1):1–29.

Sims, K. (1994). Evolving 3D morphology and behavior
by competition. In Brooks, R. A. and Maes, P., editors,
Artificial Life IV, Proceedings of the fourth International
Workshop on the Synthesis and Simulation of Living Sys-
tems., pages 28–39. MIT Press.

Smith, R. and Gray, B. (1993). Co-adaptive genetic algo-
rithms: An example in othello strategy. Technical Re-
port TCGA 94002, University of Alabama, Department
of Engineering Science and Mechanics.

Wiegand, R. P., Liles, W., and De Jong, K. (2001). An em-
pirical analysis of collaboration methods in cooperative
coevolutionary algorithms. In Spector, L., editor, Pro-
ceedings of the Genetic and Evolutionary Computation
Conference (GECCO) 2001, pages 1235–1242. Morgan
Kaufmann.

GENETIC ALGORITHMS 511

Combining the Strengths of the Bayesian Optimization Algorithm
and Adaptive Evolution Strategies

Martin Pelikan, David E. Goldberg, and Shigeyoshi Tsutsui

Illinois Genetic Algorithms Laboratory

University of Illinois at Urbana-Champaign

104 S. Mathews Avenue, Urbana, IL 61801

Phone/FAX: (217) 333-2346, (217) 244-5705

fpelikan,deg,shigeg@illigal.ge.uiuc.edu
Abstract

This paper proposes a method that combines

competent genetic algorithms working in dis-

crete domains with adaptive evolution strate-

gies working in continuous domains. We use

discretization to transform solution between

the two domains. The results of our exper-

iments with the Bayesian optimization al-

gorithm as a discrete optimizer and �-self-

adaptive mutation of evolution strategies as

a continuous optimizer combined using k-

means clustering suggest that the algorithm

scales up well on all tested problems. The

proposed method can be used to �ll the gap

between other optimization methods working

in continuous and discrete domains and allow

their hybridization.

1 INTRODUCTION

In genetic and evolutionary algorithms, the search is

guided by selection and variation operators. Selection

biases the search towards high-quality regions by mak-

ing more copies of good solutions and less copies of the

bad ones. Variation operators (such as recombination

and mutation) ensure exploration of promising regions

of the search space after applying selection. There are

two commonly used variation operators: (1) recom-

bination and (2) mutation. Genetic algorithms focus

primarily on recombination that combines solutions by

exchanging some of their parts. On the other hand, the

dominant variation operator in evolution strategies is

mutation that perturbs the solutions slightly. There

has been a lot of progress in both mutation-based and

recombination-based approaches over the last decades.

However, only little has been done to combine the most

advanced results of these two lines of research.

The purpose of this paper is to show how some of the

advanced algorithms based on the two aforementioned

approaches can be combined to solve problems de�ned

in continuous domains. In particular, the Bayesian op-

timization algorithm (BOA) based on recombination

is combined with a mutation-based evolution strat-

egy (ES) with adaptive mutation strength. However,

since BOA works only on �nite-alphabet strings of

�xed length while ES works directly with vectors of

real numbers, it is not possible to combine the two

approaches without an intermediate step in between.

The problem of inconsistent representations is over-

come by discretization. The resulting approach can

be seen both as the Bayesian optimization algorithm

with adaptive discretization or a recombinative evolu-

tion strategy capable of linkage learning. The same

method can be used to combine other competent ge-

netic algorithms and evolution strategies with no or

only minor modi�cations and to solve problems that

contain both continuous and discrete variables.

The paper starts by introducing the Bayesian opti-

mization algorithm and evolution strategies with adap-

tive mutation, which are used as the basic building

blocks of the proposed algorithm. Discretization is

then discussed in context of genetic and evolutionary

computation. Section 3 describes how a competent

recombination-based genetic algorithm in a discrete

domain can be combined with a mutation-based ap-

proach in a continuous domain. Section 4 provides our

experimental results. Section 5 concludes the paper.

2 BACKGROUND

Genetic and evolutionary algorithms start with a ran-

domly generated initial population of candidate solu-

tions. In each iteration, the set of promising solutions

is selected where the number of copies of each candi-

date solution is somehow proportional to the solution's

quality. New candidate solutions are constructed by

applying recombination and mutation operators to the

selected solutions. The new solutions replace some of

GENETIC ALGORITHMS512

the old ones or all of them and the process is repeated

until the termination criteria are met.

This section starts by introducing two fundamen-

tally di�erent approaches based on the above scheme.

First, it describes the Bayesian optimization algorithm

(BOA), which is based on recombination and has been

recently shown to solve boundedly diÆcult decompos-

able problems de�ned on �xed-length binary strings

eÆciently and reliably. BOA is capable of learning

and exploiting a decomposition of the problem by ana-

lyzing the promising solutions. Subsequently, the sec-

tion describes evolution strategies (ES) that process

�xed-length vectors of real numbers and use mutation

as the primary variation operator. Several methods

for adapting mutation parameters are presented. The

section ends by discussing discretization in context of

genetic and evolutionary computation that will later

be used as a way to bridge the recombination-based

discrete BOA and the mutation-based continuous ES.

2.1 BAYESIAN OPTIMIZATION

ALGORITHM

Recombination-based genetic algorithms generate new

solutions by combining bits and pieces of promis-

ing solutions. The simple genetic algorithm (Gold-

berg, 1989) uses problem-independent crossover oper-

ators to combine promising solutions, such as uniform

crossover and one-point crossover. Mutation is usually

used as only a background operator capable of tuning

near-optimal solutions at the end of the run or intro-

duce diversity into the population.

Probabilistic model-building genetic algorithms (PMB-

GAs) (Pelikan, Goldberg, & Lobo, 2002) also try to

combine important parts of the selected solutions but

they approach recombination in a di�erent way. They

view the set of selected solutions as a sample from the

region of the search space that we are interested in.

PMBGAs �rst estimate the distribution of the selected

solutions and then use this estimate to generate new

solutions. The estimated distribution can encode the

interactions among the di�erent variables in the prob-

lem as well as superiority of certain combinations of

values of di�erent subsets of variables. The algorithms

based on this principle are also called estimation of

distribution algorithms (M�uhlenbein & Paa�, 1996),

or iterated density estimation algorithms (Bosman &

Thierens, 2000). It is beyond the scope of this paper

to give an overview of PMBGAs. For a survey of PM-

BGAs, please see Pelikan, Goldberg, and Lobo (2002).

In this paper, we focus on the Bayesian optimization

algorithm (BOA) (Pelikan, Goldberg, & Cant�u-Paz,

1998) that uses Bayesian networks to model promis-

ing solutions and subsequently guide the exploration

of the search space. The �rst population of strings is

generated randomly with a uniform distribution. From

the current population, the better strings are selected

using one of the conventional selection methods such as

tournament or truncation selection. A Bayesian net-

work that �ts the selected set of strings is constructed.

Besides the set of good solutions, prior information

about the problem can be used in order to enhance

the estimation and subsequently improve convergence.

New strings are generated according to the joint distri-

bution encoded by the constructed network. The new

strings are added into the old population, replacing

some of the old ones.

A Bayesian network is a directed acyclic graph with

the nodes corresponding to the variables in the mod-

eled data set (in our case, to the positions in the so-

lution strings) and the edges de�ning the conditional

dependencies among the variables. A directed edge

relates the variables so that in the encoded distribu-

tion, the variable corresponding to the terminal node is

conditioned on the variable corresponding to the initial

node. More incoming edges into a node result in a con-

ditional probability of the corresponding variable with

a conjunctional condition containing all its parents.

To learn the network structure, a scoring metric, such

as the Bayesian-Dirichlet metric or the Bayesian in-

formation criterion (BIC), can be used to discriminate

competing models. A search procedure then searches

the space of all potential network structures to �nd the

one that scores the most. A greedy search procedure is

often used that iteratively adds, removes, or reverses

the edge that improves the score of the network the

most until no more improvement is possible.

In BOA, the built Bayesian network encodes impor-

tant interactions in the problem as well as its decom-

position. The decomposition simpli�es the problem,

while the interactions allow the use of reasonably sized

populations and convergence times. It has been shown

that BOA is indeed capable of learning how to prop-

erly break up the problem to optimize the problems

decomposable into subproblems of bounded diÆculty

in subquadratic or quadratic time.

2.2 EVOLUTION STRATEGIES

Evolution strategies (ES) (Rechenberg, 1973) use mu-

tation as the driving force of the search and usually

work on solutions represented by vectors of real num-

bers. Mutation is usually performed by adding a num-

ber generated according to a zero-mean normal distri-

bution to the solution. This section reviews the ba-

sic principle behind using mutation as the primary

GENETIC ALGORITHMS 513

variation operator. We start by discussing a simple

mutation operator that mutates each variable inde-

pendently and therefore the non-diagonal elements in

the covariance matrix of the mutation distribution are

equal to zero. Subsequently, we describe the basic idea

behind some more sophisticated approaches that allow

adaptation of the covariance matrix.

A simple mutation that mutates each variable indepen-

dently using a normally distributed random variable

contains one parameter per variable. Each parame-

ter speci�es the standard deviation of the mutation

for the corresponding variable. The standard devia-

tions (mutation strengths) can be either �xed to some

small constant or adapted as the search progresses.

Ideally, the mutation strength should be proportional

to the distance to the optimum. A �xed mutation

strength results in slower convergence at either the

beginning or the end of the run. Adaptive mutation

dynamically updates the mutation strengths to max-

imize the improvement in the current stage of the al-

gorithm. The 1=5-success rule (Rechenberg, 1973), �-

self-adaptive ES (Schwefel, 1977), and adaptive linear

rule (Rechenberg, 1994) are examples of the adaptive

mutation strategies.

In �-self-adaptive ES, a vector of standard deviations

corresponding to each variable is attached to each so-

lution. Before mutating the solution, its mutation pa-

rameters are modi�ed by using the following rule:

�
0

i = �ie
�N(0;1)

; (1)

where �i is the standard deviation corresponding to

the mutation of ith variable, �0i is its updated value,

N(0; 1) is a zero-mean Gaussian random variable with

variance 1, and � is the learning parameter. The above

update rule assures that the mutation strength is al-

ways positive, the expected outcome of the modi�-

cation without any selection pressure is neutral, and

smaller modi�cations occur more often than the large

ones (Schwefel, 1977). Good mutations are �ltered by

a standard selection mechanism based on the �tness

of the resulting solutions because individuals that lead

to the best improvements are going to participate in

the reproduction in the subsequent iteration. Schwefel

suggests that � should be inversely proportional to the

square root of the total number of variables:

� _
1p
n
� (2)

In the above method, mutations for di�erent variables

are independent. This resembles the uniform crossover

in genetic algorithms where each bit in the two parent

strings is exchanged with a certain probability inde-

pendently of the remaining bits. To reduce the dis-

ruptive e�ects of recombination, methods that were

able to learn the structure of the problem and adapt

the recombination accordingly were designed.

A similar approach can be used for adapting mutations

where by extracting some information from the history

of the run one can learn not only how strong the muta-

tion for each variable should be, but also how the mu-

tations for di�erent variables should interact. Schwe-

fel (1981) proposed to extend solutions by including

rotation angles in addition to the original deviations

(or variances) and adapt both the variances as well

as the rotation angles. The generating set adaptation

(GSA) method of Hansen, Ostermeier, and Gawelczyk

(1995) is an example of a more advanced method for

adapting the direction of the mutation together with

its strength by adapting the covariance matrix of the

mutation distribution.

Although recombination has been used in evolution

strategies since the early works in this area, it has

been seen as only a minor operator (Beyer, 1995). For

recombination in ES, a variant of uniform crossover is

usually used. For each new individual, a subset of par-

ents is chosen. The size of the selected subset can range

from two individuals to the entire parent population.

For the value of each variable in the new individual, a

random individual is picked from the subset and the

value is copied from that individual.

When using recombination together with adaptive mu-

tation, one must copy not only the value of each vari-

able but also corresponding mutation strengths or the

histories of the past mutations of this variable. Since

this information is associated with each variable, no

major modi�cations are required.

ES with adaptive mutation are powerful for local

search. However, without powerful recombination ES

are capable of only local search. So why not combine

recombination-based methods capable of learning how

to recombine the solutions properly in a discrete do-

main and mutation-based methods capable of adapt-

ing the mutation in a continuous domain? Section 3

proposes a method that combines the two approaches

using discretization to transform continuous solutions

into a discrete domain and vice versa. But �rst, the

next section discusses the use of discretization in ge-

netic and evolutionary algorithms.

2.3 DISCRETIZATION

Discretization is widely used in many �elds of science

to reduce the complexity of a problem and make in-

GENETIC ALGORITHMS514

f

x

Figure 1: Fixed-width histogram.

tractable problems tractable. In genetic and evolution-

ary computation, discretization has often been used to

�rst transform continuous solutions into binary strings

and then apply the algorithm working in a discrete do-

main on the resulting problem. The discrete solution

can then be transformed back into the continuous do-

main and either taken as is or further optimized by a

local searcher such as the conjugate gradient.

There are several advantages and disadvantages of dis-

cretizing the solutions and solving the corresponding

discrete problem (Goldberg, 1991). Discrete solutions

improve the implicit parallelism of genetic algorithms

and allow them to process more partial solutions at

the same time. Moreover, the discrete space is �nite

and thus it is easier to guarantee that the optimal solu-

tion in this space is found and that we supply enough

information for the optimization to succeed. On the

other hand, the locality of the solution decreases and

some phenotypically close solutions (similar solutions

in a continuous domain) may become distant in the

discrete domain. This a�ects especially mutation that

attempts to make small changes in the phenotype by

making small changes in the genotype. Additionally,

one must know the range of each variable to discretize

it and the resulting binary strings may be extremely

long for large problems.

A typical way of discretizing continuous solutions in

genetic algorithms is to divide the range of each vari-

able into (2k � 1) intervals of equal width (Goldberg,

1989). Boundary points of the intervals can then be

encoded by k-bit binary strings. A string encoding n

such continuous variables contains nk bits. Increasing

k re�nes the discretization by factors of 2. For many

problems only a couple of bits (say, k = 3 or 4) are

suÆcient to get a solution very close to the optimum.

Local optimization methods can then be used to re�ne

the �nal solutions to get a more accurate result.

A di�erent way of using histograms in evolutionary al-

x

f

Figure 2: Fixed-height histogram.

gorithms for continuous domains is to use histograms

as a tool to estimate the distribution of promising

points. The created model can then be used to gener-

ate new points. The points are allowed to lie within

the intervals and not only on their boundaries. That

can lead to further improvements of the �nal solutions.

Algorithms that use histograms in this fashion in or-

der to estimate a univariate distribution where all

variables are processed independently have been pro-

posed (Bosman & Thierens, 2000; Tsutsui, Pelikan, &

Goldberg, 2001; Cant�u-Paz, 2001). Using equal-width

histograms was investigated in Bosman and Thierens

(2000), Tsutsui et al. (2001), and Cant�u-Paz (2001).

Equal-height histograms were investigated in Tsutsui

et al. (2001), and Cant�u-Paz (2001). Decision trees

and other supervised discretization methods were in-

vestigated in Cant�u-Paz (2001).

Various discretization methods were proposed and

frequently used in machine learning, statistics, and

other �elds. Equal-height histograms, decision trees,

and clustering algorithms are examples of such meth-

ods. All these methods have the same important

characteristic|they map a single continuous variable

or a group of variables into a �nite set of symbols. We

discuss some of these methods in the following.

2.3.1 Histograms

Histograms divide the interval for each variable into k

subintervals (bins). There are many ways of dividing

the interval into k bins. In practice, two basic types

of histograms are used: (1) �xed-width histogram and

(2) �xed-height histogram.

A �xed-width histogram divides the interval into k

bins of equal width. An example of a �xed-width his-

togram is shown in Figure 1. The disadvantage of

�xing the width of each bin is that if points are con-

centrated in a couple of small regions, only a couple

of bins will be nonempty and many bins will simply

GENETIC ALGORITHMS 515

be wasted on regions with none or only a few points.

Fixed-width histograms are also very sensitive to out-

liers and one or a few points far away from the rest

can signi�cantly decrease the accuracy.

A �xed-height histogram divides the interval for the

variable in k bins of equal frequencies (each bin con-

tains the same number of points). An example of a

�xed-height histogram is shown in Figure 2. The ad-

vantage of using �xed-height histograms is that the

density of bins is increased in regions with many

points. The regions that seem interesting (those that

contain many points) are modeled with high accuracy,

while the bins with only few points are merged to-

gether to decrease the accuracy where it is not needed.

A �xed-height histogram can therefore preserve more

information contained in the original set of points.

2.3.2 k-means Clustering

In k-means clustering, each cluster (category) is speci-

�ed by its center. Initially, k centers (where k is given)

are generated at random. Each point is assigned to its

nearest center. Subsequently, each center is recalcu-

lated to be the mean of the points assigned to this

center. The points are then reassigned to the near-

est center and the process of recalculating the centers

and reassigning the points is repeated until no points

change their location after updating the centers.

The next section describes how to use a particular dis-

cretization or clustering method to combine BOA (or

other discrete optimizer) with ES (or other continuous

optimizer).

3 COMBINING LINKAGE

LEARNING AND ADAPTIVE

MUTATION

This section describes an algorithm that combines a

discrete recombination-based algorithm (such as BOA)

with adaptive mutation techniques of ES.

The algorithm evolves a population of continuous so-

lutions. The �rst population is generated at random.

From the current population the better strings are se-

lected. The processing of the promising solutions has

three major phases:

1. Discretize the selected promising solutions.

2. Recombine the discrete solutions.

3. Map the new discrete solutions back in the con-

tinuous domain, update the mutation parameters,

and mutate the new continuous solutions.

In the �rst phase, the promising solutions are dis-

cretized. Each variable is independently mapped into

a �nite number of categories (bins, clusters). Any dis-

cretization, clustering, or classi�cation method can be

used to discretize the continuous variables. Let us de-

note the resulting number of categories for the ith

variable by ci. There are two major approaches to

represent the resulting discrete population. The �rst

approach is to use binary strings and dlog2 cie bits for
each variable. The second approach is to use an al-

phabet of a higher cardinality so that only one sym-

bol is used to represent each variable. The ith letter

in the discrete string could then obtain ci values. Of

course, there are many ways between the two extremes.

Binary representation results in more possibilities to

combine the strings. On the other hand, alphabets of

higher cardinality result in shorter representation.

In the second phase, a discrete linkage learning algo-

rithm (such as BOA) is applied to generate the new

solutions based on the set of discrete promising solu-

tions. The o�spring discrete solutions are constructed

by combining the promising solutions.

In the third phase, the resulting set of discrete so-

lutions is mapped back into the continuous domain.

However, unlike in all previously proposed approaches,

the new points are not generated uniformly within the

boundaries of the categories for each variable. Instead,

original points within each category are used. Each

discrete string determines a category for each variable.

To \undiscretize" each variable in a particular string,

a random individual in the original set of promising

solutions that is consistent with the encoded category

for the variable is chosen. The value of the variable is

obtained by mutating the value of the variable in the

chosen individual.

As a simple example, let us assume we use an equal-

width histogram with only two categories for each vari-

able. Each candidate solution is represented in the dis-

crete domain by a binary string with one bit per vari-

able determining whether the variable is in the upper

or lower half of its range. To decode a binary string,

we look at the value of each of its bits. If the value is

0 (1), we randomly choose a solution from the original

set of promising continuous solutions whose value of

the considered variable is in the lower (upper) half of

the domain. The corresponding variable in the chosen

solution is copied to the newly created continuous solu-

tion. This is done for each variable separately. Finally,

the created continuous solution is mutated.

Using adaptive mutation requires considering addi-

tional parameters in the continuous solutions. For �-

self-adaptive mutation, we must attach the mutation

GENETIC ALGORITHMS516

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Two-peaks function.

strength to each variable in each string. When we copy

a value of a particular variable we must also copy the

corresponding mutation strength. As we copy the val-

ues of the variables and the attached parameters into

the new continuous string, the mutation strengths are

updated by using the rule discussed earlier in the pa-

per (see Equation 1). The new mutation strengths are

used to mutate the created solution. GSA and its suc-

cessors require copying and updating a history of the

mutations or other parameters as well.

The newly generated solutions then replace the origi-

nal population or its part.

Various algorithms can be used for discretization, link-

age learning, and adapting the mutation. Due to our

recent successful applications of BOA to many discrete

problems, we decided to use this algorithm for linkage

learning and recombination in our experiments. To

adapt mutation, we used a simple �-self-adaptive mu-

tation where only a mutation strength of each parame-

ters is adapted. Application of other mutation schemes

such as GSA is straightforward. To discretize the so-

lutions, we used equal-height histograms, equal-width

histograms, and k-means clustering, but any other

popular discretization, classi�cation, and clustering

techniques can be used. Using more advanced tech-

niques should further improve the performance. For a

discussion of some interesting alternatives, see Cant�u-

Paz (2001).

4 EXPERIMENTS

This section describes our experiments and presents

the experimental results.

4.1 PROBLEMS

We have tested the algorithm on two test functions:

(1) two-peak function and (2) deceptive function.

Both test functions are created by concatenating basis

 0.8
 0.6
 0.4
 0.2

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 4: Two-dimensional deceptive function.

functions of a small order. The contributions of all the

functions are added together to determine the overall

�tness and the goal is to maximize the functions. All

variables in our test functions are from [0; 1].

The two-peaks function is given by

twoPeaks(x0; : : : ; xn�1) =

n�1X
i=0

ftwo�peaks(xi):

Every variable of the two-peaks function contributes

to the �tness by

ftwo�peaks(x) =

(
fpeak(x=0:1; 1) if x < 0:2;

fpeak((x� 0:2)=0:8; 0:9) otherwise;

where fpeak is a simple function for one peak, de�ned

as

fpeak(x; h) = h cos (2�(x� 0:5)) :

Figure 3 shows the two-peak function. The function

has one local and one global optimum for each vari-

able. This yields 2n optima for a problem of size n out

of which only one optimum is global. Local optima are

much wider and almost as high as the global one. That

makes the problemmore diÆcult. Using mutation only

does not yield good results on this problem. Recom-

bination makes uses decomposability of the problem

and is capable of solving the problem very eÆciently

and reliably. Simple uniform crossover is suÆcient and

thus any ES with recombination should work well.

The deceptive function is composed of two-dimen-

sional deceptive functions:

deceptive(x0; : : : ; xn�1) =

n

2X
i=0

ftwo�peaks(x2i; x2i+1):

GENETIC ALGORITHMS 517

10000

10

N
um

be
r

of
 f

itn
es

s
ev

al
ua

tio
ns

Problem size

BOA (adapt.mut, kmeans, 8 bins)

(a) Two-peaks function.

100000

10

N
um

be
r

of
 f

itn
es

s
ev

al
ua

tio
ns

Problem size

BOA (adapt.mut,kmeans, 8 bins)

(b) Deceptive function.

Figure 5: Results of BOA with k-means (8 clusters per variable).

Non-overlapping pairs of variables of the deceptive

function contribute to the overall �tness by

fdeceptive(x; y) = fdec

�p
(x2 + y2)=2

�
where fdec is a one-dimensional deceptive function de-

�ned on [0; 1] as

fdec(x) =

(
0:8� x if x � 0:8,
1�x
0:2 otherwise.

Figure 4 shows the two-dimensional deceptive func-

tion. The two-dimensional deceptive function requires

that we learn the linkage of the contributing pairs of

variables. Each variable alone is biased to the local

optimum in 0 and only when both variables are close

to 1 their combination leads to an improvement. In

early stages of the run there are more points on the lo-

cal attractor than the global one. If both variables are

treated independently, combinations with both vari-

ables near the global attractor vanish and the search

progresses toward the local optimum. Moreover, the

global optimum is almost isolated and the attractor is

small. This makes it quite diÆcult to hit the global

attractor.

4.2 RESULTS

This section presents and discusses empirical results

that primarily focus on the scalability. BOA with �-

self-adaptive mutation strength with a learning param-

eter � = 4=
p
n is used. Due to the limited size of the

paper, we only present the results of using k-means

clustering for discretization. However, the results of

other discretization methods are comparable. In all

experiments, a binary tournament selection with re-

placement is used where to select each new individual,

a tournament among two randomly selected individ-

uals is performed and the winner of the tournament

is added to the mating pool. An elitist replacement

scheme is used that replaces the worst half of the pop-

ulation by the o�spring.

For each problem size, we performed 30 independent

runs with the optimal population size that was deter-

mined empirically for each algorithm and problem size

so that the optimum is found in all 30 runs. The av-

erage number of �tness evaluations to reach solutions

whose Euclidean distance from the optimum is at most

0:01 is provided.

The two-peaks problem is very simple and could be

used by using recombination with no linkage learning

(i.e. traditional ES recombination based on uniform

crossover). However, we present the results to show

that the algorithm is capable to solve both simple

and diÆcult problems. Without recombination, the

ES with �-self-adaptive mutation can not solve any of

the discussed problems eÆciently. The deceptive prob-

lem would require exponential population sizes both if

no recombination was used as well as if a traditional

recombination based on uniform crossover was used.

Other �xed recombination methods would also fail if

the variables were not ordered according to their de-

pendencies.

Figure 5 shows the results of the proposed algorithm

with k-means clustering on the two-peaks and decep-

tive functions. For the two-peaks function, the popula-

tion sizes ranged fromN = 700 for n = 10 toN = 2100

GENETIC ALGORITHMS518

for n = 50, and the required number of evaluations

is approximately O(n1:32). For the deceptive func-

tion, the population sizes ranged from N = 900 for

n = 10 to N = 8750 for n = 40 and the required num-

ber of evaluations grows approximately with O(n2:28).

Therefore, the performance in both cases can be esti-

mated by a low-order polynomial.

5 CONCLUSIONS

The results of the paper suggest that recombination-

based methods for discrete domains and mutation-

based methods for continuous domain can be combined

to utilize the strengths of both methodologies. The de-

gree to which the methods are combined can be con-

trolled by choosing the resolution of discretization and

recombination parameters. For coarse discretization,

the algorithm performs very similar to the ES with re-

combination based on uniform crossover. Re�nement

of discretization yields to more possibilities for learn-

ing the linkage between di�erent variables in the prob-

lem. However, learning linkage comes at a price of

increased requirements on the population size. While

ES usually require only small populations, statistical

methods of BOA require quite big populations. But

for most multimodal problems it is necessary to com-

bine parts of promising solutions to avoid exponential

time requirements.

There are many other alternative uses of the presented

scheme. Using supervised discretization methods can

yield signi�cant improvements. Additionally, many

real-world problems do not require sophisticated link-

age learning procedures and simple one, two-point, or

uniform crossover may suÆce.

6 Acknowledgments

The authors would like to thank Kumara Sastry, Erick

Cant�u-Paz, Franz Rothlauf, and Hans-Georg Beyer for

many useful discussions and valuable comments to the

paper.

The work was sponsored by the Air Force OÆce of Sci-

enti�c Research, Air Force Materiel Command, USAF,

under grant F49620-00-0163. Research funding for

this work was also provided by a grant from the Na-

tional Science Foundation under grant DMI-9908252.

The US Government is authorized to reproduce and

distribute reprints for Government purposes notwith-

standing any copyright notation thereon.

The views and conclusions contained herein are those

of the authors and should not be interpreted as neces-

sarily representing the oÆcial policies or endorsements,

either expressed or implied, of the Air Force OÆce of

Scienti�c Research, the National Science Foundation,

or the U.S. Government.

References

Beyer, H.-G. (1995). Toward a theory of evolution strate-
gies: On the bene�t of sex { the (�=�; �)-theory.
Evolutionary Computation, 3 (1), 81{111.

Bosman, P. A., & Thierens, D. (2000). Continuous it-
erated density estimation evolutionary algorithms
within the IDEA framework. Workshop Proceedings
of the Genetic and Evolutionary Computation Con-
ference (GECCO-2000), 197{200.

Cant�u-Paz, E. (2001). Supervised and unsupervised
discretization methods for evolutionary algorithms.
Workshop Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO-2001), 213{
216.

Goldberg, D. E. (1989). Genetic algorithms in search,
optimization, and machine learning. Reading, MA:
Addison-Wesley.

Goldberg, D. E. (1991). Real-coded genetic algo-
rithms, virtual alphabets, and blocking. Complex
Systems, 5 (2), 139{167.

Hansen, N., Ostermeier, A., & Gawelczyk, A. (1995). On
the adaptation of arbitrary normal mutation distri-
butions in evolution strategies: The generating set
adaptation. Proceedings of the International Confer-
ence on Genetic Algorithms (ICGA-95), 57{64.

M�uhlenbein, H., & Paa�, G. (1996). From recombination
of genes to the estimation of distributions I. Binary
parameters. Parallel Problem Solving from Nature,
178{187.

Pelikan, M., Goldberg, D. E., & Cant�u-Paz, E.
(1998). Linkage problem, distribution estimation,
and Bayesian networks (IlliGAL Report No. 98013).
Urbana, IL: University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory.

Pelikan, M., Goldberg, D. E., & Lobo, F. (2002). A sur-
vey of optimization by building and using probabilis-
tic models. Computational Optimization and Appli-
cations, 21 (1), 5{20. Also IlliGAL Report No. 99018.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biologis-
chen Evolution. Stuttgart: Frommann-Holzboog
Verlag.

Rechenberg, I. (1994). Evolutionsstrategie '94. Stuttgart:
Frommann-Holzboog Verlag.

Schwefel, H.-P. (1977). Numerische Optimierung von
Computer{Modellen mittels der Evolutionsstrategie,
Volume 26 of Interdisciplinary Systems Research.
Basle, Switzerland: Birkh�auser.

Schwefel, H.-P. (1981). Numerical Optimization of Com-
puter Models. New York, New York: John Wiley and
Sons.

Tsutsui, S., Pelikan, M., & Goldberg, D. E. (2001). Evo-
lutionary algorithm using marginal histogram models
in continuous domain (IlliGAL Report No. 2001019).
Urbana, IL: University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory.

GENETIC ALGORITHMS 519

Why use Elitism and Sharing in a Multi-Objective Genetic Algorithm?

Robin C. Purshouse and Peter J. Fleming
Department of Automatic Control and Systems Engineering

University of Sheffield, UK.
{r.purshouse, p.fleming}@sheffield.ac.uk

Abstract

Elitism and sharing are two mechanisms that are
believed to improve the performance of a multi-
objective evolutionary algorithm (MOEA). Using
a new empirical inquiry framework, this paper
studies the effect of elitism and sharing design
choices using a benchmark suite of two-criterion
problems. Performance is assessed, via known
metrics, in terms of both closeness to the true
Pareto-optimal front and diversity across the
front. Randomisation methods are employed to
determine significant differences in performance.
Informative visualisation of results is achieved
using the attainment surface concept. Elitism is
found to offer a consistent improvement in terms
of both closeness and diversity, thus confirming
results from other studies. Sharing can be
beneficial, but can also prove surprisingly
ineffective. Evidence presented herein suggests
that parameter-less schemes are more robust than
their parameter-based equivalents (including
those with automatic tuning). A multi-objective
genetic algorithm (MOGA) combining both
elitism and parameter-less sharing is shown to
offer high performance across the test suite.

1 INTRODUCTION
Evolutionary multi-criterion optimisation (EMO)
practitioners are faced with a number of design choices
beyond those encountered in a standard evolutionary
algorithm (EA). Suitable strategies for elitism and sharing
can significantly improve optimiser performance. This
paper presents new evidence and understanding
concerning elitism and sharing that will help practitioners
to make informed choices. Through the application of
tractable algorithm modifications and a rigorous
experimental framework, the effect of MOEA component-
level choices can be more clearly exposed.

An EMO empirical inquiry framework is introduced in
Section 2. The dual performance metrics of closeness and
diversity are measured using the generational distance and
spread metrics respectively. Statistical comparisons are
then made using randomisation testing. Information-rich
visualisations of the identified trade-off surfaces are
obtained using attainment surfaces. The analysis is based
on the two-criterion set of test problems proposed by
Zitzler et al [2000].

The performance of a baseline MOGA optimiser is
established in Section 3. The effects of elitism and sharing
are then considered with reference to this baseline. An
elitist strategy, based on Zitzler’s [1999] universal elitism,
is developed in Section 4. Sharing methodologies for the
promotion of diversity are discussed in Section 5. A new
parameter-less technique, formulated as an
accompaniment to Pareto-based ranking, is compared to
the standard parameter-based approach. In Section 6, a
high-performance MOGA incorporating both elitism and
parameter-less sharing is investigated.

2 EMO INQUIRY FRAMEWORK

2.1 TEST SUITE

The established set of test problems developed by Zitzler
et al [2000] (ZDT) is used in this study. The suite consists
of six, tractable, two-criterion functions, with varying
characteristics as summarised in Table 1.

Table 1: Test function characteristics

NAME ATTRIBUTES

ZDT-1 Convex front

ZDT-2 Non-convex front

ZDT-3 Non-contiguous convex front

ZDT-4 Many local fronts, single global convex front

ZDT-5 Deceptive problem, convex front

ZDT-6 Non-uniform distribution, non-convex front

2.2 MEASURING PERFORMANCE

Performance of a MOEA can be decomposed into two
criteria:

• Closeness – the nearness of the obtained non-
dominated solutions to the true front.

• Diversity – the coverage of the trade-off surface by
the obtained solutions.

The ideal outcome, in test cases of this type, is a final
population with a uniform distribution of globally non-
dominated solutions spread across the entire trade-off
surface. Various performance metrics have been proposed
to measure closeness, diversity, and in some cases both
together. Some metrics require that the global trade-off
surface is known and can be sampled (straightforward in
the ZDT cases), whilst others involve a purely relative

GENETIC ALGORITHMS520

comparison of two results sets. This study utilises three
known performance metrics: generational distance to
measure accuracy, spread to measure diversity, and
attainment surfaces to provide visualisation.

• Generational distance – an average of the Euclidean
distances between each obtained solution and the
nearest point on the true front [Veldhuizen, 1999].

• Spread – the sum of the differences between nearest
neighbour distances and the mean of all such
distances, coupled with a term to account for the
extent of the obtained front [Deb et al, 2000].

• Attainment surface – the boundary in criterion-
space that separates the region that is dominated by
the obtained solutions from that which is non-
dominated [Fonseca and Fleming, 1996].

The superposition of multiple attainment surfaces can be
treated statistically and also provides a rich qualitative
indication of performance. A typical plot is shown later in
Figure 1. The heavy line indicates the 50%-attainment
surface (akin to the median), the thinner lines show the
25% and 75% surfaces (quartiles), and the dotted lines
describe the 0% and 100% surfaces. Thus location,
dispersion, and skewness information can be obtained in a
similar manner to the box plot [Cleveland, 1993].

2.3 ANALYSING PERFORMANCE

Upon completion of a single run of a specific MOEA
configuration on a particular problem, three sets of non-
dominated criterion vectors (and associated solutions) are
obtained, namely:

• final population – the non-dominated vectors in the
final population of the algorithm,

• on-line archive – the final elite set of vectors, and

• off-line archive – the complete set of non-dominated
vectors identified by the algorithm.

The first of these sets is used for analysis and comparison
purposes in this study since it provides the most
appropriate measure of the on-line trade-off surface
maintenance capabilities of an algorithm.

An evolutionary algorithm is a stochastic process and,
thus, multiple runs (samples) are required in order to infer
reliable conclusions as to its performance. Hence, 35 runs
have been conducted for each MOEA configuration when
applied to a particular test problem. The performance of
the algorithm is expressed in the resulting distributions of
generational distance and spread. A statistical comparison
of two configurations is then possible through the use of a
test statistic.

In this study, the mean difference between two
generational distance (or, alternatively, spread)
distributions is taken as the test statistic. The significance
of this observed result is then assessed using
randomisation testing. This is a simple, yet effective,
technique that does not rely on any assumptions
concerning the attributes of the underlying processes,
unlike conventional statistical methods [Manly, 1991].

The central premise of the method is that, if the observed
result has arisen by chance, then this value will not appear
unusual in a distribution of results obtained through many
random relabellings of the samples. The randomisation
method proceeds as follows:

1. Compute the difference between the means of the
samples for each algorithm: this is the observed
difference.

2. Randomly reallocate half of all samples to one
algorithm and half to the other. Compute the
difference between the means as before.

3. Repeat Step 2 until 5000 randomised differences have
been generated, and construct a distribution of these
values.

4. If the observed value is within the central 99% of the
distribution, then accept the null hypothesis.
Otherwise consider the alternative hypotheses. This is
a two-tailed test at the 1%-level.

The null hypothesis is that the observed value has arisen
through chance and so there is no performance difference
between the two configurations. The alternative
hypotheses are that the difference is unlikely to have
arisen through chance and that one configuration has
outperformed the other (depending on which side of the
distribution the observed difference falls, and the direction
in which the difference has been calculated).

Note that the observed value is included as one of the
random relabellings since, if the null hypothesis is true,
then this value is one of the possible randomisation
results. 5000 randomisations is regarded as an acceptable
quantity for a test at the 1%-level [Manly, 1991].

The results of randomisation testing are simple to
visualise, as shown by the example in Figure 3. The
randomised results are described by the grey histogram,
whilst the observed result is depicted as a filled black
circle. Each row shows the performance on a particular
test function (from ZDT-1 at the top, to ZDT-6 at the
bottom). The left-hand column indicates the relative
performance regarding closeness, and the right-hand
column shows the corresponding difference in diversity.

3 BASELINE MOGA

3.1 DESCRIPTION

The baseline optimiser used in this study has been
developed according to the holistic design principles
championed by Michalewicz and Fogel [2000] and has
previously been shown to be effective at solving the ZDT
test problems [Purshouse and Fleming, 2001]. A summary
of the algorithm is provided in Table 2.

The multi-criterion performance of a solution is scalarised
using Fonseca and Fleming’s [1993] Pareto-based ranking
procedure. A solution is ranked according to the number
of solutions in the population that are preferred to it. If the
entire Pareto-optimal front is to be identified, the
preference relation collapses to a test for Pareto
dominance.

GENETIC ALGORITHMS 521

Table 2: Baseline configuration

EMO COMPONENT STRATEGY

GENERAL
Population size
Total generations

100
250

ELITISM None
EVALUATION [1] Fonseca and Fleming [1993]

Pareto-based ranking.
[2] Linear fitness assignment with
rank-wise averaging.
[3] No modification of fitness to
account for population density.

SELECTION Stochastic universal sampling
REPRESENTATION
Real parameter
functions

Binary function

Concatenation of real number
decision variables. Accuracy
bounded by machine precision.
Binary string, 80 bits in length.

OPERATORS
For real representations

For binary
representations

[1] Naïve crossover
Probability = 0.8.
[2] Gaussian mutation (initial
search power of 40% of variable
range; sigmoidal scaling set to 15;
feasibility requirement of one
standard deviation).
Probability = Expected value of 1
phenotype per chromosome.
[1] Single-point binary crossover.
Probability = 0.8.
[2] Simple bit-flipping mutation.
Probability = 1/80.

When ranking is complete, initial fitness values can be
prescribed. The population is sorted according to rank and
fitnesses are assigned by interpolating between the highest
fitness value for the best rank and the lowest fitness value
for the worst rank. In the baseline algorithm, linear
interpolation is used and fitness is varied between the
population size (highest) and unity (lowest). The ratio of
these two fitnesses is a definition of the selective pressure
of the assignment mechanism. Solutions of the same rank
then have their fitnesses adjusted to the average of the
original assignments for that rank.

Part of this study is concerned with the effect of diversity-
preserving mechanisms. Therefore no manipulation of the
above fitnesses through sharing is undertaken.

Stochastic universal sampling has been chosen as the
selection mechanism [Baker, 1987]. This method achieves
maximum spread with minimal bias, but is non-
parallelisable. In total, 100 selections are required since
the chosen reinsertion strategy is that all offspring replace
all parents (no generational gap) and since for the chosen
genetic operators two parents are required to produce two
offspring.

Since five of the test problems feature real number
decision variables, it is logical to use a real number
representation for these problems. Hence, a candidate
solution is described by a concatenation of phenotypic

decision variables. The other test problem, ZDT-5,
explicitly uses binary variables, thus a binary
representation is natural for this problem.

Different representations require different search
operators. For the binary chromosome case, the familiar
single-point two-parent crossover and bit-flipping
mutation operators are employed. Good results are known
to be achievable using this simple approach [Zitzler et al,
2000]. For real representations, the so-called naïve
crossover is used in conjunction with a Gaussian mutation
operator. The former of these search tools is a very simple
two-parent single-point crossover operator, where the
crossover sites are limited to points between decision
variables. This offers quite a low-power search, since it
cannot generate any values for decision variables that
were not present in the original population. However,
when coupled with a complementary high-power search
tool, the resulting search capabilities are considerable1.
Gaussian mutation is one such operator. Its main benefit is
that it provides tuneable search power in the form of the
standard deviation. This can be exploited to provide on-
line adaptation that avoids the generation of infeasible
solutions and controls convergence speed by varying the
search from near global early on to very local towards the
end. Sigmoidal variation, as a function of the percentage
of generations completed, of the standard deviation is
useful because it allows concentrated periods of high- and
low-power search [Purshouse and Fleming, 2001].

3.2 PERFORMANCE

Attainment surfaces illustrating the performance of the
baseline algorithm are shown in Figure 1. Particularly
good results were achieved for ZDT-1, ZDT-2, and ZDT-
3 (Figures 1a, 1b, and 1c respectively) in terms of both
closeness to the global Pareto front and diversity across
the front. The tight envelopes of attainment indicate the
high level of consistency achieved in these cases. The
MOGA struggled to achieve good coverage of the surface
as f1 approaches zero on ZDT-2. Note that this is a region
where there is little trade-off between the objectives.

As shown in Figure 1d, the wider envelopes of attainment
produced for the multi-fronted ZDT-4 signify entrapment
in a locally non-dominated front. On no occasions did the
MOGA converge to the global trade-off surface although
coverage across the identified fronts was good.

The baseline MOGA achieved reasonable closeness to the
global front on ZDT-5. Performance on this deceptive test
function is depicted in Figure 1e. Note that on no
occasions was the algorithm able to identify the extreme
right-hand section of the discrete trade-off surface.

Rather poor performance was observed on the non-
uniform ZDT-6, as shown in Figure 1f. Coverage was
especially poor on the less dense area of the front. This,
together with the missing section of the ZDT-5 front, is

1 Coincidentally, the incorporation of naïve crossover largely
prevents the convergence failures encountered by Ikeda et al
[2001], thus showing that MOEA failure cannot be solely
blamed on the use of Pareto ranking in these cases.

GENETIC ALGORITHMS522

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f
2

(a) ZDT−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f
1

f
2

(c) ZDT−3

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

f
1

f
2

(e) ZDT−5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f
2

(b) ZDT−2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f
1

f
2

(d) ZDT−4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

f
1

f
2

(f) ZDT−6

Figure 1: Attainment surfaces – baseline MOGA solving the ZDT problems

the strongest indication that density-based sharing would
be beneficial. Closeness to the true Pareto front is also not
good. Only the 0%-attainment surface lies on the global
front, where coverage is particularly poor. Furthermore,
the position of this front with respect to the median and
quartiles suggests that this result is something of an
outlier.

4 ELITIST STRATEGY
Elitism is the process of preserving previous high-
performance solutions from one generation to the next.
This is conventionally achieved by simply copying the
solutions directly into the new generation. Elitism has

long been considered an effective method for improving
the efficiency of an EA [De Jong, 1975]. Various recent
studies in the EMO community have indicated that the
inclusion of an elitist element can considerably improve
the performance of an MOEA [Zitzler et al, 2000; Deb et
al, 2000]. The two main issues are (1) how to manage the
size of the elite sub-population, and (2) how to use elitism
to drive the search effectively.

The elitist strategy adopted in this study is a variant on the
approach developed by Zitzler [1999] and is illustrated by
the schematic in Figure 2. The key difference is that the
archive size is allowed to vary within pre-defined limits,
whilst the number of newly generated candidate solutions

GENETIC ALGORITHMS 523

is varied such that the total population size (elites plus
new solutions) is held constant.

MO
Ranking

ARCHIVE

Selection

Genetic
Operators

Reduction

+

preferences

currently non-dominated

oversized archive

on-line archive

current population

current population

selected solutions

new candidate solutions

new population

number required

Fitness
Assignment

old population

Figure 2: Elitist strategy

The on-line archive is initialised to the empty set, whilst
the initial population is initialised to a random set of
candidate solutions (possibly seeded with information
provided by the decision-maker). The populations at
subsequent iterations of the algorithm are the combination
of new solutions and current elite solutions. The currently
non-dominated solutions in the population are identified
and are stored as the new, potentially over-sized, archive.
Over-represented solutions are then eliminated from the
archive, if necessary, using the SPEA-2 truncation
procedure [Zitzler et al, 2001]. This is an effective
reduction technique for two-criterion problems.

When the new elite set has been finalised, the size of this
set is known, and thus the number of new candidate
solutions required to fill the population can be calculated.
These solutions are created through the selection and
genetic manipulation of members of the current
population. The new solutions are then combined with the
elite set to form the total population, which completely
replaces the old population.

This elitist strategy has been integrated within the baseline
MOGA and has been applied to the test problems.
Randomisation test results between the elitist model and
the baseline are shown in Figure 3. Observed differences
to the left of the randomisation distribution offer evidence
in favour of the elitist version outperforming the baseline
case.

There is considerable evidence, clearly shown by the
results in Figure 3, that the elitist algorithm produces
results closer to the true front than the baseline for ZDT-1,
2, 3, 4, and 6. Superior performance in terms of diversity
is strongly suggested for ZDT-1, 2, 4, 5, and 6.

Elitism increases the convergence speed of the algorithm.
The danger of sub-optimal convergence is somewhat
reconciled by the distributed nature of the elite set. High-
power search operators, such as the Gaussian mutation
operator used in this work, can also reduce the risk of

premature convergence. Hence, the increased convergence
exhibited in this study is expected.

Spread

ZDT−1

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200
Generational distance

−2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10−4

0

50

100

150

200

250

ZDT−2

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

200

−2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10−4

0

50

100

150

200

250

ZDT−3

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0

20

40

60

80

100

120

140

160

−2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10−4

0

50

100

150

200

ZDT−4

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

200

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200

ZDT−5

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

50

100

150

200

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

20

40

60

80

100

120

140

ZDT−6

♦ = observed difference
−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

0

20

40

60

80

100

120

140

160

difference between population means

fr
eq

ue
nc

y

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

50

100

150

200

250

Figure 3: Elite versus baseline

The elitist scheme also maintains the characteristics of the
currently identified trade-off surface within the on-line
population. Thus, diversity of non-dominated solutions in
the population is maintained and encouraged (through the
thinning of similar criterion vectors) by the truncation
mechanism. This helps to explain the improvement in
diversity seen in the results. However, the truncation
process only represents the current distribution: it does
not, directly (though fitness), drive the search towards a
superior distribution. Despite this fact, the inclusion of
elitism did lead to improved diversity on the non-
uniformly distributed ZDT-6. Modifications to the fitness,
such as those arising through sharing, may assist further in
improving diversity across the trade-off surface.

5 SHARING STRATEGY

5.1 INTRODUCTION

One of the aims of a multi-objective evolutionary
algorithm is to obtain a suitable distribution of candidate
solutions in regions of interest to the decision-maker. In
an evolutionary algorithm, this can be achieved through
the formation of sub-population clusters – known as
niches – within the global population. Fitness sharing is
the most popular method for fostering this niching process
[Goldberg and Richardson, 1987]. In this approach, the
raw fitness value of a candidate solution is reduced by a
factor dependent on the local population density. This
measure should be made in the domain over which a good
distribution is of interest: usually criterion-space.

5.2 PARAMETER-BASED METHODS

Fitness sharing has been shown to combat the problem of
genetic drift (population convergence to a single point due
to stochastic selection errors), thus helping to attenuate the
possibility of sub-optimal convergence and to enhance
coverage of trade-off surfaces. However, the power law
equation on which the technique is based requires a
definition of closeness in order to calculate the population
densities. This can be difficult to estimate in practice.
Furthermore, the method is sensitive to choice of this

GENETIC ALGORITHMS524

niche size parameter. Several methods have been
proposed in order to estimate the niche size, for example
Deb and Goldberg [1989] and Fonseca and Fleming
[1993], of which the dynamic approach of Fonseca and
Fleming [1995] is particularly interesting.

Fonseca and Fleming [1995] noted the similarity between
the power law sharing function and the Epanechnikov
kernel density estimator used by statisticians. The kernel
smoothing parameter used in the estimator was found to
be directly analogous to the fitness sharing niche size
parameter. The key benefit of this is that statisticians have
developed successful techniques for estimating the value
of this parameter [Silverman, 1986]. Furthermore, the
approach is amenable to update at each generation of the
EA population. This approach can be regarded as
parameter-based sharing with automatic tuning.

Epanechnikov sharing has been added to the baseline
MOGA and has been applied to the benchmark problems.
Sharing is performed using the Euclidean distance metric
in the criterion domain. Results of a randomisation
comparison with the baseline algorithm are shown in
Figure 4. Observed values that favour the sharing scheme
will lie to the left of the randomisation distribution.

Spread

ZDT−1

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

0

50

100

150
Generational distance

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10−4

0

20

40

60

80

100

120

140

160

ZDT−2

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0

50

100

150

200

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10−4

0

50

100

150

ZDT−3

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025

0

50

100

150

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10−4

0

20

40

60

80

100

120

140

ZDT−4

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

0

50

100

150

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0

20

40

60

80

100

120

140

160

ZDT−5

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0

20

40

60

80

100

120

140

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

50

100

150

ZDT−6

♦ = observed difference
−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

difference between population means

fr
eq

ue
nc

y

−0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

0

50

100

150

200

Figure 4: Epanechnikov versus baseline

The inclusion of Epanechnikov sharing has improved both
aspects of performance on the non-uniform ZDT-6. Note
in particular that a method designed to improve diversity
has also helped to improve convergence, thus suggesting
the strong interaction between the two performance
criteria. However, no improvements in either diversity or
closeness have been achieved for any other test function.
Indeed there is some evidence to suggest deterioration in
diversity on ZDT-1. The lack of improvement to diversity
is of particular concern, since the elitist results in Section
4 have indicated that diversity can be greatly improved on
these problems. A possible explanation for the lack of
success is that the automatic parameter selection is
providing poor estimates.

5.3 PARAMETER-LESS METHODS

The difficulty and inconvenience involved in determining
the niche size value has led many researchers to
investigate parameter-less methods for achieving niching.
A new approach is presented here that increases the

resolution of the Fonseca and Fleming [1993] Pareto-
based ranking procedure through the inclusion of
population density information. An intra-ranking is
performed on candidate solutions of identical Pareto-
based rank, discriminating on the basis of population
density at that rank. Solutions in less dense areas receive a
superior intra-ranking to their counterparts in denser
regions. This approach requires a definition of distance
(Euclidean nearest neighbour is used herein) but does not
require a definition of closeness. In practice, the distance
metric is likely to be problem dependent and could
conceivably include decision-maker preference
information. Following the new fine-grained ranking
process, the fitness assignment procedure remains
unchanged.

Using this scheme, if one candidate solution is preferred
to (dominates) another, then the former is guaranteed to
have a superior fitness value. Also, when all solutions are
non-dominated, discrimination is based purely on density.
If, in addition, the density is globally uniform then all
fitnesses are identical.

With any type of ranking scheme, information content is
lost. Ranking indicates that one solution lies in a more
densely packed region than another solution but the actual
difference in density between the two is lost. This limits
the amount of information available to the search
procedure but protects against premature convergence to
locally superfit solutions and removes the requirement for
a niche size setting.

The results for this new sharing scheme, compared to the
non-sharing baseline model, are shown in Figure 5. The
central aim of sharing is to improve the distribution of
solutions in criterion-space and this should be primarily
evident in the spread results. There is strong evidence to
suggest that the new method improved spread on ZDT-3
and ZDT-4. The use of the Epanechnikov kernel, by
contrast, did not improve results on these problems. In no
case was the absence of a sharing mechanism shown to be
preferable. However, there is little evidence to suggest
that the use of sharing made any difference to the results
for ZDT-6. This is particularly disappointing since this
problem has a non-uniform distribution across its trade-off
surface: a situation in which sharing is considered a highly
appropriate strategy.

Spread

ZDT−1

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150
Generational distance

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10−4

0

50

100

150

200

ZDT−2

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

−8 −6 −4 −2 0 2 4 6 8

x 10−5

0

50

100

150

ZDT−3

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10−4

0

50

100

150

ZDT−4

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

20

40

60

80

100

120

140

160

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

0

20

40

60

80

100

120

140

160

ZDT−5

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

0

20

40

60

80

100

120

140

160

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

0

20

40

60

80

100

120

140

ZDT−6

♦ = observed difference
−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

difference between population means

fr
eq

ue
nc

y

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0

20

40

60

80

100

120

140

Figure 5: New sharing versus baseline

GENETIC ALGORITHMS 525

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f
2

(a) ZDT−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f
1

f
2

(c) ZDT−3

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

f
1

f
2

(e) ZDT−5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f
2

(b) ZDT−2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f
1

f
2

(d) ZDT−4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

f
1

f
2

(f) ZDT−6

Figure 6: Attainment surfaces – elitist, parameter-less sharing MOGA solving the ZDT problems

6 HIGH-PERFORMANCE MOGA
The use of an elitist strategy or a parameter-less sharing
strategy in isolation has been shown to offer improved
performance. It is instructive to also consider the effect of
these schemes in combination. Attainment surfaces for
such an algorithm are shown in Figure 6. The envelopes
of attainment are generally very tight, indicating good
consistency. As evident from Figure 6d, closeness has
been greatly improved on ZDT-4: indeed the 25%-
attainment surface lies very close to the global front of
this difficult test problem. Complete coverage of the right-
hand portion of the trade-off surface has been achieved for

ZDT-5, as shown in Figure 6e. Finally, closeness and
diversity have been much improved on ZDT-6 (Figure 6f).

Comparisons with the baseline MOGA are made using
randomisation testing in Figure 7. Observed differences
that lie to the left of the randomisation distribution favour
the new algorithm. Compelling evidence points to the
algorithm substantially outperforming the baseline in
terms of diversity across all six benchmark problems. The
combination of elitism and new sharing was required in
order to achieve this notable result: neither elitism nor
sharing alone was shown to be sufficient. Improved
closeness was observed for ZDT-1, 2, 4, and 6 (the result
for ZDT-5 is not significant at the 1%-level).

GENETIC ALGORITHMS526

Spread

ZDT−1

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

50

100

150

200

250
Generational distance

−1.5 −1 −0.5 0 0.5 1

x 10−4

0

50

100

150

200

ZDT−2

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

50

100

150

200

250

−2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10−4

0

50

100

150

200

250

ZDT−3

−0.15 −0.1 −0.05 0 0.05 0.1

0

50

100

150

200

250

−1.5 −1 −0.5 0 0.5 1 1.5

x 10−4

0

20

40

60

80

100

120

140

ZDT−4

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

50

100

150

200

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200

ZDT−5

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

50

100

150

200

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

20

40

60

80

100

120

140

ZDT−6

♦ = observed difference
−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

0

50

100

150

200

difference between population means

fr
eq

ue
nc

y

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

50

100

150

200

250

300

Figure 7: Elitist, sharing MOGA versus baseline

7 CONCLUSION
Using a progressive and tractable experimental approach,
supported by appropriate statistical and visual analyses,
this paper has shown that elitist and sharing strategies can
significantly improve the performance of an evolutionary
multi-criterion optimiser. Existing elitist heuristics are
again shown to be beneficial, this time using a new
analysis technique and in the context of MOGA.
However, the shortcomings of a popular parameter-based
sharing technique have been exposed, as have the dangers
of relying too heavily on an automatic parameter-setting
method. A new parameter-less method of sharing has been
introduced and has been shown to be more reliable than
the standard method. Impressive results were achieved
when both elitism and sharing were used together. As a
final word of caution, these results have been obtained for
two-criterion problems: further research is required to
ascertain the effectiveness of these methods as the
dimension of the problem increases.

The results described in this paper, together with an
extended research report, are available for download from
the following site:

http://www.shef.ac.uk/~acse/research/studen
ts/r.c.purshouse/

Acknowledgments

The first author gratefully acknowledges support from UK
EPSRC. The authors would also like to thank the
anonymous reviewers for their helpful comments and
suggestions, and would like to express special thanks to
Dr Nick Fieller from the Department of Probability and
Statistics at the University of Sheffield for his valuable
advice.

References

Baker, J. E., 1987, Reducing bias and inefficiency in the
selection algorithm, Proceedings of the 2nd International
Conference on Genetic Algorithms, 14-21.

Cleveland, W. S., 1993, Visualizing Data, Hobart Press,
Summit, NJ.

Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T.,
2000, A Fast Elitist Non-Dominated Sorting Genetic
Algorithm for Multi-Objective Optimization: NSGA-II,
KanGAL report 200001.

Deb, K. and Goldberg, D. E., 1989, An Investigation of
Niche and Species Formation in Genetic Function
Optimization, Proceedings of the 3rd International
Conference on Genetic Algorithms, 42-50.

De Jong, K. A., 1975, An analysis of the behavior of a
class of genetic adaptive systems, PhD thesis.

Fonseca, C. M. and Fleming, P. J., 1993, Genetic
algorithms for multiobjective optimization: Formulation,
discussion and generalization, Proceedings of the 5th

International Conference on Genetic Algorithms, 416-423.

Fonseca, C. M. and Fleming, P. J., 1995, Multiobjective
Genetic Algorithms Made Easy: Selection, Sharing and
Mating Restriction, Proceedings of GALESIA ’95, 45-52.

Fonseca, C. M. and Fleming, P. J., 1996, On the
Performance Assessment and Comparison of Stochastic
Multiobjective Optimizers, Parallel Problem Solving from
Nature – PPSN IV, Lecture Notes in Computer Science,
1141:584-593.

Goldberg, D. E. and Richardson, J., 1987, Genetic
Algorithms with Sharing for Multimodal Function
Optimization, Proceedings of the 2nd International
Conference on Genetic Algorithms, 41-49.

Ikeda, K., Kita, H., and Kobayashi, S., 2001, Failure of
Pareto-based MOEAs: Does Non-dominated Really Mean
Near to Optimal?, CEC 2001, 2:957-962.

Manly, B. F. J., 1991, Randomization and Monte Carlo
Methods in Biology, Chapman and Hall, London.

Michalewicz, Z. and Fogel, D. B., 2000, How to Solve It:
Modern Heuristics, Springer-Verlag, Berlin.

Purshouse, R. C. and Fleming, P. J., 2001, The
MultiObjective Genetic Algorithm Applied To Benchmark
problems – An Analysis, ACSE Research Report 796,
http://www.shef.ac.uk/~acse/research/students/r.
c.purshouse/reports/report796.pdf.

Silverman, B. W., 1986, Density Estimation for Statistics
and Data Analysis, Monographs on Applied Statistics and
Probability 26, Chapman and Hall.

Veldhuizen, D. A. V., 1999, Multiobjective Evolutionary
Algorithms: Classifications, Analyses, and New
Innovations, PhD thesis.

Zitzler, E., 1999, Evolutionary Algorithms for
Multiobjective Optimization: Methods and Applications,
PhD thesis.

Zitzler, E., Deb, K., and Thiele, L., 2000, Comparison of
Multiobjective Evolutionary Algorithms: Empirical
Results, Evolutionary Computation 8(2):173-195.

Zitzler, E., Laumanns, M., and Thiele, L., 2001, SPEA2:
Improving the Strength Pareto Evolutionary Algorithm,
TIK-Report 103, ETH Zürich.

GENETIC ALGORITHMS 527

Genetic Algorithms, Efficiency Enhancement, and Deciding Well
with Differing Fitness Variances

Kumara Sastry and David E. Goldberg
Illinois Genetic Algorithms Laboratory (IlliGAL)

Department of General Engineering
University of Illinois at Urbana-Champaign

104 S. Mathews Ave, Urbana, IL 61801
{ksastry,deg}@uiuc.edu

Abstract

This study investigates the decision making
between fitness function with differing vari-
ance and computational-cost values. The ob-
jective of this decision making is to provide
evaluation relaxation and thus enhance the
efficiency of the genetic search. A decision-
making strategy has been developed to maxi-
mize speed-up using facetwise models for the
convergence time and population sizing. Re-
sults indicate that using this decision making,
significant speed-up can be obtained.

1 Introduction

Significant progress has been made both in analysis
and design of genetic algorithms (GAs) over the last
decade. Design procedures for the development of
competent GAs have been proposed and much progress
has been made along these lines (Goldberg, 1999). A
GA is called competent if it can solve hard problems
quickly, accurately, and reliably. In essence, compe-
tent GAs take problems that were intractable with the
first generation GAs and render them tractable. Com-
petent GAs successfully solve problems with bounded
difficulty oftentimes requiring only a subquadratic
(polynomial) number of function evaluations.

However, for large-scale problems, the task of com-
puting even a subquadratic number of function evalu-
ations can be daunting. This is especially the case if
the fitness evaluation is a complex simulation, model,
or computation. This places a premium on a variety
of efficiency-enhancement techniques. Therefore GA
practitioners resort to approximate fitness functions
that are less expensive to compute. Such approxima-
tions introduce error in assessing the solution quality.

Usually, one has to choose among a set of fitness func-

tions with varying degrees of error. The choice of a
fitness function has a large impact on the computa-
tional resources and the solution quality. Oftentimes,
practitioners choose a fitness function on an ad hoc ba-
sis which might not necessarily be the correct choice.
Therefore, there is a need to investigate which fitness
function should be used and under what scenarios.

However, error comes in two flavors: bias and vari-
ance. Variance and bias affect the search process in
different ways and therefore have to be handled in dif-
ferent manner (Keijzer & Babovic, 2000). This paper
considers the decision making under the presence of
variance alone and decision making in the presence of
bias is presented elsewhere (Sastry, 2001). This sepa-
ration will not only ease the analytical burden, but also
highlight the difference in the decision-making proce-
dure.

This paper investigates the decision-making process
between two fitness functions with differing variance
values and computational costs. Although the fitness
function with low variance requires a smaller popu-
lation size and converges faster, the overall computa-
tional cost can be higher due to its higher cost. On
the other hand, the low-cost fitness function is cheaper
to compute, but both the population size and the con-
vergence time increase, which in turn increases the to-
tal computational cost. Therefore, one has to choose
one of the two fitness functions. The objective of this
study is to develop a decision-making strategy that
yields maximum speed-up. Facetwise models for con-
vergence time and population sizing are used to predict
speed-up and these models are verified with empirical
results along the way.

This paper is organized as follows. Section 2 briefly
discusses the past work on handling error in fitness
functions. The problem addressed in this paper is de-
fined in section 3. Then, facetwise models for con-
vergence time, population size and total number of

GENETIC ALGORITHMS528

function evaluations are developed in the subsequent
section. The strategy that yields maximum speed-up
is discussed in section 5. Finally, a summary and key
conclusions of this study is presented.

2 Literature Review

Efficiency-enhancement techniques are essential for
solving large-scale, complex search problems. One
such technique is evaluation relaxation. Evaluation-
relaxation schemes try to reduce the computation bur-
den by utilizing inexpensive, but error-prone fitness
assignment procedures instead of an expensive, but
accurate fitness function.

Grefenstette and Fitzpatrick (1985) studied the util-
ity of approximate evaluations in an image registra-
tion problem and obtained significant speed-up by
random pixel sampling instead of complete sampling.
Follow-up studies (Fitzpatrick & Grefenstette, 1988;
Mandava, Fitzpatrick, & Pickens, 1989) have pro-
vided further evidence of efficiency-enhancement by
using approximate fitness evaluations. Early studies
of approximate function evaluations were largely em-
pirical, and a design methodology for predicting the
behavior of GAs was lacking. Miller and Goldberg
(1995) provided a theoretical framework for handling
noisy function evaluations. Specifically they developed
convergence-time models in the presence of external
noise. Miller and Goldberg (1996) extended the con-
vergence time model for different selection methods.
Miller (1997) proposed a detailed design methodology
including development of population-sizing model and
optimal sampling prediction for noisy environments.

Other studies exist on utilizing approximate fitness
functions to speed-up the genetic search (Ratle, 1998;
El-Beltagy, Nair, & Keane, 1999; Jin, Olhofer, & Send-
hoff, 2000; Albert, 2001). However, an exhaustive sur-
vey is beyond the scope of this study.

3 Problem Definition

Consider two noisy fitness functions f1 and f2 for a
search problem. Functions f1 and f2 consist of zero-
mean Gaussian noise of variance σ2

N1
and σ2

N2
respec-

tively. The cost of a single evaluation of f1 is c1 and
that of f2 is c2. Also, σ2

N1
< σ2

N2
, and c1 > c2. That

is, f1 is a high-cost, low-variance function, and f2 is a
low-cost, high-variance fitness function. The objective
is to correctly decide which fitness function to employ
so as to obtain highest speed-up. As will be seen later,
this decision has to be made spatially. To achieve this
goal, we first have to develop appropriate models for
the convergence time and the population size required.

4 Facetwise Models

In this section, we will develop a facetwise model for
convergence time of GAs in presence of external noise.
Then an existing model for population sizing is pre-
sented and these models are used to compute an ex-
pression for the total number of function evaluations.
Finally, these facetwise models are verified with em-
pirical results.

4.1 Convergence Time

Understanding run duration is one of the critical fac-
tors for analyzing GAs. Elsewhere, a motivation and
the utility of understanding time has been discussed
Goldberg (in press). Three main approaches have
been used in understanding time: (1) Modeling of
takeover time, where the dynamics of the best individ-
ual is modeled (Goldberg & Deb, 1991), (2) Selection-
intensity model, where the dynamics of the average
fitness of the population is modeled (Mühlenbein &
Schlierkamp-Voosen, 1993; Bäck, 1995; Miller & Gold-
berg, 1995; Miller & Goldberg, 1996), and (3) Higher-
order cumulant model, where the dynamics of aver-
age and higher-order cumulants are modeled (Blickle
& Thiele, 1995; Prügel-Bennet & Shapiro, 1994).

Even though higher-order cumulant models are more
accurate than selection-intensity models, they do not
provide a closed-form solution for either the propor-
tion of correct building blocks or the convergence
time. Therefore, in this study we develop a selection-
intensity based convergence-time model for the One-
Max domain. The OneMax problem has two key
properties: (1) Uniform building-block salience, and
(2) Gaussian fitness distribution. Uniform building-
block salience implies that the contribution of build-
ing blocks in different partition to the fitness is equal.
The assumption of Gaussian fitness distribution is ap-
proximately true as recombination and other genetic
operators have a normalizing effect.

Therefore the fitness distribution F = N (µt, σ2
t), and

N = N (0, σ2
N). Here, µt is the mean true fitness at

time t. Furthermore, the noisy fitness distribution, F ′

can be written as F ′ = F +N, where, F is the actual
fitness distribution, and N is the external noise (in
this case, zero-mean Gaussian noise). Since both the
actual fitness and the noise are normally distributed,
the noisy fitness function is also normally distributed:

F ′ ∼ N (µt, σ2
t + σ2

N). (1)

Under these assumptions, the expected average fitness
of the population after selection, given the current av-

GENETIC ALGORITHMS 529

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

C
on

ve
rg

en
ce

 ti
m

e
ra

tio
, t

c,
r

Tournament size, s = 2

Theory
l = 50
l = 100
l = 200
l = 300
l = 400

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

C
on

ve
rg

en
ce

 ti
m

e
ra

tio
, t

c,
r

Tournament size, s = 3

Theory
l = 50
l = 100
l = 200
l = 300
l = 400

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

C
on

ve
rg

en
ce

 ti
m

e
ra

tio
, t

c,
r

Tournament size, s = 4

Theory
l = 50
l = 100
l = 200
l = 300
l = 400

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

C
on

ve
rg

en
ce

 ti
m

e
ra

tio
, t

c,
r

Tournament size, s = 5

Theory
l = 50
l = 100
l = 200
l = 300
l = 400

Figure 1: Empirical verification of the convergence-time-ratio model (equation 8).

erage fitness is given by (Miller & Goldberg, 1995):

µt+1 − µt =
Iσ2

t
√

σ2
t + σ2

N

. (2)

where, I is the selection intensity (Bulmer, 1985) and
is defined as the expected increase in the average fit-
ness of a population after selection is performed upon
a population whose fitness is distributed according to
a unit normal distribution. The selection intensity for
tournament selection depends on the tournament size,
s, and can be approximated by the relation (Blickle &
Thiele, 1995):

I =
√

2
(

ln(s)− ln
(
√

4.14 ln(s)
))

. (3)

Equation 2 can be rewritten as

µt+1 − µt =
I

ρe
σt (4)

where, ρe =
√

1 + (σ2
N/σ

2
t), is the duration-elongation

factor (Goldberg, in press). Note that for a non-zero
noise, ρe > 1, and the increment in the average fitness
after selection would be less than that when the noise is
absent. In other words, the presence of external noise,

elongates the convergence time, and this elongation is
quantified by ρe.

Assume that ρe is a constant, and is equal to
√

1 +
(

σ2
N/σ

2
f

)

, where σ2
f is the initial fitness vari-

ance. Note that for OneMax problem, µt = `pt, and
σ2
t = `pt(1− pt), where pt is the proportion of correct

BBs at time t. Using these expressions, equation 4 can
be written as

pt+1 − pt =
I

ρe
√
`

√

pt(1− pt). (5)

Approximating the above difference equation by a dif-
ferential equation, and integrating it with the initial
condition, p0 = 0.5 (randomly initialized population),
gives us

pt =
1
2

(

1 + sin
(

It

ρe
√
`

))

. (6)

Equating pt = 1, in the above equation we can solve
for the convergence time:

tconv =
π
√
`

2I

√

1 +
σ2
N

σ2
0

. (7)

GENETIC ALGORITHMS530

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

P
op

ul
at

io
n

si
ze

 ra
tio

, n
r

Tournament size, s = 2

Theory
l = 50
l = 100
l = 200
l = 300
l = 400

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

P
op

ul
at

io
n

si
ze

 ra
tio

, n
r

Tournament size, s = 3

Theory
l = 50
l = 100
l = 200
l = 300

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

P
op

ul
at

io
n

si
ze

 ra
tio

, n
r

Tournament size, s = 4

Theory
l = 50
l = 100
l = 200

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

P
op

ul
at

io
n

si
ze

 ra
tio

, n
r

Tournament size, s = 5

Theory
l = 50
l = 100
l = 200
l = 300

Figure 2: Empirical verification of population-size-ratio model (equation 10).

It must be noted that in deriving the above
convergence-time model we assumed ρe to be a con-
stant. However, ρe changes over time and more accu-
rate solutions for equation 4 exist (Sastry, 2001).

In this study, we are interested in the relative value
of convergence times, rather than the absolute val-
ues. Specifically, we are interested in the ratio of con-
vergence time when fitness function f1 is employed
to that when fitness function f2 is employed. This
convergence-time ratio is given by

tc,r =
tconv(σN1)
tconv(σN2)

=

(

σ2
f + σ2

N1

σ2
f + σ2

N2

) 1
2

. (8)

It should be noted that using more accurate solutions
for equation 4 does not improve the accuracy of theo-
retical model significantly

4.2 Population Size

The previous section presented a convergence-time
model for tournament and other I-constant selection
schemes. The other factor required to determine com-
plexity is the population-sizing model which is pre-
sented in this section. Population size is an important

factor in determining the solution quality through a
GA run. Adequate population size is required not only
to ensure a good number of initial BB supply, but also
a good decision-making between competing BBs.

Goldberg, Deb, and Clark (1992) proposed a practi-
cal population-sizing bounds for selectorecombinative
GAs. Their model was based on deciding correctly be-
tween the best and the next best BB in a partition
in the presence of noise arising from other partitions.
More recently, Harik, Cantú-Paz, Goldberg, and Miller
(1997) refined the population-sizing model of Goldberg
et al. (1992) to compute a tighter bound on the pop-
ulation size. They incorporated both the initial BB
supply model and the decision-making model in the
population-sizing relation. Miller (1997) extended the
population-sizing model of Harik et al. (1997) for noisy
environments.

The following population-sizing model for noisy envi-
ronments developed by Miller (1997) is used in the
current study:

n = −
√
π

2d
χk log(α)

√

σ2
f + σ2

N , (9)

where, d is the signal difference and is given by the

GENETIC ALGORITHMS 531

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

N
um

be
r o

f f
un

ct
io

n
ev

al
ua

tio
ns

 ra
tio

, n
fe

,r Tournament size, s = 2

Theory
l = 50
l = 100
l = 200
l = 300
l = 400

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

N
um

be
r o

f f
un

ct
io

n
ev

al
ua

tio
ns

 ra
tio

, n
fe

,r Tournament size, s = 3

Theory
l = 50
l = 100
l = 200
l = 300

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

N
um

be
r o

f f
un

ct
io

n
ev

al
ua

tio
ns

 ra
tio

, n
fe

,r Tournament size, s = 4

Theory
l = 50
l = 100
l = 200

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ2
N

1

/σ2
N

2

N
um

be
r o

f f
un

ct
io

n
ev

al
ua

tio
ns

 ra
tio

, n
fe

,r Tournament size, s = 5

Theory
l = 50
l = 100
l = 200
l = 300

Figure 3: Comparison of empirical and theoretical results for the ratio of total number of function evaluations.

fitness difference of the best and the second best BB,
χ is the alphabet cardinality, k is the BB size, and α
is the failure rate.

The ratio of population size required to yield a solution
of the same quality when fitness function f1 is used to
that when fitness function f2 is used is then given by

nr =
n(σN1)
n(σN2)

=

(

σ2
f + σ2

N1

σ2
f + σ2

N2

) 1
2

. (10)

4.3 Number of Function Evaluations

Using equations 8 and 10, we can obtain the ratio of
total number of function evaluations taken if fitness
function f1 is used to those taken if fitness function f2

is used to obtain solution of the same quality.

nfe,r =
nfe(σN1)
nfe(σN2)

= nrtc,r =
σ2
f + σ2

N1

σ2
f + σ2

N2

, (11)

4.4 Model Validation

This section empirically verifies the models presented
in the previous sections. The empirical results are ob-
tained for the OneMax problem with string lengths `

= 50, 100, 200, 300, and 400. Tournament selection
without replacement with tournament sizes of s = 2,
3, 4, and 5 is used. Uniform crossover with crossover
probability of 1.0 is employed to ensure effective mix-
ing of BBs. The noise variance of fitness function f2

is taken to be 10σ2
f and the noise variance of function

f1 is varied from 0 to 10σ2
f .

The convergence-time ratio predicted by equation 8
is verified with empirical results and is shown in fig-
ure 1. For computing the convergence time, a GA run
is terminated if the proportion of correct BBs reaches a
value greater than or equal to (`−1)/`. The population
size is determined by the following relation (Goldberg,
Deb, & Clark, 1992): n = 8(σ2

f+σ2
N). This is a conser-

vative estimate, and is used to reduce the population-
sizing effects. The empirical results are averaged over
50 independent runs. Figure 1 clearly validates the
convergence-time model of equation 8. Furthermore,
as the model predicts, the empirical results show that
the convergence-time ratio is independent of ` and s
values if the ratio of noise variance to the initial fitness
variance is constant.

For computing nr and nfe,r, a GA run was terminated
when all the individuals in the population converged

GENETIC ALGORITHMS532

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

No. of function evaluations ratio, n
fe,r

Fu
nc

tio
n

ev
al

ua
tio

n
co

st
 ra

tio
, c

2/c
1

Tournament size, s = 2

Choose f
1

Choose f
2

Theory
l = 50
l = 100
l = 200
l = 300
l = 400

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

No. of function evaluations ratio, n
fe,r

Fu
nc

tio
n

ev
al

ua
tio

n
co

st
 ra

tio
, c

2/c
1

Tournament size, s = 3

Choose f
1

Choose f
2

Theory
l = 50
l = 100
l = 200
l = 300
l = 400

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

No. of function evaluations ratio, n
fe,r

Fu
nc

tio
n

ev
al

ua
tio

n
co

st
 ra

tio
, c

2/c
1

Tournament size, s = 4

Choose f
1

Choose f
2

Theory
l = 50
l = 100
l = 200
l = 300

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

No. of function evaluations ratio, n
fe,r

Fu
nc

tio
n

ev
al

ua
tio

n
co

st
 ra

tio
, c

2/c
1

Tournament size, s = 5

Choose f
1

Choose f
2

Theory
l = 50
l = 100
l = 200
l = 300

Figure 4: Verification of the optimal decision making between fitness functions with differing variance values.

to the same fitness value. The average number of cor-
rectly converged BBs are computed over 50 indepen-
dent runs. The minimum population size or the total
number of function evaluations required for the GA to
correctly converge on an average to at least m−1 BBs
(α = 1/m), is determined by the bisection method.
The results are averaged over 25 bisection runs.

The population-size ratio predicted by equation 10 is
verified with empirical results in figure 2. The pre-
diction of the ratio of total number of function evalua-
tions (equation 11) is compared to the empirical results
in figure 3. The results show that the models agrees
with empirical results over a broad range of parameter
values (specifically, noise variance, problem-size, and
tournament-size values).

5 Optimal Decision

As mentioned earlier, we have to decide between two
fitness functions, one with low variance, but high cost,
and the other with high noise but low cost. The ratio
of total cost of employing fitness function f1 to that of
employing fitness function f2 to obtain solution of the

same quality is given by

ctot,1

ctot,2
=
c1nfe,1
c2nfe,2

=
c1
c2

(

σ2
f + σ2

N1

σ2
f + σ2

N2

)

, (12)

where, ctot,1 is the total cost of employing fitness func-
tion f1, and ctot,2 is the total cost of employing fitness
function f2. From the above relation, we can summa-
rize the optimal decision as follows:

• If c2/c1 > (σ2
f + σ2

N1
)/(σ2

f + σ2
N2

), then use f1.

• If c2/c1 < (σ2
f + σ2

N1
)/(σ2

f + σ2
N2

), then use f2.

• If c2/c1 = (σ2
f + σ2

N1
)/(σ2

f + σ2
N2

), then either f1

or f2 can be used.

This decision making process is shown pictorially in
figure 4, where the theory is verified with empirical
results. The figure plots the cost ratio of fitness func-
tions for different values of fitness variance ratios. The
empirical results shown are obtained for the OneMax
problem with string lengths, ` = 50, 100, 200, 300, and
400. A selectorecombinative GA with tournament se-
lection without replacement and uniform crossover is
used for this purpose.

GENETIC ALGORITHMS 533

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

σ2
N

1

/σ2
N

2

S
pe

ed
−u

p,
 η

s

Tournament size, s = 2

Theory
l = 50
l = 100
l = 200
l = 300
l = 400

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

σ2
N

1

/σ2
N

2

S
pe

ed
−u

p,
 η

s

Tournament size, s = 3

Theory
l = 50
l = 100
l = 200
l = 300
l = 400

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

σ2
N

1

/σ2
N

2

S
pe

ed
−u

p,
 η

s

Tournament size, s = 4

Theory
l = 50
l = 100
l = 200
l = 300

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

σ2
N

1

/σ2
N

2

S
pe

ed
−u

p,
 η

s

Tournament size, s = 5

Theory
l = 50
l = 100
l = 200
l = 300

Figure 5: Empirical verification of speed-up predicted by equation 13.

Speed-up is defined as the ratio of the total cost of us-
ing a high-cost, low-variance fitness function to the to-
tal cost of using a low-cost, high-variance fitness func-
tion. Therefore, speed-up obtained by using the afore-
mentioned optimal decision is given by

ηs =

{

ctot,1
ctot,2

c1
c2
>

σ2
f+σ2

N2
σ2
f
+σ2

N1

1.0 elsewhere
(13)

This definition of speed-up assumes that one always
chooses the more accurate fitness function. The above
speed-up measures the improvement in efficiency when
a correct decision is made instead of a naive decision.
When a decision-making procedure, such as the one
developed in this section is not available, the naive
choice is the use the more accurate fitness function.
Justification for using this definition of speed-up is
given elsewhere (Sastry, 2001)

The speed-up predicted by equation 13 is verified with
empirical relations in figure 5 for different cost-ratio,
problem-size, and tournament-size values. The results
clearly indicate the a high speed-up can be obtained if
the cost-ratio of the fitness functions (c2/c1) is much
lower than their fitness variance ratios (σ2

f1
/σ2

f2
).

The key thing is that even though we started with
simplified assumptions, the decision-making is some-
what general in nature. The only control parameters
in the decision making process are the relative cost and
fitness variance values. Using dimensional argument,
one can extrapolate the results obtained here to other
problem domains. In such cases, the decision will be
correct in an order-of-magnitude sense. Therefore, the
core message of this section is as follows: If an opti-
mization problem has many different fitness function
with differing values of variance, and computational
costs, then a fitness function with least product of cost
and fitness variance should be employed.

6 Conclusions

This paper addressed the issue of deciding between
fitness functions with differing variance and cost val-
ues. An approximate, but practical convergence-
time model was developed and used along with a
population-sizing model to develop a decision-making
strategy and to predict speed-up. Although in this
paper only two fitness functions were considered, the
decision making can be easily extended for more than
two fitness functions.

GENETIC ALGORITHMS534

The decision-making suggests that the effect of vari-
ance can be handled spatially and the choice of the
fitness function depends only on the relative cost and
variance ratios of the fitness functions. Significant
speed-up can be obtained by employing the decision-
making strategy developed in this paper. Based on
dimensional arguments, the decision-making strategy
presented here, though developed for the OneMax
problem, should be applicable to other fitness domains.

Acknowledgments

This work was sponsored by the Air Force Office of Scien-

tific Research, Air Force Materiel Command, USAF, under

grant F49620-00-0163, and the National Science Founda-

tion under grant DMI-9908252. The U.S. Government is

authorized to reproduce and distribute reprints for gov-

ernment purposes notwithstanding any copyright notation

thereon.

The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either

expressed or implied, of the Air Force Office of Scientific

Research, the National Science Foundation, or the U.S.

Government.

References

Albert, L. A. (2001). Efficient genetic algorithms using
discretization scheduling. Master’s thesis, University
of Illinois at Urbana-Champaign, General Engineer-
ing Department, Urbana, IL.

Bäck, T. (1995). Generalized convergence models for
tournament—and (µ, λ)—selection. Proceedings of
the Sixth International Conference on Genetic Al-
gorithms, 2–8.

Blickle, T., & Thiele, L. (1995). A mathematical analy-
sis of tournament selection. Proceedings of the Sixth
International Conference on Genetic Algorithms, 9–
16.

Bulmer, M. G. (1985). The mathematical theory of quan-
titative genetics. Oxford: Oxford University Press.

El-Beltagy, M., Nair, P., & Keane, A. (1999). Meta-
modeling techniques for evolutionary optimization of
computationally expensive problems: Promises and
limitations. Proceedings of the Genetic and Evolu-
tionary Computation Conference, 196–203.

Fitzpatrick, J. M., & Grefenstette, J. J. (1988). Genetic
algorithms in noisy environments. Machine Learn-
ing , 3 , 101–120.

Goldberg, D. E. (1999). The race, the hurdle, and the
sweet spot: Lessons from genetic algorithms for the
automation of design innovation and creativity. In
Bentley, P. (Ed.), Evolutionary Design by Computers
(Chapter 4, pp. 105–118). San Mateo, CA: Morgan
Kaufmann.

Goldberg, D. E. (in press). Design of innovation:
Lessons from and for competent genetic algorithms.
Boston, MA: Kluwer Acadamic Publishers.

Goldberg, D. E., & Deb, K. (1991). A comparitive anal-
ysis of selection schemes used in genetic algorithms.
Foundations of Genetic Algorithms, 69–93.

Goldberg, D. E., Deb, K., & Clark, J. H. (1992). Ge-
netic algorithms, noise, and the sizing of popula-
tions. Complex Systems, 6 , 333–362.

Grefenstette, J. J., & Fitzpatrick, J. M. (1985). Genetic
search with approximate function evaluations. Pro-
ceedings of the International Conference on Genetic
Algorithms and Their Applications, 112–120.

Harik, G., Cantú-Paz, E., Goldberg, D. E., & Miller,
B. L. (1997). The gambler’s ruin problem, genetic al-
gorithms, and the sizing of populations. Proceedings
of the IEEE International Conference on Evolution-
ary Computation, 7–12.

Jin, Y., Olhofer, M., & Sendhoff, B. (2000). On evolu-
tionary optimization with approximate fitness func-
tions. Proceedings of the Genetic and Evolutionary
Computation Conference, 786–793.

Keijzer, M., & Babovic, V. (2000). Genetic program-
ming, ensemble methods and the bias/variance
tradeoff - introductory investigations. Genetic Pro-
gramming: Third European Conference, 76–90.

Mandava, V. R., Fitzpatrick, J. M., & Pickens, III,
D. R. (1989). Adaptive search space scaling in digi-
tal image registration. IEEE Transactions on Medi-
cal Imaging , 8 (3), 251–262.

Miller, B. L. (1997). Noise, sampling, and efficient ge-
netic algorithms. Doctoral dissertation, University of
Illinois at Urbana-Champaign, General Engineering
Department, Urbana, IL. (Also IlliGAL Report No.
97001).

Miller, B. L., & Goldberg, D. E. (1995). Genetic al-
gorithms, tournament selection, and the effects of
noise. Complex Systems, 9 (3), 193–212.

Miller, B. L., & Goldberg, D. E. (1996). Genetic algo-
rithms, selection schemes, and the varying effects of
noise. Evolutionary Computation, 4 (2), 113–131.

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Pre-
dictive models for the breeder genetic algorithm:
I. continous parameter optimization. Evolutionary
Computation, 1 (1), 25–49.

Prügel-Bennet, A., & Shapiro, J. L. (1994). An analysis
of a genetic algorithm using statistical mechanics.
Physics Review Letters, 72 (9), 1305–1309.

Ratle, A. (1998). Accelerating the convergence of evolu-
tionary algorithms by fitness landscape approxima-
tion. Parallel Problem Solving from Nature, 5 , 87–
96.

Sastry, K. (2001). Evaluation-relaxation schemes for ge-
netic and evolutionary algorithms. Master’s thesis,
University of Illinois at Urbana-Champaign, General
Engineering Department, Urbana, IL. (Also IlliGAL
Report No. 2002004).

GENETIC ALGORITHMS 535

Genetic Algorithms, Efficiency Enhancement, and Deciding Well
with Differing Fitness Bias Values

Kumara Sastry and David E. Goldberg
Illinois Genetic Algorithms Laboratory (IlliGAL)

Department of General Engineering
University of Illinois at Urbana-Champaign

104 S. Mathews Ave, Urbana, IL 61801
{ksastry,deg}@uiuc.edu

Abstract

This study develops a decision-making strat-
egy for deciding between fitness functions
with differing bias values. Simple, yet prac-
tical facetwise models are derived to aid the
decision-making process. The decision mak-
ing strategy is designed to provide maximum
speed-up and thereby enhance the efficiency
of GA search processes. Results indicate that
bias can be handled temporally and that sig-
nificant speed-up values can be obtained.

1 Introduction

Since the inception of genetic algorithms (GAs) (Hol-
land, 1975), significant progress has been made in de-
signing and analyzing them. A design decomposition
has been proposed for the development of competent
GAs and much progress has been made along these
lines (Goldberg, 1999). Competent GAs take prob-
lems that were intractable with first generation GAs
and render them tractable, oftentimes requiring only
a subquadratic number of function evaluations.

However, for large-scale problems, the task of com-
puting even a subquadratic number of function evalu-
ations can be daunting. This is especially the case if
the fitness evaluation is a complex simulation, model,
or computation. Therefore, one usually resorts to ap-
proximate fitness functions that are less expensive to
compute. However, approximations introduce error in
assessing the solution quality. Also, we may have to
choose from many fitness functions with differing error
and cost values, and that choice has a large impact on
the computational resources and the solution quality.

At present, practitioners make the choice among fit-
ness function alternatives on an ad hoc basis. There-
fore, we need to investigate which fitness function

should be used under what scenarios. Furthermore,
one has to recognize that error introduced through
approximations comes in two flavors: Bias, and vari-
ance (Keijzer & Babovic, 2000). The decision-making
strategy depends on whether variance or bias domi-
nates the error. We have considered the presence of
bias and variance in isolation to demonstrate this dif-
ference and to ease the analytical burden.

This paper investigates decision making under the
presence of bias, while the decision making under the
presence of variance is developed elsewhere (Sastry,
2001). Specifically, we investigate the decision mak-
ing between two fitness functions with differing bias
values. A fitness function with higher bias value will
yield a more inaccurate solution when compared to
the function with a lower bias value. This inaccuracy
can be eliminated temporally (not spatially). That
is, using the spatial approach—sampling the high-bias
fitness function—does not eliminate the effect of bias
and yields an inaccurate solution.

On the other hand, a high-bias, low-cost function can
be used during the initial few generations of the evo-
lutionary process to obtain a crude solution. The low-
bias, high-cost fitness function can then be used (later
part of genetic search) to refine the genetic search and
to obtain a more accurate solution. The generation
at which the fitness functions are switched, called the
switching time is an important factor in determining
the speed-up. The objective of this study is to utilize
facetwise models to predict the optimal switching time
that yields greatest speed-up and to develop a decision-
making strategy to handle bias in fitness functions.

This paper is organized as follows. Section 2 briefly
discusses some previous work on handling error in fit-
ness functions. The specific problem that we solve is
defined in section 3. Section 4 defines the test problem
used for developing models. A convergence-time model
that incorporates bias in fitness functions is derived in

GENETIC ALGORITHMS536

section 5. Section 6 develops models for predicting
the optimal switching time and the speed-up. Finally,
section 7 presents key conclusions of the study.

2 Related Work

Efficiency enhancement is essential for solving large-
scale, complex search problems. One such technique
is evaluation relaxation, in which the computation
burden is reduced by utilizing inexpensive, but error-
prone fitness assignment procedures instead of an ex-
pensive, but accurate fitness function.

Grefenstette and Fitzpatrick (1985) studied the use
of approximate evaluations for an image registration
problem. Follow-up studies (Fitzpatrick & Grefen-
stette, 1988; Mandava, Fitzpatrick, & Pickens, 1989)
have further analyzed the utility of approximate fitness
evaluations. However, these studies were largely em-
pirical, and a design methodology for handling exter-
nal noise was developed only recently (Miller & Gold-
berg, 1995; Miller, 1997). These studies consider only
the effects of variance alone, and effects of bias, albeit
to a limited extent has also been investigated (Jin, Ol-
hofer, & Sendhoff, 2000; Albert, 2001). For further
details on these and other studies on approximate fit-
ness functions in GAs, the interested reader should
consult the review presented elsewhere (Sastry, 2001).

3 Problem Definition

Consider two fitness function, f1 and f2 for a search
problem with bias values of b1 and b2 respectively.
That is, the optimal solution when f1 is used is x∗+b1
and that when f2 is used is x∗+b2. Here x∗ is the true
optimal solution. The computational costs of f1 and
f2 are c1 and c2 respectively. Furthermore, b1 < b2
and c1 > c2. An illustration of the fitness functions
with different bias values is shown in figure 1. The fig-
ure shows a single variable unimodal fitness functions
with and without bias. Note that the optimal value of
the fitness functions need not be the same.

Implicitly, we assume that some building blocks (BBs)
of f1 and f2 are different and others are the same. We
recognize that this assumption might not hold true if
the biased fitness function introduces multiple false op-
tima. However, this study is the first step toward de-
veloping a decision making strategy for handling bias
in fitness functions and it serves as a starting point for
the analysis of more complex cases. It is important to
note that the proposed models can be extended and
applied to real-world problems (Albert, 2001).

Since f1 and f2 share some BBs, f2 can be used for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Decision variable value

Fi
tn

es
s

va
lu

e

Biasf
1
: Low bias function

f
2
: High bias function

Figure 1: Fitness functions with different bias values.

the first few generations to obtain good convergence
on the BBs shared by both the fitness functions. Fit-
ness function f1 can then be used to obtain a solu-
tion of better accuracy (lower bias). The time, ts, at
which we change from f2 to f1 is called the switch-
ing time. The objective of this study is to optimize
the switching time to maximize speed-up and thus de-
velop a decision-making strategy for choosing the cor-
rect fitness function. To develop models for solving
the problem defined above, we need to first construct
a test function. One such test function used in this
study is described in the following section.

4 Test Function

The test function used in this study is the weighted
OneMax defined as:

f =
∑̀

i=1

wixi, (1)

where, xi is the value of the ith allele and wi is the
weight associated with it. Similar to the OneMax
function, the weighted OneMax is a linear unimodal
function and the BBs are independent of each other.
Therefore, the weighted OneMax function reduces the
analytical burden for developing models considerably.
Furthermore, fitness functions with differing bias val-
ues can be considered as weighted OneMax functions
with different weights.

The BBs are uniformly scaled—that is, contribution of
every BB to the fitness is equal in magnitude—-if the
weights, wi, are restricted to be either ±1. Then, the
fitness variance of a randomly generated population is
equal to that for an OneMax problem. This further
eases the analytical burden and the required popu-

GENETIC ALGORITHMS 537

lation size does not change with differing bias values.
Therefore, we only need to develop a convergence-time
model, which is presented in the next section.

5 Convergence-Time Model

Understanding time in GAs is one of the critical factors
for a successful design of GAs (Goldberg, in press).
Convergence-time model helps us in predicting the
scale-up behavior of GAs. Existing studies on under-
standing time in GAs can be broadly classified into
three approaches: (1) Takeover-time models, where the
growth of the best individual in the population is ana-
lyzed (Goldberg & Deb, 1991), (2) Selection-Intensity
models, where the dynamics of average fitness of the
population is analyzed (Mühlenbein & Schlierkamp-
Voosen, 1993; Bäck, 1995; Miller & Goldberg, 1995),
and (3) Higher-Order-Cumulant models, where the dy-
namics of the average and higher order cumulants
of fitness of the population are analyzed (Blickle &
Thiele, 1995; Prügel-Bennet & Shapiro, 1994).

In contrast to selection-intensity models, higher-order-
cumulant models do not yield closed-form solutions.
Therefore, a selection-intensity-based convergence-
time model is developed in this paper. For this purpose
consider two weighted OneMax functions f1 and f2:

f1 =
∑̀

i=1

wixi, (2)

f2 =
∑̀

i=1

w′ixi. (3)

Without loss of generality assume that the fitness func-
tion f1 has zero bias and that the weights wi and w′i
are assigned as follows:

wi =
{

1 1 ≤ i ≤ `1
−1 `1 + 1 ≤ i ≤ ` , (4)

w′i =
{

1 1 ≤ i ≤ `1 + b
−1 `1 + b+ 1 ≤ i ≤ ` , (5)

where, b is the bias. That is, f1 and f2 share ` − b
BBs and differ only in b alleles (in this case BBs). For
example, the correct BB in any one of the b alleles for
f1 is 1 and for f2 it is 0.

Note that initially, fitness function f2 is used in the ini-
tial phase (t < ts) of the genetic search. Assuming a
uniform BB convergence, and a Gaussian fitness distri-
bution, the expected average fitness of the population
after selection is given by (Mühlenbein & Schlierkamp-
Voosen, 1993):

µt+1 = µt + Iσt, (6)

where, I is the selection intensity and is defined as the
expected increase in the average fitness of a population
after selection is performed upon a population whose
fitness is distributed according to a unit normal distri-
bution. Selection intensity is constant for tournament
selection and is approximately given as a function of
tournament size s by the following relation (Blickle &
Thiele, 1995):

I =
√

2
(

log(s)− log
(
√

4.14 log(s)
))

. (7)

Since fitness function f2 is used in the first phase (t ≤
ts) of the run, the mean (µf2,t) and variance (σ2

f2,t
) of

fitness are given by

µf2,t = `pt − (`− `1 − b) , (8)
σ2
f2,t = `pt (1− pt) , (9)

where, pt is the proportion of ones at time t. Using
the mean and variance values in equation 6, we obtain

pt+1 − pt =
I√
`

√

pt(1− pt). (10)

Approximating the above difference equation by a dif-
ferential equation and integrating it yields

pt =
1
2

[

1− cos
(

It√
`

+ 2 sin−1√p0

)]

. (11)

Assuming that the initial population is randomly gen-
erated, we have p0 = 0.5, and we get the following
expression for the proportion of correct BBs as a func-
tion of time:

pt =
1
2

[

1 + sin
(

It√
`

)]

. (12)

The proportion of correct BBs at switching time ts is
therefore given by

pts =
1
2

[

1 + sin
(

Its√
`

)]

. (13)

At the switching time ts, the low bias fitness function
f1 is used instead of the high bias fitness function f2.
Hence, the proportion of correct BBs changes. Since
both f1 and f2 share `− b BBs, the proportion of cor-
rect BBs for those BBs remains the same. That is the
proportion of correct BBs for the `−b is pts . However,
since f1 and f2 do not share b BBs, the proportion of
correct BBs, for the b alleles is 1 − pts . This implies
that there are two proportions of correct BBs one for
(`− b) alleles and the other for b alleles. The adjusted

GENETIC ALGORITHMS538

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

No. of generations, t

P
ro

po
rti

on
 o

f c
or

re
ct

 B
B

s

Theory: b = 10
Expt: b = 10
Theory: b = 50
Expt: b = 50

0 20 40 60
0.5

0.6

0.7

0.8

0.9

1

No. of generations, t

P
ro

po
rti

on
 o

f c
or

re
ct

 B
B

s

Theory: l = 50
Expt: l = 50
Theory: l = 400
Expt: l = 400

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

No. of generations, t

P
ro

po
rti

on
 o

f c
or

re
ct

 B
B

s

Theory: t
s
 = 5

Expt: t
s
 = 5

Theory: t
s
 = 20

Expt: t
s
 = 20

0 10 20 30
0.4

0.5

0.6

0.7

0.8

0.9

1

No. of generations, t

P
ro

po
rti

on
 o

f c
or

re
ct

 B
B

s

Theory: s = 3
Expt: s = 3
Theory: s = 5
Expt: s = 5

Figure 2: Empirical verification of the proportion of correct building blocks predicted by equations 12, 14, and
16 for different values of b, `, ts, and s.

proportion of correct BBs for the overall string, p′ts is
given by

p′ts =
1
`

[(`− b)pts + b (1− pts)] ,

=
(

1− 2
b

`

)

pts +
b

`
. (14)

From the selection-intensity model assumption, we
know that the number of correct BBs in both `−b and
b portion are distributed normally. Since these two
portions are statistically independent of each other,
the number of correct BBs for the overall string , and
similarly the fitness is also normally distributed. The
mean and variance of fitness at time t (t ≥ ts) is given
by `p′t− (`− `1), and `p′t(1−p′t) respectively. Proceed-
ing in the same way as we did for t < ts, results in the
following difference equation

p′t+1 − p′t =
I√
`

√

p′t(1− p′t). (15)

Solving the above equation with the initial condition
that at t = ts, p′t = p′ts , we get

p′t =
1
2

[

1− cos
(

I(t− ts)√
`

+ 2 sin−1(
√

p′ts)
)]

. (16)

From the above relation for the proportion of correct
BBs, we can derive an expression for the convergence
time, by equating p′t = 1:

tconv = ts +

√
`

I

[

π − 2 sin−1
(√

p′ts

)]

. (17)

The models developed above are verified with empir-
ical results. A selectorecombinative GA with tour-
nament selection without replacement, and uniform
crossover scheme is employed for this purpose. The
probability of crossover is taken to be 1.0 and muta-
tion is not used. The value of `1 is kept constant at
25 for all the runs. The population size is determined
by the relation 8σ2

f (Goldberg, Deb, & Clark, 1992).
This population-sizing model overestimates the popu-
lation size and is used to remove any population-sizing
effects. Unless otherwise mentioned the following pa-
rameters are used: ` = 100, s = 2, b = `

10 , and ts = 10.
The empirical results are averaged over 100 indepen-
dent runs.

The proportion of correct BBs predicted by equa-
tion 12, 14, and 16 is validated by empirical results.
The figures plot the proportion of correct BBs as a

GENETIC ALGORITHMS 539

0 5 10 15 20
28

30

32

34

36

38

40

Switching time, t
s

C
on

ve
rg

en
ce

 ti
m

e,
 t co

nv

Bias, b = 10

Expt
Expt, 2XO
Theory

0 5 10 15 20

30

35

40

45

50

55

Switching time, t
s

C
on

ve
rg

en
ce

 ti
m

e,
 t co

nv

Bias, b = 50

Expt
Expt, 2XO
Theory

0 5 10
20

21

22

23

24

25

26

27

Switching time, t
s

C
on

ve
rg

en
ce

 ti
m

e,
 t co

nv

Problem size, l = 50

Expt
Expt, 2XO
Theory

0 10 20 30 40

50

55

60

65

70

75

Switching time, t
s

C
on

ve
rg

en
ce

 ti
m

e,
 t co

nv

Problem size, l = 300

Expt
Expt, 2XO
Theory

Figure 3: Empirical verification of convergence-time models (equation 17) for different bias values.

function of time. Different values of b, `, ts, and s
are used to validate the model and are shown in fig-
ure 2. The results show that the model capture the
dynamics accurately over a considerable range of pa-
rameter values. The discrepancy between the model
and empirical results are due to hitch-hiking and can
be further decreased by using multiple crossovers or
using a population-wise crossover (Thierens & Gold-
berg, 1994).

The convergence-time model (equation 17) is com-
pared to empirical results for different bias and
problem-size values are shown in figure 3. The figure
plots the convergence time as a function of switching
time. The empirical results for the case where recom-
bination is applied twice every generation is also shown
in the figures. As expected the agreement between the
theoretical and experimental results increases when
multiple crossover is applied. Note that the com-
pressed convergence-time scale in figure 3 exaggerates
the error and the model accuracy is comparable to ex-
isting models for other problem domains.

With the convergence-time model at hand, we will now

proceed to derive an expression for the optimal switch-
ing time. The speed-up that can be obtained by using
the optimal switching time is also estimated in the
next section.

6 Optimal Switching Time

From the problem definition and the convergence-time
model (equation 17), total cost of function evaluation
is then given by

nfe = n (c2ts + c1(tconv − ts)) ,
= nc2 (ts + cr(tconv − ts)) , (18)

where, cr = c1/c2 is the ratio of cost of the high-cost
fitness function to the cost of the low-cost fitness func-
tion. Employing model 2 (equation 17) for the conver-
gence time, the above equation can be written as

nfe = nc2

(

ts + cr
2
√
`

I

[π

2
− sin−1

(√

p′ts

)]

)

. (19)

We can define the total number of function evaluations
in terms of time units by dividing the above equation

GENETIC ALGORITHMS540

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Bias proportion

t s* /
t co

nv
,1

Cost ratio, C
r
 = 1.5

Theory
Expt: l = 50
Expt: l = 100

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bias proportion

t s* /
t co

nv
,1

Cost ratio, C
r
 = 2.5

Theory
Expt: l = 50
Expt: l = 100

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bias proportion

t s* /
t co

nv
,1

Cost ratio, C
r
 = 3.5

Theory
Expt: l = 50
Expt: l = 100

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bias proportion

t s* /
t co

nv
,1

Cost ratio, C
r
 = 5.0

Theory
Expt: l = 50
Expt: l = 100

Figure 4: Verification of optimal switching-time model (equation 23).

by nc2:

n′fe = ts + cr
2
√
`

I

[π

2
− sin−1

(√

p′ts

)]

. (20)

Our objective is to determine ts that minimizes n′fe
(note that this is same as minimizing nfe), which is
given by solving

∂n′fe
∂ts

= 0,

1− cr
√
`

I

1
√

p′ts(1− p
′
ts)

∂p′ts
∂ts

= 0.

The optimal switching generation, t∗s, that minimizes
nfe when cr ≥ `/(`− 2b), comes out to be

t∗s =

√
`

I
cos−1

2
√

b
`

(

1− b
`

)

(

1− 2b
`

)√

c2r − 1

 . (21)

When cr < `/(`− 2b), t∗s = 0.

Recognizing that the convergence-time when a low-
bias, high-cost fitness function is used is given by

(Bäck, 1995)

tconv,1 =
π
√
`

2I
,

and dividing equation 21 with the above quantity, we
obtain the a dimension-less expression for the optimal
switching time when cr ≥ 1/(1− 2β):

t∗s
tconv,1

=
2
π

cos−1

[

2
√

β(1− β)
(1− 2β)

√

c2r − 1

]

, (22)

where, β = b/` is the bias proportion. When cr <
1/(1−2β), t∗s = 0. Equation 22 can be further reduced
using the approximation cos−1(x) ≈ π

2 − x:

t∗s
tconv,1

=

[

1− 4
π

√

β (1− β)
(1− 2β)

√

c2r − 1

]

. (23)

Equation 23 indicates that the strategy of employing
the low cost fitness function for the first few genera-
tions yields speed-up only if the product of cost ra-
tio, cr, is above a critical limit which is inversely pro-
portional to the bias proportion. If this is the case,
then the optimal switching time is proportional to the

GENETIC ALGORITHMS 541

0 0.1 0.2 0.3 0.4 0.5
0.95

1

1.05

1.1

1.15

1.2

Bias proportion, β

S
pe

ed
−u

p,
 η

s

Cost ratio, c
r
 = 1.5

Theory
Experiment

0 0.1 0.2 0.3 0.4 0.5

1

1.1

1.2

1.3

1.4

Bias proportion, β

S
pe

ed
−u

p,
 η

s

Cost ratio, c
r
 = 2.5

Theory
Experiment

0 0.1 0.2 0.3 0.4 0.5

1

1.1

1.2

1.3

1.4

1.5

1.6

Bias proportion, β

S
pe

ed
−u

p,
 η

s

Cost ratio, c
r
 = 3.5

Theory
Experiment

0 0.1 0.2 0.3 0.4 0.5

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Bias proportion, β

S
pe

ed
−u

p,
 η

s

Cost ratio, c
r
 = 5.0

Theory
Experiment

Figure 5: Empirical verification of speed-up prediction (equation 24).

square root of the string length, inversely proportional
to the square root of the bias proportion, and inversely
proportional to the cost ratio cr. As expected, if the
number of biased bits increases, the switching time de-
creases, and if the cost ratio increases, the switching
time increases. Equation 23 is verified with empirical
results in figure 4. The figure plots t∗s/tconv,1 as a func-
tion of bias proportion β for different cost-ratio values.
A binary tournament selection without replacement,
uniform crossover with crossover probability of 1.0 is
used. Mutation was not used in obtaining the empiri-
cal results. The results are averaged over 50 indepen-
dent runs.

Using the optimal switching-time given by equation 23,
we can compute the speed-up obtained by making the
correct decision. Here the speed-up, ηs, is defined as
the ratio of the total computational cost incurred if the
low-bias fitness function is used to that if the high-bias
fitness function is used for t∗s generations and then the
low-bias function is used till the end of the GA run.
That is,

ηs =
nfe,1
nfe,2

=
nc1tconv,1

n [c2t∗s + c1 (tconv,2 − t∗s)]
,

=
cr

[(

tconv,2
tconv,1

)

− (cr − 1) τ∗s
] . (24)

Where, τ∗s = t∗s/tconv,1. Note that the above equation
is valid when cr ≥ 1/(1− 2β). When cr < 1/(1− 2β),
ηs = 1. The speed-up predicted by equation 24 is veri-
fied with empirical results in figure 5. The figure plots
ηs as a function of bias proportion β for different cost-
ratio values. Tournament selection without replace-
ment with tournament size s = 2 is used. Uniform
crossover with crossover probability of 1.0 is employed
and mutation is not used. The results are averaged
over 50 independent runs.

Figure 5 clearly indicates the improvement in efficiency
using the decision-making strategy developed to han-
dle bias in fitness functions. It also validates our hy-
pothesis that bias has to be handled temporally. Fur-
thermore, even though we made some simplifying as-
sumptions the final result for the optimal switching
time and the speed-up are in dimensionless quantities
and should be easily applicable to other problem do-
mains as well.

GENETIC ALGORITHMS542

7 Conclusions

This paper develops a decision-making strategy for
choosing between fitness function with differing bias
values. We proposed that bias has to be handled tem-
porally by switching from a high-bias fitness function
to a low-bias fitness function. We also hypothesized
that an optimal switching time exists and when the
fitness functions are switched at this optimal time, the
total computation cost will be the minimum. We de-
veloped approximate, but practical convergence-time
model, and used it to determine the optimal switching
time. Based on the computational cost and the total
number of function evaluations taken by each fitness
function, a decision-making strategy was presented.

The paper shows that bias has to be handled tem-
porally. That is, a high-bias fitness function should
be used for coarse-grain optimization and then a low-
bias fitness function should be used for fine-grain op-
timization. Although, we considered only two fitness
functions, the decision making can be easily extended
for more than two fitness functions. Furthermore, the
models developed in this study should provide guid-
ance to GA practitioners in choosing key GA parame-
ters and to provide maximum efficiency enhancement.

Acknowledgments

This work was sponsored by the Air Force Office of Scien-

tific Research, Air Force Materiel Command, USAF, under

grant F49620-00-0163, and the National Science Founda-

tion under grant DMI-9908252. The U.S. Government is

authorized to reproduce and distribute reprints for gov-

ernment purposes notwithstanding any copyright notation

thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Air Force Office of Scientific
Research, the National Science Foundation, or the U.S.
Government.

References

Albert, L. A. (2001). Efficient genetic algorithms using
discretization scheduling. Master’s thesis, University
of Illinois at Urbana-Champaign, General Engineer-
ing Department, Urbana, IL.

Bäck, T. (1995). Generalized convergence models for
tournament—and (µ, λ)—selection. Proceedings of
the Sixth International Conference on Genetic Al-
gorithms, 2–8.

Blickle, T., & Thiele, L. (1995). A mathematical analy-
sis of tournament selection. Proceedings of the Sixth
International Conference on Genetic Algorithms, 9–
16.

Fitzpatrick, J. M., & Grefenstette, J. J. (1988). Genetic
algorithms in noisy environments. Machine Learn-
ing , 3 , 101–120.

Goldberg, D. E. (1999). The race, the hurdle, and the
sweet spot: Lessons from genetic algorithms for the
automation of design innovation and creativity. In
Bentley, P. (Ed.), Evolutionary Design by Computers
(Chapter 4, pp. 105–118). San Mateo, CA: Morgan
Kaufmann.

Goldberg, D. E. (in press). Design of innovation:
Lessons from and for competent genetic algorithms.
Boston, MA: Kluwer Acadamic Publishers.

Goldberg, D. E., & Deb, K. (1991). A comparitive anal-
ysis of selection schemes used in genetic algorithms.
Foundations of Genetic Algorithms, 69–93.

Goldberg, D. E., Deb, K., & Clark, J. H. (1992). Ge-
netic algorithms, noise, and the sizing of popula-
tions. Complex Systems, 6 , 333–362.

Grefenstette, J. J., & Fitzpatrick, J. M. (1985). Genetic
search with approximate function evaluations. Pro-
ceedings of the International Conference on Genetic
Algorithms and Their Applications, 112–120.

Holland, J. H. (1975). Adaptation in natural and artifi-
cial systems. Ann Arbor, MI: University of Michigan
Press.

Jin, Y., Olhofer, M., & Sendhoff, B. (2000). On evolu-
tionary optimization with approximate fitness func-
tions. Proceedings of the Genetic and Evolutionary
Computation Conference, 786–793.

Keijzer, M., & Babovic, V. (2000). Genetic program-
ming, ensemble methods and the bias/variance
tradeoff - introductory investigations. Genetic Pro-
gramming: Third European Conference, 76–90.

Mandava, V. R., Fitzpatrick, J. M., & Pickens, III,
D. R. (1989). Adaptive search space scaling in digi-
tal image registration. IEEE Transactions on Medi-
cal Imaging , 8 (3), 251–262.

Miller, B. L. (1997). Noise, sampling, and efficient ge-
netic algorithms. Doctoral dissertation, University of
Illinois at Urbana-Champaign, Urbana, IL. (Also Il-
liGAL Report No. 97001).

Miller, B. L., & Goldberg, D. E. (1995). Genetic al-
gorithms, tournament selection, and the effects of
noise. Complex Systems, 9 (3), 193–212.

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Pre-
dictive models for the breeder genetic algorithm:
I. continous parameter optimization. Evolutionary
Computation, 1 (1), 25–49.

Prügel-Bennet, A., & Shapiro, J. L. (1994). An analysis
of a genetic algorithm using statistical mechanics.
Physics Review Letters, 72 (9), 1305–1309.

Sastry, K. (2001). Evaluation-relaxation schemes for ge-
netic and evolutionary algorithms. Master’s thesis,
University of Illinois at Urbana-Champaign, Urbana,
IL. (Also IlliGAL Report no. 2002004).

Thierens, D., & Goldberg, D. E. (1994). Convergence
models of genetic algorithm selection schemes. Par-
allel Problem Solving from Nature, 3 , 116–121.

GENETIC ALGORITHMS 543

Voronoi Quantized Crossover for Traveling Salesman Problem

Dong-Il Seo and Byung-Ro Moon

School of Computer Science & Engineering, Seoul National University
Shillim-dong, Kwanak-gu, Seoul, 151-742 Korea

fdiseo, moong@soar.snu.ac.kr

Abstract

It is known that the performance of a ge-
netic algorithm depends on the survival envi-
ronment and the reproducibility of building
blocks. In this paper, we propose a new en-
coding/crossover scheme that uses genic dis-
tance which explicitly de�nes the distance be-
tween each pair of genes in the chromosome.
It pursues both relatively high survival prob-
abilities of more epistatic gene groups and di-
verse crossover operators for the high creativ-
ity of new schemata. The experimental re-
sults on benchmark traveling salesman prob-
lems showed remarkable improvement in tour
cost and running time over state-of-the-art
genetic algorithms for the problem.

1 Introduction

In the context of genetic algorithms (GAs), a spe-
ci�c gene pattern is called schema. Holland showed,
by Schema Theorem, that highly �t schemata of
short de�ning lengths and low orders have high sur-
vival probabilities in the traditional genetic framework
[1]. These short, low-order, high-quality schemata are
called building blocks. Bui and Moon [2, 3] claimed
that, in case of multi-point crossover operators, low-
order, high-quality schemata with clustered speci�c-
symbol distributions should serve as building blocks.
According to the building block hypothesis, a genetic
algorithm seeks near optimal performance through the
juxtaposition of building blocks [4]. The performance
of a genetic algorithm thus highly depends on its
survival environment and reproducibility of building
blocks.

In the light of the interrelationship between genes,
building blocks are gene groups that have strong in-

teractions (or epistases) among participating genes in
the chromosome. Genes' interaction here means that
the contribution of a gene to the chromosomal �tness
depends on the values of other genes in the chromo-
some. The stronger the interactions of genes are, the
higher the nonlinearity of the problem is; this makes
the problems more diÆcult [5].

For a given problem representation, the survival prob-
ability of a gene group through the crossover is de-
termined by the distribution of genes in the chromo-
some, while the strength of the epistasis of the gene
group is an inherent property of the problem. There-
fore, the strategy of locating each gene in the chro-
mosome signi�cantly a�ects the performance of ge-
netic algorithms. In other words, the positions (or
loci) of genes in the chromosome may be placed so
as to ensure higher survival probabilities for more
epistatic schemata. Inversion is a genetic operator de-
vised for changing the loci of genes dynamically dur-
ing the genetic process [6, 1]. The e�orts to exploit
gene positions dynamically are called linkage learning

[7]. Messy genetic algorithm and fast messy genetic al-
gorithm are examples that implicitly pursue dynamic
gene repositioning [8, 9]. The chromosomal encoding
with �xed gene positions is called locus-based encod-
ing. A number of studies on static reindexing (or re-
ordering) of gene positions in locus-based encodings
showed performance improvement [10, 11, 12, 13, 14].

The representation power1 of a genetic algorithm is
highly dependent on the chromosome topology. That
is, the higher the dimension of the chromosome topol-
ogy is, the higher the representation power it has. A
typical chromosome topology is a one-dimensional ar-
ray. Though one-dimensional array is easy to han-
dle and analyze, it has a poor representation power

1Here, high representation power means low degree of
distortion. Generally, in representing a graph geometri-
cally, the higher the dimension of representation space is,
the lower the degree of distortion it shows [15].

GENETIC ALGORITHMS544

which causes great loss of information contained in the
problems. To overcome this, the encoding/crossover
schemes with multi-dimensional arrays were suggested
and remarkable improvements were reported [16, 17,
18, 19]. Recently, Jung and Moon [20, 21] obtained
successful results by applying a crossover based on
2D Euclidean encoding to the 2D Euclidean travel-
ing salesman problem (TSP). They used phenotypes
themselves for chromosomal cutting.

In a point of view, the studies of changing the loci of
genes are to exploit the interactions among genes im-
plicitly. Increasing the representation power of chro-
mosome topologies also can be understood in this con-
text. Jung and Moon's study may be thought to be an
extreme case of such approaches to the 2D Euclidean
TSP. We keep the philosophy. In this paper, we sug-
gest a new encoding/crossover scheme which explicitly

exploits the interactions among genes. In the scheme,
the genic distance between a pair of genes is de�ned.
We apply this scheme to TSP and compare its perfor-
mance with state-of-the-art methods.

The rest of this paper is organized as follows. We sum-
marize previous approaches to TSP in Section 2 and
explain the proposed genetic operators in Section 3.
In Section 4, we provide experimental results. Finally,
the conclusion is given in Section 5.

2 Traveling Salesman Problem

Given n cities, the traveling salesman problem (TSP) is
the problem of �nding the shortest Hamiltonian cycle
visiting the cities. More formally, given a set of cities
fc1; c2; : : : ; cng and the distance d(ci; cj) for every pair
(ci; cj), it is the problem of �nding an ordering � that
minimizes the following:

C(�) =

n�1X
i=1

d(c�(i); c�(i+1)) + d(c�(n); c�(1)):

It is a well known NP-hard problem [22]. Thus one
should rely on approximation algorithms that do not
guarantee optimal solutions.

For decades, TSP has served as an initial proving
ground for new problem solving techniques because of
its diÆculty, applicability, and the simplicity of def-
inition. Various local optimization algorithms such
as 2-opt, 3-opt, Lin-Kernighan (LK) algorithm, and
their variants were developed and problem indepen-
dent techniques such as tabu search, simulated an-
nealing, neural networks, genetic algorithms and ant
colonies were applied [23, 24].

Recently, hybrid genetic algorithms which combine lo-

Figure 1: An example of 2D Voronoi regions

VQX(n; k; dg; p1; p2)

f
I f1; 2; : : : ; ng; K f1; 2; : : : ; kg;
Select a subset R = fs1; s2; : : : ; skg � I

at random;

for each i 2 I f
r[i] argmin

j2K

fdg(sj ; i)g; sj 2 R;

g
for each j 2 K f

u[j] 0 or 1 at random;

g
for each i 2 I f

if (u[r[i]] = 0) then o[i] p1[i];

else o[i] p2[i];

g
return o;

g

Figure 2: Voronoi quantized crossover

cal optimization algorithms with the genetic frame-
work have been successfully applied to the problem

[25, 26, 20]. LK algorithm [27] is the most popular and
powerful local optimization algorithm for TSP. Various
crossover operators such as order crossover [28], cycle
crossover [29], partially matched crossover [4], edge-
recombination crossover [30], and matrix crossover
[31] were used for TSP. Distance preserving crossover
[32, 26], edge assembly crossover [33, 34, 35], and natu-
ral crossover [20, 21] are representative state-of-the-art
crossover operators proposed recently.

3 New Operators

3.1 Voronoi Quantized Crossover

In Voronoi quantized crossover (VQX), we adapt a
chromosome topology in which every gene has a rela-

GENETIC ALGORITHMS 545

tive locus determined by the distances between genes,
contrary to the others in which every gene has an ab-
solute locus. The distance is called genic distance. In
a point of view, the chromosome may be thought to
be a \complete graph" where each vertex stands for a
gene and the edge weight is determined by the epista-
sis between the two corresponding genes. The graph
is directed if the genic distance is asymmetric. By
adapting such type of chromosome topology, we aim
to represent a chromosome with a minimal degree of
distortion.

The name of Voronoi quantized crossover came from
Voronoi quantization which is a representative vector
quantization method [36]. Vector quantization is a
method of approximating arbitrary multi-dimensional
vectors by k code vectors each of which represents a
subspace of the whole vector space. It is used mostly in
data compression. The vector quantization that uses
Voronoi regions [37] as the subspaces is called Voronoi
quantization. The Voronoi region of a vector is de�ned
to be the nearest neighborhood of the vector. Figure 1
shows an example of Voronoi regions associated with
a set of points in 2D Euclidean space.

VQX has a simple structure. Figure 2 shows the
pseudo code of VQX where n is the number of genes
and k is the crossover degree ranged from 2 to n. The
function dg : I2 ! R represents the genic distance.
The two parents and the o�spring are denoted by p1,
p2 and o, respectively. Following the convention, the
notation \argmin" takes the argument that minimizes
the value. In VQX, the genic space de�ned by the
genic distance dg is divided into k Voronoi regions de-
termined by the k randomly selected genes, then a sort
of block-uniform crossover [17] is performed on the re-
gions.

VQX has two main properties:

� Convexity | Voronoi regions are convex2 [36].
Therefore, the gene groups of relatively short
genic distance have higher survival probabilities
than others.

� Diversity | It has
�
n

k

�
2k crossover operators3.

The �rst property means that the survival probabili-
ties of gene groups can be controlled by genic distance
assignments. We can allow high survival probabili-
ties for building blocks by assigning genic distance in-

2A set S 2 R
k is convex if a, b 2 S implies that �a +

(1� �)b 2 S for all 0 < � < 1.
3In fact, we cannot guarantee that the consequent o�-

spring are all distinct. Di�erent quantizations may gener-
ate the same o�spring, although believed rare.

versely proportional to the strength of epistasis. The
other means that VQX has a lot of crossover opera-
tors. The number of crossover operators a�ects the
creativity of new schemata. The number of crossover
operators of a typical k-point crossover is

�
n�1
k

�
. For

n = 100, k = 6 and n = 1000, k = 8, for example,
k-point crossover has about 1010 and 1020 crossover
operators, respectively, while VQX has about 1011 and
1022. However, we should mention that we do not pur-
sue the maximal number of crossover operators.

The time complexity of VQX is �(kn).

3.2 Survival Probabilities

The survival probability of a gene group4 (or unspeci�c
schema) in VQX is derived in this section. Given a
genic distance measure dg , a function h : 2I � I ! Z

+

is de�ned as

h(S; i) = jfl 2 I : 8v 2 S; dg(l; v)
> dg(i; v)gj; S � I; i 2 I

(1)

where I = f1; 2; : : : ; ng and n is the problem size.
Given a subset R = fs1; s2; : : : ; skg � I , the Voronoi
region assignment function r : 2I � I ! I is de�ned as

r(R; i) = argmin
j2K

fdg(sj ; i)g; i 2 I; sj 2 R (2)

where K = f1; 2; : : : ; kg. Now, given S and i, the
number of R's of k elements that make all v's in S

have the same function value r(R; v) = i is
�
h(S; i)
k�1

�
.

Assuming that the set R is selected at random, the
probability that all genes in a gene group S belong to

the same region, i.e., the probability that r(R; j)'s are
the same for all j's in S, is derived as

Peq(S) =

nX
i=1

�
h(S; i)

k � 1

�

�
n

k

� : (3)

In the case of jSj = 2, the survival probability Psur(S)
of a gene group S is derived as

Psur(S) = Peq(S) +
1

2
(1� Peq(S))

=
1

2
+

nX
i=1

�
h(S; i)

k � 1

�

2

�
n

k

� :

(4)

This is used in Section 3.4 to examine the relationship
between genic distances and survival probabilities.

4Generally, a schema is de�ned by alleles of speci�c
genes. In this paper, we use the term gene group rather
than schema, because we refer only the set of genes here.

GENETIC ALGORITHMS546

(a) cities

(d) Voronoi regions

(b) tour A

(e) inherited tour segments

(c) tour B

(f) repaired tour segments

Figure 4: An example VQX for TSP (kroA200)

VQX0(n; k; dg; p1; p2)

f
I f1; 2; : : : ; ng; K f1; 2; : : : ; kg;
Select a subset R = fs1; s2; : : : ; skg � I

at random;

for each i 2 I f
r[i] argmin

j2K

fdg(sj ; i)g; sj 2 R;

g
for each j 2 K f

u[j] 0 or 1 at random;

g
for each i 2 I f

if (u[r[i]] = 0 and u[r[p1[i]]] = 0)

then o[i] p1[i];

else if (u[r[i]] = 1 and u[r[p2[i]]] = 1)

then o[i] p2[i];

else o[i] nil;

g
o GreedyRepair(o);

return o;

g

Figure 3: Modi�ed VQX for TSP

3.3 Applying VQX to TSP

In this paper, the locus-based encoding of [11] is used;
one gene is allocated for every city and the gene value
represents the index of its next city in the tour. Thus,
a solution may be thought to be a mapping s from the
set of cities I to I . In TSP, a solution that does not
construct a Hamiltonian cycle is infeasible. A solution
s is feasible if and only if (i) s is one-to-one and (ii) it

has no subcycle. Directly applying the VQX of Figure
2 to TSP may produce infeasible solutions. To avoid
this, we need some modi�cation to the crossover.

Figure 3 shows the pseudo code of the modi�ed VQX.
The word nil is used for the genes whose values are
not determined. The consequent solutions have no
subcycle but may have genes of nil value. In other
words, tour segments without any subcycle are cre-
ated. We use a greedy approach to repair them.
In \GreedyRepair()", a segment is selected and con-
nected to its nearest segment to grow into a complete
tour. Note that the performance of repairing is not
critical here, as a powerful local optimization heuristic
follows the crossover and mutation. Figure 4 shows
an example of the crossover process. It is obtained
by applying VQX0 (in Figure 3) with the genic dis-
tance assignment GD1 (described in Section 3.4) to
kroA200, a benchmark problem taken from TSPLIB
[38]. We use a random tie-breaking in applying the
equation (2) in the crossover.

3.4 Genic Distance Assignments

To apply VQX to TSP, the distances among genes
(genic distances) are needed. The genic distances may
be assigned statically or dynamically in the genetic
process. In this paper, the static assignment is used.

Intuitively, an ideal value of a genic distance is a value
inversely proportional to the epistasis. This leads to
the high survival probabilities of relatively more inter-
active gene groups because the survival probability of
a gene group is inversely proportional to their genic
distances in VQX. However, no practical method is
known yet for exactly computing epistases; two heuris-
tics are used in this paper. Let I be a set of city indices

GENETIC ALGORITHMS 547

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

S
ur

vi
va

l P
ro

ba
bi

lit
y

Genic Distance

(a) GD1

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

S
ur

vi
va

l P
ro

ba
bi

lit
y

Genic Distance

(b) GD2

Figure 5: Survival probability versus genic distance (lin105)

and d(i; j) is the distance from city i 2 I to city j 2 I .
The genic distance dg(i; j) from gene i to gene j is
de�ned in two manners as

� GD1: dg(i; j) = d(i; j)

� GD2: dg(i; j) = jfl : d(i; l) < d(i; j); l 2 Igj.

In GD1, the Euclidean distance itself is used; in GD2,
the number of cities closer to city i than city j is used.
Usually, dg is asymmetric in GD2, while it is symmet-
ric as far as d is symmetric in GD1.

Figure 5 shows the results of a simple test to observe
the relationship between the genic distance and the
survival probability of a gene pair. The horizontal and
vertical axes of coordinates represent the genic dis-
tance and the survival probability, respectively. The
equation (4) was used to acquire the survival proba-
bilities from the genic distances obtained by applying
GD1 and GD2 to lin105, an instance from TSPLIB.
It shows that the survival probabilities of a close gene
pairs in the genic space are high in both cases.

3.5 Heterogeneous Mating

In a preliminary examination, VQX showed faster con-
vergence than the other crossovers in comparison; this
may cause the premature convergence of the genetic
algorithm. To avoid this, we use a method of mating
mutually dissimilar individuals in parallel with VQX.
Hollstien called this type of breeding a negative as-
sortive mating [39]. There are various methods, some-

times called niching methods, for maintaining popula-
tion diversity [40, 41].

Figure 6 shows the pseudo code of the mating used
in this paper. First, m individuals are selected from
the population P by roulette-wheel selection. Then
the most di�erent one from p1 among them is selected

MateSelection(P; m; p1)

f
C ;;
for i 1 to m f

c Selection(P n (fp1g [C));
C C [fcg;

g
p2 argmax

c2C

fdistance(p1; c)g;
return p2;

g

Figure 6: Heterogeneous mate selection

as p2. Hamming distance5 is used for the distance
function \distance()".

4 Experimental Results

The genetic algorithm used in this paper is a steady-
state hybrid genetic algorithm. Figure 7 shows the
template. In the template, n is the problem size, m
is the group size in mating, k is the crossover degree,
and dg is the genic distance measure. The two se-
lected parents and the o�spring are denoted by p1, p2
and o, respectively. The genetic operators and their
parameters used in this paper are summarized in the
following:

� Population Initialization | Initial solutions are
generated at random.

� Population Size | jP j = 100.

� Selection | Roulette-wheel selection. The �tness

5the number of di�erent edges between two tours.

GENETIC ALGORITHMS548

Table 1: Experimental results of VGA1 and VGA2

Graph Xover OB Best (%) Avg (%) �=
p
t Gen Time

(opt) # (s)

att532 VGA1 97 27686 (0) 27686.37 (0.001) 0.22 3006 103
(27686) VGA2 95 27686 (0) 27686.69 (0.002) 0.30 3024 109
dsj1000 VGA1 24 18659688 (0) 18659952 (0.001) 24 2803 1026

(18659688) VGA2 52 18659688 (0) 18659809 (0.001) 13 3470 1251
d2103 VGA1 72 80450 (0) 80470.05 (0.025) 3.22 3874 1084

(80450) VGA2 76 80450 (0) 80467.07 (0.021) 3.04 4271 1157
pcb3038 VGA1 11 137694 (0) 137707.22 (0.010) 1.40 12234 835
(137694) VGA2 8 137694 (0) 137706.78 (0.009) 1.22 13021 906
fnl4461 VGA1 0 182573 (0.004) 182607.22 (0.023) 1.97 28518 2011

(182566) VGA2 0 182571 (0.003) 182605.88 (0.022) 2.21 28992 2057

Table 2: Comparison of VGA with DGA, EGA, and NGA

Graph Xover Best (%) Avg (%) �=
p
t Gen Time

(opt) (s)

DGA 27686 (0) 27692.86 (0.025) 0.75 3971 89
att532 EGA 27686 (0) 27700.51 (0.052) 0.84 13934 271
(27686) NGA 27686 (0) 27692.13 (0.022) 0.77 3563 167

VGA2 27686 (0) 27686.69 (0.002) 0.30 3024 109
DGA 18659688 (0) 18660087 (0.002) 78 11267 1038

dsj1000 EGA 18659688 (0) 18679325 (0.105) 1494 41938 1867
(18659688) NGA 18659688 (0) 18659942 (0.001) 18 3266 1114

VGA2 18659688 (0) 18659809 (0.001) 13 3470 1251
DGA 80450 (0) 80500.09 (0.062) 5.86 4021 630

d2103 EGA 80450 (0) 80469.82 (0.025) 2.29 82072 8466
(80450) NGA 80450 (0) 80472.05 (0.027) 4.89 1970 456

VGA2 80450 (0) 80467.07 (0.021) 3.04 4271 1157
DGA 137699 (0.004) 137751.44 (0.042) 4.24 20261 1408

pcb3038 EGA 137694 (0) 137831.77 (0.100) 7.26 199015 28213
(137694) NGA 137698 (0.003) 137733.10 (0.028) 3.71 20582 1734

VGA2 137694 (0) 137706.78 (0.009) 1.22 13021 906
DGA 182593 (0.015) 182822.39 (0.140) 31.80 76331 13728

fnl4461 EGA 182598 (0.018) 182864.60 (0.164) 31.11 338860 160845
(182566) NGA 182572 (0.003) 182631.82 (0.036) 3.19 84247 8832

VGA2 182571 (0.003) 182605.88 (0.022) 2.21 28992 2057

value fi of the solution i is calculated as

fi = (Cw � Ci) + (Cw � Cb)=4 (5)

where Ci, Cw, and Cb are the costs of the solution
i, the worst solution, and the best solution in the
population, respectively. The �tness value of the
best solution is �ve times as great as that of the
worst solution in the population.

� Group Size for Mating | m = 5.

� Crossover Degree | An empirical value k =
blnn+ 1

2
c+2 is used where n is the problem size

and \ln" is the natural logarithm.

� Mutation | Double-bridge kick move [27] was ap-
plied once per ten o�springs. Figure 8 shows a
symbolic drawing of double-bridge kick move.

� Local Optimization | LK algorithm accelerated
by don't-look bit [42] and segment tree [43] was
used.

� Replacement | A variant of preselection [44] was
used as in [11]. Each o�spring is replaced with (i)
its more similar parent if the o�spring is better,
(ii) the other parent if the o�spring is better, (iii)
the worst solution in the population, otherwise.

� Stop Condition | Until 70 percent of the pop-
ulation converge with the same cost as the best
solution in the population. This takes account of
the cases that more than one best solution of the
same quality competes with each other.

The algorithms were implemented in C on Intel Pen-
tium III 866 MHz running Linux 2.2.14.

GENETIC ALGORITHMS 549

VGA(n; m; k; dg)

f
Initialize population P ;

repeat f
p1 Selection(P);

p2 MateSelection(P; m; p1);

o VQX0(n; k; dg; p1; p2);

o Mutation(o);

o LocalOptimization(o);

P Replacement(P; p1; p2; o);

g until (stop condition);

return the best of P ;

g

Figure 7: Steady-state hybrid genetic algorithm for
TSP

Figure 8: Double-bridge kick move

Table 1 compares two di�erent versions of VQX. VGA1
and VGA2 represent the genetic algorithms using
Voronoi quantized crossover with the genic distance
assignments GD1 and GD2 (described in Section 3.4),
respectively. In the table, the frequency of �nding the
optimal solutions (OB#), the best tour cost (Best),
average tour cost (Avg), group standard deviation
(�=

p
t), average generation (Gen), and average run-

ning time (Time) over 100 (= t) runs are presented on
att532, dsj1000, d2103, pcb3038, and fnl4461, problem
instances from TSPLIB [38]. The parentheses after
best and average tour costs represent the percentages
above optima. VGA2 performed better than or equal
to VGA1 for all instances except att532 in average
cost. Distances between cities were computed in dou-
ble precision mode and rounded to integer to remove
uncertainties.

Table 2 compares the performance of VQX with other
state-of-the-art crossovers. DGA, EGA, and NGA rep-
resent the genetic algorithms using distance preserving
crossover [32, 26], edge assembly crossover [33], and
natural crossover [20, 21], respectively. The results
of DGA, EGA, and NGA in the table are quoted from
[21] in which the same LK implementation as ours was

Table 3: Comparison of VGA with FCGA

Graph Xover OB Avg Gen Time
(opt) # (s)

eil101 FCGA 50 629.0 15 2
(629) VGA2 50 629.0 6 1
lin318 FCGA 50 42029.0 49 60

(42029) VGA2 50 42029.0 221 29
pcb442 FCGA 50 50778.0 39 233
(50778) VGA2 50 50778.0 739 45
att532 FCGA 23 27691.3 66 304
(27686) VGA2 47 27686.9 3199 159
rat575 FCGA 43 6773.2 55 500
(6773) VGA2 19 6773.8 2720 53
u724 FCGA 41 41912.3 50 845

(41910) VGA2 50 41910.0 3089 154

used. VGA2 outperformed the others for all instances
in average cost. For att532 and dsj1000, VGA2 con-
sumed comparable running time to NGA. But their
growth rates of time consumption with respect to the
problem size were much lower than NGA. Thus, the
speed of VGA2 for large problems pcb3038 and fnl4461
was much faster than the others. The overall results
show that Voronoi quantized crossover is the most at-
tractive among them. They also imply that GD1 and
GD2 for the genic distance assignment are reasonable.

Table 3 compares the performance of VGA with FCGA
[35]. FCGA stands for family competition genetic al-
gorithm which is a combination of the family compe-
tition, near 2-opt and edge assembly crossover [33]. In
the table, results over 50 runs are presented on eil101,
lin318, pcb442, att532, rat575,and u724 from TSPLIB.
These six instances are all those available for compar-
ison in [35]. The results of FCGA in the table are
quoted from [35]. The running time is the normalized
value for Intel Pentium III 600 MHz. The average tour

costs of VGA2 were better than or equal to FCGA for
all instances except rat575. It is notable that the speed
of VGA2 was much faster than FCGA. (In Table 2,
EGA, the ancestor of FCGA, took 80 times more than
VGA2 for the instance with 4461 cities.)

5 Conclusions

In this paper, we proposed a new crossover operator,
named Voronoi quantized crossover (VQX), that uti-
lizes the explicit genic distances. This allows us to
exploit the interactions among genes explicitly. VQX
has two main properties of convexity and diversity.
These properties are believed to help improve the per-
formance of genetic algorithms by encouraging the
survival probability and the reproducibility of high-
quality building blocks in the genetic process. The

GENETIC ALGORITHMS550

experimental results supported this.

VQX may be applied to other combinatorial optimiza-
tion problems than the traveling salesman problem. Of
course, a measure for genic distances must be devised
for each problem. Future studies include extending
VQX to various problems.

Acknowledgments

The authors would like to thank Soonchul Jung for in-
valuable discussions on various ideas reported in this
paper. This work was partly supported by SNU Statis-
tical Research Center for Complex Systems and Brain
Korea 21 Project. The RIACT at Seoul National Uni-
versity provided research facilities for this study.

References

[1] J. Holland. Adaptation in Natural and Arti�cial

Systems. The University of Michigan Press, 1975.

[2] T.N. Bui and B.R. Moon. Analyzing hyperplane
synthesis in genetic algorithms using clustered
schemata. In Parallel Problem Solving from Na-

ture, pages 108{118. 1994.

[3] T.N. Bui and B.R. Moon. GRCA: A hybrid ge-
netic algorithm for circuit ratio-cut partitioning.
IEEE Transactions on CAD, 17(3):193{204, 1998.

[4] D.E. Goldberg. Genetic Algorithms in Search,

Optimization, Machine Learning. Addison-
Wesley, 1989.

[5] S.A. Kau�man. Adaptation on rugged �tness
landscapes. In D.L. Stein, editor, Lectures in the

Sciences of Complexity, pages 527{618. Addison-
Wesley, 1989.

[6] J.D. Bagley. The Behavior of Adaptive Sys-

tems which Employ Genetic and Correlation Al-

gorithms. PhD thesis, University of Michigan,
1967.

[7] G.R. Harik. Learning Gene Linkage to EÆciently

Solve Problems of Bounded DiÆculty Using Ge-

netic Algorithms. PhD thesis, University of Michi-
gan, 1997.

[8] D.E. Goldberg, B. Korb, and K. Deb. Messy ge-
netic algorithms: Motivation, analysis, and �rst
results. Complex Systems, 3(5):493{530, 1989.

[9] H. Kargupta. SEARCH, Polynomial Complexity,
and the Fast Messy Genetic Algorithm. PhD the-
sis, University of Illinois at Urbana-Champaign,
1995.

[10] T.N. Bui and B.R. Moon. Hyperplane synthesis
for genetic algorithms. In 5th International Con-

ference on Genetic Algorithms, pages 102{109,
1993.

[11] T.N. Bui and B.R. Moon. A new genetic approach
for the traveling salesman problem. In IEEE Con-

ference on Evolutionary Computation, pages 7{

12, 1994.

[12] T.N. Bui and P. Eppley. A hybrid genetic algo-
rithm for the maximum clique problem. In 6th

International Conference on Genetic Algorithms,
pages 478{484, 1995.

[13] T.N. Bui and B.R. Moon. Genetic algorithm and
graph partitioning. IEEE Transactions on Com-

puters, 45(7):841{855, 1996.

[14] O.T. Sehitoglu and G. �U�coluk. A building block
favoring reordering method for gene positions in
genetic algorithms. In Genetic and Evolutionary

Computation Conference, pages 571{575, 2001.

[15] N. Linial, E. London, and Y. Rabinovich. The ge-
ometry of graphs and some of its algorithmic ap-
plications. In Foundations of Computer Science,
pages 577{591, 1994.

[16] J. Cohoon and D. Paris. Genetic placement.
In IEEE International Conference on Computer-

Aided Design, pages 422{425, 1986.

[17] C. Anderson, K. Jones, and J. Ryan. A two-
dimensional genetic algorithm for the Ising prob-
lem. Complex Systems, 5:327{333, 1991.

[18] T.N. Bui and B.R. Moon. On multi-dimensional
encoding/crossover. In 6th International Confer-

ence on Genetic Algorithms, pages 49{56, 1995.

[19] A.B. Kahng and B.R. Moon. Toward more power-
ful recombinations. In 6th International Confer-

ence on Genetic Algorithms, pages 96{103, 1995.

[20] S. Jung and B.R. Moon. The natural crossover
for the 2D Euclidean TSP. In Genetic and Evo-

lutionary Computation Conference, pages 1003{
1010, 2000.

[21] S. Jung and B.R. Moon. Toward minimal restric-
tion of genetic encoding and crossovers for the 2D
Euclidean TSP. IEEE Transactions on Evolution-

ary Computation (conditionally accepted).

[22] M.R. Garey and D.S. Johnson. Computers and

Intractability: A Guide to the Theory of NP-

Completeness. Freeman, 1979.

GENETIC ALGORITHMS 551

[23] D.S. Johnson and L.A. McGeoch. The traveling
salesman problem: A case study in local optimiza-
tion. In Local Search in Combinatorial Optimiza-

tion, pages 215{310. John Wiley & Sons, 1997.

[24] G. Reinelt. The Traveling Salesman: Computa-

tional Solutions for TSP Applications. Springer-
Verlag, 1994.

[25] P. Jog, J. Suh, and D. Gucht. The e�ect of
population size, heuristic crossover and local im-
provement on a genetic algorithm for the traveling
salesman problem. In Third International Confer-
ence on Genetic Algorithms, pages 110{115, 1989.

[26] P. Merz and B. Freisleben. Genetic local search
for the TSP: New results. In IEEE Conference on

Evolutionary Computation, pages 159{164, 1997.

[27] S. Lin and B. Kernighan. An e�ective heuris-
tic algorithm for the traveling salesman problem.
Operations Research, 21:498{516, 1973.

[28] L. Davis. Applying adapting algorithms to
epistatic domains. In 9th International Joint Con-
ference on Arti�cial Intelligence, pages 162{164,
1985.

[29] I. Oliver, D. Smith, and J. Holland. A study of
permutation crossover operators on the traveling
salesman problem. In Second International Con-

ference on Genetic Algorithms, pages 224{230,
1987.

[30] D. Whitley, T. Starkweather, and D. Fuquay.
Scheduling problems and traveling salesman: The
genetic edge recombination operator. In Third

International Conference on Genetic Algorithms,
pages 133{140, 1989.

[31] A. Homaifar, S. Guan, and G. Liepins. A new
approach on the traveling salesman problem by
genetic algorithms. In 5th International Confer-

ence on Genetic Algorithms, pages 460{466, 1993.

[32] B. Freisleben and P. Merz. New genetic local
search operators for the traveling salesman prob-
lem. In Parallel Problem Solving from Nature,
pages 890{900. 1996.

[33] Y. Nagata and S. Kobayashi. Edge assembly
crossover: A high-power genetic algorithm for the
traveling salesman problem. In 7th International

Conference on Genetic Algorithms, pages 450{
457, 1997.

[34] J. Watson, C. Ross, V. Eisele, J. Denton, J. Bins,
C. Guerra, D. Whitley, and A. Howe. The trav-
eling salesrep problem, edge assembly crossover,
and 2-opt. In Parallel Problem Solving from Na-

ture, pages 823{834. 1998.

[35] H.K. Tsai, J.M. Yang, and C.Y. Kao. A genetic
algorithm for traveling salesman problems. In Ge-
netic and Evolutionary Computation Conference,
pages 687{693, 2001.

[36] A. Gersho and R.M. Gray. Vector Quantization

and Signal Compression. Kluwer Academic Pub-
lishers, 1992.

[37] G.F. Voronoi. Nouvelles applications des
param�etres continus �a la th�eorie des formes
quadratiques. Deuxi�eme Memoire: Recherches
sur les parall�ello�edres primitifs. Journal f�ur Reine
und Angewandte Mathematik, 134:198{287, 1908.

[38] TSPLIB. http://www.iwr.uni-heidelberg.de/
groups/comopt/software/TSPLIB95/.

[39] R.B. Hollstien. Arti�cial Genetic Adaptation in

Computer Control Systems. PhD thesis, Univer-
sity of Michigan, 1971.

[40] D.E. Goldberg and J. Richardson. Genetic algo-
rithms with sharing for multimodal function opti-
mization. In Second International Conference on

Genetic Algorithms, pages 41{49, 1987.

[41] S.W. Mahfoud. Niching Methods for Genetic Al-

gorithms. PhD thesis, University of Illinois at
Urbana-Champaign, 1995.

[42] J.L. Bentley. Experiments on traveling salesman
heuristics. In First Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 91{99, 1990.

[43] M.L. Fredman, D.S. Johnson, L.A. McGeoch, and
Ostheimer G. Data structures for traveling sales-
men. Journal of Algorithms, 18:432{479, 1995.

[44] D. Cavicchio. Adaptive Search Using Simulated

Evolution. PhD thesis, University of Michigan,
1970.

GENETIC ALGORITHMS552

Robust Evolutionary Algorithms with Toroidal Search Space
Conversion for Function Optimization

Hiroshi Someya
Information Science Center,

Nagasaki University,
1-14 Bunkyo Nagasaki 852-8521 Japan.

someya@net.nagasaki-u.ac.jp

Masayuki Yamamura
Tokyo Institute of Technology,
4259 Nagatsuta Midori-ku
Yokohama 226-8502 Japan.

my@dis.titech.ac.jp

Abstract

This paper presents a new method that
improves robustness of Real-Coded Evolu-
tionary Algorithms (RCEAs), such as Real-
Coded Genetic Algorithms and Evolution
Strategies, for function optimization. It is
reported that most crossover (or recombina-
tion) operators for RCEAs has sampling bias
that prevents to find the optimum near the
boundary of search space. They like to search
the center of search space much more than
the other. Therefore, they will not work on
functions that have their optima near the
boundary of the search space. Although sev-
eral methods have been proposed to reduce
this sampling bias, they could not cancel the
whole bias. In this paper, we propose a new
method, Toroidal Search Space Conversion
(TSC), to remove this sampling bias. TSC
converts bounded search space into toroidal
one with no parameters. Experimental re-
sults show that a RCEA with TSC has higher
performance to find the optimum near the
boundary of search space and it has improved
robustness concerning the relative position of
the optimum.

1 INTRODUCTION

Function optimization is one of the most important
optimization problems. Several Real-Coded Evolu-
tionary Algorithms (RCEAs) such as Real-Coded Ge-
netic Algorithms and Evolution Strategies, which use
the real number vector representation, have been pro-
posed [3—6, 9, 10, 12, 15, 19] and they have shown
higher performance than EAs using binary or gray
representation [3, 5, 7]. In RCEAs, generally, ini-
tial individuals are placed in the search space uni-

(a) BLX-α (b) UNDX

Figure 1: The sampling biases of BLX-α and UNDX

formly. In this case, most crossover operators, such as
BLX-α [5], Unimodal Normal Distribution Crossover
(UNDX) [10], Center of Mass Crossover (CMX) [17],
Simplex Crossover (SPX) [19], like to search the center
of search space much more than the other [1, 4, 9, 18].
This bias is called “Sampling Bias” [4, 18]. Fig.1 ex-
plains the sampling biases of BLX-α and UNDX. The
horizontal axis is domain of definition. The verti-
cal axis is theoretical probability density of generat-
ing children when a crossover produces them from a
pair of parents, chosen out of the population that is
distributed in 0∼ 1 uniformly. When a crossover oper-
ator has such bias, it will not work on functions whose
optima are near the boundary of the search space.

The sampling bias grows exponentially stronger as the
dimension of search space. Therefore, in case objective
function is high dimensional and its optima are in the
corner of the search space, RCEAs like to be trapped
at a local minimum located around the center of the
search space. Recently, RCEAs have been applied to
real-applications [11,13,16]. In real-applications, since
we cannot know where are the optima, robust RCEAs
considering the sampling bias are needed.

The purpose of this paper is to present a method
that cancel the sampling bias to improve robustness
of RCEAs. In the next section, we briefly review sev-
eral major methods that reduce the sampling bias and
discuss their features. We propose a new method,
Toroidal Search Space Conversion, in section three

GENETIC ALGORITHMS 553

and reflect on the computational complexity in sec-
tion four. Empirical verification is performed in sec-
tion five. In the last section, we conclude this paper.

2 RELATED WORKS

2.1 Existing Methods and Their Features

Several methods, such as Boundary mutation [7], (UX,
UNDX)+EMGG [9], boundary extension by mirror-
ing (BEM) and boundary extension with extended se-
lection (BES) [18], have been proposed. Boundary
mutation produces individuals on boundary of search
space. (UX, UNDX)+EMGG improves the sampling
bias of UNDX using Uniform Crossover (UX) [3]. This
method selects either UNDX or UX, they complement
their searching region each other, as the crossover op-
erator dynamically. BEM and BES extend the search
space in order to move the relative position of the opti-
mum toward the center of the search space. They allow
individuals to be located outside the search space. The
individuals are called “virtual individuals”. The de-
tails of BEM are introduced in section 2.2. In BES, the
number of the virtual individuals is limited by helper
individual rate and no functional value of the virtual
individuals is used. We can mention that these meth-
ods have the following three disadvantages.

(1) Dependence on Search Operator: In (UX,
UNDX)+EMGG, UX and UNDX complement their
searching region each other. However, when we use
another crossover operator as the one of the search
operators, we must invent or find the other one that
has complementary characteristics to the first one.

(2) Parameter Tuning: All methods introduced in
this section have at least one parameter, such as the
mutation rate of boundary mutation, the initial prob-
ability of applying UNDX of (UX, UNDX)+EMGG,
the extension rate of BEM and the helper individual
rate of BES, to control how much the sampling bias
is reduced. Although we cannot know the positions of
the optima and the landscape of the search space, we
must tune the parameters before search.

(3) Remaining the Sampling Bias: Although all
methods shown in this section succeed in reducing the
sampling bias, they cannot remove it. From the view-
point of robustness, no sampling bias is desirable.

Next, we show BEM in detail because we believe it
is the best method in the existing methods. It is in-
dependent on the search operator. The number of its
parameters is only one. The effectiveness is relatively
high.

2.2 BEM [18]

BEM aims to shift the optimum located in the corner
toward the center. In BEM, individuals are allowed
to be located beyond the boundary of search space.
The functional value of individual i with real vector
~X(i) = (x

(i)
1 , . . . , x

(i)
n) is calculated as follows:

f(~X(i)) = f(~Y (i)), (1)

~Y (i) = (y
(i)
1 , . . . , y

(i)
n),

y
(i)
j =

2 minj − x(i)j : if xj < minj

2 maxj − x(i)j : if xj > maxj

x
(i)
j : otherwise,

where, minj and maxj are the lower and upper limits of
parameter range on the j-th dimension of the original
search space respectively. BEM has one parameter,
re (0 < re < 1), that controls how much search space is
extended. The parameter range of the extended search
space is lj(1 + re) when that of the original one is lj .
The initial individuals are placed in the original search
space uniformly.

3 TOROIDAL SEARCH SPACE
CONVERSION (TSC)

TSC converts search space with boundary into toroidal
one. This conversion is performed as follows:

step1 Extend the search space to the extended search
space like BEM with re=1.0, (see section 2.2)

step2 Connect each e-maxj of the extended search
space to corresponding e-minj .

where, e-minj and e-maxj are the lower and upper
limits of parameter range on the j-th dimension of the
extended search space respectively. An example of the
converted search space is shown in Fig.2. The con-
verted search space becomes torus. In this converted
search space, the crossover operation is performed as
the following pseudo-codes (like C++):

choose k required parents;

for (int i=1; i<k; i++){

make pow(2, n)-1 clones of parent_i;

// ---- n is the dimension

select the clone whose distance from

parent_0 is the shortest out of the

clones and parent_i;

}

do crossover using parent_0 and the

k-1 selected clones;

Fig.3 shows an example of a crossover in a con-
verted search space. First, three clones (clone 1,

GENETIC ALGORITHMS554

clone 1∗, clone 1∗∗) at the corresponding points on
the virtual search space are copied from parent 1.
Next, clone 1 is allowed to join the crossover oper-
ation because its distance from parent 0 is shortest.
Thus, the crossover operation, using UNDX as the
crossover operator, searches in the gray region.

For implementation on a computer program, the pro-
cedures in the above for are described as follows:

clone_i = parent_i;

// ---- copy the parent_i vector to clone

for (int j=0; j<n; j++){

const double distance

= clone_i[j] - parent_0[j];

if (fabs(distance) > l){

// ---- l is the half width of the

// extended search space

if (distance >= 0){ clone_i[j] -= 2l; }

else { clone_i[j] += 2l; }

}

}

Although the volume of the search space grows expo-
nentially, the increase of the computational cost for
this crossover is only linear, O(k × n). Since the con-
verted search space is torus, a generated individual i,
~X(i) = (x

(i)
1 , . . . , x

(i)
n), is modified as follows:

~X(i) = ~Z(i), (2)

~Z(i) = (z
(i)
1 , . . . , z

(i)
n),

z
(i)
j =

x
(i)
j + 2l : if xj < e-minj

x
(i)
j − 2l : if xj > e-maxj

x
(i)
j : otherwise.

For example, in Fig.2, when A and B are generated
by a crossover operation, they are modified as A0 and
B0 respectively. Using this modification, when the dis-
tance between parents is far, crossover does not gener-
ate children in the center of the search space, but does
them near the boundary close to the parents (in the
gray region in Fig.3). In TSC, initial individuals are
placed in the extended search space uniformly. Ac-
cordingly, by this proposed method, any position on
this search space become equivalent to any others.

TSC clears the three disadvantages of the existing
methods. Since TSC is a conversion method, it is inde-
pendent on any search operator. TSC has no parame-
ter. The converted search space has no sampling bias
when the initial individuals are placed in the extended
search space uniformly because it is torus.

TSC has one more significant feature. The converted
search space maintains global continuity of landscape.

Figure 2: An example of 1-dimensional converted
search space by TSC

Figure 3: An example of crossover procedure, using
UNDX as the crossover operator, on a 2-dimensional
converted search space by TSC.

The “global continuity of landscape” means that indi-
viduals around an individual have approximate equiva-
lent functional value. In [16], the authors use a method
that connects minj and maxj when the coded vector
represents an angle. In this method, children are pro-
duced only in the supplementary angle region because
-180 degrees correspond to 180 degrees. When we ap-
ply this method to a search space that does not have
such characteristic, the global continuity of landscape
should be lost because f(x1, . . . ,minj , . . . , xn) will be
different from f(x1, . . . ,maxj , . . . , xn). Since EAs as-
sume that search space has the global continuity of
landscape [8], the global continuity of landscape should
be maintained. In TSC, it is satisfied because e-minj
corresponds to e-maxj , even if the original search space
does not have the above characteristic.

4 COMPUTATIONAL COMPLEXITY

Let discuss the number of samplings required to find
the optimum in a n-dimensional search space whose
volume is D, as shown in Fig.4. First, we discuss an
EA without any selection mechanism. Then, we con-
sider an EA equipped with a selection mechanism.

GENETIC ALGORITHMS 555

Table 1: The test functions

function equation (n specifies the dimension) mul.∗1 disc.∗2 domain di
Sphere

Pn

i=1
x2i no no [-5.12+di, 5.12+di] 0.0, 1.5, 3.0, 4.5

Step
Pn

i=1
bxi + 0.5c2 no strong [-5.12+di, 5.12+di] 0.0, 1.5, 3.0, 4.5

Schwefel 418.9828873n+
Pn

i=1
xi sin

p
|xi| low no [-512, 512] -

Rastrigin 10n+
Pn

i=1
[x2i − 10 cos(2πxi)] high no [-5.12+di, 5.12+di] 0.0, 1.5, 3.0, 4.5

Griewangk 1
4000

Pn

i=1
x2i −

Qn

i=1
cos
³
xi√
i

´
+ 1 high no [-512+di, 512+di] 0, 150, 300, 450

∗1: multi-modality, ∗2: discontinuity

Figure 4: n-dimensional objective function, in which
D is its volume and A is the volume of the region as
the optimum.

4.1 Without Selection

In case BLX-α is used as the search operator, the prob-
ability density curve of generating children, shown in
Fig.1 (a), is expressed as follows (the details of BLX-α
and g(x) are shown in Appendix A and B respectively):

g(x) =
2{ln 3

2 + (x− 1) ln(1− x)− x lnx}
2 ln 3

2 + 1
. (3)

Therefore, when n is 1, the number of samplings re-
quired to find the optimum that is located at the cor-
ner of the search space is 1

g(0) =
1
g(1) ' 2.233 times as

many as in case Uniform Random Search (URS) [20],
which searches in the domain uniformly, is used. When
n is 10 or 20, 1

g(0)n is about 3,000 or 9,500,000, respec-

tively. In case another crossover operator whose sam-
pling bias is stronger than BLX-α, such as UNDX, is
used, more samplings are required. The probability to
find the optimum, P , when URS is used as the search
operator is expressed as follows [20]:

P = 1−
µ
1− A

D

¶m
, (4)

where m is the number of samplings and A is the vol-
ume of the region as the optimum. When the search
space is converted by TSC, since there is no sampling
bias even if the search operator is BLX-α, the search

works like URS. In this case the probability to find the
optimum is equivalent to URS as 2nA

2nD = A
D .

4.2 With Selection

When we consider selection mechanism, the complex-
ity of landscape is important. Unimodal function is of-
ten converted into multimodal one by TSC. Generally,
optimization of multimodal function is more difficult
than that of unimodal one. Moreover TSC converts
multimodal function into more complex multimodal
one in which the number of local minima is exponen-
tially larger. It has not been cleared that the relation
between complexity of landscape and the difficulty of
optimization for EAs. However, it has been known
that big hill including local minima influences the ef-
fectiveness of EAs.

5 EXPERIMENTS

In order to confirm the robustness of EAs in converted
search space by TSC, we perform experiments.

5.1 Test Functions

How test functions should be selected has been men-
tioned in [2]. The five functions in Table 1 are selected
under the recommendations. The optimum of Schwefel
function, f(−420.968746, . . . ,−420.968746) = 0, and
those of the others, f(0, . . . , 0) = 0, are located in the
corner and at the center of the search space, respec-
tively. To achieve the purpose of these experiments,
the relative positions of the optima in their search
space are moved by di except that of Schwefel func-
tion1, as shown in Fig.5.

5.2 Experimental Conditions

We select UNDX+MGG [10,14] as the performed EA.
It has been reported that UNDX has strong sampling

1In Schwefel function, when the domain is changed by
di, the optimum will be changed.

GENETIC ALGORITHMS556

Table 2: The experimental results (#OPT)

NoExt BEM BEMe TSC
function n 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45

50 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Sphere 100 100 100 100 100 100 100 99 100 100 100 98 100 100 100 100 100

150 100 100 100 100 100 100 98 100 100 100 96 100 100 100 100 100
30 100 96 78 62 100 96 80 93 100 95 86 97 92 96 99 100

Step 40 99 56 27 11 95 57 35 56 96 64 28 54 62 52 80 99
50 81 17 7 10 75 19 8 12 88 17 7 12 6 16 35 83
5 87 100 99 100

Schwefel 10 8 57 56 100
15 0 1 1 98
4 100 99 94 26 100 100 99 86 100 97 98 87 100 100 100 100

Rastrigin 6 100 67 20 1 99 77 57 13 98 84 80 8 96 79 44 100
8 84 27 3 0 91 26 10 0 79 34 22 1 79 35 5 97
30 80 68 69 65 70 71 74 65 68 76 72 64 65 66 63 73

Griewangk 40 71 74 63 70 65 67 75 73 66 67 69 76 66 60 66 64
50 69 73 77 70 76 74 70 73 61 69 65 68 63 58 60 62

∗ 00, 15, 30, 45 under the method names specify di. For example, 15 means di = 1.5 or di = 150.

di = 0 di = 1.5 or 150 di = 3.0 or 300 di = 4.5 or 450

Figure 5: The relative positions, caused by di, of the
optimum in a search space

bias as shown in Fig.1 (b) and UNDX+MGG does not
work well in a search space whose optimum is in the
corner, such as Schwefel function [9]. The details of
this EA are shown in Appendix A and C. No muta-
tion is used for focusing on the sampling bias caused
by crossover. The population size is set to be 30 for
unimodal functions but 100 for multimodal ones. Fifty
children are produced in each generation.

TSC is compared to “No Extension method (NoExt)”,
BEM and BEMe. NoExt means that the EA is per-
formed in the original search space. BEMe is intro-
duced to be fair in our comparison. BEM and BEMe
are the same except that BEMe places initial individ-
uals like TSC. TSC places initial individuals in the
extended search space, but BEM does them in the
original one. The re of BEM and BEMe are set to
be 0.25 because the value has been used in [19]. In all
experiments except TSC, when an individual is gen-
erated outside their search space, the crossover retries
to generate another inside. Each experiment is per-
formed 100 trials. Each run continues until the opti-
mum is found or the number of evaluation reaches a
constant that was set to be enough large number de-
termined in pilot study. The performance measure is

the numbers of runs in which the method succeeded
in finding the global optimum (#OPT). The robust-
ness of each method is evaluated through the lowest
performance in all cases of di.

5.3 Results and Discussion

The experimental results are shown in Table 2. Sev-
eral results that explain the features of the methods
obviously are shown in Fig. 6.

In Sphere function, the all #OPTs are approximately
100. We believe that the optimization in the converted
search space by TSC has not become more difficult,
because it has had no local minimum although it has
become multimodal. Fig.6 (a) and (c) show the ro-
bustness of the EA performed in the converted search
space by TSC. In the original search space (NoExt),
the performance when di = 4.5 is terrible. We believe
that this is caused by the sampling bias. You might
consider why the #OPTs are different among the di
despite no sampling bias when TSC is used. Note,
the landscapes are different among the di although the
equations are the same. In Schwefel function, which
has the optimum in the corner of the search space,
we can confirm that the performance of the EA is ex-
tremely improved by TSC. In Griewangk function, all
methods show the robustness as shown in Fig.6 (d).
From Table 1, the characteristic of this function seems
to be the same as that of Rastrigin function. How-
ever, the landscape of this function is similar to that
of Sphere function on the broad level, as shown in
Fig.7. We believe that this robustness is caused by
this similarity. In 50-dimensional Step function and
8-dimensional Rastrigin function, the difference of the
effectiveness among the methods is little. Hence, we

GENETIC ALGORITHMS 557

(a) 40-dimensional Step function (b) 10-dimensional Schwefel function

(c) 6-dimensional Rastrigin function (d) 50-dimensional Griewangk function

Figure 6: The experimental results (#OPT) that explain the features of the methods obviously

Figure 7: Rastrigin function (left) and Griewangk
function (right)

studied the average, the worst and the variance of the
runs. The statistics have shown that TSC works better
than the others.

The stability of convergence speed when TSC is used
is the lowest than that when the others are used. The
EA performed in the converted search space by TSC
can find the optimum located in the corner of the
search space rapidly. However, when the optimum is
located at the other positions, the convergence velocity
is slower. It is a disadvantageous feature of TSC.

5.4 Confirmation of No Sampling Bias

We perform experimental confirmation of no sampling
bias in the converted search space by TSC. f(~X) = 1
whose dimension is two is used as the objective func-
tion. The domain of definition is [−5.0, 5.0]. The num-

NoExt TSC

Figure 8: The distribution of the overall generated
individuals in the function, f(X) = 1

ber of evaluation is 5.0 × 104. The population size is
set to be 100. The other conditions are the same as
the previous experiments. Since MGG performs ran-
dom sampling when all individuals have the same fit-
ness value, the all region should be searched equally if
there is no sampling bias. We plot the distribution of
the overall individuals generated in a run. Fig.8 shows
the results of NoExt and TSC. Although near bound-
ary in the left figure is hardly searched, all region in
the right figure are searched equally. We can confirm
that there is no sampling bias.

6 CONCLUSIONS

This paper proposed a new method, Toroidal Search
Space Conversion (TSC), which converts search space

GENETIC ALGORITHMS558

with boundary into toroidal one, to improve the ro-
bustness of RCEAs. Experimental results showed that
the effectiveness of TSC is greater than those of the
other methods. TSC has following three advantages:
1. TSC can be applied widely because it is indepen-
dent on search operator., 2. It is easy to apply TSC
because it has no parameter., 3. There is no sam-
pling bias in the converted search space by TSC. On
the other hand, TSC has one disadvantage. The land-
scape of the converted search space by TSC is often
more complex than that of the original search space.
The variance of the convergence velocity is also caused
by this complexity. To cope with this disadvantageous
feature is future work.

References

[1] P. J. Angeline. Using Selection to Improve Particle
Swarm Optimization. In Proc. of the ICEC’98, pages
84—89, 1998.

[2] T. Bäck. Evolutionary Algorithms in Theory and
Practice. Oxford University Press, 1996.

[3] L. Davis. The Handbook of Genetic Algorithms. Van
Nostrand Reinhold, 1990.

[4] L. J. Eshelman, K. E. Mathias, and J. D. Schaffer.
Crossover Operator Biases: Exploiting the Population
Distribution. In Proc. of the 7th ICGA, pages 354—361,
1997.

[5] L. J. Eshelman and J. D. Schaffer. Foundations of Ge-
netic Algorithms 2, chapter Real-Coded Genetic Algo-
rithms and Interval-Schemata, pages 187—202. Mor-
gan Kaufman, 1993.

[6] H. Kita, I. Ono, and S. Kobayashi. Multi parental
Extension of the Unimodal Normal Distribution
Crossover for Real-Coded Genetic Algorithms. In
Proc. of the CEC’99, pages 1581—1587, July 1999.

[7] Z. Michalewicz. Genetic Algorithms + Data Struc-
tures = Evolution Program. Springer, third edition,
1996.

[8] M. Mitchell. An Introduction to Genetic Algorithms.
The MIT Press, 1996.

[9] I. Ono, H. Kita, and S. Kobayashi. A Robust Real-
coded Genetic Algorithm using Unimodal Normal Dis-
tribution Crossover Augmented by Uniform Crossover
: Effects of self-Adaptation of Crossover Probabilities.
In Proc. of the GECCO-99, pages 496—503, July 1999.

[10] I. Ono and S. Kobayashi. A Real-coded Genetic Al-
gorithm for Function Optimization Using Unimodal
Normal Distribution Crossover. In Proc. of the 7th
ICGA, pages 246—253, 1997.

[11] I. Ono, Y. Tatsuzawa, S. Kobayashi, and K. Yoshida.
Designing Lens Systems Taking Account of Glass Se-
lection by Real-coded Genetic Algorithms. In Proceed-
ings of 1999 IEEE International Conference on Sys-
tems, Man and Cybernetics, pages III—592—597, 1999.

[12] I. Ono, M. Yamamura, and S. Kobayashi. A Ge-
netic Algorithm with Characteristic Preservation for
Function Optimization. In Proceedings of IIZUKA’96,
pages 511—514, 1996.

[13] S-J. Park and M. Yamamura. An Approach to Struc-
tural Alignment with Genetic Algorithm. In Proceed-
ings of the Second International Conference on Bioin-
formatics of Genome Regulation and Structure, pages
201—203, 2000.

[14] H. Satoh, M. Yamamura, and S. Kobayashi. Min-
imal Generation Gap Model for GAs Considering
Both Exploration and Exploitation. In Proceedings
of IIZUKA’96, pages 494—497, 1996.

[15] H. Someya and M. Yamamura. Where should Children
be Generated by Crossover Operator on Function Op-
timization ? In Proc. of the GECCO-2000, page 382,
July 2000.

[16] O. Tomobe, I. Ono, and S. Kobayashi. Experimental
Study on Determination of Protein three dimensional
Structure using Genetic Algorithm (in Japanese). In
Proceedings of 25th SICE Symposium on Intelligent
Systems, pages 35—40. The Society of Instrument and
Control Engineers, 1998.

[17] S. Tsutsui. Multi-parent Recombination in Genetic
Algorithms with Search Space Boundary Extension by
Mirroring. In Proc. of the PPSN V, pages 428—437,
1998.

[18] S. Tsutsui and D. E. Goldberg. Search Space Bound-
ary Extension Method in Real-Coded Genetic Algo-
rithms. Information Sciences, 133(3-4):229—247, 2001.

[19] S. Tsutsui, M. Yamamura, and T. Higuchi. Multi-
parent Recombination with Simplex Crossover in Real
Coded Genetic Algorithms. In Proc. of the GECCO-
99, pages 657—664, July 1999.

[20] A. A. Zhigljavsky. Theory of Global Random Search,
volume 65 of Mathematics and Its Applications.
Kluwer Academic Publishers, 1991.

APPENDIX

A BLX-α [5] and UNDX [10]

BLX-α produces a child in the gray region in Fig.9
(left) randomly. The child vector, ~C, which is encoded
by real number vector, is determined as follows:

~C = {c1, . . . , cn} ,
ci = u(min(p1i, p2i)− αdi, max(p1i, p2i) + αdi) ,

where ~P1 = {p11, . . . , p1n} and ~P2 = {p21, . . . , p2n} are
parent vectors of Parent1 and Parent2 respectively.
di = |p1i − p2i|. n is the dimension of the objective
function. u(x, y) is the uniform random number se-
lected from [x, y].

GENETIC ALGORITHMS 559

Figure 9: BLX-α (left) and UNDX (right)

UNDX generates two children around their parents us-
ing the normal distribution whose standard deviation
is determined by the third parent, Parent3, as shown
in Fig.9 (right). The children vectors, ~C1 and ~C2, are
determined as follows:

~C1 = ~m+ z1~e1 +

nX
k=2

zk~ek ,

~C2 = ~m− z1~e1 −
nX
k=2

zk~ek ,

where ~m = (~P1 + ~P2)/2. ~e1 = (~P2 − ~P1)/| ~P2 − ~P1|,
~ek(k = 2, . . . , n) are the orthogonal unit vectors. z1 ∼
N(0,σ21) and zk ∼ N(0,σ22)(k = 2, . . . , n) are nor-
mally distributed random numbers, where σ1 = αd1
and σ2 = βd2/

√
n. d1 is the distance between Parent1

and Parent2. d2 is the distance of the Parent3 from
the line connecting Parent1 and Parent2. α and β are
constants.

B EQUATION (3)

B.1 Variables

In this section, we use the following variables:

y, z the positions of parents (0 < y < z < 1)
w the width in which BLX-α produces

children
c the center of parents

n(y, z) the probability of generating children
in one crossover operation

α is set to be 0.5, which is recommended value.

B.2 Equation g(x)

After the definition of BLX-α, a child is produced in
the range of x that satisfies the following inequality.

c− w
2
< x < c+

w

2
.

Substitute w = (z− y)/α = 2(z− y) and c = (z+ y)/2
into the above inequality,

−1 < 2x− (z + y)
2(z − y) < 1 .

Therefore,

3y < 2x+ z ,

y < 3z − 2x .
Since the domain of x is [0.0, 1.0], g(x) = k{gA(x) +
gB(x) + gC(x)}, as follows:

gA(x) =

Z 1
3+

2
3x

x

Z 1

3y−2x
n(y, z) dzdy ,

gB(x) =

Z x

0

Z 1

x

n(y, z) dzdy ,

gC(x) =

Z x

0

Z x

1
3y+

2
3x

n(y, z) dzdy ,

where n(y, z) = 1
w
= 1

2(z−y) . Integrate the above,

g(x) = k

½
(1− x)(ln 3− ln 2)

2

+
(x− 1) ln(1− x)− x lnx

2

+
x(ln 3− ln 2)

2

¾
=

k

2
{ln 3− ln 2 + (x− 1) ln(1− x)− x lnx} .

In order to satisfy
R 1
0 g(x) dx = 1, k = 4

2(ln 3−ln 2)+1 .
Hence,

g(x) =
2{ln 3

2 + (x− 1) ln(1− x)− x lnx}
2 ln 3

2 + 1
.

C MGG [14]

MGG is a generation-alternation model. It is de-
scribed as follows:

step1 Generate an initial population randomly.
step2 Choose a pair of individuals as parents from the

population randomly.
step3 Generate a certain number of children by a

crossover.
step4 Select the best individual out of the family, the

parents and the children.
step5 Choose an individual except the best, selected

at step4, out of the family randomly according to
fitness-based (or ranked-based) wheel selection.

step6 replace the two individuals, selected at step4
and step5, to the parents.

step7 Iterate step2 ∼ step6 until certain condition is
satisfied.

GENETIC ALGORITHMS560

 Jumping Genes-Mutators Can Rise Efficacy of Evolutionary Search

Alexander V. Spirov

The Sechenov Institute of Evolutionary
Physiology and Biochemistry, 44 Thorez Ave.,

St. Petersburg, 194223, Russia

and

Dept. of Applied Mathematics and Statistics,
The State University of New York at Stony

Brook, Stony Brook NY 11794-3600, USA

Email: spirov@kruppel.ams.sunysb.edu

fone: 631-632-8370

fax: 631-632-8490

Alexander B. Kazansky

The Sechenov Institute of Evolutionary
Physiology and Biochemistry, 44 Thorez
Ave., St. Petersburg, 194223, Russia

Email: kazansky@iephb.nw.ru

fone/fax: +7 (812) 552 3219

Abstract

Genetic Algorithms (GA) and Genetic
Programming were inspired by ideas from
evolutionary biology. However modern
Evolutionary Computation (EC) only in outline
reminds the strategies of biological evolution.
The application of other algorithms and
biological ideas may substantially improve the
performance of this area of computer science.
Namely, the selfish (or parasitic) mobile genetic
elements - transposons are good candidates for
this breakthrough. These genomic parasites live
on a substratum of genomes of whole biological
communities. Many biologists assume that
processes in the world of transposons are the
main source of evolution creativity. They
thought to act as wise higher-level mutators for
their hosts. In this communication we propose a
strategy of construction of a new approach
exploiting the most essential aspects of co-
evolution of the hosts-chromosomes and their
genetic parasites. We named this strategy as the
Two-level Evolving Worlds. The key feature of
the approach is usage of artificial transposons.
We apply it to one of known benchmark
problems - the John Muir ant's trail test. We
found that our enhancement of GA technique by
the artificial transposons obviously increase the
efficacy of searching of the ant's navigation
algorithm. We investigate in details the way of
the transposons action as intelligent mutators of
host-chromosomes.

1 INTRODUCTION

Many areas of evolutionary computation, especially
genetic algorithms (GA), and genetic programming (GP),
are inspired by achievements in genetics and evolutionary
biology. However modern evolutionary biology has since
advanced considerably, revealing that genes are not
simply parameter settings, but components of a complex
biochemical machine (Cf. Luke et al., 1999; Lee and
Antonsson, 2001; Lones and Tyrrell, 2001).

On the other hand, many branches of modern
evolutionary computation research are aimed at evolution
of mechanisms (neural networks, decision trees, cellular
automata, L-systems, finite state automata). For these
domains, recent genomic achievements seems more
appropriate as an inspirational model then classic set of
Darwinian algorithms.

There is a feeling that the field of EC is getting more
inspired with the latest achievements in biology, trying to
make the evolutionary algorithms more effective. Such
techniques as transposition, host-parasite interaction,
gene-regulatory networks and some others have yet been
applied to EC.

 •Host-parasite methods: These methods are based on the
co-evolution of two different populations, one of them
acting as “parasite” , and the other acting as “host” . The
parasites usually encode a version the problem domain,
and the hosts the solution to the problem (Hillis, 1990;
Potter and De Jong, 1994; 1995; De Jong and Potter,
1995; Olsson, 1996; 2001).

•Transposition operators (“bacterial” algorithms): The
basic idea of these approaches is to make intra-
chromosome crossovers, that is, crossover of a

GENETIC ALGORITHMS 561

chromosome with another part of itself, or else
asymmetric crossover, in which a donor chromosome
transfers part of its genetic material to an acceptor
chromosome (Harvey, 1996, Nawa et al., 1996; Simoes
and Costa, 2001). In some cases, these operators seem to
be better than classical genetic algorithms for
combinatorial optimization problems.

•Gene-regulatory networks approach: Luke et alls (1999)
use a method similar to genetic regulatory networks to
evolve finite state automata that represent a language
grammar. It is appropriate also to mention here the Burke
et alls (1998) project, as well as “enzyme genetic
programming” (Lones and Tyrrell, 2001).

•Evolution based on the selfish elements: Corno et alls
(1998) implemented the Selfish Genetic Algorithm
inspired by Dawkins concept of the selfish gene. The
algorithm evolves a Virtual Population, in which alleles
compete for appearance in their respective locus in the
genotype.

So far, it has not been found in the literature a technique
that is general enough to be applied to a wide range of
problems, and that, in some cases, is able to yield as good
or better results than evolutionary algorithms

This stimulates us to search for prospective mechanisms
that simulate the creative, heuristic and self-organizing
character of (biological) evolution (Spirov, 1996a; 1996b;
Spirov and Samsonova, 1997; Spirov and Kadyrov, 1998;
Spirov et al., 1998; Spirov and Kazansky, 1999). The
mobile selfish genetic elements (synonymous or related
terms are jumping genes, transposons, retroviruses) are
good candidates for this breakthrough (Makalowski,
1995). Many biologists speculate that processes in the
world of transposons, living on a substratum of genomes
of the whole biological communities, are the main source
of macroevolution creativity (Doolittle and Sapienza,
1980; Orgel and Crick, 1980; Brosius, 1991).

In this connection, special interest is attracted by well-
known examples of both competitive and cooperative
strategies in populations of transposons.

In this communication we propose a strategy of
construction of a new approach exploiting the most
essential aspects of co-evolution of the hosts-
chromosomes with their genetic parasites. We named this
strategy as the Two-level Evolving Worlds. The key
feature of the approach is usage of artificial transposons.
We treat transposons as high-level and intelligent
mutators. In the next part we give the definition of the
strategy. To demonstrate the efficacy of a new approach
we apply it to one of known benchmark problems - the
John Muir ant's trail test (Jefferson et al. 1992; Koza,
1992).

1.1 THE TWO-LEVEL EVOLVING
WORLD

Parasites and parasite ensembles always accompany
biological evolution. Tom Ray simulated this process in
his Tierra (Ray, 1991).

A special kind of parasites is genomic parasites living in
the host genome. Known biological proverb says that “ the
viruses in all of us - the viruses that make us” .

In the course of evolutionary time, parasites form
“community” of their own. They populate the united
genomic space of many hosts. We shall name these
parasites as InfoParasites (IP), and the “community of the
parasites” as IP world.

There are examples of evolvable virtual worlds such as
Swarm, Creatures, Network Tierra (Daniels, 1999; Cliff
and Grand, 1999; Ray, 2001). In the course of evolution
the worlds of that type can split over IP and host co-
evolving worlds, i.e. they can become the two-leveled. It
is the question of time and such worlds’ complexity. In
less complex virtual worlds similar splitting could be
realized “by hand” , as in the case of developing world of
computer viruses.

1.1.1 Strategy of Development of The Two-
level Worlds

We assume that the simplest realization of the two-layer
evolving worlds would be as follows:

the hosts-world is GA-like system (standard GA
in the simplest case). The manifold of hosts’
chromosomes-strings is the environment for IPs. In the
simplest case these GAs don’ t have any mutation
operators of their own;

the InfoParasites are the LISP-like programs,
manipulating with the hosts’ strings. (For our applications
these programs must include the SEARCH function
performing the search of patterns in the host strings). IPs
live in hosts, they are transmitted vertically (when host
reproduces) and horizontally (from one host to another, as
infection or computer virus);

genotypes of parasite and host are encoded by
the same text, i.e. the same string of symbols is
interpreted in two different languages, the host’s and the
parasite’s one;

“bad” (too harmful) parasites are eliminated
together with their hosts, “good” parasites minimize their
harmfulness (for example, by exploiting unessential parts
of host’s chromosomes).

1.1.2 Intelligent Mutators

IPs acts as intelligent and sophisticated mutators. They
can generate arbitrary procedures of manipulations with

GENETIC ALGORITHMS562

hosts’ chromosomes. In general, these operators can be
the unitary, binary or plural ones. Each host has got the
mutators of its own. In the simplest case IPs are the only
source of the host’s mutations.

If IP founds hopeful mutation strategy, then both host and
parasite will get chance for reproduction, the parasite
rides on a new turn of evolution on the transformed host.
Virtually we have co-evolution of hosts and their
intelligent mutators-parasites.

1.2 THE ARTIFICIAL ANT PROBLEM

The artificial ant problem is the simulation of an ant
navigation aimed at passing through the labeled trail placed
in a grid world (Jefferson et al. 1992; Koza, 1992). The
trail was nicknamed as “ The John Muir Trail” in the UCLA
experiment (Jefferson et al., 1991). Each labeled cell is
numbered sequentially, from the 1st which is settled
directly next to the starting cell, through to the last cell.
The ant’s task is to pass through the labeled cells one by
one (the more the better) for the limited time period. The
ants are simple finite-state automata or an artificial neural
network, which can move along the grid world and test their
immediate surroundings. The trail starts off quite easy to
follow, and gradually gets more difficult, as the turns
become more unpredictable and gaps appear (See Fig.2).
Therefore, the successful ant’s program must be quite
sophisticated. The problem has been repeatedly used as a
benchmark problem (For references See Langdon and
Poli, 1998).

2 METHODS AND APPROACH

While the ant test was implemented at least in two
different C++ libraries (Zongker and Punch, 1995), we
gave preference to the Peter Brennan’s version (Brennan,
1994). This “ ANT program” was designed in such a way
that to isolate, as far as possible, the components of the
genetic algorithm from the trail-following experiment and
the ant representation. Brennan’s ants are finite state
automata.

2.1 TECHNIQUE OF MOBILE
GENETIC ELEMENTS - TRANSPOSONS

Mobile Genetic Elements (MGEs) - transposons are akin
to computer viruses. They are the autonomous programs,
which are transmissible horizontally (viz., from one site to
another one on the same or another chromosome) or
vertically (from the ancestor to the descendants in the
reproduction process). These autonomous parasitic
programs cooperate with the host genetic programs, thus
realizing process of self-replication - the only aim, which
can be associated with that activity. We developed some
new operators which are the computer program
procedures, performing processes of replication, mutation
and invasion of MGEs into specific sites on

chromosomes, as well as interactions of MGE with the
chromosome (interrelations of parasite - host type).

It is appropriate here to make some notes, concerning the
terminology. MGE technique comprises the procedures
for initialization of mobile genetic elements and
procedures for operating with these elements. Hereinafter
in this section mobile elements will be referred to as
“ viruses” , whereas the procedures, operating with them
will be termed as “ MGE operators” . There are only two
types of operators. The one-place operator is an analogue
of point mutation and the two-place (binary) operator
realizing the procedure of transmission of virus from one
chromosome (host) to another chromosome (another
host).

2.1.1 Viruses

Let us recall that the ant binary string - chromosome is
coding a state transition table of finite state automation.
Altogether there are 32 finite states of automation,
ranging from STATE#0 up to STATE#31. All operators
start reading and interpreting the table beginning from the
STATE#0. For example, STATE #0 determines one of the
four actions or instructions (FWD - “ forward” , RGT - “ to
the right” , LFT - “ to the left” or NOP - “ do-nothing”) and
the number of the next state, depending on binary input
value (0 or 1). This finite state automation can be
represented as a state transition diagram and interpreted as
a decision tree but, as far as references to already passed
by states are permissible, that tree can have loops.

Henceforward we will refer to these state number
sequences, which ant can pass through moving along the
branches of the tree and according sequences of
instructions (routines), which it will perform, as
“ patterns” . In other words, pattern is concrete sequence of
states, which an ant can come through and sequence of
instructions, which an ant can perform, when it passes
from state to state. Concrete example of patterns are given
on the Fig. 1. Hereinafter, the abbreviations of
instructions in the pattern will be referred to as elements
of pattern.

We use this concrete definition of our virus (mobile
genetic element - transposon). Virus is the pattern, having
the following properties:

the pattern should include elements which number lie
in the range between minimum and maximum values;

the pattern should not contain NOP elements and
internal circles;

the pattern should be finished up with a reference to
the initial state. The transitions cycle will be executed
until only white squares remain ahead of the ant.

GENETIC ALGORITHMS 563

2.1.2 MGE - operators

MGE - operators scan the predetermined quota of
chromosomes in population. Successively decoding
chromosome record, this operator is seeking for procedure
sequences, which are identified as virus. But, MGE
operator perceives procedures and state transitions only
with the proviso that there is no labeled square ahead of
the ant, i.e. under condition input=0 (See fig. 1).

State Input=0

0 LFT/#17

17 FWD/#13

13 FWD/#21

21 LFT/#9

9 LFT/#0

Figure 1. Here is an example of a virus. The virus is a
closed five-element cycle of states transitions (0, 17, 13,
21, 9, and again, 0). There are 32 states at all. Each state
determines two alternate actions, depending on input
signal. The input signal is what an ant sees before him. If
the cell before him is black then the input is 1, in opposite
case the input is 0. Each of alternative actions includes
one of four possible movements (FWD, RGT, LFT or
NOP) and transition to the next state.

Two-place MGE operator provides the transmission of the
virus from an ant to another one, thus realizing the
reproduction procedure of this virus in gene pool of the
host (ant) population. This procedure performs the
following operations.

First, a pair of ants is chosen at random. Then, the
chromosome of any of them is scanned in search of the
virus. If the virus is found, it is replicated in the partner
chromosome, irrespectively of initial record character in
that chromosome. The chromosome scanning starts from
the zero line (state#0) and goes on as far as the first virus
is met. If no virus is met, scanning finishes up only when
the chromosome record ends. So, scanning ceases
irrespectively of the remaining chromosome un-scanned
part content.

One-place MGE operator is a sort of point mutation,
realized under particular conditions. This is what we call
an intelligent mutator. In detail, the operator acts in such a
way. If it finds a pattern in the predetermined length
range, and the action NOP completes this pattern, then
this instruction is substituted for the one of the three other
actions (FWD, RGT or LFT). Specifically, this NOP is
substituted for the action from the fifth element of the
pattern, counted in order. But, if the found pattern is
completed by the reference to the one of the elements
inside pattern (internal cycle), then we have the following.
The action of this element is substituted for the action of
the fifth element, counted backward from the end, the

reference being substituted for found at random reference
to the element outside of the pattern.

3 RESULTS

The test trail, used in this work is illustrated in Fig. 2. It
can be seen that up to the 64th element our trail coincide
with the Los Altos one, but the next part of the trail
includes chaotically scattered elements of high
complexity. Being trained on much simpler preceding
trail part, the ant is not prepared to surmount the
subsequent, complicated sector (biologists would say that
the ant is not pre-adapted to new conditions it faced with
in this sector). More specifically, problems arise at
attempts to get over gaps between the 64th and the 65th, or
the 67th and the 68th cells.

Figure 2. Ant trail used in our computer experiments. The
trail itself is a series of squares on a 32x32 white toroidal
grid. Each cell is numbered sequentially, from the 1st to
the 89th. The first two gaps of the higher complexity are
between 64th and 65th and 67th and 68th.

3.1 MGES REALLY ACCELERATES THE
EVOLUTIONARY SEARCH

The preliminary computer experiments showed that the
accelerating effect of MGE is especially noticeable for
small populations, when the probability of the effective
navigation algorithm finding by applying standard
crossover and mutation operators is low.

On this basis, the following experiments were carried out
on populations of 100 ants. The choice of such a small

GENETIC ALGORITHMS564

population is also explained by our aim to carry out a
comprehensive analysis of MGE dynamics. Such an
analysis is not feasible for large populations of ants
because of great number of viruses.

With the aim of demonstrating of the MGE technique
efficiency we performed 100 independent runs of the
program, 5000 generations each. The results of test and
control runs (population with MGE and without MGE
correspondingly) were compared in several series with the
different values of standard mutation parameters.
Everywhere in this section we will accept that the
effective navigation algorithm should overcome the level
of maximum score in 64 for 330 time steps.

The results of program runs with the MGE operator and
without it are illustrated in Fig. 3. It can be seen, that
MGE technique obviously increases the probability of
finding of effective navigation algorithm for small
populations and for a little number of generations.

Figure 3. Numerical experiments, demonstrating
statistically certain increasing of the GA efficiency due to
the effect of MGE operators. A comparison of the mean
and the best-of-generation score dynamics (MGE operator
being activated) with the control (MGE operator is
disabled). The score values are averaged over 100 runs in
both cases. The size of population = 100; the number of
generations = 5000; the pattern size varies from 5 to 11;
crossover rate (P/bit)/generation = 0.0001; mutation rate
(P/bit)/generation = 0.04; i are the best-of-generation
scores and iii are the mean scores for the runs with MGE
operators; ii are the best-of-generation scores and iiii are
the mean scores for the control runs (without MGE
operators).

As it is evident from the graphs on Fig. 3, the mean and
the best-of-generation score scores in experiment and in
control are growing, to a first approximation, linear in
time. But the increment of growth in experiment with
MGE is substantially higher, than in control.

It may be suggested that MGE operators raise ant
variability mainly in nonspecific manner thus

supplementing mutation effect of standard operators. But,
this suggestion is not substantiated by the detailed
analysis of mutation process. We carried out control runs
with different values of standard mutations: the high
level of standard mutation does not raise the effectiveness
of the navigation algorithm search, moreover, it decreases
this effectiveness.

3.2 HORIZONTAL TRANSMISSION OF MGES
IS NECESSARY FOR THEIR EFFECTIVE
ACTION

As far MGEs are transmitted vertically (from ancestors to
descendants), MGE of the host, that have superiority in
reproduction success is rapidly spreading in the
population and gives new forms. But this process per se is
insufficient for the effective acceleration of ant learning.
Two-place MGE operator, performing horizontal
distribution of MGE from one ant to another is a
necessary for rising of ant training ability. In Fig. 4 we
illustrate the results of comparing of the test, presented in
Fig.3, with the similar test, in which frequency of
applying of two-place MGE operator was reduced by the
factor of 10 and accounted 5%. This parameter
determines the proportion of population, which is
subjected to the action the two-place MGE operator in a
generation. In previous experiments, this quota accounted
50%.

Figure 4. The influence of decreasing of frequency of
applying of two-place MGE operator on the ant learning
abilities. i are the best-of-generation scores and iii are the
mean scores for the runs with high frequency of the two-
place MGE operator action (50%); ii are the best-of-
generation scores and iiii are the mean scores for the runs
with low frequency of the two-place MGE operator action
(5%). The other parameters are the same as in the
previous experiments (see caption to Fig. 3).

The obvious lowering of ant learning abilities with the
decreasing of frequency of the two-placed operator
application is seen from the diagram. Disabling of the

GENETIC ALGORITHMS 565

operator lowers the efficacy further and makes it almost
equal to the control (case without MGE).

4 DISCUSSION

The problem of programming an artificial ant to follow
the Santa Fe trail has been repeatedly used as a
benchmark problem in GP (For references See Langdon
and Poli, 1998). Recently Langdon and Poli have shown
that performance of several techniques is not much better
than the best performance obtainable using uniform
random search (Langdon and Poli, 1998). According to
these authors, the search space is large and forms a Karst
landscape containing many false peaks and many plateaus
riven with deep valleys. The problem fitness landscape is
difficult for hill climbers and the problem is also difficult
for Genetic Algorithms as it contains multiple levels of
deception.

There are many techniques capable of finding solutions to
the ant problem (GA, GP, simulated annealing, hill
clmbing) and although these have different performance
the best typically only do marginally better than the best
performance that could be obtained with random search
(Langdon and Poli, 1998). That is why the ant problem
may be indicative of real optimization problem spaces.

4.1 DOMINANT MGE ARE THE
COMPONENTS OF THE EFFECTIVE
NAVIGATION ALGORITHMS

The results of careful analysis of organization of several
tens of dominant viruses, taken from those ant
populations, which coped with the navigation task, can be
summarized as follows.

1) By the definition, the virus program begins and ends
with the zero state, i.e., it is a loop, executed over and
over until the ant will meet the labeled cell.

2) Four-fold execution of the virus-program produces in
most cases the closed ant trajectories, i.e., the ant will
return to the starting position. As a rule, the closed
contour is located in domains the size of 4×4 or 5×5 cells.

3) As a rule, the virus-program is beginning to work not
from the zero state but from the Nth state, which is
specific to every virus, not beginning with the initial, zero
state. This transition into the Nth state takes place as soon
as the ant (host of the virus) runs against the unlabeled
cell.

4) Start the virus-program from the Nth state provides the
execution of the simplest navigation algorithm, necessary
for overcoming the simplest gaps, arranged in the first
half of the trail (“ looking around” , then one step ahead,
“ looking around” again and so forth). This algorithm
provides the successful passage of trail up to the 64th cell
inclusive.

5) The majority of program-viruses guarantee overcoming
of the element of high complexity between the 64th and
the 65th cells.

6) Some viruses are not suitable for the navigation
programs. In that case the chromosome elements,
arranged in virus-free domain take control over
navigation.

The detailed analysis of the organization of dominant
MGE forms in populations, which are succeeded in
finding of the effective navigation programs, showed, that
the MGE themselves become the components of these
programs. Namely, the case in point is about the part of
navigation program that is used for effective “snuffing
around” in situation, when ant faces with a wide gap.

4.2 WISE MUTATORS HAVE A
SEARCH SPACE CONFINING EFFECT

The Muir’s Trail search space has rugged geometry due to
specific and discrete character of the problem. That is
why, the gradient methods are not effective here.
Moreover, this ant navigation problem is classified as a
GA hard problem, especially if trail is not designed
specially for ant population training. The efficiency of
MGE in the role of intelligent mutators can be measured
by their search space domain confining ability. Therefore,
the selection criteria inserted into MGE operators had to
increase the probability of the effective navigation
algorithm finding on the element of high complexity.

A comparison of mutation frequencies in experiment and
control with the according learning rates confirms
multiple reduction of evaluation numbers, needed for
reaching of the same required learning in experiments
with MGE. Mutation frequencies for basic experiments
(Fig.3) in control accounts: crossover rate + mutation rate
= 0.0001+0.04 P/bit/generation; MGE1 and MGE2
operators add in average 0.0027 and 0.0075
P/bit/generation accordingly. In other words, MGE in
average adds to value 0.041 about 0.012 P/bit/generation.
This addition brings to multiple acceleration of ant
population learning! Hence, according to fig. 3, up to the
end of the experiment (4622 time-step) the control set
gives max score 6.47, whereas in the test set this value is
attained already on the 451 time-step, i.e. 10 times sooner.

5 CONCLUSIONS

• The enhancement of GA by jumping genes-mutators
substantially increases the efficacy of GA
performance in known benchmark test – ant problem.

• The jumping genes-mutators (artificial transposons)
act as intelligent mutators, that “elaborate” code
blocks with high evolvability value.

GENETIC ALGORITHMS566

Acknowledgments

This work is supported by INTAS grant No 97-3095.

References

Altenberg L. (1994) The evolution of evolvability in
genetic programming. In: K. E. Kinnear, ed. Advances in
Genetic Programming. MIT Press, Cambridge, pp. 47-74.

Brennan P. (1994) ANT: Simulated Evolution on a PC,
manuscript.

Brosius J. (1991) Retroposons - Seeds of evolution.
Science 251, 753.

Burke D.S., De Jong K.A., Grefenstette J.J., Ramsey C.L.
and Wu A. S. (1998) Putting more genetics into genetic
algorithms, Evolutionary Computation, 6:4, 387-410.

Cliff D. and Grand S. (1999) The Creatures Global
Digital Ecosystem. Artificial Life 5(1): 77-93.

Corno F., Reorda M. S. and Squillero G. (1998) The
selfish gene algorithm: a new evolutionary optimization
strategy. In: Proceedings of the 1998 ACM symposium on
Applied Computing, February 27 - March 1, 1998,
Atlanta, GA, USA, pp. 349-355.

Daniels M. (1999) Integrating Simulation Technologies
with Swarm, Agent Simulation: Applications, Models and
Tools, October 1999, Argonne National Laboratory,
University of Chicago.

Doolittle W. F. and Sapienza C. (1980) Selfish genes, the
phenotype paradigm and genome evolution. Nature 284:
601-603.

Harries K. and Smith P. (1997) Exploring alternative
operators and search strategies in genetic programming.
In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David
B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo,
eds, Genetic Programming 1997: Proceedings of the
Second Annual Conference, Stanford University, CA,
USA, 13-16 July 1997. Morgan Kaufmann, pp. 147-155.

Harvey I. (1996) The microbial genetic algorithm,
unpublished work, available at
ftp://ftp.cogs.susx.ac.uk/pub/users/inmanh/Microbe.ps.gz

Hillis W.D. (1990) Co-evolving parasites improve
simulated evolution as an optimization procedure,
Physica D, 42:228-234.

Jefferson D., Collins R., Cooper C., Dyer M., Flowers M.,
Korf R., Taylor C. and Wang A. (1991) Evolution as a
Theme in Artificial Life: The Genesys/Tracker System.
In: Artificial Life II, SFI Studies in the Sciences of
Complexity, vol. X, edited by C.G. Langton, C. Taylor,
J.D. Farmer, and S. Rasmussen. Addison-Wesley, pp.417-
434.

De Jong K.A. and Potter M.A. (1995) Evolving complex
structures via cooperative coevolution, In: Forth Annual

Conference on Evolutionary Computation, San Diego,
CA, 1-3 March 1995.

Koza J.R. (1992) Genetic Programming: on the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, Mass.

Langdon W. B. and Poli R. (1998) Why ants are hard. In
John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H.
Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo,
editors, Genetic Programming 1998: Proceedings of the
Third Annual Conference, University of Wisconsin,
Madison, Wisconsin, USA, 22-25 July 1998. Morgan
Kaufmann, pp.193-201.

Lee C-Y, and Antonsson E.K., Adaptive Evolvability via
Non-Coding Segment Induced Linkage, Proceedings of
the Genetic and Evolutionary Computation Conference,
San Francisco, CA, 2001.

Lones M.A. and Tyrrell A.M., Biomimetic Representation
in Genetic Programming, In: Proceedings of the
Workshop on Computation in Gene Expression at the
Genetic and Evolutionary Computation Conference 2001
(GECCO2001), San Francisco, California, USA, July
2001, pp. 199-204.

Luke S., Hamahashi S. and Kitano H. (1999) “ Genetic”
programming, GECCO-99: Proceedings of the Genetic
and Evolutionary Computation Conference, Banzhaf, W.
et al, eds. San Fransisco: Morgan Kaufmann.

Makalowski W. (1995) SINEs as a Genomic Scrap Yard.
Chap. 5 in The Impact of Short Interspersed Elements
(SINEs) on the Host Genome, edited by Richard J.
Maraia. Austin: R.G. Landes Company.

Nawa N. E., Furuhashi T., Hashiyama T. and Uchikawa
Y. (1999) A study on the discovery of relevant fuzzy rules
using pseudo-bacterial genetic algorithms, IEEE
Transactions on Industrial Electronics, 7, (5), 608-616,
October 1999.

Orgel L. E. and Crick F. H. C. (1980) Selfish DNA: The
ultimate parasite. Nature 284: 604-607.

Olsson B. (1996) Optimization using a host-parasite
model with variable-size distributed populations. In:
Proceedings of the 1996 IEEE 3rd International
Conference on Evolutionary Computation, IEEE Press,
pp. 295-299.

Olsson B. (2001) Co-evolutionary search in asymmetric
spaces, In Wang, P.P., ed., Proceedings of The Fifth Joint
Conference on Information Sciences, Association for
Intelligent Machinery, pp. 1040-1043.

Potter M.A. and De Jong K.A. (1994) A cooperative co-
evolutionary approach to function optimization, In: Third
Parallel Problem Solving from Nature, Jerusalem, Israel,
pp 249-257.

GENETIC ALGORITHMS 567

Potter M.A. and De Jong K.A. (1995) Evolving neural
networks with collaborative species, In: Proc. of the 1995
Summer Computer Simulation Conference, Ottawa,
Ontario, Canada, 24-26 July 1995, pp. 340-345.

Ray T. S. (1991) An approach to the synthesis of life. In:
Langton, C., C. Taylor, J. D. Farmer, & S. Rasmussen
[eds], Artificial Life II, Santa Fe Institute Studies in the
Sciences of Complexity, vol. XI, Redwood City, CA:
Addison-Wesley, pp. 371-408.

Ray T. S. (2001) Overview of Tierra at ATR. In:
Technical Information, No.15, Technologies for Software
Evolutionary Systems. ATR-HIP. Kyoto, Japan.

Simoes A. and Costa E. (2001) An evolutionary approach
to the Zero/One knapsack problem: testing ideas from
biology; In: Procs. 5th Int. Conference on Artificial Neural
Networks and Genetic Algorithms (ICANNGA 2001),
Prague, Czech Republic, 22-25 April 2001.

Spirov A.V. (1996a) Self-Assemblage of gene Networks
in Evolution via Recruiting of New Netters. Lecture Notes
in Computer Sciences. 1141: 91-100.

Spirov A.V. (1996b) Self-organisation of gene networks
in evolution via recruiting of new netters. In: Proceedings
of the First International Conference on Evolutionary

Computations and Its Applications, Moscow, Russia, pp.
399-405.

Spirov A.V. and Samsonova M.G. (1997) Strategy of Co-
evolution of Transposons and Host Genome: Application
to Evolutionary Computations. In: Proceedings of the
Third Nordic Workshop on Genetic Algorithms and their
Applications (3NWGA), 20 - 22 August 1997, Helsinki,
Finland, Ed. Jarmo T. Alander, Finnish Artificial
Intelligence Society, pp. 71-82.

Spirov A.V., Kadyrov A.S. (1998) Transposon Element
Technique Applied to GA-based John Muir’s Trail Test,
In: High-Performance Computing and Networking, pp.
925-928.

Spirov A.V., Kazansky A.B. and Kadyrov A.S. (1998)
Utilizing of “ Parasitic” Mobile Genetic Elements in
Genetic Algorithms. In: International Conference on Soft
Computing and Measurments, St.Petersburg, pp. 266-269.

Spirov A.V. and Kazansky A.B. (1999) Evolutionary
Biology and Evolutionary Computations: Parasitic Mobile
Genetic Elements in Artifical Evolution, In: 2nd Int. Conf.
on Soft Computing and Measurments, St.Petersburg.

Zongker, D. and Punch, B. (1995) lil-gp 1.0,
http://isl.cps.msu.edu/GA/software/lil-gp

GENETIC ALGORITHMS568

Efficient Reinforcement Learning through Evolving Neural Network Topologies

Kenneth O. Stanley
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

kstanley@cs.utexas.edu

Risto Miikkulainen
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

risto@cs.utexas.edu

Abstract

Neuroevolution is currently the strongest method
on the pole-balancing benchmark reinforcement
learning tasks. Although earlier studies sug-
gested that there was an advantage in evolv-
ing the network topology as well as connec-
tion weights, the leading neuroevolution sys-
tems evolve fixed networks. Whether evolv-
ing structure can improve performance is an
open question. In this article, we introduce
such a system, NeuroEvolution of Augmenting
Topologies (NEAT). We show that when struc-
ture is evolved (1) with a principled method of
crossover, (2) by protecting structural innova-
tion, and (3) through incremental growth from
minimal structure, learning is significantly faster
and stronger than with the best fixed-topology
methods. NEAT also shows that it is possi-
ble to evolve populations of increasingly large
genomes, achieving highly complex solutions
that would otherwise be difficult to optimize.

1 INTRODUCTION

Many tasks in the real world involve learning with sparse
reinforcement. Whether navigating a maze of rubble in
search of survivors, controlling a bank of elevators, or mak-
ing a tactical decision in a game, there is frequently no im-
mediate feedback available to evaluate recent decisions. It
is difficult to optimize such complex systems by hand; thus,
learning with sparse reinforcement is a substantial goal for
AI.

Neuroevolution (NE), the artificial evolution of neural net-
works using genetic algorithms, has shown great promise in
reinforcement learning tasks. For example, on the most dif-
ficult versions of the pole balancing problem, which is the
standard benchmark for reinforcement learning systems,

NE methods have recently outperformed other reinforce-
ment learning techniques (Gruau et al. 1996; Moriarty and
Miikkulainen 1996).

Most NE systems that have been tested on pole balancing
evolve connection weights on networks with a fixed topol-
ogy (Gomez and Miikkulainen 1999; Moriarty and Miik-
kulainen 1996; Saravanan and Fogel 1995; Whitley et al.
1993; Wieland 1991). On the other hand, NE systems that
evolve both network topologies and connection weights
simultaneously have also been proposed (Angeline et al.
1993; Gruau et al. 1996; Yao 1999). A major question in
NE is whether such Topology and Weight Evolving Artifi-
cial Neural Networks (TWEANNs) can enhance the perfor-
mance of NE. On one hand, evolving topology along with
weights might make the search more difficult. On the other,
evolving topologies can save the time of having to find the
right number of hidden neurons for a particular problem
(Gruau et al. 1996).

In a recent study, a topology-evolving method called Cel-
lular Encoding (CE; Gruau et al., 1996) was compared to
a fixed-network method called Enforced Subpopulations
(ESP) on the double pole balancing task without velocity
inputs (Gomez and Miikkulainen 1999). Since ESP had no
a priori knowledge of the correct number of hidden nodes
for solving the task, each time it failed, it was restarted
with a new random number of hidden nodes. However,
even then, ESP was five times faster than CE. In other
words, evolving structure did not improve performance in
this study.

This article aims to demonstrate the opposite conclusion:
if done right, evolving structure along with connection
weights can significantly enhance the performance of NE.
We present a novel NE method called NeuroEvolution of
Augmenting Topologies (NEAT) that is designed to take
advantage of structure as a way of minimizing the dimen-
sionality of the search space of connection weights. If
structure is evolved such that topologies are minimized and
grown incrementally, significant performance gains result.

GENETIC ALGORITHMS 569

Node 1
Sensor

Node 2
Sensor

Node 3
Sensor

Node 4
Output

Node 5
Hidden

In 1
Out 4
Weight 0.7

Enabled
Innov 1

In 2
Out 4
Weight−0.5

DISABLED
Innov 2

In 3
Out 4
Weight 0.5

Enabled
Innov 3

In 2
Out 5
Weight 0.2

Enabled
Innov 4

In 5 In 1 In 4
Out 4 Out 5 Out 5
Weight 0.4 Weight 0.6 Weight 0.6

Enabled Enabled Enabled
Innov 5 Innov 6 Innov 11

Genome (Genotype)
Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3
5

4

Figure 1: A Genotype to Phenotype Mapping Example. A
genotype is depicted that produces the shown phenotype. Notice
that the second gene is disabled, so the connection that it specifies
(between nodes 2 and 4) is not expressed in the phenotype.

Evolving structure incrementally presents several technical
challenges: (1) Is there a genetic representation that allows
disparate topologies to crossover in a meaningful way? (2)
How can topological innovation that needs a few genera-
tions to optimize be protected so that it does not disappear
from the population prematurely? (3) How can topologies
be minimized throughout evolution without the need for a
specially contrived fitness function that measures complex-
ity?

The NEAT method consists of solutions to each of these
problems as will be described below. The method is val-
idated on pole balancing tasks, where NEAT performs 25
times faster than Cellular Encoding and 5 times faster than
ESP. The results show that structure is a powerful resource
in NE when appropriately utilized.

2 NEUROEVOLUTION OF
AUGMENTING TOPOLOGIES (NEAT)

NEAT is designed to address the three problems with
TWEANNs raised in the Introduction. We begin by ex-
plaining the genetic encoding used in NEAT, and continue
by describing the components that specifically address each
issue.

2.1 GENETIC ENCODING

NEAT’s genetic encoding scheme is designed to allow cor-
responding genes to be easily lined up when two genomes
crossover during mating. Thus, genomes are linear repre-
sentations of network connectivity (figure 1). Each genome
includes a list of connection genes, each of which refers to
two node genes being connected. Each connection gene
specifies the in-node, the out-node, the weight of the con-
nection, whether or not the connection gene is expressed
(an enable bit), and an innovation number, which allows
finding corresponding genes (as will be explained below).

Mutation in NEAT can change both connection weights and

1

1

1

1

2

2

2

2

3

3

3

3
6

5

5

5

5

4

4

4

4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>4

1−>5

1−>5

1−>5

1−>5

3−>5

3−>6 6−>4

DIS

DIS DIS

DIS

DIS

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

8 9

Mutate Add Connection

Mutate Add Node

Figure 2: The two types of structural mutation in NEAT.
Both types, adding a connection and adding a node, are illustrated
with the genes above their phenotypes. The top number in each
genome is the innovation number of that gene. The innovation
numbers are historical markers that identify the original historical
ancestor of each gene. New genes are assigned new increasingly
higher numbers.

network structures. Connection weights mutate as in any
NE system, with each connection either perturbed or not at
each generation. Structural mutations occur in two ways
(figure 2). Each mutation expands the size of the genome
by adding gene(s). In the add connection mutation, a sin-
gle new connection gene is added connecting two previ-
ously unconnected nodes. In the add node mutation an ex-
isting connection is split and the new node placed where the
old connection used to be. The old connection is disabled
and two new connections are added to the genome. This
method of adding nodes was chosen in order to integrate
new nodes immediately into the network.

Through mutation, the genomes in NEAT will gradually
get larger. Genomes of varying sizes will result, some-
times with completely different connections at the same
positions. How can NE cross them over in a sensible way?
The next section explains how NEAT addresses this prob-
lem.

2.2 TRACKING GENES THROUGH HISTORICAL
MARKINGS

It turns out that there is unexploited information in evolu-
tion that tells us exactly which genes match up with which
genes between any individuals in a topologically diverse
population. That information is the historical origin of each
gene in the population. Two genes with the same historical
origin must represent the same structure (although possibly
with different weights), since they are both derived from
the same ancestral gene from some point in the past. Thus,
all a system needs to do to know which genes line up with
which is to keep track of the historical origin of every gene
in the system.

GENETIC ALGORITHMS570

1−>4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>6

5−>4

5−>4

1−>5

1−>5

6−>4

6−>4

1−>6

1−>6

1−>61−>5

5−>6

5−>6

3−>5

3−>5

3−>56−>4

3−>4

3−>4

3−>4

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB DISAB

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

4

4

5

5

5

6

5

5

8

8

7

7

10

10

108

6

6

9

9

97

3

3

3

disjointdisjoint

disjoint

excessexcess

Parent1 Parent2

Parent2

Offspring

Parent1

1

1

1
2

2

2
3

3

3

5

5

5

6

4

4

6

4

Figure 3: Matching Up Genomes for Different Network
Topologies Using Innovation Numbers. Although Parent 1 and
Parent 2 look different, their innovation numbers (shown at the
top of each gene) tell us which genes match up with which. Even
without any topological analysis, a new structure that combines
the overlapping parts of the two parents as well as their differ-
ent parts can be created. In this case the parents are equally fit
and the genes are inherited from both parents. Otherwise, the off-
spring inherit only the disjoint and excess genes of the most fit
parent.

Tracking the historical origins requires very little compu-
tation. Whenever a new gene appears (through structural
mutation), a global innovation number is incremented and
assigned to that gene. The innovation numbers thus repre-
sent a chronology of the appearance of every gene in the
system. As an example, let us say the two mutations in
figure 2 occurred one after another in the system. The new
connection gene created in the first mutation is assigned the
number

�
, and the two new connection genes added during

the new node mutation are assigned the numbers � and � . In
the future, whenever these genomes mate, the offspring will
inherit the same innovation numbers on each gene; innova-
tion numbers are never changed. Thus, the historical origin
of every gene in the system is known throughout evolution.

The historical markings give NEAT a powerful new capa-
bility, effectively avoiding the problem of competing con-
ventions (Montana and Davis 1989; Radcliffe 1993; Schaf-
fer et al. 1992). The system now knows exactly which
genes match up with which (figure 3). When crossing over,
the genes in both genomes with the same innovation num-
bers are lined up. These genes are called matching genes.
Genes that do not match are either disjoint (�) or excess

(�), depending on whether they occur within or outside the
range of the other parent’s innovation numbers. They rep-
resent structure that is not present in the other genome. In
composing the offspring, genes are randomly chosen from
either parent at matching genes, whereas all excess or dis-
joint genes are always included from the more fit parent,
or if they are equally fit, from both parents. This way, his-
torical markings allow NEAT to perform crossover using
linear genomes without the need for expensive topological
analysis.

By adding new genes to the population and sensibly mating
genomes representing different structures, the system can
form a population of diverse topologies. However, it turns
out that such a population on its own cannot maintain topo-
logical innovations. Because smaller structures optimize
faster than larger structures, and adding nodes and connec-
tions usually initially decreases the fitness of the network,
recently augmented structures have little hope of surviving
more than one generation even though the innovations they
represent might be crucial towards solving the task in the
long run. The solution is to protect innovation by speciat-
ing the population, as explained in the next section.

2.3 PROTECTING INNOVATION THROUGH
SPECIATION

Speciation is commonly applied to multimodal function
optimization and the coevolution of modular systems,
where its main function is to preserve diversity (Mahfoud
1995; Potter and De Jong 1995). We borrow the idea from
these fields and bring it to TWEANNs, where it protects in-
novation. Speciation allows organisms to compete primar-
ily within their own niches instead of with the population at
large. This way, topological innovations are protected in a
new niche where they have time to optimize their structure
through competition within the niche.

The idea is to divide the population into species such that
similar topologies are in the same species. This task ap-
pears to be a topology matching problem. However, it again
turns out that historical markings offer a more efficient so-
lution.

The number of excess and disjoint genes between a pair
of genomes is a natural measure of their compatibility.
The more disjoint two genomes are, the less evolutionary
history they share, and thus the less compatible they are.
Therefore, we can measure the compatibility distance � of
different structures in NEAT as a simple linear combination
of the number of excess (�) and disjoint (�) genes, as well
as the average weight differences of matching genes (�):

��� 	�
 �� 	�� �� 	���� ��� (1)

The coefficients, 	�
 , 	�� , and 	 � , allow us to adjust the im-

GENETIC ALGORITHMS 571

portance of the three factors, and the factor
�

, the number
of genes in the larger genome, normalizes for genome size
(
�

can be set to 1 if both genomes are small, i.e. consist of
fewer than 20 genes).

The distance measure � allows us to speciate using a com-
patibility threshold ��� . Genomes are compared to each
species one at a time; if a genomes’ distance to a ran-
domly chosen member of the species is less than ��� , it is
placed into this species. Each genome is placed into the
first species where this condition is satisfied, so that no
genome is in more than one species. Measuring � for a
pair of genomes is linear in the number of connections even
though � precisely expresses compatibility between multi-
dimensional topologies. This efficiency is possible because
of the historical markings.

As the reproduction mechanism for NEAT, we use explicit
fitness sharing (Goldberg and Richardson 1987), where or-
ganisms in the same species must share the fitness of their
niche. Thus, a species cannot afford to become too big
even if many of its organisms perform well. Therefore, any
one species is unlikely to take over the entire population,
which is crucial for speciated evolution to work. The origi-
nal fitnesses are first adjusted by dividing by the number of
individuals in the species. Species then grow or shrink de-
pending on whether their average adjusted fitness is above
or below the population average:

���� � ����� "!
$# %�# & (2)

where
� � and

� �� are the old and the new number of indi-
viduals in species ' , # %� is the adjusted fitness of individual(

in species ' , and # is the mean adjusted fitness in the en-
tire population. The best-performing) % of each species
is randomly mated to generate

� �� offspring, replacing the
entire population of the species. 1

The net effect of speciating the population is that topolog-
ical innovation is protected. The final goal of the system,
then, is to perform the search for a solution as efficiently
as possible. This goal is achieved through minimizing the
dimensionality of the search space.

2.4 MINIMIZING DIMENSIONALITY THROUGH
INCREMENTAL GROWTH FROM MINIMAL
STRUCTURE

TWEANNs typically start with an initial population of ran-
dom topologies (Angeline et al. 1993; Dasgupta and Mc-
Gregor 1992; Gruau et al. 1996; Zhang and Muhlenbein

1In rare cases when the fitness of the entire population does not
improve for more than 20 generations, only the top two species are
allowed to reproduce, refocusing the search into the most promis-
ing spaces.

1993). This way topological diversity is introduced to the
population from the outset. However, it is not clear that
such diversity is necessary or useful. A population of ran-
dom topologies has a great deal of unjustified structure that
has not withstood a single fitness evaluation. Therefore,
there is no way to know if any of such structure is nec-
essary. It is costly though because the more connections
a network contains, the higher the number of dimensions
that need to be searched to optimize the network. There-
fore, with random topologies the algorithm may waste a lot
of effort by optimizing unnecessarily complex structures.

In contrast, NEAT biases the search towards minimal-
dimensional spaces by starting out with a uniform popu-
lation of networks with zero hidden nodes (i.e. all inputs
connect directly to outputs). New structure is introduced
incrementally as structural mutations occur, and only those
structures survive that are found to be useful through fitness
evaluations. In other words, the structural elaborations that
occur in NEAT are always justified. Since the population
starts minimally, the dimensionality of the search space is
minimized, and NEAT is always searching through fewer
dimensions than other TWEANNs and fixed-topology NE
systems. Minimizing dimensionality gives NEAT a perfor-
mance advantage compared to other approaches, as will be
discussed next.

3 POLE BALANCING EXPERIMENTS

3.1 POLE BALANCING AS A BENCHMARK
TASK

There are many reinforcement learning tasks where the
techniques employed in NEAT can make a difference.
Many of these potential applications, like robot navigation
or game playing, are open problems where evaluation is
difficult. In this paper, we focus on the pole balancing do-
main because it has been used as a reinforcement learn-
ing benchmark for over 30 years (Anderson 1989; Barto
et al. 1983; Gomez and Miikkulainen 1999; Gruau et al.
1996; Michie and Chambers 1968; Moriarty and Miik-
kulainen 1996; Saravanan and Fogel 1995; Watkins and
Dayan 1992; Whitley et al. 1993; Wieland 1991, 1990),
which makes it easy to compare to other methods. It is
also a good surrogate for real problems, in part because
pole balancing in fact is a real task, and also because the
difficulty can be adjusted.

Earlier comparisons were done with a single pole, but this
version of the task has become too easy for modern meth-
ods. Therefore, we demonstrate the advantage of evolv-
ing structure through double pole balancing experiments.
Two poles are connected to a moving cart by a hinge and
the neural network must apply force to the cart to keep
the poles balanced for as long as possible without going

GENETIC ALGORITHMS572

beyond the boundaries of the track. The system state is
defined by the cart position (*) and velocity (+*), the first
pole’s position (,
) and angular velocity (+,
), and the sec-
ond pole’s position (, �) and angular velocity (+, �). Control
is possible because the poles have different lengths and re-
spond differently to control inputs.

Double-pole balancing is sufficiently challenging even for
the best current methods. Neuroevolution generally per-
forms better in this task than standard reinforcement learn-
ing based on value functions and policy iteration (such as
Q-learning and VAPS; Watkins and Dayan 1992, Meauleau
et al. 1999, Gomez and Miikkulainen 2002). The question
studied in this paper is therefore whether evolving structure
can lead to greater NE performance.

3.2 COMPARISONS

Two versions of the double pole balancing task are used:
one with velocity inputs included and another without ve-
locity information. The first task is Markovian and allows
comparing to many different systems. Taking away veloc-
ity information makes the task more difficult because the
network must estimate an internal state in lieu of velocity,
which requires recurrent connections.

On the double pole balancing with velocity (DPV) prob-
lem, NEAT is compared to published results from four
other NE systems. The first two represent standard
population-based approaches (Saravanan and Fogel 1995;
Wieland 1991). Saravanan and Fogel used Evolutionary
Programming, which relies entirely on mutation of connec-
tion weights, while Wieland used both mating and muta-
tion. The second two systems, SANE (Moriarty and Miik-
kulainen 1996) and ESP (Gomez and Miikkulainen 1999),
evolve populations of neurons and a population of network
blueprints that specifies how to build networks from the
neurons that are assembled into fixed-topology networks
for evaluation. SANE maintains a single population of neu-
rons. ESP improves over SANE by maintaining a separate
population for each hidden neuron position in the complete
network. To our knowledge, the results of ESP are the best
achieved so far in this task.

On the double pole balancing without velocity problem
(DPNV), NEAT is compared to the only two systems that
have been demonstrated able to solve the task: Cellular En-
coding (CE; Gruau et al., 1996), and ESP. The success of
CE was first attributed to its ability to evolve structures.
However, ESP, a fixed-topology NE system, was able to
complete the task five times faster simply by restarting
with a random number of hidden nodes whenever it got
stuck. Our experiments will attempt to show that evolution
of structure can lead to better performance if done right.

3.3 PARAMETER SETTINGS

We set up our pole balancing experiments as described
by Wieland (1991) and Gomez (1999). The Runge-Kutta
fourth-order method was used to implement the dynamics
of the system, with a step size of 0.01s. All state vari-
ables were scaled to -/.�01� 2 & 01� 243 before being fed to the net-
work. Networks output a force every 0.02 seconds between-5.�0�2 & 0�243 � . The poles were 0.1m and 1.0m long. The ini-
tial position of the long pole was 076 and the short pole was
upright; the track was 4.8 meters long.

The DPV experiment used a population of 150 NEAT net-
works while the DPNV experiment used a population of
1,000. The larger population reflects the difficulty of the
task. ESP evaluated 200 networks per generation for DPV
and 1000 for DPNV, while CE had a population of 16,384
networks. The coefficients for measuring compatibility
were 	
 �804�%2 and 	 � �804�%2 for both experiments. For
DPNV, 	�� �:9;� 2 and � � �:<;�%2 . For DPV, 	�� �:2;� < and���=�>9?�%2 . The difference in the 	 � coefficient reflects the
size of the populations; a larger population has more room
for distinguishing species based on connection weights,
whereas the smaller population relies more on topology.

If the maximum fitness of a species did not improve in 15
generations, the networks in that species were not allowed
to reproduce. Otherwise, the top <@2@A (i.e. the elite) of
each species reproduced by random mate selection within
the elite. In addition, the champion of each species with
more than five networks was copied into the next genera-
tion unchanged and each elite individual had a 0.1% chance
to mate with an elite individual from another species. The
offspring inherited matching genes randomly from either
parent, and disjoint and excess genes from the better parent,
as described in section 2.2. While other crossover schemes
are possible, this method was found effective and did not
cause excessive bloating of the genomes.

There was an 80% chance that the connection weights of an
offspring genome were mutated, in which case each weight
had a 90% chance of being uniformly perturbed and a 10%
chance of being assigned a new random value. The sys-
tem tolerates frequent mutations because speciation pro-
tects radically different weight configurations in their own
species. In the smaller population, the probability of adding
a new node was 0.03 and the probability of a new link was
0.05. In the larger population, the probability of adding a
new link was 0.3, because a larger population has room for
a larger number of species and more topological diversity.

We used a modified sigmoidal transfer function, B�CD*FEG�

IH$JLK4MON PRQ , at all nodes. The steepened sigmoid allows more
fine tuning at extreme activations. It is optimized to be
close to linear during its steepest ascent between activa-
tions .S2;�%T and 2;�%T .

GENETIC ALGORITHMS 573

Method Evaluations Generations No. Nets
Ev. Programming 307,200 150 2048
Conventional NE 80,000 800 100
SANE 12,600 63 200
ESP 3,800 19 200
NEAT 3,578 24 150

Table 1: Double Pole Balancing with Velocity Informa-
tion. Evolutionary programming results were obtained by Sara-
vanan (1995). Conventional neuroevolution data was reported by
Wieland (1991). SANE and ESP results were reported by Gomez
(1999). NEAT results are averaged over 120 experiments. All
other results are averages over 50 runs. The standard deviation for
the NEAT evaluations is 2704 evaluations. Although standard de-
viations for other methods were not reported, if we assume similar
variances, all differences are statistically significant (UWVYX4Z X�X1[),
except that between NEAT and ESP.

3.4 DOUBLE POLE BALANCING WITH
VELOCITIES

The criteria for success on this task was keeping both poles
balanced for 100,000 time steps (30 minutes of simulated
time). A pole was considered balanced between -36 and 36
degrees from vertical.

Table 1 shows that NEAT takes the fewest evaluations to
complete this task, although the difference between NEAT
and ESP is not statistically significant. The fixed-topology
NE systems evolved networks with 10 hidden nodes, while
NEAT’s solutions always used between 0 and 4 hidden
nodes. Thus, it is clear that NEAT’s minimization of di-
mensionality is working on this problem. The result is im-
portant because it shows that NEAT performs as well as
ESP while finding more minimal solutions.

3.5 DOUBLE POLE BALANCING WITHOUT
VELOCITIES

Gruau et al. introduced a special fitness function for this
problem to prevent the system from solving the task sim-
ply by moving the cart back and forth quickly to keep the
poles wiggling in the air. (Such a solution does not re-
quire computing the missing velocities.) Because both CE
and ESP were evaluated using this special fitness function,
NEAT uses it on this task as well. The fitness penalizes os-
cillations. It is the sum of two fitness component functions,#
 and # � , such that \]�^2;�"0 #
 _2?�%� # � . The two functions
are defined over 1000 time steps:

 ��`Ia?0�212b2 (3)

� � c 2 if `edf0�2b2 ,g�h iOj�^kl"m k K@nDopo�qpr s l r H rpts l r H r u ln r H r tu ln r v otherwise. (4)

where t is the number of time steps the pole remains bal-
anced during the 1000 total time steps. The denominator

Method Evaluations Generalization No. Nets
CE 840,000 300 16,384
ESP 169,466 289 1,000
NEAT 33,184 286 1,000

Table 2: Double Pole Balancing without Velocity Information
(DPNV). CE is Cellular Encoding of Gruau (1996). ESP is En-
forced Subpopulations of Gomez (1999). All results are averages
over 20 simulations. The standard deviation for NEAT is 21,790
evaluations. Assuming similar variances for CE and ESP, all dif-
ferences in number of evaluations are significant (U�VwX1Z X�X1[).
The generalization results are out of 625 cases in each simulation,
and are not significantly different.

in (4) represents the sum of offsets from center rest of the
cart and the long pole. It is computed by summing the ab-
solute value of the state variables representing the cart and
long pole positions and velocities. Thus, by minimizing
these offsets (damping oscillations), the system can maxi-
mize fitness. Because of this fitness function, swinging the
poles wildly is penalized, forcing the system to internally
compute the hidden state variables.

Under Gruau et al.’s criteria for a solution, the champion
of each generation is tested on generalization to make sure
it is robust. This test takes a lot more time than the fitness
test, which is why it is applied only to the champion. In
addition to balancing both poles for 100,000 time steps, the
winning controller must balance both poles from 625 dif-
ferent initial states, each for 1000 times steps. The number
of successes is called the generalization performance of the
solution. In order to count as a solution, a network needs
to generalize to at least 200 of the 625 initial states. Each
start state is chosen by giving each state value (i.e. * , +* , ,
 ,
and +,
) each of the values 0.05, 0.25, 0.5, 0.75, 0.95 scaled
to the respective range of the input variable (T1xy�{z@|1T).
At each generation, NEAT performs the generalization test
on the champion of the highest-performing species that im-
proved since the last generation.

Table 2 shows that NEAT is the fastest system on this
challenging task. NEAT takes 25 times fewer evaluations
than Gruau’s original benchmark, showing that the way in
which structure is evolved has significant impact on per-
formance. NEAT is also 5 times faster than ESP, showing
that structure can indeed perform better than evolution of
fixed topologies. There was no significant difference in the
ability of any of the 3 methods to generalize.

4 DISCUSSION AND FUTURE WORK

4.1 EXPLAINING PERFORMANCE

Why is NEAT so much faster than ESP on the more dif-
ficult task when there was not much difference in the eas-
ier task? The reason is that in the task without velocities,

GENETIC ALGORITHMS574

Figure 4: A NEAT Solution to the DPNV Problem. Node 2
is the angle of the long pole and node 3 is the angle of the short
pole. This clever solution works by taking the derivative of the
difference in pole angles. Using the recurrent connection to itself,
the single hidden node determines whether the poles are falling
away or towards each other. This solution allows controlling the
system without computing the velocities of each pole separately.
Without evolving structure, it would be difficult to discover such
subtle and compact solutions.

ESP needed to restart an average of 4.06 times per solu-
tion while NEAT never needed to restart. If restarts are
factored out, the systems perform at similar rates. NEAT
evolves many different structures simultaneously in differ-
ent species, each representing a space of different dimen-
sionality. Thus, NEAT is always trying many different
ways to solve the problem at once, so it is less likely to
get stuck.

Figure 4 shows a sample solution network that NEAT de-
veloped for the problem without velocities. The solution
clearly illustrates the advantage of incrementally evolving
structure. The network is a compact and elegant solution to
this problem, in sharp contrast to the fully-connected large
networks evolved by the fixed-topology methods. It shows
that minimal necessary structures are indeed found, even
when it would be difficult to discover them otherwise.

A parallel can be drawn between structure evolution
in NEAT and incremental evolution in fixed structures
(Gomez and Miikkulainen 1997; Wieland 1991). NE is
likely to get stuck on a local optimum when attempting to
solve a difficult task directly. However, after solving an
easier version of the task first, the population is likely to
be in a part of fitness space closer to a solution to a harder
task, allowing it to avoid local optima. This way, a difficult
task can be solved by evolving networks in incrementally
more challenging tasks. Adding structure to a solution is
analogous to this process. The network structure before the

Figure 5: Visualizing speciation. The fixed-size population is
divided into species, shown horizontally with newer species ap-
pearing at right. Time, i.e. evolution generations, are shown ver-
tically. The color coding indicates fitness of the species (lighter
colors are better). Two species began to close in on a solution
soon after the 20th generation. Around the same time, some of
the oldest species became extinct.

addition is optimized in a lower-dimensional space. When
structure is added, the network is placed into a more com-
plex space where it is already close to a solution. This pro-
cess is different from incremental evolution in that adding
structure is automatic in NEAT whereas the sequence of
progressively harder tasks must be designed by the experi-
menter, and can be a challenging problem in itself.

4.2 VISUALIZING SPECIATION

To understand how innovation takes place in NEAT, it is
important to understand the dynamics of speciation. How
many species form over the course of a run? How often do
new species arise? How often do species die? How large
do the species get? We answer these questions by depicting
speciation visually over time.

Figure 5 depicts a typical run of the double pole balancing
with velocities task. In this run, the task took 29 genera-
tions to complete, which is slightly above average. In the
visualization, successive generations are shown from top to
bottom. Species are depicted horizontally for each genera-
tion, with the width of each species proportional to its size
during the corresponding generation. Species are divided

GENETIC ALGORITHMS 575

from each other by white lines, and new species always ar-
rive on the right hand side. Gray-scale shading is used to
indicate the fitness of each species. A species is colored
dark grey if it has individuals that are more than one stan-
dard deviation above the mean fitness for the run, and light
grey if they are two standard deviations above. These two
tiers identify the most promising species and those that are
very close to a solution. Thus, it is possible to follow any
species from its inception to the end of the run.

Figure 5 shows that only one species existed in the popu-
lation until the 5th generation, that is, all organisms were
sufficiently compatible to be grouped into a single species.
In successive generations, the initial species shrank dramat-
ically in order to make room for the new species, and even-
tually became extinct in the 21st generation. Extinction is
shown by a white triangle between the generation it expired
and the next generation. The initial species with minimal
structure was unable to compete with newer, more innova-
tive species. The second species to appear in the population
met a similar fate in the 19th generation.

In the 21st generation a structural mutation in the fourth
species connected the long pole angle sensor to a hidden
node that had previously only been connected to the cart
position sensor. This innovation allowed the networks to
combine these observations, leading to a significant boost
in fitness (and brightening of the species in figure 5). This
innovative species subsequently expanded, but did not take
over the population. Nearly simultaneously, in the 22nd
generation, a younger species also made its own useful con-
nection, this time between the short pole velocity sensor
and long pole angle sensor, leading to its own subsequent
expansion. In the 28th generation, this same species made
a pivotal connection between the cart position and its al-
ready established method for comparing short pole velocity
to long pole angle. This innovation was enough to solve the
problem within one generation of additional weight muta-
tions. In the final generation, the winning species was 11
generations old and included 38 neural networks out of the
population of 150.

Most of the species that did not come close to a solution
survived the run even though they fell significantly behind
around the 21st generation. This observation is important,
because it visually demonstrates that innovation is indeed
being protected. The winning species does not take over
the entire population.

4.3 FUTURE WORK

NEAT strengthens the analogy between GAs and natural
evolution by not only performing the optimizing function
of evolution, but also a complexifying function, allowing
solutions to become incrementally more complex at the

same time as they become more optimal. This is potentially
a very powerful extension, and will be further explored in
future work.

One potential application of complexification is continual
coevolution. In a companion paper (Stanley and Miikkulai-
nen 2002) we demonstrate how NEAT can add new struc-
ture to an existing solution, achieving more complex behav-
ior while maintaining previous capabilities. Thus, an arms
race of increasingly more sophisticated solutions can take
place. Strategies evolved with NEAT not only reached a
higher level of sophistication than those evolved with fixed-
topologies, but also continued to improve for significantly
more generations.

Another direction of future work is to extend NEAT to tasks
with a high number of inputs and outputs. For such net-
works, the minimal initial structure may have to be defined
differently than for networks with few inputs and outputs.
For example, a fully connected two-layer network with 30
inputs and 30 outputs would require 900 connections. On
the other hand, the same network with a five-unit hidden
layer would require only 300 connections. Thus, the three-
layer network is actually simpler, implying that the mini-
mal starting topology for such domains should include hid-
den nodes.

Finally, the NEAT method can potentially be extended to
solution representations other than neural networks. In any
domain where solutions can be represented with different
levels of complexity, the search for solutions can begin with
a minimal representation that is progressively augmented
as evolution proceeds. For example, the NEAT method
may be applied to the evolution of hardware (Miller et al.
200a,b), cellular automata (Mitchell et al. 1996), or ge-
netic programs (Koza 1992). NEAT provides a principled
methodology for implementing a complexifying search
from a minimal starting point in any such structures.

5 CONCLUSION

The main conclusion is that evolving structure and connec-
tion weights in the style of NEAT leads to significant per-
formance gains in reinforcement learning. NEAT exploits
properties of both structure and history that have not been
utilized before. Historical markings, protection of innova-
tion through speciation, and incremental growth from min-
imal structure result in a system that is capable of evolv-
ing solutions of minimal complexity. NEAT is a unique
TWEANN method in that its genomes can grow in com-
plexity as necessary, yet no expensive topological analysis
is necessary either to crossover or speciate the population.
It forms a promising foundation on which to build rein-
forcement learning systems for complex real world tasks.

GENETIC ALGORITHMS576

Acknowledgments

This research was supported in part by the NSF under grant
IIS-0083776 and by the Texas Higher Education Coordi-
nating Board under grant ARP-003658-476-2001. Thanks
to Faustino Gomez for providing pole balancing code.

References
Anderson, C. W. (1989). Learning to control an inverted pendu-

lum using neural networks. IEEE Control Systems Maga-
zine, 9:31–37.

Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1993). An
evolutionary algorithm that constructs recurrent neural net-
works. IEEE Transactions on Neural Networks, 5:54–65.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neu-
ronlike adaptive elements that can solve difficult learning
control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13:834–846.

Dasgupta, D., and McGregor, D. (1992). Designing application-
specific neural networks using the structured genetic algo-
rithm. In Proceedings of the International Conference on
Combinations of Genetic Algorithms and Neural Networks,
87–96.

Goldberg, D. E., and Richardson, J. (1987). Genetic algo-
rithms with sharing for multimodal function optimization.
In Grefenstette, J. J., editor, Proceedings of the Second In-
ternational Conference on Genetic Algorithms, 148–154.
San Francisco, CA: Morgan Kaufmann.

Gomez, F., and Miikkulainen, R. (1997). Incremental evolution of
complex general behavior. Adaptive Behavior, 5:317–342.

Gomez, F., and Miikkulainen, R. (1999). Solving non-Markovian
control tasks with neuroevolution. In Proceedings of the
16th International Joint Conference on Artificial Intelli-
gence. Denver, CO: Morgan Kaufmann.

Gomez, F., and Miikkulainen, R. (2001). Learning robust non-
linear control with neuroevolution. Technical Report AI01-
292, Department of Computer Sciences, The University of
Texas at Austin.

Gruau, F., Whitley, D., and Pyeatt, L. (1996). A comparison
between cellular encoding and direct encoding for genetic
neural networks. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., and Riolo, R. L., editors, Genetic Programming 1996:
Proceedings of the First Annual Conference, 81–89. Cam-
bridge, MA: MIT Press.

Koza, J. R. (1992). Genetic Programming: On the Programming
of Computers by Means of Natural Selection. Cambridge,
MA: MIT Press.

Mahfoud, S. W. (1995). Niching Methods for Genetic Algorithms.
PhD thesis, University of Illinois at Urbana-Champaign, Ur-
bana, IL.

Meuleau, N., Peshkin, L., Kim, K.-E., and Kaelbling, L. P. (1999).
Learning finite-state controllers for partially observable en-
vironments. In Proceedings of the Fifteenth International
Conference on Uncertainty in Artificial Intelligence.

Michie, D., and Chambers, R. A. (1968). BOXES: An experiment
in adaptive control. In Dale, E., and Michie, D., editors,
Machine Intelligence. Edinburgh, UK: Oliver and Boyd.

Miller, J. F., Job, D., and Vassilev, V. K. (200a). Principles in the
evolutionary design of digital circuits – Part I. Journal of
Genetic Programming and Evolvable Machines, 1(1):8–35.

Miller, J. F., Job, D., and Vassilev, V. K. (200b). Principles in the
evolutionary design of digital circuits – Part II. Journal of
Genetic Programming and Evolvable Machines, 3(2):259–
288.

Mitchell, M., Crutchfield, J. P., and Das, R. (1996). Evolving
cellular automata with genetic algorithms: A review of re-
cent work. In Proceedings of the First International Con-
ference on Evolutionary Computation and Its Applications
(EvCA’96). Russian Academy of Sciences.

Montana, D. J., and Davis, L. (1989). Training feedforward neu-
ral networks using genetic algorithms. In Proceedings of
the 11th International Joint Conference on Artificial Intelli-
gence, 762–767. San Francisco, CA: Morgan Kaufmann.

Moriarty, D. E., and Miikkulainen, R. (1996). Efficient reinforce-
ment learning through symbiotic evolution. Machine Learn-
ing, 22:11–32.

Potter, M. A., and De Jong, K. A. (1995). Evolving neural net-
works with collaborative species. In Proceedings of the
1995 Summer Computer Simulation Conference.

Radcliffe, N. J. (1993). Genetic set recombination and its ap-
plication to neural network topology optimization. Neural
computing and applications, 1(1):67–90.

Saravanan, N., and Fogel, D. B. (1995). Evolving neural control
systems. IEEE Expert, 23–27.

Schaffer, J. D., Whitley, D., and Eshelman, L. J. (1992). Com-
binations of genetic algorithms and neural networks: A sur-
vey of the state of the art. In Whitley, D., and Schaffer,
J., editors, Proceedings of the International Workshop on
Combinations of Genetic Algorithms and Neural Networks
(COGANN-92), 1–37. IEEE Computer Society Press.

Stanley, K. O., and Miikkulainen, R. (2002). Continual coevo-
lution through complexification. In Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO-
2002). San Francisco, CA: Morgan Kaufmann.

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning. Machine
Learning, 8(3):279–292.

Whitley, D., Dominic, S., Das, R., and Anderson, C. W. (1993).
Genetic reinforcement learning for neurocontrol problems.
Machine Learning, 13:259–284.

Wieland, A. (1991). Evolving neural network controllers for un-
stable systems. In Proceedings of the International Joint
Conference on Neural Networks (Seattle, WA), 667–673.
Piscataway, NJ: IEEE.

Wieland, A. P. (1990). Evolving controls for unstable systems. In
Touretzky, D. S., Elman, J. L., Sejnowski, T. J., and Hinton,
G. E., editors, Connectionist Models: Proceedings of the
1990 Summer School, 91–102. San Francisco, CA: Morgan
Kaufmann.

Yao, X. (1999). Evolving artificial neural networks. Proceedings
of the IEEE, 87(9):1423–1447.

Zhang, B.-T., and Muhlenbein, H. (1993). Evolving optimal neu-
ral networks using genetic algorithms with Occam’s razor.
Complex Systems, 7:199–220.

GENETIC ALGORITHMS 577

Exact Results from a Coarse Grained Formulation of the Dynamics of
Variable-length Genetic Algorithms

Christopher R. Stephens
Instituto de Ciencias Nucleares

UNAM, Circuito Exterior
Mexico D.F. 04510

stephens@nuclecu.unam.mx

Riccardo Poli
Dept. of Computer Science

University of Essex,
Colchester, CO4 3SQ, UK

rpoli@essex.ac.uk

Alden H. Wright
Dept. of Computer Science

University of Montana, USA
wright@cs.umt.edu

Jonathan E. Rowe
School of Computer Science

University of Birmingham, UK
j.e.rowe@cs.bham.ac.uk

Abstract

We consider the dynamics of variable-length Genetic
Algorithms (GAs) with strings of length N � Nm
using a recently developed exact, coarse-grained for-
mulation where the relevant coarse-grained degrees of
freedom are “building block” schemata. We derive an
exact formal solution of the equations showing how
a hierarchical structure in time and degree of coarse-
graining emerges, the effect of recombination being
to successively form more fine-grained objects from
their more coarse-grained building blocks, where in
this case the building blocks can come from strings of
different lengths. We examine the limit distributions
of the dynamics in the case of a flat fitness landscape,
one-point homologous crossover and no mutation. By
taking advantage of the existence of a set of conserved
quantities in the dynamics we provide exact solutions
for the cases Nm = 2; 3 and use these to investigate
the phenomenon of inter-length-class allele diffusion.
We also study the general case showing what exact re-
sults may be easily derived using our particular coarse-
grained formulation.

1 Introduction

The dynamics engendered by a “canonical” GA and, in-
deed, genetic dynamics in general, is exceedingly com-
plicated. This is true even in the case of what one might
think of as “toy” fitness landscapes such as counting ones
or needle-in-a-haystack. In fact, up until quite recently [1],
to our knowledge, no solutions have been found for the dy-
namics in the presence of recombination for arbitrary string
lengths even in the case of a flat fitness landscape, though
there has been recent noteworthy progress in the special
case of “genepool” recombination [2, 3], where for a given
recombination event allele mixing is over the entire popu-
lation not just between two parents. For binary strings of
fixed length, N , the probability distribution that describes
the dynamics is obtained by solving 2N coupled, non-linear
difference equations. Important results have been derived
about this system of equations by viewing them as a dy-
namical system [4]. However, these coupled equations, in

terms of the underlying string variables, are far removed
from traditional elements of GA theory such as the Schema
theorem and Building Block Hypothesis (BBH) [5, 6].

The underlying microscopic equations, however, can be
rewritten naturally in a basis other than the string basis
[7, 8, 9] yielding evolution equations that offer the benefit
of a very intuitive interpretation, that illuminate the content
of the Schema theorem and the BBH, that naturally coarse
grain from string equations to schema equations, that yield
an interpolation between the microscopic and the macro-
scopic and that offer new exact results or simpler proofs of
known results. These equations lead to many insights into
the dynamics of GAs offering an exact Schema theorem
that naturally incorporates a form of the BBH, although it
is important to emphasize here that the “building blocks”
that naturally emerge in this formulation are dynamic and
not necessarily short or even fit! However, creation events
due to recombination can be precisely understood in terms
of these BBs. Originally applied to a canonical GA (pro-
portional selection, 1-point crossover and mutation) the ba-
sic elements have been extended to GAs with arbitrary se-
lection schemes and any homologous crossover [1] and,
importantly, have been extended to Genetic Programming
(GP) by Poli and coworkers [10, 11].

There has been increasing interest in variable-length repre-
sentations from different points of view [12, 13, 14] . In
this paper we will use a coarse-grained BB formulation to
investigate the dynamics of variable length GAs up to a
maximum size Nm. We present formal solutions for an
homologous crossover operator and arbitrary fitness land-
scape and mutation showing how the solution naturally ad-
mits an interpretation in terms of a hierarchy of BBs. We
then consider the asymptotic behaviour of the dynamics for
a flat fitness landscape, both at the formal level, discussing
generalizations of Geiringer’s theorem, and at the explicit
level, deriving exact solutions for Nm = 2 and 3 and vari-
ous exact results for arbitrary Nm.

This work is, of course, susceptible to the standard criti-
cisms - what is the relevance of considering a small num-
ber of loci and flat fitness landscapes? There are several

GENETIC ALGORITHMS578

ways of rebutting such criticism. Firstly, simple models
can lead to intuitive insights that would be less transparent
in a more complex model. An important example of that is
the minimal two-bit deceptive problem [15]. Another ex-
ample, is the work of Spears [16] where limit distributions
for recombination and mutation for fixed length GAs in a
flat fitness landscape were investigated in simple two and
three-bit problems. Interestingly, even in this case he had to
resort to numerical rather than analytical calculations. Ad-
ditionally, understanding the structure of the dynamics in
simple problems can lead to insight about how to construct
results or proofs in more general problems and potentially
lead to insights which may be of benefit for practitioners.

2 Coarse-Grained Evolution Equations

In this section we introduce the notion of coarse-grained
evolution equations in a BB basis, discussing their inter-
pretation and advantages at a formal level. We will not
derive the coarse-grained exact evolution equations here
but refer the reader to the original literature [7, 9, 10, 11].
Our interest here is variable-length GAs with homologous
crossover. As homologous crossover operators conserve
length classes [18] we will consider the corresponding
evolution equation for strings or schemata within a given
length class N , composed of strings of a fixed length, and
consider arbitrary string length N � Nm, where Nm 2

[1;1]. In this case, if one considers the evolution of length
N strings then one of the parents in the crossover operation
must be a length N string as well while the other parent
may be of arbitrary size. The action of the homologous
crossover we will use can be simply understood by align-
ing the two parents at the first loci then implementing a
mask defined on the common region of the two strings. For
example, with 1111 and 000000 the common region is as-
sociated with the first four loci. A one-point crossover be-
tween the second and third loci would yield 110000 and
0011 while a crossover between the fifth and sixth loci (of
the second string) is not allowed. Hence, the total number
of possible masks on the common region is 24.

Our primary object of interest will be the proportion of
strings of a given type, CN

i , P (CNi ; t), or of a given schema,
�N , P (�N ; t) =

P
CN
i
2�N P (CNi ; t), within a length class

N . Thus, we define a schema relative to a given length
class. However, it is important to note that all proportions
will be relative to the total population size summed over all
length classes. In the infinite population limit, which we
will generally assume throughout, P (CN

i ; t) is simply the
probability for finding the string C

N
i . For a string C

N
i we

have

P (CNi ; t+ 1) = P(CN
i
)Pc(C

N
i ; t) +X

Ci 6=Cj

P(CN
j
!CN

i
)Pc(C

N
j ; t) (1)

where the sum is over all length-class N strings that differ

by at least one bit from C
N
i . P(CN

i
) = (1 � pm)

N is the
probability that CNi remains unmutated and P(CN

j
!CN

i
) =

p
dH(i;j)
m (1� pm)

N�dH(i;j) is the probability that the string
C
N
j mutate to the string C

N
i , dH(i; j) being the Hamming

distance between the strings C
N
i and C

N
j . Note that mu-

tation preserves the length class of a string or schema.
Pc(C

N
i ; t) is the probability of finding a string C

N
i after

selection and crossover and is given by

Pc(C
N
i ; t) = (1� pc)P

0(CNi ; t) (2)

+

NmX
j=1

2min(j;N)
�1X

m=0;even

(pc(m) + pc(�m))P 0(C
j
i (m); t)P 0(CNi (�m); t)

where P 0(CNi ; t) is the probability for selecting the string
C
N
i . pc(m) is the probability of implementing the mask m

on the common region between the two strings and we sum
over only even masks as this ensures that the tail comes
from the second parent which, without loss of generality
we assume to be of length N , and therefore that length is
preserved. �m is the mask conjugate to m. The total num-
ber of possible masks on the common region is 2min(j;N).
C
j
i (m) for a given mask m represents the part of the string

C
N
i inherited from the first parent, which we assume to be

of length j, and C
N
i (�m) is that part inherited from the sec-

ond. Both C
j
i (m) and C

N
i (�m) are schemata. (2) has a form

similar to that for the fixed length case and can be inter-
preted similarly, i.e. strings are created by BBs, the differ-
ence in this case being that one of the BBs can come from
a parent of other than length N . Once again we emphasize
that these BBs are dynamical not static schema averages
and are neither necessarily small or even fit!

The microscopic equation (1) can be coarse-grained to an
arbitrary schema of order N2 � N and defining length (l�
1) contained within strings of size N to find

P (�N ; t+ 1) = P(�N)Pc(�
N ; t)

+
X
�=Ni

P(�=Ni !�N)Pc(�=
N
i ; t) (3)

where the sum is over all schemata, �=Ni , that differ by at
least one bit from �N in one of the N2 defining bits of �N .
In other words any schema competing with �N and belong-
ing to the same partition. P(�N) = (1 � pm)N2 is the
probability that �N remains unmutated and P(�=Ni !�N) =

p
dH(�N ;�=Ni)
m (1 � pm)N2�dH(�N ;�=Ni) is the probability that

the schema �=Ni mutate to the schema �N with dH(�N ; �=Ni)
being the Hamming distance between the schemata �N and
�=Ni . Pc(�N ; t) =

P
CN
i
2�N Pc(C

N
i ; t) is the probability of

finding a schema �N of length class N after selection and
crossover and is given by

Pc(�
N ; t) = (1� pcA(�; t))P

0(�N ; t) (4)

+

NmX
j=1

X
m2Mr(�

N)

(pc(m) + pc(�m))P 0(�j(m); t)P 0(�N (�m); t)

GENETIC ALGORITHMS 579

where P 0(�N ; t) is the probability for selecting a schema
�N from strings of length class N . �N (m) for a given mask
m represents the part of the schema �N inherited from the
first parent and �N (�m) is that part inherited from the sec-
ond. Now, �N (m) and �N (�m) are the BBs for the schema
�N . Thus, we see that BBs at one level are composed of
more primitive (lower order) BBs which in their turn are
composed of lower order blocks etc. thus leading to a hi-
erarchical structure. Mr is the set of crossover masks that
end in a 0 that affect �N , i.e. the number of “allele mixing”
masks, NMr(�) is their number. A(�N ; t) determines the
survival probability of the schema and depends on the prop-
erties of the particular schema, such as order and defining
length, and, importantly, also depends on the length distri-
bution of the strings and their corresponding fitnesses [18].

As with all coarse grained evolution equations the interpre-
tation of (1) and (2) is very intuitive: (2) tells us how a
particular string is selected and survives crossover, or alter-
natively how it is built up from its BBs. The novel element
here compared to standard GAs is that the BBs come from
strings of potentially different sizes. (1) then tells us how
the string is preserved by mutation or formed by mutation
from some other string of the same partition.

We can put the basic equation (1) into a yet more ele-
gant form, the corresponding equation for schemata fol-
lows trivially, by introducing a 2N -dimensional population
vector for each length class, PN (t), whose elements are
P (CNi ; t), i = 1; :::; 2N . Equation (1) takes the form

P
N (t+ 1) =W

N
P
N
c (t) (5)

where theN�N -dimensional mutation matrixW
N

is real,
symmetric and time independent and has elementsW

N

ij =

p
dH(i;j)
m (1�pm)

N�dH(i;j). For selection schemes linear in
P (CNi ; t), P

N
c (t) can be written as

P
N
c (t) = F

N
(t)PN (t) (6)

+

NmX
j=1

2min(j;N)
�1X

m=0;even

(pc(m) + pc(�m))Jj(m; t)

where the “cloning” matrix, F
N
(t), is diagonal

and describes both selection and survival under
crossover. Explicitly, for proportional selection

F
N
ii(t) = (f(Ci)= �f(t))(1 � pc). Finally, the

components of the “source” vector are given by
J
j

CN
i

(m; t) = P 0(C
j
i (m); t)P 0(CNi (�m); t) which cor-

responds to the BB sources, from strings of length j
and N respectively, for the string C

N
i . Defining the

cloning-mutation matrixW
N

s (t) =W
N
F
N
(t) we have

P
N (t+ 1) =W

N

s (t)PN (t)

+

NmX
j=1

2min(j;N)
�1X

m=0;even

(pc(m) + pc(�m))W
N
J
j(m; t) (7)

The interpretation of this equation is that J j

CN
i

(m; t) is a

source which creates strings C
N
i by bringing BBs from

strings of length j and N together. The first term on the
right hand side tells us how the strings themselves are prop-
agated, or survive, into the next generation, the destructive
effect of crossover renormalizing the fitness of the strings.
Note that the equation is linear but for the presence of string
creation. It is this division into a linear term and a source
that allows for a natural formal solution which leads to fur-
ther insight into the nature of GA dynamics while at the
same time offering the possibility of exact, analytic calcu-
lations in certain circumstances.

Needless to say solutions of these dynamical equations
are hard to come by. They represent, for binary alleles,
2(2Nm � 1) coupled non-linear difference equations, or in
the continuous time limit - differential equations. Here, we
consider the formal solution for the case of homologous
crossover and mutation and for any selection scheme lin-
ear in P (CNi ; t). The equation (7) is always of the same
form, i.e. a first order, linear, inhomogeneous difference
(differential) equation. Its iterated solution is

P
N (t) = D(t; 0)PN (0) + (8)

NmX
j=1

2min(j;N)�1X
m=0;even

(pc(m) + pc(�m))

t�1X
n=0

D(t; n)W
N
J
j(m;n)

whereD(t; 0) =
Qt�1

n=0W
N

s (n). The interpretation of (8)
follows naturally from that of (7). Considering first the
case without mutation, the first term on the right hand side
gives us the probability that a string survives from t = 0
to t without being destroyed by crossover. In other words
D(t; 0) is the Greens function or propagator for PN [1].
In the case of a flat fitness landscape without mutation for
instance Dij(t; 0) = (1 � pc)

tÆij . In the second term,
each element, Jj(m;n), is associated with the creation of a
string C

N
i at time n via the juxtaposition of two BBs from

strings of length j and N respectively and associated with
a mask m. The component corresponding to C

N
i of the

matrix D(t; n) =
Qt�1

i=nWs(i) is the probability that the
resultant string survives from its creation at time n to t. The
sum over masks, string lengths, j, and n is simply the sum
over all possible creation events in the dynamics. In a more
explicit notation we will denote the propagator for a string
h1 � � �hN by Dh1���hN (t; t

0).

This formal solution above has a very natural diagramatic
interpretation both at the level of fixed length strings which
can be extended to the present case.

3 Geiringer’s Theorem

For any dynamical system fixed points and their stabil-
ity are of particular interest. Hence, in this section we
will discuss the fixed point distributions for fixed and

GENETIC ALGORITHMS580

variable-length GAs. For a fixed-length GA evolving on
a flat landscape in the absence of mutation the fixed point
P �(h1:::hN) of the dynamics for a string Ci = h1:::hN is

P �(h1:::hN) = lim
t!1

P (Ci; t) =

NY
i=1

P (�i�1hi�
N�i; 0) (9)

where �i as a string argument means the symbol � repeated
i times. This result is the well known Geiringer’s theorem
[17] for a general crossover operator. Any population that
factorizes in this manner is said to be in linkage equilbrium
and the resulting allele frequencies are known as Robbins
proportions. This result emerges naturally from equation
(8), specialized to the case of a single length class, N ,
which yields for a flat landscape in the absence of muta-
tion

P
N (t) = (1� pc)

t
P(0) +

2N�1X
m=0;even

(pc(m) + pc(�m))

t�1X
n=0

(1� pc)
t�n�1

J
N (m;n) (10)

As limt!1(1 � pc)
t = 0, hence PN (t) ! 0 as t ! 1

unless the summation over time leads to a cancellation
of this damping factor. Given that the BB constituents
of JN (m;n) are associated with damping factors (1 �

pc
NMr (C

j

i
(m))

NM
)t and (1� pc

NMr (C
N
i (�m))

NM
)t, where NM is

the total number of non-zero crossover masks, this can only
occur if there is no damping of the consituent BBs and this
only happens if they are 1-schemata as then NMr

= 0.
Thus, the only term that survives in the hierarchical solu-
tion of (8) is the product of 1-schemata [9].

The type of recombination employed controls how fast the
transient corrections to the limit distribution die out. The
damping is controlled by NMr

(�), hence the bigger it is
the faster the corresponding transient dies out [1]).

The general approach to equilibrium is characterized by
the exponential decay of linkage disequilibrium functions
�h1���hN = h(h1 � hh1i) � � � (hN � hhN i)i where hOi
denotes the population average of O. Thus, hh ii =
P (�i�1hi�

N�i). These linkage disequilbrium functions
will be seen to be natural variables in which to understand
the dynamics and approach to equilbrium. In GAs a set of
variables that have also been viewed as natural for consid-
ering the dynamics are “building blocks”.

The generalization of Geiringer’s theorem to the variable
length case has recently been derived [18]

P �(h1 � � �hN) = P (�N)

NY
i=1

P (�i�1hi#; 0)

P (�i#; 0)
; (11)

where

P (�i�1hi#; 0) =
X
N�0

P (�i�1hi�
N ; 0)

and
P (�i#; 0) =

X
N�0

P (�i+N ; 0):

Here, we see a generalization of the concept of Robbins
proportions, the corresponding proportions in the variable

length case being P (�i�1hi#;0)

P (�i#;0)
. We will see in the next

section that there are natural analogs of the linkage dise-
quilibrium functions as well.

4 Explicit Solutions - Nm = 2; 3

In [1] it was shown for fixed length strings in the contin-
uous time limit how an exact explicit solution correspond-
ing to (8) could be found for a flat fitness landscape. Even
in this case however, the result is highly non-trivial due to
the complicated combinatorics of the various BB creation
events. In the case of variable length strings one would ex-
pect the combinatorics to be even more complicated. Be-
fore considering the general case we will therefore look at
some relatively simple cases for Nm = 2; 3 with no mu-
tation and using one-point crossover where we also include
crossover before the first bit and immediately after the last
bit of the shortest parent. For Nm = 2 we must solve:

P (h1h2; t+ 1) = (1� pc)P (h1h2; t) +

2X
j=1

pc
min(2;j)+1

min(2;j)X
i=0

P (h1:::hi�
j�i; t)P (�ihi+1:::h2; t) (12)

for strings of length two and

P (h1; t+ 1) = (1� pc)P (h1; t) +

pc

2

2X
j=1

1X
i=0

P (h1:::hi�
j�i; t)P (�ihi+1:::h1; t) (13)

for strings of length one. The corresponding “source” terms
are respectively

J
j
h1h2

(i; t) = P (h1:::hi�
j�i; t)P (�ihi+1:::h2; t) (14)

Jjh1(i; t) = P (h1:::hi�
j�i; t)P (�ihi+1:::h1; t): (15)

The explicit forms of the equations of motion are

P (h1h2; t+ 1) = (1� pcA(h1h2))P (h1h2; t) +
pc

2
P (h1; t)P (�h2; t) +

pc

3
P (h1�; t)P (�h2; t) (16)

where A(h1h2) =
�
1
2
P (�1) + 1

3
P (�2)

�
and

P (h1; t+ 1) = (1� pcA(h1))P (h1; t) +
pc

2
P (�1)P (h1�; t) (17)

where A(h1) = P (�2)=2. P (�1) and P (�2) are the prob-
abilities to get any string of length one and length two re-
spectively. Note that homologous crossover preserves the
length distribution [18].

GENETIC ALGORITHMS 581

With this simple Nm = 2 problem equations (16) and
(17) have an intuitive interpretation that allows us imme-
diately to investigate the phenomenon of allele diffusion
between different length classes that is an important char-
acteristic of variable-length genetic dynamics. The factor
Ps(h1 � � �hN) = (1 � pcA(h1 � � �hN)) describes the sur-
vival probability per generation of a particular length-N
string. For length-one stringsPs(h1) = (1�pcP (�2)=2) so
it is only in the presence of length-two strings that that there
is a non-zero decay probability. This probability grows as
a function of P (�2) due to the fact that there are more de-
cay channels open to the string. For length-one strings the
only creation source is via the 2-schema h1� which im-
plies a diffusion of alleles of type h1 from length-two to
length-one strings. For length-two strings the two corre-
sponding creation terms are associated with getting the first
bit of the string from a parent of length one and the second
bit from a 1-schema associated with strings of length two
and the first and second bits from 1-schemata associated
with strings of length two. This second term is exactly the
same as would be found in a fixed-length GA. The novel
element is to be able to construct the desired length-two
string by interaction between a 1-schema associated with
length-two strings and a length-one string. Thus, in order
to solve for the dynamics for length-two strings one must
first solve for the dynamics of the size one strings. As from
(17) one can see that their dynamics depends on the dynam-
ics of the 1-schemata it would seem that the dynamics of
the length-one and two strings are inextricably interwined
and must be solved for simultaneously. However, this is
not so. The reason why not is that there exist constants
of the motion that can be exploited. To see this consider
P (h1#; t) = P (h1; t) + P (h1�; t). The 1-schema proba-
bility P (h1�; t) may be determined from (16)

P (h1�; t+ 1) = (1� pcA(h1h2))P (h1�; t) +
pc

2
P (h1; t)P (�2) +

pc

3
P (h1�; t)P (�2; t) (18)

thus adding this to (17) one finds

P (h1#; t+ 1) = P (h1#; t) (19)

and hence P (h1#) is an invariant of the motion. It
basically expresses the conservation of the allele h1 as-
sociated with the first bit position and in this sense is
analogous to the conservation law P (�k�1hk�

N�k; t) =
P (�k�1hk�

N�k; 0) for any k associated with fixed length
GAs. In the variable-length case however there is no con-
servation of alleles within a given length class due to the
phenomenon of inter-length-class allele diffusion. With
this conservation law in hand the equations (17) and (16)
can be decoupled. We write (17) as

P (h1; t+ 1) = Dh1P (h1; t) +
pc

2
P (�1)P (h1#; t) (20)

where we now revert to the propagator notation used in sec-
tion 2, Dh1 = (1�pc=2) being the survival probability per

generation. This equation can be simply solved using equa-
tion (8) to yield

P (h1; t) = Dt
h1
P (h1; 0) + (1� (1�Dt

h1
))P �(h1) (21)

where P �(h1) = P (�1)P (h1#)=P (�#) is the fixed point
of the dynamics in agreement with the general fixed point
of (11). We may expand P (h1#) = P (h1; 0) + P (h1�; 0)
to find

P (h1; t) =�
(1�

pc

2
)t + (1� (1�

pc

2
)t)P (�1)

�
P (h1; 0)

+(1� (1�
pc

2
)t)P (�1)P (h1�; 0) (22)

Note that even if P (h1; t) = 0 inter-length-class allele dif-
fusion will generate alleles h1 in length-one strings at some
later time. Thus, unlike the fixed length case a particular
allele in a given length class may be regenerated without
the intervention of mutation. Note that at the fixed point
the contributions to h1 are determined solely by the t = 0
proportions of this allele from all possible length classes.
Hence, recombination in the variable length case maxi-
mally mixes the alleles among all available length classes.

Having found the exact solution for strings of length one we
may proceed to strings of length two. As can be seen from
equation (16) we need to solve first for the dynamics of the
two 1-schemata h1� and �h2. From (16), one notices that
there are no source terms for �h2 from length-one strings.
Hence, one finds that

P (�h2; t+ 1) = P (�h2; t) (23)

and notes that the allele h2 is conserved in agreement with
(11). The 1-schema P (h1�; t) = P (h1#) � P (h1; t) can
be simply solved for to yield

P (h1�; t) = Dt
h1�

P (h1�; 0) + (1�Dt
h1�

)P �(h1�) (24)

where the survival probability per generation for h 1� is
Dh1� = (1 � pc

2
) and the fixed point P �(h1�) is given by

P �(h1�) = P (�2)P (h1#)=P (�#) once again in agree-
ment with equation (11). Note that the exponential ap-
proach to this fixed point is the same as for P (h1; t).

Finally, using the explicit solutions (21), (23) and (24) we
may deduce the solution of (16). P (h1�; t) and P (h1; t)
are a time-dependent source of strings P (h1h2; t). Substi-
tuting in (16) the solutions (21), (23) and (24) one finds

P (h1h2; t) =

Dt
h1h2

(P (h1h2; 0)� P (h1#)P (�h2; 0)) +

P (�h2; 0)

P (�2)
(P (h1; 0)� P (�1)P (h1#))(Dt

h1h2
�Dt

h1
)

+P (h1#)P (�h2; 0) (25)

GENETIC ALGORITHMS582

In the limit t ! 1 DCN
i
! 0; thus, we see the fixed

point P �(h1h2) = P (h1#)P (�h2; 0) emerging in agree-
ment with equation (11).

The solutions can be put into a more elegant and trans-
parent form by introducing the notion of generalized
linkage disequilibrium functions. We define �h1(t) =
(P (h1; t)�P (�1)P (h1#)) and �h1h2

(t) = (P (h1h2; t)�
P (h1#)P (�h2)). Thus, both these functions characterize
deviations from the corresponding fixed points. Immedi-
ately we see an important distinction from the fixed length
case where a single bit cannot have BBs and linkage occurs
between different bits. Here the “building blocks” of h1

are any length-one string and any string of any length that
contains h1. Due to the phenomenon of inter-length-class
allele diffusion there is a concept of linkage disequilibrium
for a single bit. This is due to the fact that linkage dise-
quilibrium can be generalized to take into account correla-
tion between corresponding bits in different length classes.
Similarly, for h1h2 the BBs are the length class two schema
�h2 and any string of any length that contains h1. In both
cases we see that one of the BBs is associated with a coarse
graining over all possible length classes and hence is not a
schema associated with a fixed length class. Explicitly,

P (h1; t) = Dt
h1
�h1

+ P �(h1) (26)

and

P (h1h2; t) = Dt
h1h2

(�h1h2
+

P (�h2)

P (�2)
�h1)

�Dt
h1

P (�h2)

P (�2)
�h1 + P �(h1h2) (27)

We now consider the solution for strings of length N � 3.
For Nm = 3 we have

P (h1h2h3; t+ 1) = (1� pcA(h1h2h3))P (h1h2h3; t) +
pc

2
P (h1; t)P (�h2h3; t) +

pc

3
(P (h1�; t)P (�h2h3; t) +

P (h1h2; t)P (� � h3; t)) +
pc

4
(P (h1 � �; t)P (�h2h3; t))

+P (h1h2�; t)P (� � h3; t) (28)

where A(h1h2h3) = (P (�1)=2 + 2P (�2)=3 + P (�3)=2).
Once again this is a linear equation in P (h1h2h3; t) but
with sources for which we have to solve equations for
length one and two strings and 1-schemata from two strings
and 1- and 2-schemata from length-three strings. Analo-
gously to the case Nm = 2 length-one strings satisfy an
equation that is coupled to 1-schemata of different length,
in this case P (h1�; t) and P (h1 � �; t). However, as in the
length-two case using the conservation law P (h1#; t) =
P (h1; t) + P (h1�; t) + P (h1h2�; t) = P (h1#; 0) allows
us to write the equation as

P (h1; t+ 1) = Dh1P (h1; t) +
pc

2
P (�1)P (h1#; t) (29)

The solution and associated fixed point are given by (26) as
in the case Nm = 2 above. Length-two strings satisfy

P (h1h2; t+ 1) = (1� pcA(h1h2))P (h1h2; t) +
pc

2
P (h1; t)P (�h2; t) +

pc

3
P (h1�; t)P (�h2; t) +

pc

3
P (h1 � �; t)P (�h2; t) +

pc

3
P (h1h2�; t)P (�2) (30)

Thus we see a coupling to length-one and length-three
sources. The 1-schemata equations for P (h1�; t) and
P (�h2; t) however can be solved by eliminating length-
three sources using the conservation law P (�h2#; t) =
P (�h2; t) + P (�h2�; t) = P (�h2#; 0). One obtains

P (h1�; t) = Dt
h1�

(�h1� +
P (�2)

P (�#)
�h1)

�
P (�2)

P (�#)
�h1 + P �h1� (31)

where �h1�, �h1 and P �h1� are as above in the Nm = 2
case. To solve (28) we still require P (h1��; t), P (�h2�; t),
P (� � h3; t), P (�h2h3; t) and P (h1h2�; t). P (� � h3; t)
is conserved as the final bit of the longest string cannot
mix with anything else and therefore is unaffected by inter-
length-class allele diffusion. P (�h2�; t) can be solved for
in terms of the solution of P (�h2; t). P (h1 � �; t) obeys

P (h1 � �; t+ 1) =

(1�
pc

2
P (�1)�

2pc

3
P (�2))P (h1 � �; t)

+
pc

2
P (�3)P (h1; t) +

2pc

3
P (�3)P (h1�; t) (32)

As we already have the solution for P (h1�; t) and P (h1; t)
this can simply be solved for. P (�h2h3; t) satisfies

P (�h2h3; t+ 1) =

(1�
pc

3
P (�2)�

pc

4
P (�3))P (�h2h3; t)

+
pc

3
P (� � h3)P (�h2; t) +

pc

4
P (� � h3)P (�h2�; t) (33)

Once again, given that we have the solutions for P (�h2; t)
and P (�h2�; t) this can be simply solved. Finally,
P (h1h2�; t) satisifes

P (h1h2�; t+ 1) =

(1�
pc

2
P (�1)�

2pc

3
P (�2)�

pc

4
P (�3))P (h1h2�; t)

+
pc

3
P (�3)P (h1h2; t) +

pc

2
P (�h2�; t)(P (h1; t) +

2

3
P (h1�; t) +

1

2
P (h1 � �; t)) (34)

This is the only non-trivial equation left to solve as it is
coupled to P (h1h2; t). Both equations are first order linear
inhomogeneous difference equations and can be decoupled

GENETIC ALGORITHMS 583

by going to a second order linear inhomogeneous differ-
ence equation which can be readily solved. Due to length
constraints we will present the results elsewhere. With
these solutions in hand P (h1h2h3; t) may readily be solved
for.

It is worth taking stock of what we have done here. In the
case Nm = 2, in terms of the underlying string variables,
there are six coupled equations to be solved. By going to a
coarse-grained schema, or BB basis, one is able to imple-
ment the conservation laws most naturally, thereby decou-
pling the equations and finding an exact, explicit solution.
For Nm = 3 there are fourteen coupled equations. The
only extra complication relative to the Nm = 2 case how-
ever was the fact that after implementing the conservation
laws two equations remained non-trivially coupled and had
to be decoupled by going to a higher order difference equa-
tion.

5 Explicit Solutions - Nm arbitrary

In this section we wish to make some observations about
the general case - Nm arbitrary. An important element,
seen in the last section, is the existence of conservation
laws which may be used to facilitate the solution of the
dynamics. Generally, the conserved quantities are

P (�i�1hi#; t) = P (�i�1hi#; 0) (35)

of which there are Nm. Hence, from the dynamical equa-
tions one may eliminate Nm variables. As in the above
cases of Nm = 2; 3 one may use this fact to obtain the ex-
act dynamics of certain schemata. These conservation laws
are more naturally expressed in terms of schemata rather
than strings. For instance, the conservation lawP (1#; t) =
constant in terms of string variables is P (1; t)+P (11; t)+
P (10; t)+P (100; t)+P (101; t)+P (110; t)+P (111; t) =
constant. This is a difficult constraint to implement at the
level of the string equations themselves.

As we have emphasized, with the coarse-grained BB ap-
proach advocated here dynamical solutions are built up hi-
erarchically beginning with low order BBs and proceeding
to higher ones. As the lowest order ones are 1-schemata
it is of interest to investigate the general equation for a 1-
schema from length class N . One finds that

P (�i�1hi�
N�i; t+ 1) = A1P (�i�1hi�

N�i; t) +

A2

X
j�i;j 6=N

A3(j)P (�i�1hi�
j�i; t) (36)

where

A1 = i

0
@X
j>N

P (�j)

N + 1
+

NX
j=i

P (�j)

j + 1

1
A+

i�1X
j=1

P (�j)

+P (�N)

�
N � i+ 1

N + 1

�

A2 = P (�N)

A3 =

�
1� Æ(j > N)

i

N + 1
� Æ(k � j � N)

i

j + 1

�

Note that 1-schemata from other than length-class N
strings act as sources for hi, however, there are no more
“primitive”, i.e. lower order, sources. Hence, in the sense
of section 2 this equation is really homogeneous with no
BB sources and hence can be written as

P(t+ 1) = AP(t) (37)

where the elements of the matrix A can be read off from
(36) and the values of the coefficients A1, A2 and A3. The
diagonalization of this matrix yields the decay rates of the
various 1-schemata. With the 1-schemata solution in hand
we may start to reconstruct the 2-schemata respecting the
hierarchical structure outlined in section 2. We will not
pursue this further in this paper restricting attention to some
more specific results.

From (35) one immediately sees that the quantity
P (�Nm�1hNm

; t) is conserved. Additionally, for the
length-one strings all “sources” P (h1�

j�1) for P (h1; t)
appear with the same coefficient, pc=2. Hence, P (h1; t)
satisfies (26) the only difference now being that P (h1#) =PNm

j=2 P (h1�
j�1; t).

Using the conservation of the last bit of the longest string
one may also determine the evolution of the last bit of
the next longest string and the last bit of the string of
length N = Nm � 1 by using the conservation law
P (�Nm�2hNm�1#) = constant. For the next to last bit
of the longest string the solution is

P (�Nm�2hNm�1�; t) =

Dt
�Nm�2hNm�1�

�
�
Nm�2hNm�1

�
+ P �

�
Nm�2hNm�1

�
(38)

where D
�
Nm�2hNm�1

�
= (1 � (1=Nm)(P (�Nm�1) +

P (�Nm))) and P �
�
Nm�2hNm�1

�
=

P (�Nm)P (�Nm�2hNm�1#)=P (�Nm�1#) which is the
expected fixed point from (11).

6 Conclusions

We have investigated the dynamics of variable-length GAs
using a coarse-grained BB representation of the dynami-
cal equations. We showed that the formal solution of the
equations could be interpreted in an analogous manner to
that of the fixed length case, i.e. the hierarchical construc-
tion of more fine-grained schemata from their more coarse-
grained BBs. The novel element here is that these BBs
could come from strings of different lengths. We discussed
briefly the fixed point distribution of the equations for a flat
fitness landscape using a one-point homologous crossover
operator and no mutation showing how a generalization of

GENETIC ALGORITHMS584

Robbins proportions emerged that involved a generalized
notion of a BB. We then turned to a more explicit construc-
tion of the entire dynamics and quantified the approach to
the fixed point. For Nm = 2; 3 we were able to find ex-
plicit solutions utilizing the existence of conservation laws
for certain quantities. This in itself shows the utility of the
coarse grained BB representation, the Nm = 3 problem at
the string level corresponding to 14 simultaneous first order
difference equations which need to be solved.

From the resultant solutions we were able to investigate the
phenomenon of inter-length-class allele diffusion. We saw
that the diffusion rates, or mixing times, for different al-
leles or combination of alleles depended strongly on the
length distribution of strings, which in the case of a flat fit-
ness landscape is time independent. For instance, the dif-
fusion rate for the allele h1 in length-class-three strings is
slower than that of the same allele in length-class-two or
one strings if P (�1) + (4=3)P (�2) > 1 which is the case
if the proportion of length-three strings is small. We also
can see that the closer the string bit to the beginning of
the string then typically the faster it mixes, simply because
there are more things with which it can mix. In this sense in
the variable length case the degree of exploration versus ex-
politation carried out by recombination is inhomogeneous
depending on the bit’s position in the string and the distri-
bution of lengths, diversity being encouraged more at the
beginning of strings than at the end. Another interesting
aspect of inter-length-class allele diffusion is the fact that
for a given length class a lost allele from a particular bit
position can be recovered if the allele exists in the corre-
sponding bit of another length class string.

Acknowledgements

CRS would like to thank the University of Birmingham
for a visiting Professorship and DGAPA-PAPIIT grant
IN100201. RP and CRS would like to thank the Royal So-
ciety and the University of Essex for their support. Alden
Wright did this work while visiting the University of Birm-
ingham, supported by EPSRC grant GR/R47394.

References

[1] Stephens, C.R. (2001) “Some Exact Results from a Coarse
Grained Formulation of Genetic Dynamics”. In L. Spector
et al eds. Proceedings of GECCO 2001, 631-638 (Morgan
Kaufmann, San Francisco).

[2] Wright, Rowe, J., Poli, R. and Stephens, C.R. (2002) “A
Fixed Point Analysis of a Genepool GA with Mutation”, ac-
cepted for publication (full paper) in GECCO 2002.

[3] Mähnig, T. and Mühlenbein, H. (2001) “Optimal Mutation
Rate Using Bayesian Priors for Estimation of Dsitribution
Algorithms”, in Stochastic Algorithms: Foundations and
Applications, ed. K. Steinhüfel, LNCS Springer-Verlag.

[4] Vose, M.D. (1999) The Simple Genetic Algorithm: Founda-
tions and Theory, (MIT Press, Cambridge MA).

[5] Holland, J.H. (1975) Adaptation in Natural and Artificial
Systems (MIT Press, Cambridge, MA).

[6] Goldberg, D. (1989) Genetic Algorithms in Search, Opti-
mization and Machine Learning (Addison Wesley, MA).

[7] Stephens, C.R. and Waelbroeck, H. (1997), “Effective De-
grees of Freedom in Genetic Algorithms and the Block Hy-
pothesis”, Proceedings of the ICGA7, ed. T. Bäck, 34-41
(Morgan Kaufmann, San Mateo).

[8] Stephens, C.R. and Waelbroeck, H. (1998) “Analysis of
the Effective Degrees of Freedom in Genetic Algorithms”,
Physical Review D57 3251-3264.

[9] Stephens, C.R. and Waelbroeck, H. (1999) “Schemata Evo-
lution and Building Blocks”, Evol. Comp. 7(2) 109-124.

[10] Poli, R. (2000) “Exact Schema theorem and Effective Fit-
ness for GP with one-point crossover”, in Proceedings of
GECCO2000, eds D. Whitley et al 469-476 (Morgan Kauf-
mann).

[11] Poli, R. and McPhee, N.F. (2000) “Exact Schema Theory for
GP and Variable-length GAs with Homologous Crossover”,
Proceedings of GECCO-2001, ed. Lee Spector et al 104-111
(Morgan Kaufmann, San Mateo).

[12] Nordin, P. (1994) “A Compiling Genetic Programming Sys-
tem that Directly Manipulates the Machine Code”, Ad-
vances in Genetic Programming, ed. K.E. Kinnear Jr., 311-
331 (MIT Press).

[13] O’ Neil, M. and Ryan, C. (2001) “Grammatical Evolution”
IEEE Transaction on Evolutionary Compuation, in press.

[14] Wu, A.S. and Banzhaf, W. (1998) “Introduction to the Spe-
cial Issue: Variable-Length Representation and Noncoding
Segments for Evolutionary Algorithms” Evolutionary Com-
putation 6(4), iii-iv.

[15] Goldberg, D.E. (1987) “Simple Genetic Algorithms and the
Minimal, Deceptive Problem”, in Genetic Algorithms and
Simulated Annealing, ed. L. Davis, 74-88 (Pitman, London).

[16] Spears, W.M. (2000) “Limiting distributions for mutation
and recombination”, in Proceedings of FOGA 6, eds. W.M.
Spears and W. Martin, (Morgan Kaufmann, San Mateo).

[17] Geiringer, H. (1944) “On the Probability Theory of Linkage
in Mendelian Heredity”, Annals of Mathematical Statistics
15, 25-27.

[18] Poli, R., Rowe, J., Stephens, C.R. and Wright, A. (2002)
“On the Search Biases of Homologous Crossover in Lin-
ear Genetic Programming and Variable-length Genetic Al-
gorithms”, accepted for publication (full paper) in GECCO
2002; University of Essex Computer Science Technical Re-
port TRCSM-352.

GENETIC ALGORITHMS 585

Strategy Parameter Variety in Self-Adaptation of Mutation Rates

Christopher Stone

Intelligent Computer Systems Centre

University of the West of England

Bristol, United Kingdom

christopher.stone@uwe.ac.uk

Jim Smith

Intelligent Computer Systems Centre

University of the West of England

Bristol, United Kingdom

james.smith@uwe.ac.uk

Abstract

Self-adaptation has been widely used in
Evolution Strategies (ES) and Evolutionary
Programming (EP), where it has proved useful in
varying the mutation step size for continuous
objective variables. To date, relatively little
work has been performed on applying self-
adaptation to the canonical Genetic Algorithm
(GA). This research applies a simple discrete
model of self-adaptation to test functions with
differing characteristics. We show that the
discrete model is able to provide more reliable
problem solving than the classical lognormal
self-adaptation scheme on the test problems
examined. We find that although self-adaptation
parameter choices representing conventional
thinking perform best for unimodal functions,
very different parameter settings are required for
optimum performance on multimodal functions.
These results are discussed in terms of the
strategy parameter variety needed for self-
adaptation to work effectively and we outline a
self-adaptation mechanism designed to capitalize
on these findings.

1 INTRODUCTION

In a self-adaptive Evolutionary Algorithm (EA), the
representation for individuals in the population is
extended to include strategy parameter information. The
EA operates as normal, evolving the population according
to the fitness of its members, with the additional step of
stochastically varying the strategy parameters of
individuals selected for reproduction. Self-adaptation of
mutation rates is possibly the most common application of
self-adaptation, largely stemming from its widespread use
in ES (Schwefel, 1981) and EP (Fogel, Fogel & Atmar,

1991). For the purposes of self-adaptation, the main
difference between GAs and ES/EP is that GAs usually
employ a binary representation. With such a
representation, a per-bit mutation rate is used to control
the rate of bit-flipping mutations applied to an individual.
For a non-adaptive GA, this parameter is fixed across the
population and throughout the course of a run. However
it is natural extension to encode the mutation rate into
each individual, to allow it to vary across the population
and in time. Bäck (1992) used these ideas and performed
seminal work showing that self-adaptation in GAs is
possible. Following Bäck's work, several authors have
experimented with self-adaptation of mutation rates in
GAs (see for example, Bäck & Schütz, 1996; Smith &
Fogarty, 1996; Hinterding, 1997). Design decisions that
must be addressed with this approach are the choice of
representation for the strategy parameter and, related to
this, the means by which the strategy parameter is itself
varied to allow adaptation to occur. Bäck's early work
remained close to the traditional interpretation of a GA
and used a binary encoding of the strategy parameters
with corresponding bitwise mutation. Current thinking is
that a real-valued representation is preferable (Glickman
& Sycara, 1998). This then allows the use of lognormal
adaptation of strategy parameters as shown in (1) where
the τ parameter controls the step size of σi, the
individual's mutation rate.

))1,0(exp(' Nii ⋅⋅= τσσ (1)

Recent empirical (Liang et al. 1998; Glickman & Sycara
2000) and theoretical (Rudolph 1999) work has shown
that self-adaptation schemes which adapt too quickly can
lead to premature convergence to low step sizes, with the
search getting 'stuck' at local optimum. This has lead to
an interest in alternative variation schemes.

Smith (2001) introduces a dynamical systems model of a
GA with self-adaptation of mutation rates. The model is

GENETIC ALGORITHMS586

used to predict mean fitness of an evolving population
over time. To make the mathematics computationally
tractable, there are two key differences between the model
and the self-adaptive GAs just described. Firstly, rather
than using a binary or real-valued representation, strategy
parameters are represented by a single allele of alphabet
q, where q is small. Smith uses a value of 10 and this is
also the value used in the present work. A consequence
of this is that the mutation rate attached to an individual
can only take on one of q possible values, as opposed to
the large or effectively infinite number available with
binary or real-valued representations. Secondly, because
of the discrete nature of the strategy parameter
representation, the lognormal scheme in (1) cannot be
used to vary the strategy parameters. Although it would
be possible to provide some discrete variant of this
algorithm, for simplicity Smith uses a scheme that
modifies every individual's strategy parameter with
probability z and equal likelihood of changing to each of
the q possible alleles. Because it is possible for the
modified strategy parameter to retain the same allele as
the original one, the probability Pa that the strategy
parameter is altered is given by:

qqzPa /)1(−⋅= (2)

Control over the degree of change of the inherited
strategy parameter is provided by z, an external parameter
known as the innovation rate. This provides the variation

needed for selection to choose preferable strategy
parameters. The conventional view is that a non-uniform
distribution is desirable, for example, the lognormal
scheme in (1), to generate many small perturbations of
strategy parameter value with larger variations being
possible, but less likely. This is in order to provide
occasional large changes in value to prevent the EA from
getting stuck when searching rugged landscapes. As
presented, Smith's model represents a considerable
departure from this view since it uses a uniform
distribution that provides equal opportunity for large or
small perturbations1. In the present work we examine the
implications of this variation scheme and the effects of
varying the innovation rate on the performance of the GA.
We do not attempt to demonstrate the need for self-
adaptation, as this has been done elsewhere (see for
example, Stephens et al, 1998).

2 EXPERIMENTAL SETUP

The GA used for the experiments provides a real-valued
strategy parameter linked to each individual in the
population. For discrete adaptation schemes, the strategy
parameter encodes one of ten representative mutation
rates in the range minrate to maxrate for the individual.
Each strategy parameter is initialized to a random allele
and varied according to (2). For continuous adaptation
schemes, the strategy parameter encodes an arbitrary

1 Although it should be noted that this is not a requirement of the model.

Table 1: Evaluation Functions

Allowed GenerationsName Formula Length (bits)/
Encoding

Optimum

w/o xover w/xover

f1 OneMax

∑
=

l

i
ix

1

128 128 100 500

f2 Inverted
Rastrigin's
Function 1]10)2cos(10[

1
16/

1

2 ++−∑ =

l

i ii xx π

12.512.5 <<− ix

64

4 dimensions
each 16 bits

1 500 500

f3 Deb's Fully
Deceptive
Function

∑
=

<−⋅

=

4/

1

4),3(2.0

4,1
{

l

j

bb

b

jj

j

where ∑
=

=
4

1i
ij xb

32 8 250 100

f4 Matching Bits

∑
−

=

=

≠

+

+

1

1

,1

,0
{ 1

1

l

i

xx

xx

ii

ii

24 23 1000 100

f5 Royal Road R1

∑
=

<

=

8/

1

8,0

8,8
{

l

j

b

b

j

j

where ∑
=

=
8

1i
ij xb

64 64 1000 1000

GENETIC ALGORITHMS 587

mutation rate for the individual, initialized to a random
value in the range minrate to maxrate and variation of the
strategy parameter is performed by the multiplicative
lognormal function (1). To provide consistency with the
discrete scheme, the resulting mutation rate is limited to
the range minrate to maxrate.

The GA is generational because short-term regression is
desirable with self-adaptation to allow adequate learning
of strategy parameters (Schwefel, 1997). Selection is
performed using either truncation (extinctive) selection or
fitness proportionate (preservative) selection sampled
using Baker's (1987) SUS algorithm. The differences
between extinctive and preservative selection mechanism
are discussed in (Bäck & Hoffmeister, 1991). A
population of 500 individuals is maintained to reduce the
variance of results and to allow adequate sampling of
strategy parameters in the mating pool even with high
selection pressure. (100,500) truncation selection is used,
based on results from ES (Schwefel, 1981). Genetic
operators are single point crossover applied with a rate of
0.7 or zero and bitwise mutation applied with the
probability given by the individual's strategy parameter.
All results presented are the mean of 50 runs unless
otherwise noted.

Five functions with a broad range of characteristics were
used for these experiments. These are detailed in Table 1.

Experiments were run on each of the functions with
innovation rates of 0.01, 0.05 and 0.1 to 1 in steps of 0.1
using two selection pressures: (100,500) truncation
selection and fitness proportionate selection. The ten
standard mutation rates used for these experiments were
0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05,
0.075 and 0.1.

For each set of experiments, two metrics were used to
compare results. Reliability was measured using the
number of times the global optimum was found out of 50
runs. Time to optimum was used to measure the ability of
the GA to solve the problem. Our stance is that a self-
adaptive GA must achieve reliability before time to
optimum issues can be addressed. This is particularly
important in online applications of self-adaptation, where
the luxury of multiple runs is not feasible, for example in
process control or robotics applications.

3 GA WITH NO RECOMBINATION

Figure 1 shows the time to optimum of the GA for each
function using a high selection pressure. The graph is
annotated with reliability data, where the optimum was
not found in all 50 runs. It shows that high innovation
rates provide the most reliable problem solving. These
results can be separated according to whether the function
is unimodal or multimodal. For the purposes of this work,
we classify f5 (Royal Road) as multimodal, since its
fitness landscape consists of a series of peaks connected

by ridges2, which produce similar effects to the local
optima of multimodal functions. Under this classification
the only unimodal function in the test suite, f1 (OneMax)
achieves the best performance with an innovation rate of
0.05. Higher innovation rates tend to impact
performance, although not excessively so. In contrast, the
multimodal functions show a trend towards both faster
and more reliable performance as the innovation rate
increases.

23
32 37

46

3
4

4 9

12

15
18

21
29

28
28

31
31

42 47
47

49

42

47

0 0.2 0.4 0.6 0.8 1
Innovation Rate

0

1000

2000

3000

4000

5000

G
en

er
at

io
ns

to
O

pt
im

um F1 (x50)
F2
F3
F4
F5

Figure 1 - Generations to Optimum against Innovation
Rate for High Selection Pressure

7

13
14

30
33

41

43

36
37

27

34

31

3

3

4
30 41

49

23

39 35 48

49

49

49

0 0.2 0.4 0.6 0.8 1
Innovation Rate

0

1000

2000

3000

4000

5000

G
en

er
at

io
ns

to
O

pt
im

um

F2
F3
F4
F5

Figure 2 - Generations to Optimum against Innovation
Rate for Low Selection Pressure

Results for the same set of experiments performed under
low selection pressure are show in Figure 2. Results are

2 The exact details of the fitness landscape depend on the operators
employed.

GENETIC ALGORITHMS588

not shown for f1 (OneMax) since fitness proportionate
selection failed to find the optimum in any of the 50 runs.
However, the low selection pressure is an advantage for
f3 (Deb's Deceptive function) and reliability is much
improved over high selection pressures. The graphs are
somewhat noisier than their high selection pressure
counterparts due to the lower number of runs in which the
optimum was found for some functions and innovation
rates. In general, reliability is still improved with high
innovation rates, with the exception of f2 (Rastrigin's
function), but unlike the case with high selection pressure,
time to optimum appears to peak at an innovation rate
lower than one.

4 GA WITH RECOMBINATION

Experiments on a GA with recombination were performed
using an inheritance mechanism, which selects one of the
two parental strategy parameters at random with equal
probability for the offspring prior to innovation. This
choice is discussed further in (Stone, 2001).

Figures 3 and 4 show the effects of innovation on
reliability and time to optimum of the GA with crossover.
With fitness proportionate selection the optimum for
function f1 (OneMax) was never located in any of the 50
runs, so no results are shown for these experiments. With
high selection pressure, reliability tends to improve as
innovation rate increases whilst time to optimum remains
relatively flat due to the effects of crossover. With low
selection pressure, it seems that high innovation rates
although still providing reliable operation are generally
detrimental to time to optimum.

49 47 48

49

49 49
49 48 48 49

0 0.2 0.4 0.6 0.8 1
Innovation Rate

0

50

100

G
en

er
at

io
ns

to
O

pt
im

um F1
F2
F3
F4
F5 (/10)

Figure 3 - Generations to Optimum against Innovation
Rate for Random Inheritance with High Selection

Pressure

49

46

41

48

0 0.2 0.4 0.6 0.8 1
Innovation Rate

0

50

100

150

200

G
en

er
at

io
ns

to
O

pt
im

um

F2 (/5)
F3
F4
F5

Figure 4 - Generations to Optimum against Innovation
Rate for Random Inheritance with Low Selection Pressure

5 COMPARISON OF DISCRETE
INNOVATION TO CONTINUOUS
INNOVATION

To compare the performance of the discrete innovation
scheme with the more mainstream continuous innovation
scheme we used various settings for the continuous
innovation scheme's τ parameter. The ES literature
suggests the following formula for setting τ:

nc /=τ (3)

where n is the number of objective variables and c is a
problem-specific constant. However, this rule of thumb
has not, to our knowledge, been exhaustively tested in a
GA environment. In ES, n is the number of objective
variables in the representation, whereas in the case of a
GA it is the length of the string in bits. It is not apparent
that the rule can be directly mapped from ES to GA
representations. Glickman & Sycara (1998) use a value
of 0.1 for τ on a string of length 1000. This corresponds
to a value of c of 3.16. In contrast, Hinterding,
Michalewicz & Peachey (1996) use a fixed value of 0.013
in their self-adaptive GA. In the absence of other
information, we tried values for c of 0.5, 1, 2, 3 and fixed
rates of 0.013 and 0.02. For the former values the
problem length (in bits) is taken into account when
arriving at the actual rates used, whereas the latter two are
fixed rates across all functions.

GENETIC ALGORITHMS 589

We ran the same set of mutation-only experiments as
performed for the discrete scheme, using (100,500)
truncation selection and limiting each run to the same
number of generations as before (see Table 1). Table 2
compares the best result for each function from the
discrete and continuous schemes. Here, best is defined as
the result showing most reliability followed by smallest
time to optimum for the function. The discrete scheme
provides reliable results and acceptable time to optimum
for all functions, whereas the continuous scheme,
although apparently capable of providing superior time to
optimum, displays poorer reliability. It is also interesting
that the best results for all of the multimodal problems
arise with a value of c of approximately 0.1. This
suggests that the relationship in (3) may also hold for GAs
with a bitstring representation. However, the range of
problem lengths, l, tested is quite restricted. Further work
is needed to determine if this pattern extends to other
multimodal problems and values of l.

6 DISCUSSION

6.1 INTERPRETATION OF RESULTS

Results for the discrete model suggest that with a high
selection pressure, a low innovation rate is appropriate for
unimodal problems, whereas an innovation rate of one
gives the best results for multimodal problems. The
former represents conventional thinking whereas the latter
result is novel and requires some explanation. For low
selection pressures it appears that the optimal innovation
rate to achieve reliability is lower and the best
performance is worse than for high selection pressure.
We conducted ANOVA analysis which showed that the
effects of innovation rates were a statistically significant
factor in the time to optimum, and post-hoc tests with a
variety of measures confirmed the difference in
performance between high and low innovation rates.

In the following discussions, we assume a causal
relationship between mutation rate and any resulting

mutation. That is, that the change in fitness of an
individual resulting from a mutation is, in general,
directly related to the mutation rate in force for that
individual. The innovation scheme presently used mutates
strategy parameters with a uniform distribution, so any
resulting value is equally likely. However, when the
innovation rate is less than one, there is an increased
probability for the inherited strategy parameter to escape
innovation and be transmitted to the next generation. This
results in a non-uniform overall distribution for the
innovation mechanism, with existing mutation rates being
preferred. Thus, we may classify a low innovation rate as
one that exploits existing strategy parameter information.
In contrast, an innovation rate of one generates each
strategy parameter allele with equal probability and is
explorative.

We can therefore summarize these results by saying that
unimodal problems require an exploitative algorithm,
whilst multimodal problems perform best with an
explorative algorithm. This finding supports that of Bäck
(1992) who reached a similar conclusion regarding the
results of using single versus multiple strategy parameters
in a self-adaptive GA.

The continuous innovation scheme does not appear to
provide the same degree of reliability as the discrete
scheme in mutation-only experiments. This suggests that
for difficult problems, the search gets stuck in local
optima, from which it cannot escape in a reasonable
amount of time. The lognormal scheme perturbs the
inherited strategy parameter such that the perturbation is
small with high probability. Unlike the discrete scheme,
which has only a few possible mutation rates, the
continuous scheme provides effectively an infinite choice
of mutation rates. However since the strategies are
encoding for bitwise mutation probabilities, rather than
step sizes, many of these rates will have very similar
effects in terms of the number of allele values changed in
the representation. Thus although this scheme provides
variety within the population that does not exist in the
discrete scheme, when we consider the likely number of
bits mutated, a specific point in the search can vary its

Table 2: Comparison of Best Results for Discrete and Continuous Self-Adaptation

Discrete Self-Adaptation Continuous Self-Adaptation

Time to
Optimum

Successful
Runs

z Time to
Optimum

Successful
Runs

τ c

f1 (OneMax) 68 50 0.05 66 50 0.0631 2.00

f2 (Rastrigin's) 137 50 1 84 34 0.013 0.10

f3 (Deb's Deceptive) 1680 29 0.9 20 8 0.020 0.11

f4 (Matching Bits) 608 50 1 231 40 0.020 0.10

f5 (Royal Road) 298 50 1 159 50 0.013 0.10

GENETIC ALGORITHMS590

associated search strategy by a large amount with only
low probability. This is comparable to the case of the
discrete scheme with a low innovation rate and produces
similar results.

6.2 PREMATURE CONVERGENCE

Multimodal problems have landscapes containing local
optima and search information built up in previous
generations may not be particularly useful, since the
search can be attracted towards false optima. What is
good for an individual at a certain stage of the search (i.e.,
a low mutation rate) may not necessarily be optimal for
the overall search longer term, especially since the self-
adaptive algorithm is inherently a greedy adaptive
process, as evidenced by the need for non-elitist schemes.
To counter this tendency, higher mutation rates must be
available if the search is to escape from local optima.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Generation

M
ut

at
io

n
R

at
e

P
ro

po
rt

io
n

0.0005

0.0010

Figure 5 – Premature Convergence of Mutation Rates for
f2 (Rastrigin's function)

For high selection pressure, graphs of the proportion of
each strategy parameter allele present in the population
with low innovation rates show that the population
quickly assumes a small number of low mutation rates,
typically the two or three lowest available rates. As an
example, Figure 5 shows this for f2 (Rastrigin's function).
Even though they are being introduced at a fixed rate by
innovation, higher mutation rates exist in the population
with very low, possibly zero, probability.

Liang et al (1998) and Glickman & Sycara (2000) observe
premature convergence of strategy parameters with
continuous self-adaptation schemes. Rudolph (1999)
shows that convergence of the search to local optima can

occur if the step size is reduced too rapidly3. At the level
of the population, this appears to be the cause of poor
reliability with the discrete scheme when using a low
innovation rate. The fact that we see premature
convergence of strategy parameters together with poor
problem solving reliability using the discrete self-
adaptation scheme suggests that this may be an effect
common to all types of self-adaptation.

The operation of self-adaptation depends on variety of
both the individual and its associated strategy parameter.
Without adequate variety, self-adaptation will proceed
only slowly. Variety is provided by the population and
the self-adaptation algorithm to varying degrees,
depending on the selection pressure and the nature of the
self-adaptation scheme in use. High selection pressure
has the characteristic of creating multiple copies of an
individual, the strategy parameters of which are varied by
innovation. With a low innovation rate and a GA
operating without recombination, there are many copies
of the individual produced with identical strategy
parameters. Low innovation rates used with a high
selection pressure are thus wasteful of function
evaluations and do not represent a good approach.
However, they may be a viable approach for low selection
pressures, because fewer copies are produced of each
individual and therefore relatively few function
evaluations are wasted, especially as the nature of the low
selection pressure is to preserve more of the population’s
variety. This view is supported by inspection of the
best/mean/worst fitness (not shown) of low and high
innovation rate experiments showing that mean fitness is
roughly the same for both low and high innovation rates.
However, the best individuals in the population are much
more fit and the least fit individuals are much poorer with
a high innovation rate. In short, the population shows a
higher fitness variance with a high innovation rate.

6.3 METHODS FOR PROVIDING VARIETY

One approach is to assign a variety of strategy parameters
to copies of the individual, for example by using an
innovation rate of one. If the individuals are mutated and
the results evaluated, now the relative fitness of the
individual is determined solely by the strategy parameter
(ignoring the stochastic effects of mutation). Selection is
therefore evaluating the match between the individual and
its assigned strategy parameter. This provides an
emphasis on the appropriateness of the strategy parameter
and hitchhiking of strategy parameters is discouraged. A
somewhat similar approach is used in Improved Fast
Evolutionary Programming (Yao, Lin & Liu, 1997). This
variant of EP selects the best of two offspring generated
from the same individual, one based on a step size
generated from a Gaussian distribution, the other from a
step size generated by a Cauchy distribution. Rudolph
(1999) suggests the addition of a fixed step size in order
to escape local optima. The discrete scheme with an

3 We note that Rudolph's proof is based on an elitist EA and
Rechenberg's 1/5 success rule.

GENETIC ALGORITHMS 591

innovation rate of one takes this one stage further and
generates multiple offspring from the same individual
with stochastically selected step sizes.

A compromise between retaining the inherited strategy
parameter for testing, yet providing variety, is to pass
through one copy of the current strategy parameter,
together with several different choices of strategy
parameter for selection to test. This scheme
simultaneously allows exploration of new strategy
parameters and exploitation of existing information.
Based on the results of the experiments, these would seem
to be desirable characteristics of any self-adaptation
algorithm. Although this scheme cannot be achieved
deterministically using the current discrete innovation
algorithm, it is possible to calculate from (2) the
probability, Pv, that exactly one of the n (in the present
case, five) copies retains the inherited strategy parameter,
with the other four having different random alleles:

)1()/)(/1(−−+−⋅= n
v qzzqzznP (4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Innovation Rate

P
v

λ/µ=5
λ/µ=2

Figure 6 – Probability Pv against Innovation Rate

Figure 6, a plot of this probability against innovation rate,
shows that for high selection pressure, Pv is negligible for
low innovation rates, but increases with innovation rate,
peaking at an innovation rate of approximately 0.89. An
innovation rate of one, as used in the experiments gives a
Pv value higher than any innovation rate below about
0.74.

This demonstrates that the discrete scheme, even with an
innovation rate of one, provides good sampling of
innovative strategy parameters and still allows
transmission of inherited strategy parameter information
with a respectable probability. In addition, we find that
for low selection pressure, when fewer copies are made of
each individual, the probability distribution is
substantially different, peaking at a lower innovation rate
than that of high selection pressure. This is again
consistent with the results reported above. The probability

of the inherited strategy parameter being passed through
is also much higher than with the high selection pressure
over a wide range of innovation rates, such that Pv is
higher for low selection pressure than for high selection
pressure for all innovation rates except those approaching
one. This provides further reinforcement for the
importance of selection pressure in the behaviour of self-
adaptation.

As mentioned earlier, a deterministic version of this self-
adaptation algorithm would provide for Pv=1 by passing
through a single copy of the inherited strategy parameter,
whilst testing other choices of strategy parameter. The
selection pressure, λ/µ, effectively determines the number
of copies of each individual made and in the present
experiments this ratio is five. However, there are ten
possible mutation rates that could be sampled, meaning
that some rates will not be tested against each individual
in a diverse population. Clearly, it would be possible to
match the number of possible mutation rates to the
selection pressure in use, especially for high selection
pressures. This has the additional advantage that no
inheritance mechanism is needed, since all mutation rates
are tested against each individual. Further work is needed
to experiment with such a scheme and determine the
minimum number of strategy parameter alleles that may
be successfully used.

7 CONCLUSIONS

We showed that Smith's discrete model is able to provide
effective self-adaptation in a GA across a variety of
problems with better problem-solving reliability than the
typical lognormal self-adaptation scheme. Examination
of results from the lognormal self-adaptation scheme
showed that best results came from different values of the
τ parameter depending on whether the problem had
unimodal or multimodal characteristics. Multimodal
results suggest tentatively that the relationship presented
in (3) holds for GAs. Furthermore, we found that the best
results on all the multimodal problems came from using
(3) with a setting of c = 0.1.

A major finding of this work concerns the choice of an
appropriate innovation rate for the self-adaptation
mechanism. We found that although a low innovation
rate provides the best performance for unimodal
problems, in nearly all cases an innovation rate of one
gives the best overall reliability and time to optimum
figures for landscapes that have local optima or plateaus.
Our hypothesis for the reasons for the benefits of a high
innovation rate hinge on the relationship between
selection pressure and the need for variety across strategy
parameters in order for self-adaptation to function
effectively. High selection pressure and self-adaptation
algorithms favoring small step sizes have the effect of
reducing population diversity and encouraging premature
convergence. In this situation, self-adaptation schemes
need to provide a means of stimulating diversity to
counter the forces of selection. This is a side effect of
high innovation rates, but it may be possible to design

GENETIC ALGORITHMS592

parameterless self-adaptation schemes that deliver this
benefit directly, whilst still providing the advantages of
traditional low innovation rate schemes, namely the
transmission of historically successful strategies when
they are appropriate. A scheme having these features was
outlined and it was shown that the discrete model with
uniform stochastic innovation provides these
characteristics to a certain extent. Further
experimentation with purpose-designed algorithms along
these lines is needed to determine whether any further
performance benefits can accrue. In addition, we need to
test the strategy parameter diversity hypothesis on other
problems and self-adaptation schemes.

References

Bäck, T. (1992). Self adaptation in genetic algorithms. In
F. Varela & P. Bourgine, (eds.), Towards a Practice on
Autonomous Systems: Proceedings of the First European
Conference on Articial Life, Cambridge, MA: MIT Press,
pp. 263-271.

Bäck, T. & Hoffmeister, F. (1991). Extended selection
mechanisms in genetic algorithms. In R. K. Belew & L.
B. Booker, (eds.), Proceedings of the Fourth
International Conference on Genetic Algorithms and their
Applications, San Mateo, CA: Morgan Kaufmann, pp. 92-
99.

Bäck, T. & Schütz, M. (1996). Intelligent mutation rate
control in canonical genetic algorithms. In Z. Ras, (ed.),
Proceedings of the Ninth International Symposium on
Methodologies for Intelligent Systems, Lecture Notes in
Computer Science, Berlin: Springer, pp. 158-167.

Baker, J. E. (1987). Reducing bias and innefficiency in
the selection algorithm. In J. J. Grefenstette (ed.), Genetic
Algorithms and their Applications: Proceedings of the
Second International Conference on Genetic Algorithms,
Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 14-21.

Fogel, D. B., Fogel, L. J. & Atmar, J. W. (1991). Meta-
evolutionary programming. In R. R. Chen (ed.),
Proceedings of the 25th Asilomar Conference on Signals,
Systems and Computers, San Jose, CA: Maple Press, pp.
540-545.

Glickman, M., R. & Sycara, K. (1998). Evolutionary
algorithms: Exploring the dynamics of self-adaptation. In
J. R. Koza et al (eds.), Genetic Programming 1998:
Proceedings of the Third Annual Conference, San
Francisco, CA: Morgan Kaufmann.

Glickman, M. R & Sycara, K. (2000). Reasons for
premature convergence of self-adapting mutation rates. In
CEC2000: Proceedings of the Congress on Evolutionary
Computation, Piscataway, NJ: IEEE Press.

Hinterding, R. (1997). Self-adaptation using multi-
chromosomes. In Proceedings of the Fourth IEEE
International Conference on Evolutionary Computation,
Piscataway, NJ: IEEE Press, pp. 87-91.

Hinterding, R., Michalewicz, Z. & Peachey, T. C. (1996).
Self-adaptive genetic algorithm for numeric functions. In

H-M. Voigt, W. Ebeling, I. Rechenberg, & H-P.
Schwefel, (eds.), Parallel Problem Solving from Nature -
PPSV IV, volume 1141 of Lecture Notes in Computer
Science, Berlin: Springer, pp. 420-429.

Liang, K-H., Yao, X., Liu, Y., Newton, C. & Hoffman, D.
(1998). An experimental investigation of self-adaptation
in evolutionary programming. In V. Porto, N. Saravanan,
D. Waagen & A. Eiben (eds.), Evolutionary
Programming VII: Proceedings of the Seventh Annual
Conference on Evolutionary Programming, volume 1447
of Lecture Notes in Computer Science, Berlin: Springer,
pp. 291-300.

Rudolph, G. (1999). Self-adaptive mutations may lead to
premature convergence. Technical Report CI-73/99,
Department of Computer Science/XI, University of
Dortmund.

Schwefel, H-P. (1997). Evolutionary computation - a
study on collective learning. In N. Callaos, C. M.
Khoong, E. Cohen (eds.), Proceedings of the World
Multiconference on Systemics, Cybernetics and
Informatics, volume. 2, Orlando FL: International Institute
of Informatics and Systemics, pp. 198-205.

Schwefel, H-P. (1981). Numerical Optimisation of
Computer Models. New York, NY: Wiley.

Smith, J. E. (2001). Modelling GAs with self adaptive
mutation rates. In L. E. Spector et al (eds.), Proceedings
of the Genetic and Evolutionary Computation
Conference, GECCO-2001, San Francisco, CA: Morgan
Kaufmann, pp. 599-606.

Smith, J. E. & Fogarty, T. C. (1996). Self adaptation of
mutation rates in a steady state genetic algorithm.
In Proceedings of IEEE International Conference on
Evolutionary Computing 1996, Piscataway, NJ: IEEE
Press, pp. 318-323.

Stephens C. R., García Olmedo I., Mora Vargas J. &
Waelbroeck, H. (1998). Self-Adaptation in Evolving
Systems. Artificial Life 4(2), 183-201.

Stone, C. N. (2001). Discrete Self-Adaptive Mutation in
Genetic Algorithms. M.Sc. dissertation. University of the
West of England.

Yao, X., Lin, G. & Liu, Y. (1997). An analysis of
evolutionary algorithms based on neighbourhood and step
sizes. In P. Angeline, R. Reynolds, J. McDonnell & R.
Eberhart (eds.), Evolutionary Programming VI:
Proceedings of the Sixth Annual Conference on
Evolutionary Programming, volume 1213 of Lecture
Notes in Computer Science, Berlin: Springer, pp. 297-
307.

GENETIC ALGORITHMS 593

A Simple Method for Detecting Domino Convergence and Identifying
Salient Genes Within a Genetic Algorithm

Hal Stringer
School of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL 32816
stringer@cs.ucf.edu

Annie S. Wu
School of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL 32816
aswu@cs.ucf.edu

Abstract
Within a genetic algorithm, all genes may not be
created equal. This concept is the central idea
explored in this paper. A second and equally
important idea is that this inequality in gene
importance or salience can be detected and
identified within a GA. To support these ideas, a
technique for directly measuring genetic
diversity within a GA population and thereby
indirectly measuring gene-specific importance is
provided. Diversity graphs are offered as a
powerful technique for visualizing measurement
results. Our theories, metrics and tools are tested
on GAs for two problem classes and four
different selection methods.

1 INTRODUCTION

Within a genetic algorithm (GA), all genes may not be
created equal. Anecdotal evidence of this can be obtained
from any student of genetic algorithms who has attempted
to solve a symbolic regression problem. For example,
consider a GA which finds the coefficients for the
following equation:

y = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g + h cos(x) (1)

Intuitively, we expect genes representing the variables a
through h to have varying impacts on fitness evaluation
due to differences in the exponential order associated with
each term. We would further expect the a-gene and b-
gene to be the most important in determining fitness of an
individual. The values for genes c through h would be
largely irrelevant in terms of raw fitness until these first
two genes converged to some local optimum.

The idea of a gene’s importance or temporal-salience has
already been described in (Thierens, Goldberg & Pereira,
1998). A side effect of this property is the phenomenon
of “domino” convergence introduced in (Rudnick, 1992).
A GA with non-uniformly salient genes converges
serially over time starting with the more important genes

and moving to less salient genes similar to the way a row
dominos falls. Domino convergence and variations in
gene importance have been shown to occur in genetic
algorithms attempting to solve exponentially scaled
fitness problems.

In subsequent works, (Goldberg, 1999) and (Srivastava &
Goldberg 2001) explored how gene salience and domino
convergence can be used to develop GAs with a serial
mode of processing. A serial GA consists of small
populations and short epochal runs. During each epoch
different salient genes converge to their respective
optimal values. Between each epoch, a continuation
operator is activated to rejuvenate the diversity of less
salient genes while leaving more important (and
previously converged) genes alone.

Without continuation operators, GAs for exponentially
scaled problems tend to converge around highly salient
genes. The GA may then drift and stall at a less than
optimal solution due to lack of diversity in less salient
genes.

The use of epochs and continuation operators was found
unproductive for problems with uniformly salient genes
(e.g., OneMax). For these types of problems, the
traditional GA’s implicit parallelism, larger populations,
and single long epoch were found to still be the most
productive method of processing.

We believe that the idea of gene-specific temporal
salience provides a valuable insight into how a GA
functions. In the case of exponentially scaled problems,
the concept opens up new opportunities for developing
continuation operators to fine tune GA performance. But
in order to use this approach, we must first find an
effective method to determine if a problem includes genes
with non-uniform salience and if so, a method for
identifying those genes that are more important than
others. This is particularly important in problems with
very large numbers of genes where a priori knowledge of
gene salience is less likely. In this work, we present a
simple method for detecting domino convergence and
identifying genes with high levels of importance. We
show how tracking gene diversity within a GA population

GENETIC ALGORITHMS594

can provide the information we need to obtain a
measurement of gene salience.

Our measurement technique focuses on two metrics. The
first is the variation in unique alleles associated with each
gene in a population. Unique allele counts plotted over
time (generations) constitutes a convergence profile for a
given problem and selection method. This profile clearly
indicates the presence or absence of domino convergence.
Our second metric consists of a ratio of unique sub-
genotypes to alleles and assigns a numeric salience value
to each gene. Graphically presented, this ratio gives us a
salience profile identifying genes of higher importance.

In this work we describe the general nature of the
experiments we performed to test the use of diversity as a
salience indicator. Experiments include GAs for different
problem classes and various selection methods. This
range of problem classes and selection methods allow us
to validate our method against previous theoretical work
performed by other researchers.

2 MEASURING GENE SALIENCE
THROUGH GENETIC DIVERSITY

The concept of gene salience or importance is all around
us. For example, normal human beings are born with two
eyes. Yet there exist numerous variations in eye color
within the population. On a simplistic level, we can
assume that the genes which affect the number of eyes in
one’s head are more important than those affecting eye
color. We can also assume that a lack of diversity in the
number_of_eyes genes relative to eye_color genes
indicates that the first is more salient than the others.

The same concept applies to genetic algorithms with non-
uniform gene importance. Over time, diversity of salient
genes diminishes faster than that of non-salient genes.
Less salient genes are not subject to the same selection
pressures due to their low fitness impact. The diversity of
alleles for each gene in a population relative to other
genes provides a good indication of gene salience. The
less diverse, the more important.

Using this idea we began investigating various ways to
measure genetic diversity (or lack there of) within a GA.
Initial experiments looked at uniqueness of entire
chromosomes within a population. It was assumed that
this method would provide a good showing of genetic
diversity and illustrate how a population converges
toward a small number of similar individuals over the
course of multiple generations. This method was tested
but found to be unsatisfactory. Looking at entire
chromosomes did not single out specific genes nor
indicate their specific importance. Nor did this method
clearly show the presence or absence of domino
convergence. We also investigated convergence to fitness
values as a way of tracking convergence and diversity.
This also proved to be less than satisfactory in identifying
salient genes.

Throughout these initial experiments, we notice that there
appeared to be a strong correlation between gene-salience
and diversity of alleles within a single gene and also
within partial chromosomes ("sub-genotypes"). The final
version of our measurement methods used this idea and
are described below.

2.1 UNIQUE ALLELES

The starting point for our method of determining genetic
diversity within a GA is to count the number of unique
alleles for each gene within a population at a given time.
An allele can be thought of as a single representation
instance of a gene. For example, using bit strings to
represent a 9-bit gene allows for 29 different alleles.

For notational purposes a single gene location within a
chromosome will be identified as Gi where 1 > i > n and n
equals the total number of genes which make up a single
chromosome. Two additional subscripts t and j are added
to further specify a gene. t indicates a specific time or
generation. j identifies an individual chromosome where
1 > j > p and p equals the population size. For example,
G3, 100, 12 denotes the third gene located on individual 12’s
chromosome at generation 100.

U(Gi,t) will be used to denote the count of unique alleles
for Gi within the total population at the start of generation
t.:

U(Gi,t) = | { Gi,t, j | Gi,t, j J Gi,t,k where 1 > j,k > p} |

To illustrate, assume that at the start of generation 54
during a GA's run, the third gene on all chromosomes
contained bit representations (genotypes) for one of the
following numbers: 12, -47, 178 or 3 (phenotypes). The
population has evolved to contain chromosomes with only
four unique alleles in the third position. In this example,
U(G3,54) = 4. Note that we are not concerned with how
many genes contain a given allele, only the number of
unique alleles within the population. U(Gi,t) provides a
measure of the diversity of Gi within the population at the
start of generation t.

Interesting results were obtained by following the
behavior of a population using this measure. A low U(Gi,t)
for a given gene relative to other genes in a chromosome
indicates that the population is converging towards a few
select alleles thus towards some local optimum.
Unfortunately, the difference between U(Gi,t) for all genes
within a GA was sometimes very small. This limited our
ability to draw any firm conclusions regarding a specific
gene's level of importance. Nor did this single statistic
provide a total picture of what was occurring within the
GA as a whole. Additional information was required.

2.2 UNIQUE SUB-GENOTYPES

Counting unique alleles gave us a way to track
convergence of a given gene. But what about the rest of
the genetic material within a chromosome?

To answer this question, we have developed the idea of a
partial chromosome or "sub-genotype". A sub-genotype

GENETIC ALGORITHMS 595

is the entire chromosome excluding a single gene. For
notational purposes, Si,t will represent a chromosome’s
sub-genotype with respect to Gi at the start of generation t.
The sub-genotype for a specific gene consists of the
concatenation of all genetic material in the chromosome
excluding the gene itself.

The example below illustrates how allele representations
and sub-genotypes are derived from a hypothetical five-
gene chromosome associated with individual 9 at
generation 60:

Original Chromosome #9 at Start of Generation 60:

Gene: #1 #2 #3 #4 #5

Value: 1010 1111 0011 0000 1101

Derived Gene Values and Sub-Genotypes:

G1,60,9 = 1010, S1,60,9 = 1111 0011 0000 1101

G2,60,9 = 1111, S2,60,9 = 1010 0011 0000 1101

G3,60,9 = 0011, S3,60,9 = 1010 1111 0000 1101

G4,60,9 = 0000, S4,60,9 = 1010 1111 0011 1101

G5,60,9 = 1101, S5,60,9 = 1010 1111 0011 0000

U(Si,t) will be used to denote the count of unique sub-
genotypes within the total population at generation t:

U(Si,t) = | { Si,t, j | Si,t, j J Si,t,k where 1 > j,k > p} |

2.3 RATIO OF SUB-GENOTYPES TO ALLELES

As a final measure of diversity, we also looked at the ratio
of sub-genotype counts to the count of unique alleles.
This ratio (R) is equal to the sub-genotype count divided
by the unique allele count and can be shown as follows:

Ri,t = U(Si,t) / U(Gi,t)

Examples illustrating the importance of this relationship
will be given later. For now, it is sufficient to say that
this ratio "amplifies" the measurement of gene-specific
salience and provides an better indicator of this important
characteristic.

3 EXPERIMENT DESIGN

Many experiments were performed to capture the metrics
described in Section 2. The purpose of these experiments
was to test our ability to detect non-uniform salience and
identify the salient order of genes within a chromosome.
Experiments involved calculating and then graphing
U(Gi,t), U(Si,t) and Ri,t for a variety of problem classes
and selection methods. An analysis of the data obtained
from the experiments supports our proposal that genetic
diversity can reveal gene-specific salience in a GA.

Two different problem classes were tested and included in
this paper: Symbolic Regression and OneMax. It was our
expectation that gene-specific salience would be found in

the symbolic regression problem. Based on the work
researchers previously cited, we should find no important
genes in the OneMax problem.

Experiments were conducted as follows:

1. A GA was executed for 50 runs of 100 generations
each. All runs were initialized with a different
random number seed.

2. All unique alleles and associated sub-genotypes were
counted for each gene during each generation.

3. The allele and sub-genotype counts from step 2 were
averaged across all 50 runs.

4. A ratio of the values from step 3 was calculated for
each generation. Ratios were summed and divided
by 100 for an average ratio across all generations.

5. The results from 3 and 4 were plotted for each
problem as a set of six diversity graphs.

3.1 GA PARAMETERS AND SETTINGS

Our experiments used one of four selection methods:
Fitness Proportional, Tournament, Rank Proportional and
Random. Features and parameters incorporated into our
GA for all experiments included the following:
Population Size = 200 Individuals, Representation
Method = Bit String, Number of Genes per Chromosome
= 8, Number of Bits per Gene = 9, Crossover Type = 2-
Point, and Crossover Rate = 100%.

With the exception of one experiment, mutation was not
employed in any of our experiments. Our diversity
metrics are based on counts of unique alleles and sub-
genotypes. Mutation has the effect of increasing overall
diversity in a population and tended to obscure though not
hide our results. Leaving out mutation allows us to
remove its effects from our measurements and focus on
the evolution of individuals using only genetic material
available from the initial population. One can think of the
results of our mutation-less experiments as providing a
baseline measure of gene salience and selection pressure
within a GA.

3.2 COUNTING UNIQUE ALLELES AND SUB-
GENOTYPES

The method proposed in this paper for identifying gene-
specific salience requires that the number of unique
alleles and sub-genotypes be determined for each gene in
each generation. There are many different methods that
can be used for such a counting function, some more
efficient than others. The method employed for our
experiments was simple though not necessarily the most
efficient computationally.

All genes consisted of 9-bit binary strings representing
integer values from –255 to +255. During fitness
evaluation, these genotypic strings were converted to their
phenotypic decimal equivalents. Genes were left in their
original string format for counting purposes.

GENETIC ALGORITHMS596

At the beginning of each experiment an m x n array
(count) was constructed for storing unique allele counts
where m = 100 was the number of generations in a run
and n = 9 was the number of genes in each chromosome.
All array elements were initialized to 0.

A hash table was used to keep track of unique alleles. The
table was queried for the existence of each allele during
the counting process. A gene value not found in the hash
table was considered to be a new unique allele – the first
of its kind. The corresponding element in count was
incremented by 1 and the gene was added into the
hashtable. If an allele was found to already exist in the
hash table, no action was taken. The uniqueness of the
allele had already been noted and added to the count for
that gene during that generation. The following pseudo-
code further illustrates this process:

 for (i=1; i<=number_of_genes; i++){

 clear hash table;

 for (j=1; j<=population_size; j++){

 extract gene Gi from chromosome;

 if (Gi not in hashtable){

 add 1 to count[generation][i];

 add Gi to hashtable;

 }

 else no action necessary;

 }

 }

A similar process was utilized to count unique sub-
genotypes associated with each gene. It should be noted
that the counting method described here is based
primarily on the number of genes in a chromosome and is
therefore usable with both small scale GAs and GAs with
larger gene sizes (number of bits) or populations.

3.3 VISUALIZATION OF DIVERSITY

Results were written from the count array to a comma-
delimited text file at the end of each experiment. The file
contained the count of unique gene values and sub-
genotypes for all 100 generations. Using data from this
file, two graphs were plotted for each term described
previously (U(Gi,t), U(Si,t) and Ri,t.) One graph shows
the change in the term over time (by generation) giving us
an online view. The second graph shows an offline
average value for each term for the entire GA run. Thus
for each experiment, a suite of six graphs was prepared
which, when viewed as a set, provided an excellent
picture of the changing genetic diversity within a GA.
Examples of these diversity graphs are provided
throughout the remainder of this work along with our
analysis.

4 FINDING TEMPORAL SALIENCE

Given the introduction to this work, it is fitting that
symbolic regression be the first problem used to test our
diversity measurement technique. Predetermined x and y
values were provided as input to the GA's fitness function.
The GA's task was to find optimal values for coefficients
a through h. Positionally, these coefficients corresponded
to genes 1 through 8 on a chromosome.

Intuition and knowledge of the problem lets us know that
the first gene (G1) will be the most salient and have the
greatest impact on fitness evaluations due to its
association with the term ax6. The population should
converge around this one gene before all others. G2

representing the coefficient for bx5 would be next in
importance followed by G3, G4,G5 and so on.

Experiments were run per the design in Section 3 using
tournament selection. Unique alleles and sub-genotypes
for all runs were counted, averaged and plotted on a set of
diversity graphs (see Figure 1).

Figure 1(a) shows the convergence profile for this
problem/selection method combination. Allele diversity
for the gene associated with the a coefficient - U(G1) -
drops fastest followed by U(G2) and the other genes. By
generation 41, only one allele for G1 exists in the
population. The gene’s salience caused a single value to
quickly take over this gene in the entire population. This
graph also shows a similar but delayed behavior for G2

though G8 over the course of 100 generations. The result
is a staggered look to the graph clearly indicating the
domino convergence occurring in this experiment.

Figure 1(b) shows the diversity of sub-genotypes for this
problem. Diversity for all sub-genotypes drops decreases
over time as the GA converges to a single result.

Figures 1(d) and 1(e) provide an offline view of allele and
sub-genotype counts. Both of these graphs contain the
average number of unique alleles or sub-genotypes over
100 generations. For our test problem, G1 and G2 have
the lowest average unique number of alleles. On average,
only 7.7 different values for G1 existed during each
generation due to this gene’s salience. Although hard to
tell from the graph, G1 has the greatest sub-genotype
diversity. On average, any given individual in the
population will include one of 105 G2-through-G8 gene
combinations regardless of G1’s value. It was found that
generally the lower the unique allele count, the higher the
sub-genotype count within the GA.

From these first four graphs, we can see that G1 and G2 or
coefficients a and b respectively, are the more important
genes and exert a higher degree of selection pressure than
the other genes in this GA. But these graphs alone may
not be enough to clearly indicate gene salience. A more
reliable indicator has proven to be the ratio of sub-
genotypes to gene values (U(Si,t) / U(Gi,t)). These ratios
are plotted for our same test problem in Figures 1(c) and
1(f).

GENETIC ALGORITHMS 597

1

10

100

1000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Generations

N
u

m
b

er
 o

f U
n

iq
u

e
A

lle
le

s

A

B

C

D

E

F

G

H

(a) Unique Allele Counts U(Gi) over Time
(Convergence Profile)

0

20

40

60

80

100

120

140

160

180

200

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Generations

N
u

m
b

er
 o

f U
n

iq
u

e
S

u
b

-G
en

o
ty

p
es

A

B

C

D

E

F

G

H

(b) Unique Sub-Genotype Counts U(Si) over Time

0

20

40

60

80

100

120

140

160

180

200

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Generations

U
n

iq
u

e
S

u
b

-G
en

o
ty

p
es

 O
ve

r
U

n
iq

u
e

A
lle

le
s

A

B

C

D

E

F

G

H

(c) Ratio (Ri) of Sub-Genotypes to Alleles over Time

0

20

40

60

80

100

120

140

160

180

200

G1 (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7 (g) G8 (h)

Gene ID

A
ve

ra
g

e
N

u
m

b
er

 o
f U

n
iq

u
e

A
lle

le
s

(d) Avg. Unique Alleles per Gene

0

20

40

60

80

100

120

140

160

180

200

G1 (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7 (g) G8 (h)

Gene ID

A
ve

ra
g

e
N

u
m

b
er

 o
f U

n
iq

u
e

S
u

b
-G

en
o

ty
p

es

(e) Avg. Unique Sub-Genotypes per Gene

0

20

40

60

80

100

120

140

160

180

200

G1 (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7 (g) G8 (h)

Gene ID

A
ve

ra
g

e
o

f U
n

iq
u

e
S

u
b

-G
en

o
ty

p
es

 o
ve

r
U

n
iq

u
e

A
lle

le
s

(f) Avg Ratio (Ri) of Sub-Genotypes to Alleles
(Salience Profile)

Figure 1: Diversity Graphs for 8-Term Symbolic Regression Problem Using Tournament Selection

As mentioned earlier, this ratio R(Gi,t) tends to amplify
our ability to detect gene-specific importance and make it
easier to pick out the genes with greatest salience. Figure
1(f) is most important to us and we have called this type
of plot a “salience profile.” From Figure 1(f) it is very
clear which genes in our GA are more salient than others.

A variation on the preceding symbolic regression problem
was developed to check the previous results. In this
second problem, the positional order of terms was mixed.
The resulting equation is:

y = ax + bx4 + c cos(x) + dx5 + e + fx2 + gx6 + hx3

GENETIC ALGORITHMS598

Assuming our proposal is correct, G7, G4, and G2 should
exhibit behavior that typifies genes of higher importance.
Figure 2 shows the salience profile for this reordered
problem. As expected, G7, G4 and G2 had the highest
average ratio of unique sub-genotypes to alleles R(Gi,t) of
the eight genes.

0

20

40

60

80

100

120

140

160

180

200

A B C D E F G H

Gene ID

A
ve

ra
g

e
o

f U
n

iq
u

e
S

u
b

-G
en

o
ty

p
es

 o
ve

r
U

n
iq

u
e

A
lle

le
s

Figure 2: Saleince Profile for Symbolic Regression
Problem with Reordered Terms

This second experiment confirms that our measurement
technique can identify salient genes regardless of their
position within a chromosome.

As mentioned in Section 3, most of our experiments were
run without mutation. For sake of completeness, we
incorporated bit mutation at a rate of 0.01 in a third
experiment using equation (1). Figure 3 shows the
salience profile for this GA. A comparison of Figure 3
with Figure 1(f) shows that mutation reduced but did not
eliminate the indication of gene-specific salience
calculated from R(Gi). Using a magnified y-axis, the stair
step pattern indicating the presence of domino
convergence is still apparent.

0

2

4

6

8

10

12

14

16

18

20

G1 (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7 (g) G8 (h)

Gene ID

A
ve

ra
g

e
o

f U
n

iq
u

e
S

u
b

-G
en

o
ty

p
es

 o
ve

r
U

n
iq

u
e

A
lle

le
s

Figure 3: Salience Profile for Symbolic Regression
Probliem with Mutation = .01

5 OTHER SELECTION METHODS

Graphs in Figures 1, 2 and 3 were associated with GAs
using tournament selection. How well does our
measurement technique work with other selection
methods? To answer this question we present
convergence and diversity profiles for GAs solving
equation (1) using random and fitness proportional
selection (Figures 4 and 5 respectively). Space does not
allow a detailed description of the results. However, a
few points should be noted.

The plots for random selection show that lack of directed
selection pressure leads only to drift in gene diversity.

Gene-specific salience also appears in GAs run with
fitness proportional selection. The exponential effect of
the selection method causes the GA to converge very
rapidly around highly salient genes. As a result we do
not see the stair stepped or staggered type of convergence
profile found in Figure 1. The salience profile is stronger
for genes of higher importance.

The important concept to be seen in these graphs is the
impact of selection method. Rank or tournament
selection is best for detecting domino convergence and
identifying the gene order in terms of salience. However,
fitness proportional selection provides a very clear
indication of the importance of the most salient genes in a
chromosome. As a result, fitness proportional selection
may be most useful when results for other selection
methods are less clear.

Experiments testing our method on rank fitness were also
performed. We do not include the diversity and salience
profiles for these experiments as they were very similar to
those of tournament selection. When combined with a
OneMax problem, profiles for binary tournament and rank
selection were nearly identical as was expected based on
showings in (Blickle & Thiele, 1995).

6 OTHER PROBLEM CLASSES

It appears that we have found a simple method for
identifying domino convergence and gene-specific
salience in a GA. But what about detecting a lack of gene
importance? Random selection results in the elimination
of gene salience regardless of the problem type. Can we
also show that a problem class in and of itself lacks
salient genes. To further test our technique, we ran a GA
using a OneMax problem. The fitness function merely
counts the number of ones in the entire chromosome. This
problem has been shown to have uniform salience across
all genes. Figure 6(a) and (b) contain convergence and
salience profiles for this problem using tournament
selection. We can see from these plots that no gene is
more salient than another.

GENETIC ALGORITHMS 599

1

10

100

1000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Generations

N
u

m
b

er
 o

f U
n

iq
u

e
A

lle
le

s

A

B

C

D

E

F

G

H

Figure 4(a): Convergence Profile for Symbolic
Regression Problem with Random Selection

1

10

100

1000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Generations

N
u

m
b

er
 o

f U
n

iq
u

e
A

lle
le

s

A

B

C

D

E

F

G

H

Figure 5(a): Convergence Profile for Symbolic
Regression with Fitness Proportional Selection

1

10

100

1000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Generations

N
u

m
b

er
 o

f U
n

iq
u

e
A

lle
le

s

A

B

C

D

E

F

G

H

Figure 6(a): Convergence Profile for One-Max Problem
with Tournament Selection

0

2

4

6

8

10

12

14

16

18

20

G1 (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7 (g) G8 (h)

Gene ID

A
ve

ra
g

e
o

f U
n

iq
u

e
S

u
b

-G
en

o
ty

p
es

 o
ve

r
U

n
iq

u
e

A
lle

le
s

Figure 4(b): Salience Profile for Symbolic Regression
Problem with Random Selection

0

20

40

60

80

100

120

140

160

180

200

G1 (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7 (g) G8 (h)

Gene ID

A
ve

ra
g

e
o

f U
n

iq
u

e
S

u
b

-G
en

o
ty

p
es

 o
ve

r
U

n
iq

u
e

A
lle

le
s

Figure 5(b): Salience Profile for Symbolic Regression
with Fitness Proportional Selection

0

2

4

6

8

10

12

14

16

18

20

G1 (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7 (g) G8 (h)

Gene ID

A
ve

ra
g

e
of

 U
ni

q
ue

 S
ub

-G
en

ot
yp

es
 o

ve
r U

ni
q

ue
 A

lle
le

s

Figure 6(b): Salience Profile for OneMax Problem with
Tournament Selection

7 CONCLUSIONS

In this work we have presented a simple but useful
method for detecting domino convergence and gene-
specific salience within a given problem. It is not
uncommon for certain regions of GA individuals to
consistently converge early. Those regions are typically
expected to be regions that have high impact on the
fitness function. The ability to detect high impact regions

would allow practitioners to potentially develop operators
that may improve GA performance on a particular
problem. Our detection method is based on a count of the
unique gene alleles and unique sub-genotypes that occur
within a short run. While both of these counts provide
some indication of gene salience, it is the ratio of the sub-
genotype count to the unique allele count that appears to
give the clearest picture as to which genes have the
strongest impact on the GA search process.

GENETIC ALGORITHMS600

We tested our method for detecting salient genes on
problems in which genes are and are not expected to have
varying impact. From results we are clearly able to detect
salient genes when they exist, regardless of their position
within a chromosome.

A comparison of salience profiles for varying selection
methods indicate that choice of selection method can
enhance or diminish gene-specific salience depending on
the desires of the GA researcher/developer. Our
experimental evidence shows that fitness proportional
selection magnifies a gene's selection pressure.
Tournament or rank fitness selection methods reduce that
pressure and allow the temporal salient nature of more
genes to shine through.

Choice of selection method is an example of how gene-
salience can be manipulated on a chromosomal- or
problem-wide scale. But can we manipulate selection
pressure at the gene level? The use of continuation
operators is a step in that direction. We believe that the
ability to identify salient genes within a GA will help
researchers in those development efforts.

While the information presented here is of value we do
recognize that our methods have their limitations.
Specifically, our methods were designed for GAs with
fixed gene positions and would not be directly applicable
to locus-variable situations such as messy GAs or GAs
with variable length chromosomes. We believe the
development of methods for detecting gene salience in
these other GA categories will be a productive area for
future research.

In addition, our research focused on gross numerical
counts of unique allele values and sub-genotypes This
approach can suffer from scalability issues which may be
addressed by taking measurements on restricted GA runs
(e.g., short duration or small populations.) These
restricted runs can reduce processing time while still
providing information about the problem. Such gross
numerical counts also make no attempt to evaluate genes
or sub-genotypes qualitatively. Further research in these
areas are expected to provide a greater understanding of
genetic diversity within a GA.

Despite these limitations, we feel the knowledge gained
from our research has immediate value. We can now
detect domino convergence within a GA and thus non-
uniform gene salience. In addition, we can identify
important genes within these GAs and begin to use this
knowledge towards development of better control
mechanisms.

In terms of immediate applications, our method may be
helpful in a number of ways. The programming effort
required to extract our measurements (V(Gi,t), S(Gi,t) and
R(Gi,t)) is relatively small. A few lines of code added to
any fixed position GA would allow a quick view of any
gene-specific temporal salience that the GA might
encounter.

We feel our diversity graphs will be useful in
development and evaluation of new genetic operators and

selection methods. We have already mentioned the
strikingly similar results found for rank and tournament
selection which concur with theoretical studies. Diversity
graphs would show where new selection methods are
similar to existing methods and where they differ.

References

Blickle, T. & Thiele, L. (1995). A Comparison of
Selection Schemes Used in Genetic Algorithms. TIK-
Report No. 11, Computer Engineering and
Communication Networks Lab (TIK), Swiss Federal
Institute of Technology (ETH), Zurich, Switzerland.

Goldberg, D. E. (1999). Using Time Efficiently: Genetic-
Evolutionary Algorithms and the Continuation Problem,
In Proceedings of the Genetic and Evolutionary
Computation Conference: GECCO 1999, Volume 1 pp.
212-219, Morgan Kaufman Publishers: San Francisco.

Rudnick, W. Michael (1992). Genetic Algorithms and
Fitness Variance with an Application to the Automated
Design of Artificial Neural Networks. Unpublished
doctoral dissertation, Oregon Graduate Institute of
Science and Technology.

Srivastava, R.P. & Goldberg D.E. (2001). Verification of
the Theory of Genetic and Evolutionary Continuation, In
Proceedings of the Genetic and Evolutionary
Computation Conference: GECCO 2001, Morgan
Kaufman Publishers: San Francisco.

Thierens, D., Goldberg, D. E., & Pereira, A. B. (1998).
Domino Convergence, Drift and the Temporal-Salience
Structure of Problems, In The 1998 IEEE International
Conference on Evolutionary Computation Proceedings,
pp. 535-540, IEEE Press: New York, NY.

GENETIC ALGORITHMS 601

Variable Dependence Interaction and Multi-objective Optimisation

 Ashutosh Tiwari and Rajkumar Roy
Department of Enterprise Integration,

School of Industrial and Manufacturing Science,
Cranfield University, Cranfield, Bedford,

MK43 OAL, United Kingdom (UK).
E-mail: {a.tiwari, r.roy}@cranfield.ac.uk

Tel: +44 (0) 1234 754072, Fax: +44 (0) 1234 750852

Abstract

Interaction among decision variables is inherent
to a number of real-life engineering design
optimisation problems. There are two types of
interaction that can exist among decision
variables: inseparable function interaction and
variable dependence. The aim of this paper is to
propose an Evolutionary Computing (EC)
technique for handling variable dependence in
multi-objective optimisation problems. In spite
of its immense potential for real-life problems,
lack of systematic research has plagued this field
for a long time. The paper attempts to fill this
gap by devising a definition of variable
dependence. It then uses this analysis as a
background for identifying the challenges that
variable dependence poses for optimisation
algorithms. The paper further presents a brief
review of techniques for handling variable
dependence in optimisation problems. Based on
this analysis, it devises a solution strategy and
proposes an algorithm that is capable of handling
variable dependence in multi-objective
optimisation problems. The working of the
proposed algorithm is demonstrated, and its
performance is compared to that of two high
performing evolutionary-based multi-objective
optimisation algorithms, NSGA-II and GRGA,
using two test problems extracted from literature.
The paper concludes by giving the current
limitations of the proposed algorithm and the
future research directions.

1 INTRODUCTION
Real-life engineering design optimisation problems, as
opposed to the theoretical problems (test cases), are those
that are encountered in industry. Some examples of these
problems are the design of aerospace structures for

minimum weight, the surface design of automobiles for
improved aesthetics and the design of civil engineering
structures for minimum cost (Rao, 1996). A survey of
industry and literature reveals that along with multiple
objectives, constraints, qualitative issues and lack of prior
knowledge, most real-life design optimisation problems
also involve interaction among decision variables (Roy et
al., 2000). However, lack of systematic research has
plagued the field of interaction for a long time. This can
mainly be attributed to the lack of sophisticated
techniques, and inadequate hardware and software
technologies. However, in the last two decades, with the
improvements in hardware and software technologies
some research has been carried out in this area especially
in the field of statistical data analysis (Draper and Smith,
1998). This has been further augmented in the recent past
with the growth of computational intelligence techniques
like Evolutionary Computing (EC), Neural Networks
(NNs) and Fuzzy Logic (FL) (Pedrycz, 1998). This paper
focuses on the development of an evolutionary-based
algorithm for handling variable interaction in multi-
objective optimisation problems.

2 TYPES OF VARIABLE
INTERACTION

In an ideal situation, desired results could be obtained by
varying the decision variables of a given problem in a
random fashion independent of each other. However, due
to interaction this is not possible in a number of cases,
implying that if the value of a given variable changes, the
values of others should be changed in a unique way to get
the required results. The two types of interaction that can
exist among decision variables are discussed below.

2.1 INSEPARABLE FUNCTION INTERACTION
The first type of interaction among decision variables,
known as inseparable function interaction, is discussed in
detail by Tiwari et al. (2001). This interaction occurs
when the effect that a variable has on the objective
function depends on the values of other variables in the

GENETIC ALGORITHMS602

function (Taguchi, 1987). This concept of interaction can
be understood from Figure 1.

 (a) (b) (c)
Figure 1: Examples of Interaction (a) No Interaction

(b) Synergistic Interaction (c) Anti-synergistic Interaction
(Phadke, 1989)

In GA literature, the inseparable function interaction, as
defined above, is termed as epistasis. The GA community
defines epistasis as the interaction between different
genes in a chromosome (Beasley et al., 1993). A review
of literature reveals that the evolutionary-based
techniques for handling inseparable function interaction
can be classified into two broad categories based on the
approach used for the prevention of building block
disruption. These categories involve managing the race
between linkage evolution and allele selction (Harik,
1997), and modelling the promising solutions
(Muhlenbein and Mahnig, 1999).
A number of real-life examples can be found in literature
that involve this type of interaction. For example, the
temperature (T) of an ideal gas varies with its pressure (P)
and volume (V) as T=kPV, where k is the constant of
proportionality. This equation has cross-product term PV
clearly demonstrating the interaction between P and V in
the definition of T.

2.2 VARIABLE DEPENDENCE
The second type of interaction among decision variables,
known as variable dependence, is the main focus of this
paper. This interaction occurs when the variables are
functions of each other, and hence cannot be varied
independently. Here, change in one variable has an impact
on the value of the other. A typical example of this type
of interaction is the case when the function y is A2+B2,
where A and B are as defined below.

),()(
),(

dcRandomAfB
baRandomA

+=
=

As can be seen, variable A is fully independent and can
take any random value between a and b. On the other
hand, variable B is not fully independent and has two
components. The first component, which is a function of
variable A, takes values depending on the values of A. The
second component is a random number lying between c
and d. It should be noted that in case of no dependence
among decision variables, a and b define the range of
variable A, and c and d define the range of variable B.

The above example reveals that the presence of
dependence among decision variables has the following
effects.
• Both variables A and B cannot simultaneously take

random values in their respective ranges. If variable
A takes a value A1, variable B can take only those
random values that lie between [f(A1)+c] and
[f(A1)+d]. With the change in value of A, the range of
random values that B can take also changes. So, the
variables cannot be varied independently of each
other.

• The above discussion implies that the presence of
dependence among decision variables modifies the
shape and location of variable search space. In case
of no dependence among decision variables, both
variables A and B can independently take random
values in their respective ranges making the A-B
search space rectangular in shape. However, the
presence of dependence makes the search space take
the shape and location based on the nature of function
f(A).

S

T

f

FRIV

FRDV

T1

T2

S 1

S 2

S 1

S 2

Figure 2: Relationship between Stress(S) and
Temperature(T)

(FRIV: Feasible Region with Independent Variables and
FRDV: Feasible Region with Dependent Variables)

The dependence among decision variables is frequently
observed in real-life problems. As an example, the
resistance (R) of a wire is defined in terms of two
variables, namely Temperature (T) and Stress (S), where T
and S are as defined below.

)2,1()(
)2,1(

),(

SSRandomTfS
TTRandomT

TSFR

+=
=
=

This real-life problem is analogous to the example
discussed earlier. As illustrated in Figure 2, the presence
of dependence among decision variables modifies the
variable search space. In case of no dependence among
decision variables, T-S search space is rectangular in
shape. It is shown as FRIV (Feasible Region with
Independent Variables) in Figure 2. In presence of
dependence among variables, the modified search space is
shown as FRDV (Feasible Region with Dependent
Variables) in Figure 2.

y

A1 A2

B=B2

B=B1

1

4

2

3

y

A1 A2

B=B2

B=B1

1

4

2

3

y

A1 A2

B=B2

B=B1

1

4

23

GENETIC ALGORITHMS 603

3 CHALLENGES POSED BY VARIABLE
DEPENDENCE

Complex variable dependence poses a number of
challenges for multi-objective optimisation algorithms. In
the presence of variable dependence, the decision
variables cannot be varied independently of each other.
Also, the search space gets modified creating a new
feasible region based on the dependence among decision
variables. This is demonstrated in Figure 2. Depending
upon the nature of variable dependency, additional
features (such as bias (non-linearity), multi-modality,
deception and discontinuity) may also be introduced in
the problem. A generic Genetic Algorithm (GA)
independently varies the decision variables and works in
the feasible region that does not take variable dependence
into account. So, it creates solutions that have limited
practical significance since they do not lie in the actual
feasible region of the search space. Therefore, there is a
need to develop GAs that have mechanisms for handling
variable dependence in their search processes.

4 TECHNIQUES FOR HANDLING
VARIABLE DEPENDENCE

Most of the dependent-variable optimisation problems do
not have known dependency relationships. In these
problems, multiple sets of variable values are available
from which the dependency relationships need to be
inferred. An optimisation algorithm that is capable of
handling variable dependence should be able to infer
these relationships from the given data, identify the
independent variables and manage the search process
accordingly. Due to the lack of systematic research in this
area, the literature in the field of optimisation does not

report any dedicated technique that can deal with variable
dependence. However, as shown in Table 1, the survey of
literature in related areas of research reveals some
techniques that can be used for inferring dependency
relationships among decision variables and identifying
independent variables.

Table 1: Techniques for Identification of Dependency
Relationships and Independent Variables

Identification
of

Dependency
Relationships

• Neural Networks (NNs) (Hertz et al.,
1991; Richards, 1998; Gershenfeld,
1999)

• Probabilistic Modelling (PM) (Pelikan et
al., 1998; Larranaga et al., 1999; Evans
and Olson, 2000; Muhlenbein and
Mahnig, 1999)

• Regression Analysis (RA) (Frees, 1996;
Draper and Smith, 1998; Evans and
Olson, 2000)

Identification
of

Independent
Variables

• Tree Diagrams (TDs) (Banzhaf et al.,
1998; Richards, 1998; Larranaga et al.,
1999)

• Direct Analysis (DA) (Gershenfeld, 1999)

4.1 IDENTIFICATION OF DEPENDENCY
RELATIONSHIPS

Table 2 presents an analysis of the techniques that can be
used for inferring dependency relationships from the
avaiable sets of variable values. This table highlights the
following.
• NNs: As can be seen from Table 2, the NNs require a

priori knowledge regarding the classification of
variables as dependent and independent (Hertz et al.,
1991). Since this information is rarely available in
real-life problems, the choice of the NNs is ruled out
in spite of their other attractive features.

Table 2: Analysis of Techniques for Identification of Dependency Relationships

Techniques for Identification of Dependency Relationships
Comparative Analysis

Regression Analysis (RA) Neural Networks (NNs) Probabilistic Modelling
(PM)

Difficulty of
Implementation Medium High Very high (due to many open

issues)

Accuracy Dependent on degree of RA
equation

Dependent on number of
hidden units

Dependent on choice of
modelling method

Computational Expense Low High Medium

Nature of Dependency
Relationships Explicit Explicit (for given dependent

variables) Purely implicit

Identification of Multiple
Dependency

Relationships
Multiple RA equations

Built-in multiple relationships
(based on choice of NN
structure)

Built-in multiple relationships

Identification of
Independent Variables

Through multiple repetitions
of RA Not possible Not required

Fe
at

ur
es

Difficulty of Data Addition Medium (repetition required) Medium (repetition required
by most NNs) Low (updating required)

GENETIC ALGORITHMS604

• PM: PM is also a very powerful technique, requiring
little information regarding the nature of variables.
As shown in Table 2, it also has a number of other
features that are required for dealing with real-life
problems. However, the application of PM to model
multiple interacting decision variables is a relatively
new area of research, and a number of research issues
need to be addressed before it could be chosen for
handling real-life problems having multiple real
variables (Evans and Olson, 2000).

• RA: Table 2 reveals that the multiple explicit
equations that are identified by the RA give good
insight to the designer regarding the relationships
among decision variables. RA is also easy to
implement and maintain (Frees, 1996). Further, it
addresses most of the above-mentioned limitations of
NNs and PM. However, the accuracy of RA is
dependent on its degree.

4.2 IDENTIFICATION OF INDEPENDENT
VARIABLES

The main strengths and weaknesses of the techniques
used for the identification of independent variables are the
following.
• TDs: The dependence among decision variables can

be graphically represented using TDs, in which each
node represents a variable in the problem. TDs are
easy to use and have good visualisation capabilities,
but they are difficult to be encoded in a computer
language.

• DA: DA involves the analysis of dependency
equations to identify the independent variables. This
method is easy to be encoded in a computer language
but is difficult to visualise.

5 PROPOSED GA FOR VARIABLE
DEPENDENCE (GAVD)

This section proposes a novel algorithm ‘GA for Variable
Dependence (GAVD)’, described in Figure 3. Based on
the discussion in Section 4, the RA is chosen in GAVD to
identify variable dependency equations using the data
provided. Furthermore, GAVD uses TDs for visualisation
of dependency relationships, and DA to automate the
identification of independent variables. The steps
involved in GAVD are described below.

5.1 STEP 1: IDENTIFICATION OF
DEPENDENCY RELATIONSHIPS

This step is omitted in those cases in which the
dependency relationships are known. In the other cases,
this step analyses the given data for identifying multiple
dependency equations, while keeping the computational
expense as low as possible. GAVD uses RA in such a way
that it not only identifies all non-decomposable
relationships among decision variables but also removes

any cyclic dependency in those relationships. To attain
this, a strategy that ensures good ‘book keeping’ is
adopted. The salient features of this strategy are discussed
below.
• The RA that is used in GAVD breaks down a

regression equation until it becomes non-
decomposable. In this way, all the underlying
relationships among the decision variables are
identified.

• A Dependency Chart (DC), which is a tool for DA, is
maintained to keep track of the variables that are
identified as dependent (D) and independent (I) in the
regression process. In this way, unnecessary
repetitions of RA are avoided for the variables that
have already been identified as ‘D’ or ‘I’. This also
ensures that the regression equations do not involve
any cyclic dependency.

• When determining the regression equation for a given
variable, only those variables that are marked as ‘I’
or are unmarked in DC are considered as
independent. This guarantees that the variables that
are identified as ‘D’ are not considered as
independent in subsequent stages of the RA, thereby
ensuring that the regression equations obtained are as
non-decomposable as possible. This also reduces the
number of variables that are considered at each stage
of the RA.

5.2 STEP 2: IDENTIFICATION OF
INDEPENDENT VARIABLES

TDs are used here for visual representation of
relationships among decision variables. A TD is
constructed here to give a visual representation of the
dependency relationships to the user. The end nodes of
this tree are the independent variables. The TD also aids
in the identification of cyclic dependencies that may be
present in the given dependency equations. Since TDs are
difficult to be encoded in a computer language, the DC is
used to automate the process of identification of
independent variables and remove any cyclic dependency.
Here, the DC is used to identify the independent variables
as those that are marked as ‘I’. The construction of this
chart also aids the identification and removal of cyclic
dependencies from the dependency equations.

5.3 STEP 3: OPTIMISATION
Being a high-performing latest algorithm, Generalised
Regression GA (GRGA) has been chosen as the
optimisation engine for GAVD. GRGA is a multi-
objective optimisation algorithm that uses RA for
handling complex inseparable function interaction (Tiwari
et al., 2001). Here, the independent variables, identified in
the previous step, define the GA chromosome. For each
alternative solution generated by the GA, the dependency
equations are used to calculate the values of the
dependent variables. It should be noted here that the
bounds on independent variables are treated as variable

GENETIC ALGORITHMS 605

limits and those on dependent variables are treated as
constraints.
Since GAVD uses GRGA as its optimisation engine, the
basic operations of GRGA also form part of GAVD. In
addition, it uses the RA to model the relationship among

decision variables. Therefore, the overall computational
complexity of GAVD is the complexity of GRGA
increased with the complexity of the RA, where in most
cases the latter is much smaller than the former.

Start

Given:
• Objective functions (F’s) and constraints
• Variable bounds
• Multiple sets of variable values

Mark F’s as peak nodes of Tree Diagram (TD)

Decompose first F

Decompose first child node of F

Are all nodes at this
level non-decomposable?

Are all immediate children
of F analysed? Decompose next child node of F

Are all F’s analysed? Decompose next F

Decompose all dependent nodes

Use GRGA as optimisation engine:
• GA chromosome defined by independent
variables (end nodes of TD or marked ‘I’ in DC)
• Dependent variables (marked ‘D’ in DC)
calculated from dependency equations
• Bounds on independent variables treated as
variable limits
• Bounds on dependent variables treated as
constraints

Stop

Perform Regression Analysis (RA),
considering first variable as dependent

Set first regression coefficient to zero

Re-perform RA

Same correlation coefficient?
(within ±10%)

Set next regression coefficient to zero

Mark all RA variables in Dependency Chart (DC),
as Dependent (D) or Independent (I)

All variables marked?
Re-perform RA,

considering next unmarked variable as dependent
and all unmarked or ‘I’ variables as independent

All regression coefficients analysed?

No

No

No

Yes

Yes

Yes

Yes

Yes

No
No

No

Set next regression coefficient to zero

All regression coefficients (in
new equation) analysed?

Yes

Yes

No

Step 2

Step 1

Optimisation

Figure 3: GA for Variable Dependence (GAVD)

5.4 A WORKED EXAMPLE
This worked example demonstrates the application of
GAVD to a problem that has dependence among its
decision variables. This problem is given below.

ValuesVariableofSetsMultipleGiven
i

U
ixix

L
ix

xxxxxFFFunctionObjective

____:
5...1,

)()(
)5,4,3,2,1(:_

=≤≤∀

=

Suppose the underlying relationships among decision
variables that need to be identified are as follows.

)5,4,2(23

)3,2(11
xxxfx

xxfx
=
=

The flowchart of Figure 3 identifies the following steps
for solving this problem.
• Determine the following equation for x1.

)5,4,3,2(11 xxxxvx =

• No change is observed in correlation coefficient,
when the RA is performed with the regression
coefficient of x2 set to zero. The new equation is as
follows.

GENETIC ALGORITHMS606

)5,4,3('11 xxxvx =

• Correlation coefficients reduce, when the RA is
performed with the regression coefficients of x3, x4
and x5 set to zero in steps.

• Mark x1 as ‘D’ and x3, x4 and x5 as ‘I’ in the DC
(Table 3).

• Determine the following equation for x2 in terms of
those variables that are so far identified as ‘I’ or are
so far unmarked in the DC.

)5,4,3(22 xxxvx =

• Correlation coefficients reduce, when the RA is
performed with the regression coefficients of x3, x4
and x5 set to zero in steps.

• Mark x2 as ‘D’ and x3, x4 and x5 as ‘I’ in the DC
(Table 3).

• The variables marked ‘I’ in the DC are independent
whereas those marked ‘D’ are dependent.

• Use the dependency equations determined above for
drawing the TD for the problem (Figure 4). The
nodes that are encircled in this figure represent the
independent variables. All other variables are treated
as dependent.

• Use GRGA as the optimisation engine.

� x3, x4 and x5 constitute the GA chromosome.
� x1 and x2 are determined from the dependency

equations.
� Bounds on x3, x4 and x5 are treated as variable

limits.
� Bounds on x1 and x2 are treated as constraints.

Table 3: Dependency Chart (DC) for Worked Example
Dependency Variables
Chart (DC) X1 X2 X3 X4 X5

X1 D I I I
Regression X2 D I I I
Equations X3

X4
X5

F

x1 x2 x4 x5

x3 x4

x5

x3

x3 x4
x5

Figure 4: Tree Diagram (TD) for Worked Example

Table 4: Test Problems for Performance Analysis of GAVD

Problem Objective Functions (Minimisation) Dependency Equations

Problem-1
() ()[]

()

)''(),1(2

)'(1

6.0
)/1(2),1(

120,28cos)22exp(2)''(

110,14exp1
)4exp(1

1
)'(

xIIfsf
xDf

IfIfs

xxxxI

xxxD

�

�

�

�

×=
=

−=

≤≤∀−−=

≤≤∀−−
−−

=

π
)05.0,0(2'2:_

140,130
433.0

2
41.043.0

2
32.031.012

NormalxxGenerationData
xx

xxxxxxx

+=
≤≤∀≤≤∀

−−−−−=

(Figure 5(a))

Problem-2

() ()[]
() ()

)''(),1(2

)'(1

)
2

18cos()/1(
4.0

)/1(2),1(

13,20,34cos)3exp(22cos)2exp(3)''(

110,13exp1
)3exp(1

1
)'(

xIIfsf
xDf

fIfIfIfs

xxxxxxxI

xxxD

�

�

�

�

×=
=

−−=

≤≤∀−−−−=

≤≤∀−−
−−

=

π

ππ
)05.0,0(2'2:_

130,
2
36.032.02.02

NormalxxGenerationData
xxxx

+=
≤≤∀++=

(Figure 5(b))

6 PERFORMANCE ANALYSIS
In this section, GAVD is tested using two multi-objective
optimisation test problems that have dependence among
their decision variables (Table 4). The features of these
test problems make them particularly difficult for multi-
objective optimisation algorithms. In the absence of any
dedicated technique for handling variable dependence,
this section compares the performance of GAVD with two

high-performing multi-objective optimisation algorithms:
NSGA-II and GRGA. However, unlike GAVD, both these
algorithms do not take variable dependency into account.

6.1 EXPERIMENTAL RESULTS
All the tests reported here correspond to 100 population
size, 500 generations, 0.8 crossover probability, 0.05
mutation probability, and simulated binary crossover with
10 crossover distribution index and 50 mutation

GENETIC ALGORITHMS 607

distribution index. The results obtained from these tests
are shown in Figure 6 for Problem-1 and Figure 7 for
Problem-2. The γ (convergence metric) and ∆ (diversity
metric) values corresponding to these results are shown in
Table 5 (Deb et al., 2000). These results form the typical
set obtained from 10 runs with different random number
seed values. No major variation was observed in the
results with the change in the seed values.

0 0.2 0.4 0.6 0.8 1x3 0
0.2

0.4
0.6

0.8
1

x4

0
0.2
0.4
0.6
0.8

1

x2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x2

x3

 (a) (b)
Figure 5: Dependency Relationships (a) Problem-1

(b) Problem-2

Table 5: Performance Metrics in Problems 1 and 2

Problem-1 Problem-2Performance
Metrics γγγγ ∆∆∆∆ γγγγ ∆∆∆∆

NSGA-II 1.209567 0.090002 0.986345 0.083956

GRGA 0.009143 0.080121 1.654703 0.045431

O
pt

im
is

at
io

n
A

lg
or

ith
m

s

GAVD 0.008221 0.081124 0.001373 0.014564

6.2 DISCUSSION OF RESULTS
The following observations can be made from the results
obtained from Problem-1 (Figure 6, Table 5).
• Since the dependency equation covers the full range

of x2, it does not alter the Pareto front. Therefore, the
Pareto fronts for the original problem (with no
dependence) and the dependent-variable problem
coincide with each other.

• GRGA and NSGA-II do not incorporate variable
dependence in their solution strategies. However,
since the original and the new Pareto fronts are
coincident in this case, the GRGA is able to locate
the Pareto front. However, NSGA-II gets trapped in
one of the local fronts.

• The dependency equation is quadratic, making it
possible for the GAVD (that uses quadratic RA) to
exactly model the dependence. Hence, the Pareto
front that the GAVD sees coincides with the true
Pareto front. Furthermore, since GAVD uses GRGA
as its optimisation engine, it is able to converge to the
Pareto front and distribute the solutions uniformly
across the front.

The following observations can be made from the results
obtained from Problem-2 (Figure 7, Table 5).

• In this problem, the original Pareto front occurs when
both x2 and x3 are equal to 0. Due to the given
dependency among these variables, this is no longer
possible. This causes modifications in the search
space and the Pareto front.

• GRGA converges to the global Pareto front of the
original problem (with no dependence among its
decision variables). However, since the new Pareto
front does not coincide with the original one, the
results from GRGA are not feasible in this case.
Similar to the previous case, NSGA-II gets trapped
on a local front, which in this case coincidentally lies
in the new search space.

• Also, since GAVD uses quadratic RA, it is able to
exactly determine the dependency equation in this
case. Hence, the Pareto front seen by GAVD is the
same as that of the actual dependent-variable
problem. Therefore, GAVD converges to the Pareto
front and distributes the solutions uniformly across
the front.

Figure 6: GAVD Performance in Problem-1
(PFIV: Pareto Front for Independent Variables,
PFDV: Pareto Front for Dependent Variables,

EPF: Estimated Pareto Front)

Figure 7: GAVD Performance in Problem-2
(PFIV: Pareto Front for Independent Variables,
PFDV: Pareto Front for Dependent Variables,

EPF: Estimated Pareto Front)

GENETIC ALGORITHMS608

7 FUTURE RESEARCH ACTIVITIES
The current limitations of GAVD and the corresponding
future research activities are as follows.
• The performance of this algorithm in identifying the

dependence among decision variables is limited by
the degree of RA that it uses. Hence, in dealing with
complex dependence, higher order RAs are required.
This implies that the use of more sophisticated non-
linear modelling tools, such as Neural Networks,
have the potential of improving its performance,
especially in modelling deceptive and complex non-
linear functions.

• GAVD also needs to be fitted with a mechanism that
can learn the dependency relationships, and update it
each time a new data is added, without having to
repeat the whole process.

• GAVD also needs enhancements to deal with noisy
data and qualitative issues in real-life problems.

8 CONCLUSIONS
There is currently a lack of systematic research in the
field of variable dependence. This paper proposes an
algorithm capable of handling variable dependence in
multi-objective optimisation problems. The performance
of proposed algorithm is compared to that of two state-of-
the-art optimisation algorithms (NSGA-II and GRGA)
using two dependent-variable test problems. It is observed
that the proposed algorithm GAVD enables its
optimisation engine (GRGA) to handle variable
dependence in optimisation problems.

Acknowledgements
The authors wish to acknowledge the support of the
Engineering and Physical Sciences Research Council
(EPSRC) – Grant No. GR/M 71473, Nissan Technical
Centre – Europe (NTC-E) and Structural Dynamics
Research Corporation (SDRC) UK.

References
Banzhaf, W., Nordin, P., Keller, R.E., and Francone, F.D.
(1998). Genetic programming: An introduction. Morgan
Kaufmann Publishers, Inc., San Francisco, California
(USA).
Beasley, D., Bull, D. and Martin, R. (1993). An overview
of genetic algorithms: Part 2, research topics. University
computing, vol. 15, no. 4, 170-181.
Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.
(2000). A fast and elitist multi-objective genetic
algorithm: NSGA-II. KanGAL Report No. 200002,
Kanpur Genetic Algorithms Laboratory (KanGAL),
Indian Institute of Technology (IIT), Kanpur (India).
Draper, N.R. and Smith, H. (1998). Applied regression
analysis. John Wiley and Sons, Inc., New York (USA).

Evans, J.R. and Olson, D.L. (2000). Statistics data
analysis, and decision modelling. Prentice Hall (USA).
Frees, E.W. (1996). Data analysis using regression
models: The business perspective. Prentice Hall (USA).
Gershenfeld, N. (1999). The nature of mathematical
modelling, Cambridge University Press, Cambridge (UK).
Harik, G.R. (1997). Learning gene linkage to efficiently
solve problems of bounded difficulty using genetic
algorithms. PhD. Thesis, Computer Science and
Engineering, University of Michigan (USA).
Hertz, J.A., Krogh, A.S., and Palmer, R.G. (1991).
Introduction to the theory of neural computation.
Addison-Wesley, Redwood City, CA (USA).
Larranaga, P., Etxeberria, R., Lozano, J.A., and Pena,
J.M. (1999). Optimization by learning and simulation of
Bayesian and Gaussian networks. Technical Report No.
EHU-KZAA-IK-4/99, Intelligent Systems Group,
Department of Computer Science and Artificial
Intelligence, University of the Basque Country (Spain).
Muhlenbein, H. and Mahnig. T. (1999). FDA - A scalable
evolutionary algorithm for the optimization of additively
decomposed functions. Evolutionary computation, vol. 7,
no. 4, 353-376.
Pedrycz, W. (1998). Computational intelligence – an
introduction. CRC Press, New York (USA).
Pelikan, M., Goldberg, D.E., and Cantu-Paz, E. (1998).
Linkage problem, distribution estimation, and Bayesian
networks. IlliGAL Report No. 98013, Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-
Champaign (USA).
Phadke, M.S. (1989). Quality engineering using robust
design. Prentice-Hall International Inc., London (UK).
Rao, S.S. (1996). Engineering optimization – theory and
practice. Wiley-Interscience, USA.
Richards, W. (1998). Natural computation. MIT Press,
Cambridge, MA (USA).
Roy, R., Tiwari, A., Munaux, O. and Jared. G. (2000).
Real-life engineering design optimisation: features and
techniques. In: Martikainen, J. and Tanskanen, J. (eds.).
CDROM Proceedings of the 5th online world conference
on soft computing in industrial applications (WSC5) –
ISBN 951-22-5205-8, IEEE (Finland).
Taguchi, G. (1987). System of experimental design.
Clausing, D. (ed.), UNIPUB/Kraus International
Publications, vol. 1 and 2, New York (USA).
Tiwari, A., Roy, R., Jared, G. and Munaux, O. (2001).
Interaction and multi-objective optimisation. In: Spector,
L., Goodman, E., Wu, A., Langdon, W.B., Voigt, H.-M.,
Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.
and Burke, E. (eds.). Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001),
671-678, Morgan Kaufmann Publishers, San Francisco
(USA).

GENETIC ALGORITHMS 609

Applying Genetic Algorithms to Finding the Optimal Gene Order
in Displaying the Microarray Data

Huai-Kuang Tsai

Dept. of Computer Science and
Information Engineering National
Taiwan University, Taipei, Taiwan

d7526010@csie.ntu.edu.tw

Jinn-Moon Yang

Dept. of Biological Science and
Technology & Institute of

Bioinformatics, National Chiao Tung
University, Hsinchu, Taiwan

moon@cc.nctu.edu.tw

Cheng-Yan Kao1,2

1 Dept. of Computer Science and
Information Engineering National
Taiwan University, Taipei, Taiwan
2 Bioinformatics Center, National

Taiwan University, Taipei, Taiwan

cykao@csie.ntu.edu.tw

Abstract
In this paper the Family Competition Genetic
Algorithm (FCGA) is applied to analyze DNA-
microarray data. DNA Microarray technology is
a significant impact on genomics study. The
proposed approach consists of global and local
strategies by integrating the family competition,
edge assembly crossover, and neighbor-join
mutation. Experiments are performed to compare
the FCGA with several methods in some real-
world biological data sets. Numerical results
indicate that FCGA performs very robustly and
is very competitive with other approaches. Using
FCGA, we are able to find a gene order to
display the microarray data in a meaningful way.

1 INTRODUCTION
DNA microarray technology can be applied to many

biological domains, such as drug discovery, molecular
diagnosis, and toxicological research. During the past few
years, the development of DNA-microarray technology
had provided the means to monitor the expression levels
of a large number of genes simultaneously.

In the microarray experiments, messenger RNAs
(mRNA) are extracted from the cell culture.
Complementary DNAs (cDNA) are generated from the
RNAs, amplified, labeled and then hybridized to a large
array of DNA probes immobilized on a solid surface. The
array is then scanned by a laser to obtain the signal for
each probe region. From the signal strengths of the probes
from a particular gene, one can infer the expression level
of the gene in the cell type under study. Fig. 1 is the
schematic procedures for monitoring gene expression
using DNA microarray. With many chips, the expression
data can be represented by a real-valued expression
matrix X where Xij is the measured expression level of
gene i in experiment j.

However with thousands of genes and hundreds of
experiments, it is difficult to evaluate the immense
amount of gene expression profiles. A large number of
approaches have been developed for analyzing the huge
microarray data. For examples, clustering, classification,
and genetic network analysis are usually adapted for

analyzing these data. In any case, it is important to display
microarry data in a meaningful way to best illustrate
trends in gene expression.

An intuitive way to display microarray data is to find
an optimal order of genes such that genes with similar
expression profiles are blocked together. However, it is
NP-complete to find an optimal order of genes [1].
Several approaches have been proposed for solving this
problem. For example, the hierarchical clustering
approach, a widely used tool [2-6], has been used to
approximate the solution. Since the constructing process
of the hierarchical tree is greedy, this approach may get
stuck at local minima. Some approaches have been
proposed to improve the solution quality of hierarchical
clustering approach, such as flipping the internal nodes in
the tree [7] and neural networks [8]. In this paper, finding
an optimal order of genes is formulated as a travel
salesman problem (TSP). Evolutionary approaches (EAs)
are one of promising directions for solving TSPs.

Evolutionary approaches have been successfully
applied to optimization problems that are inherently
computationally complex [9-11]. EAs are an adaptable
concept for problem solving and especially well suited for
solving difficult optimization problems. They have been
used to solve problems involving large search spaces,
where traditional optimization methods are less efficient.

In this paper, we propose the family competition
genetic algorithm (FCGA) to find the optimal order of
genes with expression profiles. The FCGA combines a
family competition, the neighbor-join mutation (NJ), and
the edge assembly crossover (EAX) [12]. The family
competition, derived from (1+λ)-ES and Lin-Kernigan
heuristic, had been successfully applied to several
continuous parameter optimization problems, such as
protein docking [13] and thin-film coatings [14]. In our
pervious studies [15], we had successfully integrated the
family competition and EAX for solving traveling
salesman problems (TSPs). In order to balance
exploration and exploitation, we also designed the
neighbor-join mutation [16] to cooperate with the EAX.
The main difference in methodology between the present
work and our previous studies is the integrations of these
mechanisms.

GENETIC ALGORITHMS610

reference experiment

Figure 1. Schematic procedures for monitoring gene expression
using DNA microarray

We illustrate features of FCGA by some TSPs
benchmarks and biological data sets. The TSPs were used
to verify the performance of FCGA by comparing with
several methods [12][17-19]. Three biological data sets
are tested to shown that FCGA is superior to the existing
heuristic methods of gene order, including hierarchical
clustering [2] and self-organizing map (SOM) [20].
Experimental results demonstrated that the FCGA is an
encouraging approach for finding the optimal order of
genes in expression profiles.

This paper is organized as follows. Section 2 describes
the problem of ordering genes in expression profiles.
Section 3 introduces the evolutionary nature of the FCGA.
In Section 4, some experimental results are presented to
illustrate the performance of the FCGA. We also compare
the FCGA with various approaches on three biological
problems and discuss the biological meanings.
Concluding comments are drawn in Section 5.

2 PROBLEM DEFINITION
One important issue in the microarray data analysis is

to display the data in a meaningful way that best
illustrates the trends in gene expression. The problem can
be formulated as follows: find an optimal order of genes
such that genes with similar expression profiles are close
together. Different criteria result in different objective
functions: such as distances between gene expression
profiles [1] or distances between both adjacent genes and
block similarities [21]. In this paper, we used the sum of
distances of adjacent genes as our fitness function defined
as

∑
=

+

M

i
ii

ggD
1

),(
1ππ

, (1)

where gi denote a gene, ni ≤≤1 , π denote a gene order,
M is number of genes and D(gi, gj) is the distance of two
genes gi and gj. This problem is the same as to determine
the shortest route passing through a set of M cities under
the condition that each city is visited exactly once. This
so-called traveling salesman problem is well known to be
NP-complete [22].

Some methods have been proposed to define the
distance D(gi, gj), or called similar, between two genes,
such as Pearson correlation, absolute correlation,
Spearman Rank correlation, Kendall's Tau, and Euclidean
distance. In this paper, we applied centered Pearson
correlation which is widely used in DNA microarray. Let

kxxxX ,...,, 21= and
kyyyY ,...,, 21= be the expression levels

of two genes (prepared in log-transformed data) observed
over a series of k conditions. Based on Pearson
correlation the distance of genes X and Y can be given

YXsYXD ,1),(−= . (2)

sX,Y is the centered Pearson correlation defined as

()()
YX

i Yy
k

i

Xx
YX k

s σσ
−

=

−∑= 1

1
,

1
(3)

where X and σX is the mean and standard derivation of the
expression levels. The value of σX is

∑
=

−=
k

i
ikX Xx

1

21)(σ . (4)

According to the above steps, the problem finding an
optimal order of genes can be formulated as a TSP. Then
we applied our method to solve this problem.

Initialize population S with N solutions

Randomly select another individual

Generate an intermediate solution
(oi) by applying EAX crossover

Select the better one (Ii) from si

and (o1, o2…oL)

Generate a child (ci) by applying NJ
mutation on Ii, insert ci into Snext

Replace S with Snext and let
Snext be an empty set.

Repeat for each
individual
(“ family
parent si”) in S

Satisfy terminal
conditions

No

Yes

Output the best solution

Repeat L
times

Figure 2. The outline of FCGA

GENETIC ALGORITHMS 611

3 METHOD

In this section, the details of the proposed genetic
algorithm, called family competition genetic algorithm
(FCGA), for optimizing the gene order in gene expression
data are presented. The FCGA has three major
mechanisms, including a family competition, the edge
assembly crossover (EAX), and the neighbor-join
mutation (NJ). The EAX and the NJ mutation are genetic
operators considered to be able to preserve and add good
edges to generate a child. The family competition is a
local search mechanism incorporated into the EAX and
the NJ mutation. These three mechanisms have been
studied to balance exploration and exploitation in the
search space.

Fig. 2 shows the main steps of the FCGA. N solutions
are generated as the initial population. Each solution is
represented as a random permutation from 1 to M where
M is the number of genes. After evaluating the fitness,
each individual in the population sequentially becomes
the “family father (si)” to produce L offspring, (o1,...,oL),
by conducting the EAX and the family competition. The
one with lowest fitness value from o1,o2...oL and si

becomes the intermediate offspring (Ii). The NJ is then
applied to generate a child (ci) by refining from the
intermediated solution Ii. Each individual in the
population sequentially executes the above steps to
generate its child. These N solutions (c1,...,cN) become the
new population of the next generation. Therefore, LN
solutions are generated in one generation and N solutions
are selected as the parent population of the next
generation.

Our algorithm terminated when one of criteria is
satisfied: 1) the maximum preset search time is exhausted,
2) all individuals of a population are the same, or 3) all of
the children generated in continuous five generations are
worse than their parents. Please note that both the
crossover and mutation rates are 1.0. In the following
subsections, the family competition, the EAX, and the NJ
mutation are described.

3.1 REPRESENTATION

In the chromosome representation of our FCGA, each
solution si represents a gene orderπ, where Ni ≤≤1 and
N is the population size. Assume there are M genes
{g1,…,gM}, the solution si is represented as:

),...,,(
21 M

gggsi πππ= . (5)

The fitness function follows the equation (1).

3.2 FAMILY COMPETITION

The family competition, derived from (1+λ)-ES and
Lin-Kernigan heuristic, is considered as a local search
procedure in FCGA. In the family competition step, L
offspring, (o1,...,oL), are generated by EAX crossover
operator and after family selection, the one with best

fitness from (o1,...,oL) and the family father (si) is survived.
The procedure of the family competition is described as
follows. Each individual (si) sequentially becomes the
“family father.” This “family father” and another solution
(sj) randomly chosen from the rest of the parent
population are used as parents to do EAX crossover
operation to generate an offspring (ol). For each family
father, such a procedure is repeated L times. Finally L
solutions (o1,...,oL) are produced. After L solutions
compete with “family father,” only the one (Ii) with the
best objective value survives. Since we create L solutions
from the same “family father” and perform a selection,
this is a family competition strategy. Because each
individual sequentially becomes the “family father“, LN
offspring are generated in one generation.

3.3 EDGE ASSEMBLY CROSSOVER

The EAX [10] is considered a powerful crossover
operator [23]. It has two important features: preserving
parents’ edges with a novel approach and adding new
edges with a greedy method, analogous to a minimal
spanning tree. Several issues, such as the selection
mechanism and heuristic methods, influencing EAX
performance have been discussed [15][16][23][24]. In this
paper the EAX is considered as the global search strategy
in our proposed algorithm.

The EAX is briefly described here. Two individuals,
denoted as A and B, were selected as the parents. The
EAX first merges A and B into a single graph denoted G.
The EAX travels G to generate many AB-cycles by
alternately picking edges from parents A and B.
According to the heuristic and random selection rules,
some of AB-cycles are selected to generate a quasi
solution which contains some disjointed subtours. Then,
the EAX uses a greedy method to merge these disjointed
subtours into a valid solution. This solution is returned if
the fitness of this solution is better than its parents.
Otherwise this procedure is repeated until a solution that
is better than both A and B or K children are produced
where K is the local search length.

3.4 NEIGHBOR-JOIN MUTATION

The neighbor-join (NJ) operator constructs a new
solution by stealing edges from other individuals in the
population or by considering the geometric information.
Although the NJ is applied only on the single solution, the
offspring is generated considering both the neighborhood
information and knowledge from other individuals. Thus,
the NJ operator is a genetic operator combining with the
characteristics of local search, mutation, and
recombination.

The NJ is inspired by the inver-over mutation [25]
and by analyzing the TSP search space [26]. The main
difference between the inver-over mutation and the other
mutations is that it inherits edges both from parent and
from other individuals in the current population.
According to the analysis of the optimal tour of att532,

GENETIC ALGORITHMS612

we find that most of the links in the optimal tour of att532
are the neighbor cities of each city.

The details of the NJ are described as follows. By
given the input of an individual Ii and the search length K,
the NJ applies K modifications from the start solution Ii’=
Ii. In each modification, a gene c is randomly selected
from Ii’. With equal probability, a gene c’ is randomly
selected either from the geometric nearest three neighbors
of c or from the neighbor of c of an individual, which is
randomly selected from the population. If the edge (c’,c)
does not appear in Ii’, to reconnect c and c’ together
generates four possible types. The NJ generates four
candidates by sequentially executing each type once. The
one with lowest fitness from these four candidates and Ii’
are selected as the parent of next loop. Above steps are
executed K times.

In the four candidates, two are the simple invert
operation to align c and c’ together, the other two will
result in two disjoint subtours. A greedy method is
applied to merge two disjoint subtours into a valid
solution. The greedy method works as follows: Let vi

represent a gene, (vi, vj), i≠j, represents an edge, and w(vi,
vj) be the edge length of (vi, vj). At the same time, let (vr,
vr+1) and (vs, vs+1) be the edges of the subtour Gr and the
subtour Gs, respectively. We find a pair of edges (vr, vr+1)
and (vs, vs+1) to connect these two subtours, Gr and Gs,
into a legal tour by maximizing the value of the following
equation:

),(),(),(),(1111 ++++ −−+ rssrssrr vvwvvwvvwvvw (6)

sr GsGrsr ∈∈∀ and;, .

The new edges (vr, vs+1) and (vs, vr+1) are inserted to
replace the original edges (vr, vr+1) and (vs, vs+1) to form
the new solution.

4. EXPERIMENTAL RESULTS
In this section FCGA first was tested on some TSP

benchmarks to verify the correctness and efficiency. Four
efficient methods for TSPs were compared with FCGA to
show the robustness of FCGA. FCGA is then applied on
three biological data sets to find the optimal gene order.
By comparing to the hierarchical clustering [2] and self-
organizing map (SOM) [20], FCGA is superior to other
approaches in: 1) minimizing the cost of order, 2)
uncovering the correct cell cycle, and 3) most genes with
the same group are aligned together. Finally we conclude
this section by presenting biological results with
visualized representation.

FCGA has been implemented in C++ and executed on
a Pentium III 500MHz personal computer with single
processor. As introduced in Section 3, the population size
(N), the family competition length (L), and the local
search length (K) are the main parameters in our
algorithm. According to our previous study [15][16], the
population size (N) is roughly set to the number of cities

(for TSP problem) and the number of genes (for
microarray data), while the family competition length (L)
is set to 5 and the local search length (K) is set to 20 for
the tradeoff between solution quality and convergence
time.

4.1 RESULTS OF STSP PROBLEMS

Table I summarizes the results of our method and four
other approaches, including nature crossover genetic
algorithm (NGA) [18], ant colony system (ACS) [19],
distance-preserving crossover genetic algorithm (DGA)
[17], and EAX genetic algorithm (EGA) [12]. NGA
integrated nature crossover and LK local search [27];
ACS is an ant colony system cooperated with 3-opt
operator; DGA combined the distance-preserving
crossover and 3-opt; and EGA used the EAX crossover.
These four approaches perform well on these test
problems according to our surveys. The results of first
three methods were directly summarized from original
papers. The average tour length and the average error of
trails are used to measure the performance of comparative
methods. The values in parentheses of the average tour
length represent the percentages of error defined as

optimum
optimumsol − , where sol is the experimental value and

optimum is the optimum of a TSP problem.

Table I shows that our algorithm performs robustly for
testing symmetric TSPs. For each problem the proposed
algorithm can find the best tour in almost each trial and
the error rate is only 0.01% away from the optimal. Since
the solution qualities of FCGA applied on these TSPs are
good, we believe that it would also proper to optimize the
gene order in gene expression data.

TABLE I

Comparisons of FCGA with other methods, including NGA [18], ACS
[19], DGA [17], and EGA[12], on five TSP problems based on the
average tour length and average solution qualities (error) in 30 trails.

The percentages of error defined as
optimum

optimumsol − , where sol is the

experimental value and optimum is the optimum of a TSP problem.
“N/A” represents not available in original papers.

Methods: average tour length (error in %)Problems/
(optimum) FCGA ACS DGA NGA EGA

Lin318
(42029)

42029.00
(0.000)

N/A
42033.44
(0.011)

42029.00
(0.000)

42041.23
(0.011)

pcb442
(50778)

50778
(0.000)

N/A 50778
(0.000)

50778
(0.000)

50778
(0.000)

att532
(27686)

27688.49
(0.0081)

27718.20
(0.112)

27697.58
(0.042)

27695.61
(0.035)

27696.33
(0.037)

rat783
(8806)

8806.00
(0.000)

8837.90
(0.362)

8806.00
(0.000)

8806.00
(0.000)

8806.00
(0.000)

pcb3038
(137694)

137700.19
(0.0032)

N/A 137760.55
(0.048)

137765.02
(0.052)

137703.77
(0.007)

4.2 RESULTS OF BIOLOGICAL DATA

After the robustness of FCGA is shown, we applied it
to three biological data sets to find the optimal gene order.

GENETIC ALGORITHMS 613

FCGA was compared with four widely used methods,
including hierarchical agglomerative clustering algorithm
(single-linkage, complete-linkage, and average-linkage
[2]) and self-organizing map (SOM) [20].

In the aspect of data, the first and second data set, cell
cycle-cdc15 and cell cycle, are about 800 genes which are
cell cycle regulated in saccharomyces cerevisia with
deferent number of experiments [28]. Spellman et al. [28]
assigned these 800 genes to five groups termed G1, S,
S/G2, G2/M, and M/G1. These groups approximate the
commonly used cell cycle groups in the literature. The
authors used a ‘phasing’ method which compare the ‘peak
expression’ for each unknown gene with the expression of
genes that were known to belong to each of these group.
Although the group assignment is not the real grouping, it
is still meaningful to some degree. So, we also use this
information to evaluate a order of genes. The third data
set, yeast complexes, is from MIPS yeast complexes
database [2]. All these three data sets can be found in [7].
Table II gives the brief descriptions of each data set.

TABLE II

The description of three tested biological data set, including the
source, number of experiments, and number of genes of each set.

Data name source Num. of
experiment

Num. of
genes

Cell cycle cdc15 Spellman et al. [28] 24 782

Cell cycle Spellman et al. [28] 59 803

Yeast complexes Eisen et al. [2] 79 979

All these data can be download from [7]

Two scoring systems are adapted here to verify the
correctness of a gene order π . Assume

)...,(
21 M

ggg ππππ = is an order of genes, where M is

the number of genes. The first score is the fitness function
which is the sum of the distance between any two
consecutive genes inπ, denoted as score1(π). The score
Score1(π) is defined as:

∑
=

+
=

M

i
ii

ggDScore
1

1),()(
1πππ , (7)

where
11 ππ gg

M
=

+
,),(

1+ii
ggD ππ is the distance

between two genes (the distance measures are defined in
section 2). In fact, this is just the fitness function
(equation 1). The smaller the score1(π) is, the better
order of genes we would get.

The second score, score2(π), is to measure the overall
group distribution inπ . As mentioned earlier in this
section, the first and second data have descriptions about
gene group information. By this information, the score
Score2(π) is defined as:

∑
=

+
=

M

i
ii

ggGScore
1

2),()(
1πππ , (8)

where
11 ππ gg

M
=

+
, and),(

1+ii
ggG ππ is defined as:

=
groupsametheinnotaregandif

groupsametheinaregandif
g

ji

ji

ji
ππ

ππ
ππ g,0

g,1
),G(g

In a gene orderπ , if genes with the same groups are
aligned next to each other, score2(π) would be higher. In
summary, we use FCGA to get the optimal gene order by
minimizing the fitness function score1(π). After the
optimal gene orderπ is got, we hope the magnitude of
score2(π) as larger as possible. Fig.3 shows an example
of calculating the score1(π) and score2(π).

Table III and IV summarizes the comparisons on
score1(π) and score2(π) of our method and these four
approaches. Both tables show that the FCGA performs
more robustly than comparative methods for testing sets
in both score1(π) and score2(π). By counting the factor:

genesofnumber

score)(2 π , (9)

we found that almost 70-80% genes with the same groups
are aligned next to each other. In other words, two
neighbor gene in the optimal gene orderπare almost in
the same group. In summary, FCGA provides a way to
reorder the genes in a meaningful order and aligns genes
with the same group together.

Gene order: π = (2,3,6,1,7,4,5)

score1(π) = D(2,3)+D(3,6)+ D(6,1)+D(1,7) + D(7,4)+D(4,5)

= 0.5+0.5+0.6+0.4+0.5+0.4+0.8 = 3.7

score2(π) = G(2,3)+G(3,6)+ G(6,1)+G(1,7) +G(7,4)+G(4,5)

=1+0+0+0+0+1+0 = 2

distance matrix group category

1 2 3 4 5 6 7 gene Group
1 0 0.5 0.3 0.2 0.5 0.6 0.4 1 1
2 0.5 0 0.5 0.3 0.8 0.3 0.2 2 1
3 0.3 0.5 0 0.4 0.4 0.5 0.2 3 1
4 0.2 0.3 0.4 0 0.4 0.5 0.5 4 2
5 0.5 0.8 0.4 0.4 0 0.6 0.6 5 2
6 0.6 0.3 0.5 0.5 0.6 0 0.3 6 3
7 0.4 0.2 0.2 0.5 0.6 0.3 0 7 3

Figure 3. An example of calculating the score1(π) and score2(π).

GENETIC ALGORITHMS614

Table III

Comparisons of our method (FCGA) with other methods
including single-linkage, complete-linkage, average-linkage [2],
and self-organizing map (SOM) [20], on three gene expression
data sets based on score1(π).

Cell cycle
cdc15

Cell cycle
Yeast

complexes

FCGA 137.347 219.233 308.801

Single-
linkage 655.483 599.329 621.311

complete-
linkage 227.828 486.717 435.314

average-
linkage 244.792 398.15 459.529

SOM 363.453 530.635 623.169

Table IV

Comparisons of our method (FCGA) with other methods
including single-linkage, complete-linkage, average-linkage [2],
and self-organizing map (SOM) [20], on two gene expression
data sets based on score2(π).

Cell cycle cdc15 Cell cycle

FCGA 521 627

Single-linkage 251 336

complete-linkage 498 598

average-linkage 500 581

SOM 461 578

4.3 VISUALIZED RESULTS

To further understand the efficiency of our approach,
we show the results by a visualized graph. Fig.4 is the
gene expressions of the cell cycle cdc15 data [28] whose
gene order is reordered by 1) original (random
permutation) and 2) FCGA. For each gene in the figure,
the expression profiles are represented as lines of color
boxes and each box corresponding to one experiment.
Comparing to the original data (random permutation),
genes with similar expression profiles are grouped
together by using FCGA. Some genes are not connected
to their groups because: 1) the global minimization forces
some genes to separate from their original group; 2) the
missing values and the distance metric affect the overall
ordering of genes. (more data results are available at
http://bioinfo.csie.ntu.edu.tw/~survivor/ordering.)

(1)original (2)FCGA

Figure 4. The visualized gene expressions results. This figure
shows the gene order of the cell cycle cdc15 data whose gene
order is 1) original (random permutation) and 2) reordered by
FCGA. For each gene, the expression profiles are represented as
lines of color boxes and each box corresponding to one
experiment. As we can see, (2) is more organized and most
neighbor genes in the order have similar expression profiles.

5 CONCLUSION

This study presents that FCGA has successfully
applied to solve the problem of displaying the microarray
data in an optimal order. FCGA keeps the population
diversity via the family competition and efficiently search

GENETIC ALGORITHMS 615

the solution space via incorporating EAX crossover and
NJ mutation. Experiments of the TSPs verify that the
proposed approach is very comparative with other
evolutionary algorithms. Using FCGA on the biological
data can recover the correct cell cycle and group similar
genes in an optimal order. We believe that the flexibility
and robustness of the FCGA make it an effective tool of
analyzing microarray data.

In the future, we will: 1) test more biological data set
to reveal new biological facts; 2) use different distance
metrics to produce better results; and 3) investigate
different objective functions for nonparametric clustering
via FCGA.

References

[1]. Biedl, T., Brejova, B., Demaine, E. D., Hamel, A. M.,
and Vinai, T., “Optimal Arrangement of leaves in the
tree representing hierarchical clustering of gene
expression data,” Technical report, Nov. 2001.

[2]. Eisen, M. B., Spellman, P. T., Brown, P. O., and
Botstein, D., “Cluster analysis and display of
genome-wide expression patterns,” Proc. Natl.
Acad. Sci., pp. 14863–14868, 1998.

[3]. Alizadeh, A. A., Eisen, M. B., et al., “Distinct types
of diffuse large B-cell lymphoma identified by gene
expression profiling,” Nature, 403(6769), pp. 503-
511, 2000.

[4]. Kawasaki, S., Borchert, C., et al., “Gene expression
profiles during the initial phase of salt stress in
rice,” Plant Cell, 13(4), pp. 889-906, 2001.

[5]. Khodursky, A. B., Peter, B. J., et al., “DNA
microarray analysis of gene expression in response
to physiological and genetic changes that affect
tryptophan metabolism in Escherichia coli,” Proc.
Natl. Acad. Sci., pp. 12170-12175, 2000.

[6]. Schaffer, R., Landgraf, J., et al., “Microarray
Analysis of Diurnal and Circadian-Regulated Genes
in Arabidopsis,” Plant Cell, 13(1), pp. 113-123,
2001.

[7]. Bar-Joseph, Ziv., Gifford, D. K., and Jaakkola, T. S.,
“Fast optimal leaf ordering for hierarchical clustering,”
Bioinformatics, vol. 17, suppl. 1, pp. s22-29, 2001,
http://www.psrg.lcs.mit.edu/clustering/ismb01/optimal
.html.

[8]. Herrero, J., Valencia, A., and Dopazo, J., “A
hierarchical unsupervised growing neural network
for clustering gene expression patterns,”
Bioinformatics, vol. 17, pp. 126-136, 2001.

[9]. Goldberg, D. E., Genetic algorithms in search,
optimization & machine learning. Reading, MA:
Addison-Wesley, 1989.

[10]. Chu, P. C. “A Genetic Algorithm for the
Multidimensional Knapsack Problem,” Journal of
Heuristics, vol. 4, pp. 63-86,1998.

[11]. Dandekar, T. and Argos, P., “Folding the main
chain of small proteins with the genetic algorithm,”
J. Mol. Biol., vol. 236, pp. 844- 861, 1994.

[12]. Nagata, Y. and Kobayashi, S., “Edge assembly
crossover: A high-power genetic algorithm for the
traveling salesman problem,” in Proceeding of the
seventh international Conference on Genetic
Algorithms (ICGA), 1997, pp. 450-457.

[13]. Yang, J. M. and Kao, C.Y. “A Family competition
evolutionary algorithm for automated docking of
flexible ligands to Proteins,” IEEE Trans. on
Information Technology in Biomedicine, vol. 4, no.
3, pp. 225-237, 2000.

[14]. Yang, J. M., Horng, J.T, Lin, C. J., and Kao, C.Y.
“Optical coating designs using an evolutionary
algorithm,” Evolutionary Computation, vol. 9, no.4,
pp. 421-443, 2001.

[15]. Tsai, H. K., Yang, J. M., and Kao, C. Y. (2001) “A
genetic algorithm for traveling salesman problems,”
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2001), pp.687-
693.

[16]. Tsai, H. K., Yang, J. M., and Kao, C. Y., “Solving
Traveling Salesman Problems by Combining Global
and Local Search Mechanisms,” Proceedings of the
Congress on Evolutionary Computation (CEC),
2002, to appear.

[17]. Dorigo, M. and Gambardella, L. M. (1997) “Ant
colony system: A cooperative learning approach to
the traveling salesman problem,” IEEE Trans. on
Evolutionary Computation, vol.1, no.1, pp53-66.

[18]. Freisleben, B. and Merz, P. (1996) “New genetic
local search operators for the traveling salesman
problem,” In Parallel Problem Solving from Nature
IV, Springer-Verlag, pp. 890-899.

[19]. Jung, S. and Moon B. R. (2000) “The nature
crossover for the 2D Euclidean TSP,” Genetic and
Evolutionary Computation Conference (GECCO
2000), pp. 1003-1010.

[20]. Tamato,P., Slonim, D., Mesirov, J., Zhu, Q.,
Kitareewan, S., Dmitrovsky, E., LANDER, E. S.,
and GOLUB., T. R., “Interpreting patterns of gene
expression with self-organizing maps: methods and
application to hematopoietic differentiation,” Proc.
Natl. Acad. Sci., vol 96, pp. 2907-2912, 1999.

[21]. Amir, B. D., Ron, S., and Zohar, Y. “Clustering
Gene Expression Patterns,” journal of
computational biology, vol. 6, pp. 281-297, 1999.

GENETIC ALGORITHMS616

[22]. Garey, M. R. and Johnson, D. S., “Computers and
Intractability: A Guide to the Theory of NP-
Completeness,” Freeman, 1979.

[23]. Watson, J., Ross, C., Eisele, V., Denton, J., Bins, J.,
Guerra, C., Whitely, D., and Howe, A. (1998) “The
traveling salesrep problem, edge assembly crossover,
and 2-opt,” In Parallel Problem Solving from
Nature V, A. E. Eiben et al, eds. Springer-Verlag,
pp.823-832.

[24]. Nagata, Y. and Kobayashi, S. (1999) “An analysis of
edge assembly crossover for the traveling salesman
problem,” IEEE International Conference on
Systems Man and Cybernetics, pp. 628-633.

[25]. Tao, G. and Michalewicz, Z. (1998) ”Inver-over
Operator for the TSP,” In Parallel Problem Solving
from Nature V, Springer-Verlag, pp.803-812.

[26]. Padberg, M. and Rinaldi, G. (1987) “Optimization of
a 532-city symmetric traveling salesman problem by
branch and cut,” Operation Research Letters, vol. 6,
pp.1-7.

[27]. Lin, S. and Kernighan B. (1973) “An effective
heuristic algorithms for the traveling salesman
problem,” Operations Research, Vol.21, pp.498-516.

[28]. Spellman, T. S., Sherlock, G., & et al.,
“Comprehensive identification of cell cycle-regulated
genes of the yeast saccharomyces cerevisia by
microarray hybridization,” Mol. Biol. of the Cell, vol.
9, pp. 3273-3297, 1998.

GENETIC ALGORITHMS 617

GA

Combining Competitive and Cooperative Coevolution for Training
Cascade Neural Networks

Alexander F. Tulai

Computer Science Dept.
Carleton University

Ottawa, Ont, CANADA, K1S 5B6
alexander.tulai@rogers.com

Tel: (613) 730-2671

Franz Oppacher

Computer Science Dept.
Carleton University

Ottawa, Ont, CANADA, K1S 5B6
foppache@ccs.carleton.ca
Tel: (613) 520-2600/3520

Abstract

Cooperative Coevolution (CC) has been shown
to be effective in problems where certain
architectural details of the solution are evolved.
This is the case of cascade neural networks
where the number of hidden units is not pre-
established but rather emerges through learning.
We take a step towards having coadapted
subcomponents emerge rather than being hand
designed by showing that competing populations
(evolved by GAs with different mutation and
crossover probabilities) can be successfully used
in selecting the species that are subsequently
coevolved in a cooperative model. Our
experimental results indicate that retraining is an
essential step in the cooperative coevolution
model. Previous studies used evolutionary
algorithms (EAs) to train connection weights and
neuron thresholds in artificial neural networks
(ANNs). We show that by also evolving the
characteristics of the neurons themselves, the
quality of the solution (in terms of number of
hidden units) could be significantly improved.

1 INTRODUCTION

EAs have been used in the past to train and/or initialize
connection weights, evolve neural network architectures
and learning rule adaptation, etc. (Yao, 1999).

This paper shows that in the case of cascade neural
networks (CNNs) not only evolutionary strategy (ES) but
also genetic algorithms (GAs) could be successfully used
for evolving and training the nets. We also show that by
evolving the neuron characteristics in addition to the
connection weights a more compressed solution is
obtained over the case of fix neuron activation function.

The paper is organized as follows. In section 2 we discuss
the concept of coevolution. In section 3 we describe the

problem under study and the definition of the species used
by the EAs. In section 4 we describe the three algorithms
that are used for comparison in this study. In section 5 we
present and discuss the experimental results. In section 6
we discuss the impact of retraining in cooperative
coevolution (CC) while in section 7 we discuss the effect
of evolving the neuron characteristics followed by a
discussion on algorithm robustness in section 8. Section 9
summarizes the conclusions of this paper.

2 COMPETITIVE AND COOPERATIVE
COEVOLUTION

Coevolution is defined as a series of reciprocal
evolutionary changes in interacting species acting as
agents of selection for each other. Competitive and
cooperative coevolution are two important forms of
coevolutionary relationships. The nature of the
relationship plays an important role in determining
various components of the evolutionary model (like
problem decomposition, credit assignment, etc.).

Combining competition and cooperation within a
coevolution model has been used by cooperative
coevolutionary GAs (Potter and De Jong, 1994). In the
case of GAs, the competition is usually between
individuals and not between populations.

The CC GA model inherits the limitations commonly
associated with a GA, like pre-determining, through
experimentation, of mutation and crossover rates or the
population size. In addition to that, when new species are
introduced in the CC model, certain selection criteria or a
pool of candidates are needed to ensure the quality of the
new species.

In our study, to alleviate these problems and increase the
generality of the model, we introduce an extra step during
which multiple populations, evolved by GAs with
different mutation and crossover rates, participate in a
competitive-cooperative coevolutionary process
(competing among themselves but cooperating with the
previous species) that results in one winning species. The
individuals of the populations that underperform during

GENETIC ALGORITHMS618

the competitive phase are re-distributed between the other
populations. This process mimics real life situations when
employees of a company that goes bankrupt join other
successful companies. Consequently, during the
competitive phase the competing populations may have
slightly different sizes. The size of the population of the
winning species will be equal to the sum of all initial
populations but it is clear that the mutation and crossover
rates are not known apriori as they depend on the GA
used by the winning population. The winning species thus
joins other previous winners in the cooperative
coevolutionary phase of the algorithm. This process is
repeated for every hidden unit introduced in the CNN.

The purpose of the competitive phase is twofold. On the
one hand it selects a new species and on the other hand it
selects the GA with the most appropriate mutation and
crossover rates to evolve this new species. The purpose
of the cooperative coevolutionary phase is to find those
representatives from each species that together provide
the best solution to the problem.

We compare the competitive-cooperative coevolutionary
(CCC) GA model it with a CC model using evolutionary
strategy (ES) and a pool of 8 initial candidate species to
select from.

Both algorithms retrain all the species after a new species
is introduced in the cooperative. This is different from
other similar cooperative models (for example the cascade
neural networks architecture can also be seen as a
cooperative model) that do not perform retraining.

3 PROBLEM DESCRIPTION AND
SPECIES DEFINITION

Proposed first by Alexis Wieland of Mitre Corp. the two-
spiral has become a favorite hard problem to solve by
training neural networks.

Figure 1 : The training patterns.

The problem consists of two intertwined spirals (see
Figure 1) with 97 points on each spiral for a total of 194
points.

If a point that belongs to one spiral is input to the neural
network the output of the network should be a positive
signal and if the point belongs to the other spiral the
output should be negative. When the problem is solved in
this form, although it is rarely mentioned, we say that it is
solved according to the 5050 − criterion. Sometimes
(Wah and Qian, 2000) classification problems are studied
using the 402040 −− criterion.

Solutions to the two-spiral problem could either have an
evolved architecture, like in the case of the CNNs first
proposed by Fahlman (Fahlman and Labiere, 1990a), or
they can have a fixed architecture. The best solution to the
two-spiral problem, in terms of number of hidden units
(HU), had 4 HUs and 19 connection weights and it was
arrived at based on a fixed neural network architecture
(Wah and Qian, 2000). The previously reported best
solution based on an evolved architecture had 9 HUs and
75 weights (Fahlman and Labiere 1990b).

In previous studies (Fahlman and Labiere, 1990a; Potter
and De Jong, 2000) the hidden units and the output unit
were neurons with an output range of [-1,+1] and with a
sigmoidal activation function given by the equation

We are also using neurons with a [-1,+1] range but we
treat the activation function itself as an evolvable function
with the equation.

Besides the number of hidden units, which is an
architectural element, and the connection weights (that
also include the bias) we are also evolving the
characteristics of each neuron by including the parameters
α and L (the gain and the input signal limit) in the
individual genome of a species. Defining the species for
the cooperative coevolution architecture solution to the
two-spiral problem could be successfully done in
accordance with the original cascade network training
algorithm (Fahlman and Labiere, 1990b). That method
consists in, first, evolving together all the connection
weights and neuron thresholds (which in fact are also
weights on connections to a constant +1.0 input) leading
into a new hidden unit and than, second, train all the
connection weights leading into the output unit (the two-
spiral problem requires only one output). Following this
idea (Potter and De Jong, 2000) assign a separate species
to the weights leading into a unit whether an output or a
hidden unit. This choice of the species has the
disadvantage that whenever a new hidden unit is

-6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

8

)2(

,1

),tanh(

,1

)(,

>
≤≤−

−<−
=

Lx

LxLx

Lx

xa L αα

>

≤≤−−
+

−<−

=
−

15,1

)1(1515,1
1

2

15,1

)(

x

x
e

x

xa
x

GENETIC ALGORITHMS 619

introduced, a randomly initialized weight needs to be
added to all the individuals of the species assigned to the
output unit.

In our solution we decided to group all the connection
weights needed for a new hidden unit (input, output and
bias connections) as well as the neuron characteristics as
one species as shown in Figure 2.

Figure 2 : Cascade net with 1 output and 2 hidden units.
All elements of a species have the same number.

Each individual genome is represented by a set of i+5 ,
genes where HUi max,,1,0 L= is the index of the unit
introduced, with species 0 representing the output unit
and species 1 to maxHU representing the HUs. The first
species created represents the output unit and has 5 genes,
two for the neuron characteristics and three for the
weights on its input connections (one of the connection
weights will in fact represent the output unit bias as
previously stated). Every time a new hidden unit is
introduced, we create a new species with a genome that
has one more gene than the previous species. A new
hidden unit is always introduced between the last hidden
unit and the output unit.

4 ALGORITHM DESCRIPTION

For this study we compare three different learning
methods for evolving a cascade correlation neural
network that solves the two-spiral problem.

- the GA-based method, that we propose, uses both
competitive and cooperative coevolution GA and we
will refer to as the CCC-GA method.

- a cooperative coevolution method using the),(λµ
evolutionary strategy (ES) as described in (Schwefel,
1995) and used by (Potter and De Jong, 2000) for

solving the same two-spiral problem. We will refer to
this algorithm as the CC-ES method.

- a second order gradient-descent based method as
described in (Fahlman and Labiere, 1990a). We will
refer to this method as the cascade correlation
method.

The cascade networks generated by Fahlman’s method
are comprised of symmetrical sigmoid units (both hidden
and output units) as defined by equation (1). In order to
properly compare the CCC-GA and the CC-ES algorithms
both will generate cascade networks using neurons with
an activation function as defined by equation (2) and will
include the parameters α and L among the evolved genes.

All methods try to evolve cascade networks that classify
all input patterns, and reach this objective by minimizing
the squared error sum (SES) at the output of the cascade
neural network over all the patterns in the two-spiral data
set,

where p is the training pattern index, pd is the desired
output and py is the actual output.

4.1 CCC-GA METHOD

The CCC-GA method has two major phases, a
competitive coevolution phase and a cooperative
coevolution phase.

The competitive coevolution phase starts with N
populations of m individuals, each population being
evolved by a GA with overlapping population, and ends
with 1 population with mN ⋅ individuals at the end of an
iterative process that sees the least fit populations being
absorbed by the fitter ones. Each GA will use a different
mutation and crossover probability described at step 1 of
the competitive phase of the algorithm.

Competitive coevolution phase of the algorithm

1. Initialization. Create N populations with
m individuals in each population. Train each
population with a similar GA but use different
mutation and crossover probability. In our study
N was set to 16, m to 64 and the mutation and
crossover probabilities are distinct pairs

2}875.0,625.0,375.0,125.0{),(∈pxoverpmut .

2. 1-step evolution. The N populations are each trained
on the whole set of input data once.

3. Ranking. All mN ⋅ individuals are ranked (0 to
1−⋅ mN) based on their fitness

1,,0, −⋅= mNiFi K calculated during training. The
population ranking will be done based on the
performance of the top M individuals in the ranking
individual order with mM ≥ . The only time when M
will be different from m is when 1−= mm FF in which
case we must consider all the individuals that have an
identical fitness 11 −− === Mmm FFF L .

1

1

1

1

2

2

2

2

2

0

0

0

0

1

2

+1.0

Species 1 Species 2 Species 0

Output

Inputs

1

1

1

11

11

11

2

2

2

22

22

22

22

00

00

00

11

22

+1.0

Species 1 Species 2 Species 0

Inputs

11

1

1

1

11

11

11

2

2

2

2

22

22

22

22

00

00

00

00

11

22

+1.0

Species 1 Species 2 Species 0

Output

Inputs

11

11

11

11

11

11

22

22

22

22

22

22

22

00

00

00

11

22

+1.0

Species 1 Species 2 Species 0

Inputs

∑ −=
p

pp ydError 2)(

GENETIC ALGORITHMS620

4. Credit assignment. Each of the M individual is
assigned a credit iΓ based on the equation

1,,0,/)(−==Γ − Mie MiM
i L . If k individuals have

identical fitnesses 11 ,,, −++ kjjj FFF L with
11,0 −≤−+≤ Mkjj , they will each be assigned

the same credit value

Each of the N populations receives a credit
equivalent to the sum of the credits received by its
own individuals. Please note that if a certain
population has no representatives in the top M
individual ranking, it receives a credit equal to 0.

5. Check population elimination criterion. When a
population ranks last D times in succession it is
eliminated at step 6, otherwise we continue with step
2. In our study, D is initially set to 10. To avoid
possible processing traps, D is decreased by 1 every
10 iterations.

6. Population elimination. If the elimination criterion is
met, the genomes of the population that is eliminated
are one by one distributed between the other

1−N populations with a random starting point. After
N is decremented by 1 the algorithm continues with
step 2 if 1>N . The algorithm iterates until only one
population with mN ⋅ individuals is left. This
population, as a separate species, joins the other
previous winning species in the cooperative
coevolution phase of the algorithm.

Cooperative coevolution phase of the algorithm

7. Winner integration. The winning species is
cooperatively coevolved with the best representatives
from the previous winning species until the SES does
not decrease by more than δ from one iteration to
another in I consecutive iterations. At any point in
time, the number of species cooperating equals the
numbers of neurons in the CNN. At the end of the
iterative process the genome with the highest fitness
is used to grow the size of the cascade correlation
neural network with one hidden unit. In our study

1.0=δ and 10=I .

8. Retraining. After the new hidden unit is added to the
network, an attempt is made to retrain once all the
species created up to this point (i.e. all the units of the
cascade neural network). During retraining, each
species contributes to the network with its best
genome except the species that it is retrained. The
species are retrained in a random order (for other
possibilities see the section on retraining) except the
newest species that is always retrained last. The
retraining is done using the same stopping criterion
as described at point 7. If a species cannot find a
better genome through retraining, the previous one is
kept.

During step 7 or 8 of the algorithm, if all the points in the
training set are correctly classified, the algorithm stops.
CCC-GA method uses a GA with overlapping populations
(final size 1024 individuals) with a 50% probability of
replacement and Tournament selection.

4.2 CC-ES METHOD

To facilitate the comparison of the results of our study
with previous results from previous studies, we used the
same),(λµ evolutionary strategy (ES) as described in
(Schwefel, 1995) and used by (Potter and De Jong, 2000)
for studying the same two-spiral problem, with the same
choice of 10=µ and 100=λ .

A very interesting aspect of this evolutionary algorithm is
that both the genes under study and the standard
deviations used by the mutation operator are part of the
genome and consequently are evolved together.

If µ)1(1,)0.10,0.10()0(=−∈ kx n
k are the initial vectors for

the connection weights, with n the genome length, we
only have to initialize)0(

1x while the algorithm itself will
initialize the other 1−µ individuals by addition of

))(,0(2)0(
iσ normally distributed vectors. Just as in

(Potter and De Jong, 2000) we initialize all the n
components of the first standard deviation vector to

n/20 while the other 1−µ standard deviation initial
vectors are initialized by Schwefel’s algorithm.

The n standard deviation components (mutation steps)
are updated by multiplying them every generation t with

the initial values being given by ni /1)0(=σ . In our
study we used the),(λµ implementation of the algorithm
given by the ‘korr2’ program. Although the program
allows recombination for both components of the parents
(connection weights and standard deviations) we turned
this option off and used only mutation. The recombination
was turned off for a better comparison with (Potter and
De Jong, 2000) and because we had also experienced a
degradation of the results when it was turned on.

For every new species that is created, with the exception
of the first species, the algorithm is executed eight times
to generate a pool of eight species, the best genome in
each species representing a candidate HUs. The species
that produces the genome with the best results in reducing
the network residual output error is inserted in the
cooperative of species. The number eight has been chosen
to match the size of the pool used by the cascade
correlation algorithm. The existence of a pool of
candidates and the need to pre-determine its size is a
disadvantage for the CC-ES method when compared to
the CCC-GA method that always runs the competitive
coevolution phase only once for all the newly created
species. Other cooperative coevolution models that do not
use a pool of candidates but rather introduce some criteria
of acceptance for the new species have a similar
disavantage when compared to the CCC-GA method.

),0()(t
iGausse σ

()/() /
j k M l Me kl l j

+ − −Γ = ∑
=

1

GENETIC ALGORITHMS 621

4.3 GRADIENT-DESCENT BASED METHOD

Classical methods for training neural networks have used
gradient-descent techniques such as the back-propagation
algorithm for a long time.

To speed up the learning process researchers have used a
number of schemes like second order methods (some
approximate form), conjugate gradient methods and so
on. Fahlman’s Quickprop algorithm for updating the
connection weights also uses a second-order method.

The cascade correlation learning algorithm creates and
installs new hidden units in two steps. First it tries to
maximize the magnitude of the correlation between the
new unit’s output V and the residual error signal the
algorithm tries to eliminate, which for a certain input data
pattern p and a for a certain output unit o is opE , ,
summed up over all input data patterns and all output
units

where V and oE are the values of pV and opE , averaged
over all data patterns.

The algorithm uses the Quickprop algorithm to update the
new hidden unit’s input weights while trying to maximize
the correlation value S.

In the second phase of the algorithm, the new hidden unit
is inserted in the network, its input connection weights are
frozen and the input weights for the output unit are re-
trained using the same Quickprop algorithm.

When this algorithm is used to solve the two-spiral
problem, it starts with a pool of eight candidates
whenever it needs to create a new hidden unit.

5 EXPERIMENTAL RESULTS

Fifty runs were performed using the CCC-GA and the
CC-ES method because their running time is high. By
comparison, the average computer time per run for the
cascade correlation method is orders of magnitude smaller
and, consequently, we were able to perform 10,000 runs
on a comparable timescale.

Table 1: Required number of hidden units for the three
methods under study

Hidden units

Method Min Max Mean Fail

Time1

[s]

CCC-GA 7 16 10.54 ± 0.71 0 1620

CC-ES 8 15 9.9 ± 0.57 0 2700

Cascade
correlation

10 19 13.4 ± 0.04 7 5

1 Average running time calculated on a 500 MHz Pentium III PC

Table 1 shows minimum and maximum number of hidden
units produced by each method as well as the average
number of hidden units produced by each method, along
with 99-percent confidence on the mean. If a solution to
the two-spiral problem is not found after introducing 25
HUs the run is classified as a failure (non-convergence).

Our results for the cascade correlation based method have
been obtained using the ‘cascor’ program. The results are
significantly better than those reported in (Fahlman and
Labiere, 1990a) or (Potter and De Jong, 2000) but are
similar to those reported by (Hansen and Pedersen, 1994).

Figure 3: The average decay of the SES as a function of
the number of hidden units.

As can be seen in Figure 3, the CCC-GA method and the
CC-ES method have very similar behaviour when it
comes to decreasing the SES, the two curves being almost
identical when the results of 50 runs were averaged. Both
CCC-GA and CC-ES methods produce better results than
the cascade correlation method, both in terms of average
number of hidden units as well as the minimum number
of hidden units required for a cascade network solution to
the two-spiral problem. However the cascade correlation
learning method is a much faster method compared to
both coevolutionary methods.

The CC-ES algorithm has produced the best results in
terms of average number of hidden units but the CCC-GA
produced a cascade network with only 7 hidden units. In
fact the neural network with 7 hidden units is the smallest
evolved cascade network solution (the number of hidden
units is not known apriori) reported in the literature, we
are aware of, to the two-spiral problem.

Another important distinction between our results for the
CC-ES method and previously reported results (Potter and
De Jong, 2000) is that we had no failures in all the runs
we performed. In runs where the neuron activation
function was given by equation (1) and the training
patterns target for classification was set to {-1,+1} we
also experienced occasional failures but it was noticed
that when the algorithm stopped to converge the output

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

Hidden Units

S
q

u
ar

ed
E

rr
o

r
S

u
m ES-based method

GA-based method

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

Hidden Units

S
q

u
ar

ed
E

rr
o

r
S

u
m ES-based method

GA-based method

∑∑ −−=
o p

opp EEVVS))((0,

GENETIC ALGORITHMS622

error was always an integer number. It was determined
that when a pattern was misclassified such that the output
of the net was minus the desired value (for example –1
instead of +1) the squared error was an integer number. In
such cases because of the definition of the sigmoid
activation function, any changes to the connection
weights that did not result in pushing the output of the net
back into the dynamic range of the output unit were not
picked up by the algorithm and treated as “better” or
“worse” solutions as they should have been.
Consequently, the evolution was stuck in a local
minimum and the algorithm reduced to a random search.
To formally describe the problem, if the neural network is
specified by a vector parameter (, ,)T n

nw w W= ∈w 1K ,
(where the w is made up of the best genomes from each
of the coevolved species and W is the allowed gene
range, in our study]10,10[+−), the task is to find the
optimum vector *w corresponding to a net that classifies
all patterns in the input set P . When the 5050 − criterion
is used for classification the problem is considered solved
when Ppwyd pp ∈∀>⋅ ,0)(.

If)()(wydwe ppp −= is the network output error for
input pattern Pp ∈ the algorithm achieves the
classification goal by minimizing

where)(wy p is the output of the neural network defined
by the parameter w and the input pattern p . Let’s
assume the neural network is comprised of hidden and
output units with the activation function given by the
equation

with Rxb
x

−=
−∞→

)(lim and Rxb
x

=
∞→

)(lim , and for any

input pattern there are only two possible outputs used in
training },{ RRd p +−∈ . Let’s define an order relation on

nW , },{),()(2121 bafwEwEww ffff ∈<⇔< where
the superscript f indicates what activation function is
used by the neurons in the network. If)(mC is the set of
classified data patterns and ∅≠)(mU is the set of
unclassified data patterns after m HUs have been
introduced, we have)()(mUmCP ∪= where P is the
set of all input data patterns.

If during training a state is reached where for any pattern
RwemUp p 2)(),(=∈ for any w produced by the

algorithm, the EA search space is reduced by all the
vectors 21, ww such that bb ww 21 < but aa ww 21 = . When
this happens the search becomes purely random unless
the algorithm can find another point rw such that

)(,2)(mUpRwe rp ∈< and r
a

r
a wwwEwE ≠∀<),()(.

Please note this phenomenon could happen because of the
limitation on its input signal used by the output neuron
activation function)(xa , but could also happen because
of the computational approximation errors in calculating
the network output.

Because the two-spiral problem is a classification
problem (we shouldn’t forget that) the simplest and most
effective solution to this problem is to use different values
for the desired training values pd than those used by the
activation function as output range limits. For example, in
our study 1=R so after we changed the training expected
values to }2/1,2/1{ +−∈pd the problem has never
occurred again and the algorithm has always converged.

6 RETRAINING

A major difference between Fahlman’s cascade
correlation method and the two cooperative coevolution
based methods is the use of retraining. The cascade
correlation method, once it has introduced a new hidden
unit does not change its input connection weights while
both the CCC-GA and CC-ES algorithms use retraining as
an important method for further reducing the SES at the
network output. For example, when no retraining was
used by the CCC-GA method, the performance decreased
so severely that only 2 runs were successful in 10 runs
performed.

Figure 4: The improvements in squared error sum (SES)
after new hidden units, retraining and the sum of the two.

While Figure 4 shows the improvements in SES are very
similar for the CCC-GA and CC-ES methods, we could
also see that starting with hidden unit 4, on the average,
the CC-ES is consistently better in retraining the cascade
neural network. This result may be due to the fact that in
the case of the CCC-GA method, the GA used to evolve
the species that get selected during the competitive
coevolution phase, remains fixed during retraining, in the
sense that both the mutation and the crossover rate are
fixed. The CC-ES uses only mutation, but the mutation
vector evolves during retraining just like the individual
genes vector does. The search mechanism would benefit
from a fully adaptive mutation and crossover probability
(White and Oppacher 1994) and the CCC-GA could be
modified relatively easily to cope with this limitation. For
example, we could do it by randomly dividing the
individuals of the species to be retrained in N
populations with m individuals in each population,

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Hidden Units

S
q

u
a

re
d

E
rr

o
r

S
u

m
Im

p
ro

ve
m

en
t

- D ue to retraining

- Due to new H idden U nits

- Total improvement

ES-based method
GA-based method

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Hidden Units

S
q

u
a

re
d

E
rr

o
r

S
u

m
Im

p
ro

ve
m

en
t

- D ue to retraining

- Due to new H idden U nits

- Total improvement

ES-based method
GA-based method

>
≤≤−

−<−
=

LxR

LxLxb

LxR

xa

,

),(

,

)(

∑=
p

p wewE)()(2

GENETIC ALGORITHMS 623

assigning different mutation and crossover probability to
the GA used to train the populations and letting them go
again through a competitive phase. However, this would
considerably slow down the algorithm in its current form.

Another aspect of retraining we looked at was the order of
retraining the species. The results presented in the
previous sections were based on retraining all species
(including species 0 corresponding to the output unit) in a
random order. We however questioned whether retraining
done following the order in which the species have been
introduced (0 to maxHU-1) or the reverse of that
(maxHU-1 to 0) has any impact on the results. The results
of the 50 different runs performed with the CCC-GA
algorithm are presented in Table 2. In all three cases the
last hidden unit introduced (maxHU) is retrained last.

Table 2: Required number of hidden units for CCC-GA
when different retraining methods are used

Hidden units

Method Min Max Mean Fail

random 7 16 10.54 ± 0.71 0

1max0 −→ HU 8 16 10.42 ± 0.58 0

01max →−HU 8 14 10.46 ± 0.4 0

While the average number of hidden units seems to be
similar for the three methods it does appear that the
random retraining yields a slightly higher variance of the
results. This factor may favour the discovery of the
cascade network with 7 hidden units.

7 NEURON CHARACTERISTICS

In our study, the two EA methods have evolved not only
the connection weights of the neural network but also the
characteristics of the activation functions for all the
neurons of the network. To determine the effect of
including the characteristics of the neurons as evolvable
genes, we have also performed 50 runs where the
individual genomes included only the connection weights.
In this case all the neurons in the evolved cascade
network, the hidden and the output neurons, have a
sigmoidal activation function given by equation (1) that
does not change during training.

For this aspect of the study we have used only the CCC-
GA and CC-ES methods and the results are presented in
Table 3.

The results show clearly that including the characteristics
of the neurons among the evolved genes not only has
increased the generality of the algorithms but it has also
significantly improved the results. In the case of the ES-
based method the average size of the cascade network has
decreased by two hidden units while in the case of the
GA-based method the average and the minimum number
of hidden units have decreased even more significantly.

Table 3: Required number of hidden units with fix or
evolvable neuron characteristics.

Hidden units

Method Min Max Mean Fail

Neur.

char.

CCC-GA 7 16 10.54 ± 0.71 0 Ev.

CCC-GA 10 17 13.18 ± 0.56 0 Fix

CC-ES 8 15 9.9 ± 0.57 0 Ev.

CC-ES 9 14 11.9 ± 0.45 0 Fix

These results suggest that future studies of neural network
evolution should look for a comprehensive solution and
also consider evolving the characteristics of the neural
activation function.

8 METHOD ROBUSTNESS

The number of adjustable parameters, the sensitivity of
the results to user choices, the efficiency of the model in
solving different problems, are possible criteria of
evaluating the robustness of a computational method.

When comparing the CCC-GA and the CC-ES methods
the first thing to differentiate them is the method for
choosing the next species to join the cooperative of
coevolving species.

While the CC-ES chooses from a pool of 8 different
species (why not 4 or 10?), the CCC-GA method doesn’t
have to make such a choice. In fact, if the CC-ES model
doesn’t use a pool of species and uses a randomly
initialized population, the results (for example the average
number of hidden units per evolved cascade network)
degrade very significantly. From this point of view it is
clear that the CCC-GA method is more robust than the
CC-ES method.

When it comes to the evolutionary operators used, ES
does not use crossover and the mutation probabilities are
independently evolved by the algorithm (so the user has
only to initialize an initial vector). While this seems to
introduce a clear advantage for the CC-ES method, the
CCC-GA compensates for it by evolving the species with
the crossover and mutation probabilities best suited for a
certain phase of the algorithm. In addition to that, through
experimentation we found out that if the ES initial choice
is to evolve the mutation probabilities as a group rather
than individually (each mutation step evolved
independently) the results of the CC-ES will again
degrade from the results in Table 1.

Another important parameter influencing the generality
and the robustness of the algorithm is the population size.
In order to see how the population size influences the
results we have performed 50 runs with the CCC-GA with
a change in the population size of the species selected for
the cooperative phase of the algorithm. Before the species
winning the competitive phase is to join the other species

GENETIC ALGORITHMS624

for the cooperative phase of the algorithm we halve the
population such that instead of 1024 individuals, each
species selected for cooperative coevolution will have
only 512 individuals. The results of the two sets of runs
are given in Table 4.

Table 4: Required number of hidden units for CCC-GA
method with different final populations

Hidden units

Method Min Max Mean Fail

Pop.

size

CCC-GA 7 16 10.54 ± 0.71 0 1024

CCC-GA 8 15 10.56 ± 0.62 0 512

The results obtained with species that have only half the
population (2/mN ⋅) are almost identical to those
obtained using species with an entire population (mN ⋅)
proving that the CCC-GA method is also robust under
population variations.

The choice of the GA for the CCC-GA method is not
crucial either. A simple GA provides similar results, but it
is twice as slow.

Finally, both algorithms need some accuracy of
approximation parameters to be set.

While the CCC-GA method needs to be tested on new
problems, so far this method has shown robustness and
provides a good model for further coevolution studies.

9 CONCLUSIONS

In this study we have introduced the concept of
competitive-cooperative coevolution GAs and have
shown that, when this method is used for solving the two-
spiral problem, the results are very similar to those
obtained by using only cooperative coevolution based on
an ES-method. The results of both methods, as far as we
are aware, are better than any previous cascade networks
solutions to the two-spiral problem. It should be noted
that previous attempts to use GAs to study the two-spiral
problem didn’t yield good results. Moreover, in the case
of CCC-GA, neither the mutation nor the crossover
probabilities are pre-determined (through prior
experiments) but are rather selected (from a finite set of
possibilities) as a result of the competitive-cooperative
coevolution phase of the algorithm.

The cascade neural networks evolved through our
methods are complete in the sense that all the
characteristics of the nets, number of hidden units,
connection weights as well as neuron characteristics are
evolved. While evolving the neuron characteristics is
natural and easy to do with EA methods it may be more
difficult to do in traditional approaches (like the gradient-
descent methods). This constitutes a definite advantage of
the EA methods for evolving cascade neural networks
over other methods.

The CCC-GA algorithm uses the competitive phase to
remove the need for a pool of candidates or empirical
“goodness” criteria in introducing new species in the
cooperative coevolution process and it shows robustness
under population and method of retraining variation.

References

S.E.Fahlman and C.Labiere (1990a). The cascade-
correlation learning architecture. Technical Report CMU-
CS-90-100, School of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania.

S.E.Fahlman and C.Labiere (1990b). The cascade-
correlation learning architecture. In D. S. Touretzky (ed.),
Advances in neural Information Processing Systems 2,
524-532. San Mateo, CA: Morgan Kaufmann.

L.K.Hansen and M.W.Pedersen (1994). Controlled
growth of cascade correlation nets. Proceedings of the
International Conference on Artificial Neural Networks,
volume 1, 797—800. Sorrento, Italy.

M.A.Potter and K.A.DeJong (1994). A Cooperative
Coevolutionary Approach to Function Optimization. In
Y.Davidor and H.P.Schwefel (eds.), Proceedings of the
Third Conference on Parallel Problem Solving from
Nature, 249-257. Berlin, Germany: Springer-Verlag.

M.A.Potter (1992). A genetic cascade-correlation learning
algorithm. Proceedings of COGANN-92 International
Workshop on Combinations of Genetic Algorithms and
Neural Networks,122-133. IEEE Computer Society Press.

M.A.Potter and K.A.DeJong (2000). Cooperative
coevolution: an architecture for evolving co-adapted
subcomponents. Evolutionary Computations 8(1):1-20.

H.P.Schwefel (1995). Evolution and Optimum Seeking.
New York, NY: John Wiley and Sons.

B.W.Wah and M.Qian (2000). Constrained Formulations
for Neural Networks Training and Their Applications to
Solve the Two-Spiral Problem. Proceedings of the Fifth
International Conference on Computer Science and
Informatics.

T.White and F.Oppacher (1994). Adaptive Crossover
Using Automata. In Y.Davidor and H.P.Schwefel (eds.),
Proceedings of the Third Conference on Parallel problem
Solving from Nature, 229-238. Berlin,Germany: Springer-
Verlag.

X.Yao (1999). Evolving Artificial Neural Networks.
Proceedings of the IEEE 87(9):1423-1447.

GENETIC ALGORITHMS 625

From TwoMax to the Ising Model: Easy and Hard Symmetrical Problems

Clarissa Van Hoyweghen
Intelligent Systems Lab
University of Antwerp
Groenenborgerlaan 171
2020 Antwerp, Belgium

hoyweghe@ruca.ua.ac.be

David E. Goldberg
Illinois Genetic Algorithms Laboratory

University of Illinois
117 Transportation Building

104 S. Mathews Av. Urbana, IL 61801
deg@illigal.ge.uiuc.edu

Bart Naudts
Intelligent Systems Lab
University of Antwerp
Groenenborgerlaan 171
2020 Antwerp, Belgium
bnaudts@ruca.ua.ac.be

Abstract

The paper shows that there is a key dividing
line between two types of symmetrical problems:
problems for which a genetic algorithm (GA)
benefits from the fact that genetic drift chooses
between equally good partial solutions, and prob-
lems for which all equally good partial solutions
have to be preserved to find an optimum. By an-
alyzing in detail the search process of a selec-
torecombinative GA optimizing a TwoMax and
comparing this search process with that of a one-
dimensional Ising model, the paper investigates
the difference between these two types of sym-
metrical problems. For the first type of problems,
naively adding a niching technique to the genetic
algorithm makes the problem harder to solve. For
the last type of problems, niching is necessary to
find an optimum.

1 INTRODUCTION

In the context of optimization by genetic algorithms (GAs),
scaling, deception, epistasis, and noise are well known ex-
amples of problem difficulty characteristics. The presence
of one such characteristic in the representation of a search
problem indicates a certain type of difficulty the GA is to
encounter during its search for global optima. In this paper
we investigate another aspect of problem difficulty: the ex-
istence of equally good partial solutions in symmetrical or
hierarchical problems. The loss of some equally good par-
tial solutions due to genetic drift can prevent a GA to find
an optimum, but for some problems it can also be benefi-
cial.

The purpose of this paper is twofold. Firstly, the paper an-
alyzes the search process of a GA solving a multimodal
equivalent of the OneMax problem, the so called TwoMax,
and compares its search with the search process of a GA

solving a OneMax. Secondly, the paper shows that there is
a key dividing line between two different types of symmet-
rical problems: problems for which the GA benefits from
the fact that genetic drift chooses between equally good
partial solutions, and problems for which all equally good
partial solutions have to be preserved to find an optimum
and for which niching becomes a necessity. Naively adding
a niching technique to an algorithm optimizing a problem
of the first type makes the problem harder to solve.

The paper is structured as follows. Section 2 introduces
equally good partial solutions or non-inferior BBs and
shows how genetic drift chooses between them. Section
3 analyzes the search process of an easy symmetrical prob-
lem, a TwoMax, and shows that there exists a class of prob-
lems that benefits from the fact that genetic drift chooses
between equally good partial solutions. Section 4 and 5
compare two types of symmetrical problems: problems for
which searching in terms of non-inferior BBs is necessary
and problems that benefit from the fact that genetic drift
chooses between non-inferior BBs. Section 6 summarizes
and concludes the paper.

2 NON-INFERIOR BBS AND NICHING

The working of a genetic algorithm can be explained by
the search for superior building blocks. Building blocks
(BBs) with above average fitness are combined to con-
struct higher order building blocks. However, recent stud-
ies [16, 12, 7, 14] show that the search for superior BBs
is not always sufficient to find a solution. When an op-
timization problem contains BBs which are equally good
and superior to all alternatives, so called non-inferior BBs
[4], making a choice between such BBs can avoid a GA
to reach an optimum. A search strategy preserving all non-
inferior BBs can then become a necessity to solve the prob-
lem quickly, reliably, and accurately. In [14], for exam-
ple, it is shown that the simple GA cannot solve the stan-
dard Ising model in a reasonable amount of time because
the population loses some non-inferior BBs due to genetic

GENETIC ALGORITHMS626

drift. When a niching technique is used, the non-inferior
BBs are preserved and an optimum is reached quickly. The
same phenomenon can be seen when solving the H-IFF
problem [16]. H-IFF combines non-inferior BBs with a hi-
erarchical problem structure. Without a niching technique
the simple GA is unable to solve the problem up to the high-
est level. Another class of functions which question the
algorithm’s search for superior BBs is the Tobacco Road
functions [3, 4]. The Tobacco road functions combine hier-
archy, multimodality, and deception. At the lower level the
problem can be decomposed into several non-overlapping
folded trap functions, each having two complementary op-
tima: ‘all 0s’ and ‘all 1s’. At the higher level the problem
consist of one or more trap functions with solution ‘all 1s’
and deceptive trap ‘all 0s’. Without keeping all alternative
low-level partial solutions, an algorithm is not able to solve
the problem.

Next section describes in more detail the effect of genetic
drift on non-inferior BBs and shows how niching can pre-
vent that genetic drift chooses between them.

2.1 NON-INFERIOR BBS AND GENETIC DRIFT

A BB is called superior if it has a higher average fitness
value than its competitors. For example, if

f(�0�) = 1;

f(�1�) = 2;
(1)

we say that BB �1� is superior to BB �0�. Non-inferior
BBs are BBs which are equally good or superior to all al-
ternatives. For example, if

f(�01�) = 1;

f(�10�) = 1;

f(�00�) = 2;

f(�11�) = 2;

(2)

BBs �00� and �11� are non-inferior BBs. They have
equally good fitness averages and their fitness average is su-
perior to the fitness averages of BBs �01� and �10�. When
optimizing a problem containing equally good partial so-
lutions (or non-inferior BBs), we distinguish two types of
genetic search: searching for superior BBs and searching
for non-inferior BBs. In the first case, the algorithm blindly
chooses between equally good partial solutions. In the sec-
ond case, equally good partial solutions stay in the popula-
tion with equal proportions.

Consider following examples: A population contains BBs,
00, 11, 01, and 10, each occupying one fourth of the popu-
lation. 1 The fitness value of 00 and 11 equals 2, whereas
the fitness value of 01 and 10 equals 1. Each generation, a

1In the example, a BB can be seen as an individual and the
term fitness average can be replaced by fitness value.

new population is created as follows. Randomly pick two
BBs with replacement and add the BB with the highest fit-
ness to the new population. When two BBs have equal fit-
ness, one of them is randomly picked and added to the new
population. This selection strategy is known as binary tour-
nament selection with replacement. Figure 1 (a) shows the
result of this selection process. Clearly, the process can be
divided into two phases (separated in the figure by a ver-
tical line). During the first phase, there are two types of
selection: selection for good reason between BBs with dif-
ferent fitness, and selection due to genetic drift between
BBs with equal fitness. During this phase, BBs 00 and 11

takeover the population. Notice that at the end of the first
phase BBs 00 and 11 already occupy a different proportion
of the population. During the second phase, there is only
selection due to genetic drift. Both BBs have equally good
fitness; hence, there is no reason to prefer one above the
other. The stochastical errors made by randomly picking
one of them during each equal tournament cause that one
of the two non-inferior BBs disappears out of the popula-
tion. This example reminds us of the fact that the stan-
dard selection process works in term of superior BBs: BBs
with high fitness average are preferred above BBs with low
fitness average, but the selection process cannot guarantee
that non-inferior BBs stay in the population with equal pro-
portion. A well-know technique to preserve multiple good

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

00
11
01
10

generations

pr
op

or
ti

on

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

00
11
01
10

generations

pr
op

or
ti

on

(a) (b)

Figure 1: The plot shows the number of representatives of the
BBs 00, 11, 01 and 10 during the selection process. Initially, each
BB has 32 representatives in the population. In (a) no niching
technique is used. In (b) each BB has to share its fitness with all
BBs in the population which are not further away than Hamming
distance 1.

solutions is niching. Niching tries to allocate subpopula-
tions among non-inferior BBs such that the selection pro-
cess works more in terms of non-inferior BBs instead of
superior BBs. The niching technique used in this paper is
fitness sharing [6], as detailed in section 5. Figure 1 (b)
shows the result of the selection process using binary tour-
nament selection with continuously updated sharing [10].
Each BB shares its fitness with all BBs in the population
that are not further away than Hamming distance 1. The
selection process has again two phases. During the first
phase, BBs 00 and 11 takeover the population. During the
second phase, the non-inferior BBs 00 and 11 are kept in

GENETIC ALGORITHMS 627

the population in equal proportion. This second example
shows that when optimizing a problem using tournament
selection with continuously updated sharing equally good
partially solutions are selected for reproduction in the same
proportion and the GA will evolve in terms of non-inferior
BBs, keeping equally good partial solutions in the popula-
tion.

The Ising model, H-IFF, and the Tobacco Road functions
ask a search strategy that works more in terms of non-
inferior BBs instead of superior BBs. Adding a niching
technique to evolutionary algorithms is a possible way to
get this behavior. In the context of designing a robust
problem solver which solves problems of bounded diffi-
culty quickly, reliably, and accurately, one can therefore
ask the question if niching should be a standard component
of a competent GA. However, in next section we will see
that there exists a class of problems that benefit from the
fact that genetic drift chooses between equally good partial
solutions and become harder when a niching technique is
naively used.

3 ANALYSIS OF A TWOMAX

The OneMax or bit-counting problem is well known and
well studied in the context of GAs. In this paper, we an-
alyze the search process of a simple GA solving a multi-
modal equivalent of the OneMax, the TwoMax (also called
the Twin-Peaks problem [2]), and compare its search with
the search process of a GA optimizing a OneMax. The
OneMax problem is defined by

fOneMax(s) = u; (3)

with u the number of ones in the string s. The optimum
is reached in the all 1s string. The TwoMax problem is
defined by

fTwoMax(s) =

���� `2 � u

����+ `

2
; (4)

with u the number of ones in the string s and ` the string
length. A TwoMax returns the number of ones if there are
more ones than zeros. If there are more zeros than ones, it
returns the number of zeros, ` � u. Figures 2 (a) and (b)
show both fitness functions with string length 100.

A TwoMax has two optima, the string containing only ones
and the string containing only zeros. Moreover, a TwoMax
contains spin-flip or bit-flip symmetry (see [9] in the context
of GAs), a symmetry which is characterized by fitness in-
variant permutations on the alphabet and found in the Ising
model and H-IFF. The average fitness of a schema is equal
to the average fitness of the schema’s complement, e.g.
f(�1�01�) = f(�0�10�): The problem therefore contains
many equally good partial solutions or non-inferior BBs.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

ones

fi
tn

es
s

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

ones

fi
tn

es
s

(a) (b)

Figure 2: (a) OneMax and (b) TwoMax with string length 100

Our primary interest in this paper is to study the diversity
of the population and the preservation or extinction of non-
inferior BBs. The GAs used in the rest of the paper are so-
called selectorecombinative GAs – they use only selection
and recombination. To emphasize that the GA does not use
mutation, we use the abbreviation srGA when confusion
is possible. The GA does not use a mutation operator to
add diversity to the population since mutation has only a
fairly local scope and it cannot guarantee that equally good
partial solutions are kept in the population. Unless stated
otherwise, all experiments use binary tournament selection
together with uniform crossover. The crossover rate is set
to 1, and the population size equals 200.

3.1 CONVERGENCE MODEL

When solving a problem, it is useful to know how long it
takes before a population converges to a population con-
taining only optimal strings. In this section we construct
a convergence model for a TwoMax using the convergence
models for OneMax [8, 13]. By doing so, we gain impor-
tant insight in the search process of an srGA optimizing a
TwoMax.

We start by giving a quick reminder of how the convergence
model for OneMax is derived. The response to selection
equation,

�f = ft+1 � ft = btI�t; (5)

introduced into the evolutionary computation community
by Mühlenbein and Schlierkamp-Voosen [8], calculates the
difference in mean fitness of two successive populations
using the selection intensity I , the population’s fitness vari-
ance �2t , and the heritability bt. For a OneMax the her-
itability bt is known to be constant and equal to 1. This
means that the average fitness of the offspring is equal
to the average fitness of the selected parents. The One-
Max problem has an interesting characteristic: one sin-
gle proportion value p1t , giving the percentage of ones in
the population at generation t, reveals a lot of information
about the population at generation t. If we assume that
the proportion of ones is uniformly divided among the loci

GENETIC ALGORITHMS628

in the population, the mean fitness at generation t equals
`p1t and the fitness variance �2t can be approximated by
`p1t(1 � p1t). The population is optimal when p1t = 1.
Equation 5 now yields

p1t+1 � p1t =
I
p

p1t(1� p1t)p
`

: (6)

Approximating the above difference equation with a differ-
ential equation and integrating this equation gives

p1t =
1

2

�
1 + sin(

Itp
`
� �0)

�
; (7)

with �0 = arcsin(1 � 2p1t=0). The convergence time
(p1t = 1) can then be calculated by

tconv =
��
2
+ �0

� p`

I
: (8)

The above derivation holds for all selection strategies
which select individuals based upon their rank in the popu-
lation. For a random initialized population, p1t=0 = 0:5 is a
reasonable approximation and gives �0 = 0. Using binary
tournament selection, the selection intensity approximates
0:5642 [13] and the expected convergence time for a 100

bit OneMax becomes 27:84 generations.

Figure 3 plots the model for a 100 bit OneMax and com-
pares this with experimental results. The experiments con-
verge a bit slower due to the build-up of covariances be-
tween the alleles . The model becomes more accurate when
the alleles are decorrelated by recombining twice at each
generation. More details about the creation of genetic co-
variance together with a refined model for OneMax can be
found in [13]. For this paper there is no need to use a more
detailed model than the one of Eq. 7.

0 5 10 15 20 25 30 35 40
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

model
exp

generations

p
1
t

Figure 3: Convergence model and experimental results of the
proportion of ones when optimizing a OneMax using tournament
selection and uniform crossover. The results are averaged over 50
independent runs.

The convergence model of a OneMax predicts the propor-
tion of ones in the population at every generation. Dur-
ing search this proportion p1t rises from 0:5, initial pop-
ulation, to 1, optimal population. The spin-flip symmetry
in a TwoMax makes it impossible to use p1t to construct

a convergence model for a TwoMax; it has multiple val-
ues corresponding to an optimal population. In particular,
p1t = 1 corresponds to the optimal population containing
only ‘all 1s’ and p1t = 0 corresponds to the optimal popu-
lation containing only ‘all 0s’. Therefore, we create a new
proportion value pt,

pt =

����12 � p1t

����+ 1

2
; (9)

which gives the proportion of the value which appears the
most in the population. When pt = 1, the population con-
tains only ones or only zeros and is converged to one of
the optimal populations. For pt = 0:5 several situation are
possible including two extreme ones. Firstly, pt = 0:5 cor-
responds to a population containing only strings with an
equal amount of ones and zeros. This population has a min-
imal mean fitness, `

2
. Secondly, pt = 0:5 corresponds to a

third optimal population containing both optima in equal
proportion. However, we will see that an srGA without
niching never converges to an optimal population contain-
ing both optima; therefore pt will suffice to analyze the
search process of a TwoMax.

Before using proportion value pt to analyze the search pro-
cess of an srGA optimizing a TwoMax, we apply it to the
OneMax problem. Note that for a OneMax individuals with
more ones have a higher fitness and are therefore favored
by the selection strategy to produce more offspring. Hence,
p1t will always increase during search and its value will
never be smaller than its initial value 0:5. This allows us
to replace p1t by pt in equation 7, yielding convergence
model

pt =
1

2

�
1 + sin(

Itp
`
� �0)

�
; (10)

with �0 = arcsin(1� 2pt=0).

Figure 4 compares the search process of an srGA optimiz-
ing a OneMax with the search process of an srGA optimiz-
ing a TwoMax using proportion value pt. The figure shows
that except for a small delay during the first few generations
in case of the TwoMax, both searches look very similar. In
the next section we will analyze the differences and simi-
larities of both searches in more detail.

3.2 TWO PHASES OF A TWOMAX

The individuals in a population running on a TwoMax can
be divided into two niches: niche 0, containing only indi-
viduals with more zeros than ones, and niche 1, containing
only individuals with more ones than zeros. Experiments
show that when optimizing a TwoMax using a selectore-
combinative GA only one of the two optima is found. One
niche disappears out of the population which allows us to
to divide the search process of a TwoMax into two phases:

GENETIC ALGORITHMS 629

a first phase during which both niches are still in the popu-
lation, and a second phase with one niche only.

The first phase starts with a randomly initialized popu-
lation. Both niches are present in the population, and
pt = 0:5. Parents of different niches are likely to pro-
duce poor offspring. Their children have an almost equal
amount of ones and zeros, and their fitness value varies
around `

2
. This slows down the creation of fit offspring.

The only good offspring are created by recombination of
parents from the same niche. After a few generations one
niche will contain more and fitter individuals than the other
niche and takes over the population. Figure 5 shows an
example of how one niche takes over the population. Af-
ter 8 generations niche 1 has left the population. Figure 6
(a) shows for each niche the number of individuals and the
number of individuals with a fitness value above average.
The total number of individuals in the population equals
200.

To estimate the duration of the first phase, we experimen-
tally determine the time when one niche dies out. The re-
sults are averaged over 500 runs. Figure 6 (b) shows that
the first phase scales up like the takeover time [5]. This can
be understood as the speed with which a selection strategy
takes an initial proportion of best individuals to a substan-
tial share in the population. For binary tournament selec-
tion, the time it takes the best individual to take over the
population can be written as

t� =
ln(n) + ln(ln(n))

ln(2)
; (11)

with n the population size. For population size 200, t� =

10:049 generations. Experimental verification shows that
for this population size on average one niche disappears
after 9:586 generations. In general the first phase takes a
bit less than takeover time since the fittest individuals of a
niche do not have to takeover the whole population, they
only have to make sure that the other niche disappears out
of the population.

It is important to note that we cannot use the convergence
model with pt to model the search process during the first
phase because the necessary side conditions are not ful-
filled. To derive the convergence model from the response
to selection equation (equation 5), it is vital that `pt approx-
imates ft and `pt(1� pt) approximates �2t . This is not the
case in the first phase. Although, it is possible to end the
first phase a bit earlier, for example, when one niche has
(almost) no individuals with fitness average above the pop-
ulation’s mean fitness.

The second phase is easier to analyze. The search pro-
cess is now similar to the search process of a OneMax
and we can use the convergence model described in equa-
tion 10 to model the search and to estimate the duration of

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

OneMax
TwoMax

generations

p
t

Figure 4: Experimental results of the proportion value pt when
optimizing a OneMax and a TwoMax. All results are averaged
over 50 independent successful runs.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

ones

niche 0 niche 1

t=0

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

ones

niche 0 niche 1

t=1

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

ones

niche 0 niche 1

t=2

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

ones

niche 0 niche 1

t=4

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

ones

niche 0 niche 1

t=6

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

ones

niche 0 niche 1

t=8

Figure 5: An srGA running on a TwoMax. The histograms have
the number of ones in an individual on the horizontal axis and
the number of corresponding individuals in the population on the
vertical axis. Generations 0, 1, 2, 4, 6 and 8 are displayed.

GENETIC ALGORITHMS630

0 5 10 15
0

20

40

60

80

100

120

140

160

180

200

in
di

vi
du

al
s

niche1
niche 0
niche 1: f

ind
 > f

t
niche 0: f

ind
 > f

t

GA has decided to
converge to an optimal
population with only
optima 000...0

generations
100 150 200 250 300 350 400 450 500
6

7

8

9

10

11

12

takeover time
1 niche lost
1 niche no good ind.

ge
ne

ra
ti

on
s

population size

(a) (b)

Figure 6: (a) shows, for each niche, the number of individuals
and the number of individuals with a fitness value above average.
(b) shows when one niche has no individuals anymore with fitness
value above average and when one niche leaves the population.
The results in (b) are averaged over 500 runs.

the second phase. Experiments show that for population
size 200, pt equals 0:6232 at the beginning of the second
phase (after about 9 generations). Plugging pt=0 = 0:6232

(�0 = �0:2490) into equation 10 yields the convergence
model for the second phase. The calculated convergence
time for the second phase is 23:4284 generations. Figure
7 (a) shows the convergence model for the second phase
of a 100-bit TwoMax and compares this with experimental
results. The experiments again converge a bit slower due
to the build-up of covariances between the alleles. Figure
7 (b) shows the end of the first and the second phase for a
100-bit TwoMax using different population sizes. Note that
the algorithm finds always an optimum. The results are av-
eraged over 500 runs. The figure shows also the time when
the first optima is found.

10 15 20 25 30 35 40 45
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

model
exp

generations

p
t

200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

optimal population
1 optimum found
1 niche lost

ge
ne

ra
ti

on
s

population size

(a) (b)

Figure 7: (a) Convergence model and experimental results of the
pt when optimizing a TwoMax using tournament selection and
uniform crossover. The results are averaged over 50 independent
runs. (b) The figure shows the end of the first phase, the time
when the first optimum is found and the end of the second phase.
The results are averaged over 500 runs.

4 DIFFICULT SYMMETRICAL
PROBLEMS

Previous sections showed that when optimizing a TwoMax,
the srGA chooses between equally good solutions and ben-

efits from this choice. The population converges quickly to
an optimal population containing only one optimum. This
is not the case for the search process of an Ising model, a
search problem which can be defined by

fIsing(s) =

`X
i=1

Æ(si; si+1); (12)

with string length `, sl+1 � s1 and

Æ(si; sj) =

�
1 if si = sj ;

0 otherwise.
(13)

The problem contains spin-flip symmetry and has as optima
the string containing only ones and the string containing
only zeros. The loss of non-inferior BBs in the population
prevents a GA (with or without a mutation operator) to op-
timize an Ising model. In this section we explain the differ-
ence in difficulty between easy symmetrical problems, like
a TwoMax, and a hard symmetrical problem, like the Ising
model. For a more in depth analysis of the Ising model and
its difficulties we refer to [14].

Symmetrical problems contain multiple non-inferior BBs.
Due to the finite population size, stochastical errors cause
that some non-inferior BBs disappear out of the popula-
tion. This can prevent a GA to find the optimum, as it does
in case of the Ising model or H-IFF. The GA gets stuck in a
local optimum because the schemata in its current popula-
tion, which are non-inferior BB of different optima, cannot
be combined to form an optimum, and the mutation opera-
tor is not strong enough to add diversity to the population.
We say that the GA has a synchronization problem [15].
Figure 8 shows an srGA with population size 10000 hav-
ing a synchronization problem while optimizing an Ising
model. The diversity measure at the z-axis represents the
probability that an individual in the population has a value
1 at a certain string position. The population is not diverse
enough to create an optimum.

0 20 40 60 80 100
20

40
60

80
100

0
0.25
0.5

0.75
1

generations

diversity

string
positions

Ising

Figure 8: Diversity plot of an srGA optimizing an Ising model
with population size 10000. The algorithm uses only two-point
crossover.

GENETIC ALGORITHMS 631

Comparing the BBs of an Ising model with those of a
TwoMax explains why GAs running on the Ising model
are more likely to encounter synchronization problems than
GAs running on a TwoMax. If we look at BBs whose
fixed positions are not all adjacent, we note that BBs like
�00�11� , which are not BBs of an optimum, and BBs like
� 11 � 11 � , which certainly are BBs of an optimum, have
the same average fitness value for the Ising model because
there is no interaction between the non-adjacent string posi-
tions. This means that they both have the same probability
to be selected for reproduction, although one of them is not
a BB of an optimum and leads the algorithm to a synchro-
nization problem when diversity is lost. This is not the case
for a TwoMax. For TwoMax, BBs with equal values at all
fixed string positions have an higher average fitness value
than other BBs. The algorithm decides faster to which of
the two optima it converges and when diversity is lost, a
well sized population still contains the necessary BBs to
construct an optimum.

Symmetrical problems which frequently encounter syn-
chronization problems are simple to characterize. In con-
trary to easy symmetrical problems, an increase in fitness
does not automatically imply a decrease in Hamming dis-
tance towards the global optimum. Typically, they have
highly fit candidate solutions which are at hamming dis-
tance far from an optimum and are usually combinations
of different optima. Many hierarchical problems satisfy
these characteristics and encounter synchronization prob-
lems when optimized. The Ising model shows that synchro-
nization problems can also appear when optimizing non-
hierarchical problems. A useful strategy to avoid synchro-
nization problems and to keep all non-inferior BBs in the
population is niching.

5 NICHING

Fitness sharing [6] is a well-know niching technique that
accomplishes subpopulations or niches by degrading an in-
dividual’s fitness according to the similarity with other in-
dividuals in the population. Section 2.1 showed that when
using binary tournament selection with continuously up-
dated sharing, the selection process works more in terms of
non-inferior BBs and equally good solutions are kept in the
population. In this section we try to find the two optima of
respectively a 100-bit TwoMax, and a 100-bit Ising model
using an srGA with this sharing method. To avoid linkage
problems on the Ising model, the algorithm uses two-points
crossover. As sharing function the triangular sharing func-
tion defined in [1] is used. The sharing threshold is calcu-
lated by �sh = 1

2
(`+ 1

q

p
`); with q the problem’s number

of optima. Individuals at Hamming distance smaller than
52:5 share their fitness.

When optimizing an Ising model, equally good partial solu-

tions should be kept in the population. Experiments show
that an srGA with sharing and two-point crossover finds
both optima quickly. For example, using population size
500, both optima are present in the population after about
79:78 generations. This result is obtained by taking the
average over 50 independent runs. Adding a niching tech-
nique clearly helps an srGA running on an Ising model to
avoid synchronization problems.

An obvious question is now: how does an srGA with
sharing perform on easy symmetrical problems, like the
TwoMax problem? A TwoMax benefits from genetic drift,
and as soon as one niche disappears the algorithm con-
verges quickly to an optimum. When sharing is used to
keep both niches in the population, crossover between in-
dividuals from different niches produces poor offspring.
This has a pernicious influence on the search process. For
example, an srGA with sharing, population size 500, and
two-point crossover is not able to find an optimum in 2000

generations. When using an undersized population that is
not able to keep both niches in the population, sharing only
prolongs the first phase of the search process. A soon as
one niche disappears, the algorithm converges quickly to
an optimal population containing only one optimum. In
both cases sharing has no beneficial influence on the search
process.

In contrary to an Ising model, a TwoMax becomes much
harder when traditional niching techniques are used. The
recombination operator becomes too disruptive. This is
confirmed by the analysis of an srGA without niching run-
ning on a TwoMax. As soon as one niche disappears out
of the population, the population’s mean fitness increases
drastically and the solution is found quickly. Adding a re-
stricted mating technique that uses the Hamming distance
as a measure to determine with which individual one can
mate, to an srGA with sharing does not improve the per-
formance of the recombination operator. The Hamming
distance is not a good measure to separate the individu-
als with more ones from those with more zeros, and more
complex search techniques are necessary. Good results for
a TwoMax as well as for an Ising model are found in [11]
where a clustering technique is used in combination with
an univariate marginal distribution algorithm. The disrup-
tive effect of recombination is eliminated by only allowing
recombination between individuals of the same cluster and
niching is induced by allowing each cluster to produce an
amount of offspring proportional to their size or to their fit-
ness average. In this way, the individuals from niche 0 and
niche 1 have their own cluster, and since the individuals
only mate within their own cluster, each cluster is actually
solving a OneMax (or a ZeroMax).

GENETIC ALGORITHMS632

6 SUMMARY AND CONCLUSION

This paper shows that there exists a key dividing line be-
tween two types of symmetrical problems: problems for
which the GA benefits from the fact that genetic drift
chooses between equally good partial solutions, and prob-
lems for which all equally good partial solutions have to be
preserved to find an optimum. By analyzing the search pro-
cess of a selectorecombinative GA optimizing a TwoMax
and comparing this search process with that of an Ising
model, we tried to understand the difference between these
two types of symmetrical problems. For the first type of
problem, searching in terms of superior building blocks is
sufficient to find an optimum. For the second type of prob-
lems, searching in terms of non-inferior building blocks is
necessary to find an optimum and can be obtained by using
a niching technique.

In the context of designing a robust problem solver which
solves problems of bounded difficulty, designing an algo-
rithm which solves both types of symmetrical problems
quickly, accurately, and reliably is not obvious. Naively
adding fitness sharing as a standard component of a GA
makes easy symmetrical problems like a TwoMax hard to
solve. When using traditional niching techniques, the re-
combination operator is too disruptive, and more complex
methods are necessary. Next to looking for more com-
plex methods that solve both types of problems, we suggest
looking for an a priori or runtime detector which discrim-
inates between the two types of problems and selects the
appropriate algorithm automatically.

Acknowledgments

The authors would like to thank Alessio Ceroni, Martin Pelikan and Kumara Sastry for many useful
discussions. The first author is supported by the Flemish Institute for the Encouragement of Sci-
entific and Technological Research in Industry – (IWT) (Flanders) (Belgium).The third author is a
Post Doctoral Fellow of the Fund for Scientific Research – (FWO) (Flanders) (Belgium). The work
was partly sponsored by the Air Force Office of Scientific Research, Air Force Materiel Command,
USAF, under grant F49620-00-0163. Research funding for this work was also provided by a grant
from the National Science Foundation under grant DMI-9908252. Support was also provided by
a grant from the U. S. Army Research Laboratory under the Federated Laboratory Program, Co-
operative Agreement DAAL01-96-2-0003. The US Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the
Air Force Office of Scientific Research, the National Science Foundation, the U.S. Army, or the
U.S. Government.

References

[1] K. Deb and D. E. Goldberg. An investigation of niche and
species formation in genetic function optimization. In J. D.
Schaffer, editor, Proceedings of the 3rd International Con-
ference on Genetic Algorithms, pages 42–50. Morgan Kauf-
mann, 1989.

[2] L. J. Eshelman and J. D. Schaffer. Crossover’s niche. In
S. Forrest, editor, Proceedings of the 5th International Con-
ference on Genetic Algorithms, pages 9–14. Morgan Kauf-
mann, 1993.

[3] D. E. Goldberg. Four keys to understanding building-block
difficulty, June 15 1998. Presented in Project FRACTALES
Seminar at I.N.R.I.A. Rocquencourt, Le Chesnay, Cedex.

[4] D. E. Goldberg. The design of innovation: Lessons from
and for competent genetic algorithms. In press, 2002.

[5] D. E. Goldberg and K. Deb. A comparative study of selec-
tion schemes used in genetic algorithms. In G. J. E. Rawl-
ins, editor, Foundations of Genetic Algorithms, pages 69–
93. Morgan Kaufmann, 1991.

[6] D. E. Goldberg and J. Richardson. Genetic algorithms
with sharing for multi-modal function optimization. In J. J.
Grefenstette, editor, Proceedings of the 2nd International
Conference on Genetic Algorithms, pages 41–49. Lawrence
Erlbaum Associates, 1987.

[7] J. H. Holland. Building blocks, cohort genetic algorithms,
and hyperplane-defined functions. Evolutionary Computa-
tion, 8(4):372–391, 2000.

[8] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive
models for the breeder genetic algorithm: I. continuous pa-
rameter optimization. Evolutionary Computation, 1(1):25–
49, 1993.

[9] B. Naudts and J. Naudts. The effect of spin-flip symme-
try on the performance of the simple GA. In A. E. Eiben,
T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Pro-
ceedings of the 5th Conference on Parallel Problem Solving
from Nature, volume 1498 of LNCS, pages 67–76, Berlin
Heidelberg New York, 1998. Springer-Verlag.

[10] C. K. Oei, D. E. Goldberg, and S. J. Chang. Tournament
selection, niching, and the preservation of diversity. IlliGAL
Report 91011, University of Illinois at Urbana-Champaign,
1991.

[11] M. Pelikan and D. E. Goldberg. Genetic algorithms, cluster-
ing and the breaking of symmetry. IlliGAL Report 2000013,
University of Illinois at Urbana-Champaign, 2000.

[12] M. Pelikan and D. E. Goldberg. Hierarchical problem solv-
ing and the bayesian optimization algorithm. In D. With-
ley, D. Goldberg, E. Cantú-Paz, L. Spector, I. Parmee, and
H. Beyer, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference 2000, pages 267–274. Morgan
Kaufmann, 2000.

[13] D. Thierens. Analysis and Design of Genetic Algorithms.
PhD thesis, Catholic Univerity Leuven, Belgium, 1995.

[14] C. Van Hoyweghen, D. E. Goldberg, and B. Naudts. Build-
ing block superiority, multimodality and synchronization
problems. In Lee Spector et al., editor, Proceedings of the
Genetic and Evolutionary Computation Conference 2001,
pages 694–701. Morgan Kaufmann, 2001.

[15] C. Van Hoyweghen, B. Naudts, and D. Goldberg. Spin-flip
symmetry and synchronization. Submitted to the journal of
Evolutionary Computation, 2001.

[16] R. Watson, G. S. Hornby, and J. B. Pollack. Modeling
building block interdependency. In A. E. Eiben, T. Bäck,
M. Schoenauer, and H.-P. Schwefel, editors, Proceedings of
the 5th Conference on Parallel Problem Solving from Na-
ture, pages 97–106. Springer-Verlag, 1998.

GENETIC ALGORITHMS 633

Simulating Gender Separation with Genetic Algorithms

Dana Vrajitoru

IUSB, Computer & Information Sciences

1700 Mishawaka Ave, P.O.Box 7111

South Bend, IN 46634-7111

email: danav@cs.iusb.edu

Abstract

Gender separation is a largely encountered in

the natural systems that allows the preserva-

tion of the genetic diversity in a species. In

this paper, we want to analyse the mecha-

nism by which this reproduction mode may

have evolved and the way it inuences the

evolution of a population toward an optimal

individual.

1 INTRODUCTION

It is a known fact that gender separation is a powerful

biological tool that helps preserving the genetic diver-

sity in a population by preventing organisms from self-

duplicating. It has also been shown that allogen repro-

ducing organisms have a greater capacity to quickly

adapt to diÆcult environments and to resist hostile

exterior factor like disease (Hamilton, Axelrod, and

Tanese, 1990).

The gender separation and sexual reproduction have

been of interest in the study and application of genetic

algorithms (GAs), since they are an important feature

of the living organisms. Some research has followed the

direction of sexual reproduction and the impact on the

biodiversity (Todd and Miller, 1997; Todd, 1997).

In another direction, sexual reproduction can also be

viewed as a factor for developing the communica-

tion through the emergence of complex mating signals

(Werner and Todd, 1997; Noble, 1999).

Gender can also be seen as a factor for developing the

collaboration between the individuals in a population

(Hemelrijk, 1999), and can be a component for multi-

optimization algorithms (Allenson, 1992).

In this paper, we try to model the way gender separa-

tion has occurred in nature in the �rst place and how

it became such a wide-spread feature in our ecosystem.

Our hypothesis is that the reproduction constraints re-

lated to the sexual reproduction alone cannot explain

the survival and spreading of this reproduction mode

in nature. Thus, the individuals that initially devel-

oped mating schemes that aim to preserve the genetic

diversity in a population can eventually lead to the

emergence of two distinct subpopulations that repro-

duce in general with each other.

Section 2 presents a model in which the distribution

of gender types in a given population evolves along

with the rest of the genotype. Section 3 examines the

�tness of the individuals that evolve following various

reproduction modes. Section 4 studies the inuence of

the population size on the performance of each of the

models.

2 EVOLVING THE

REPRODUCTION MODE

In this section present a simulation model based on

several gender types that can evolve through genetic

operations along with the rest of the chromosome.

2.1 MODEL DESCRIPTION

The �rst experiment that we introduce in our paper

concerns the evolution of various gender types through

natural selection. We start from the assumption that

the initial population is composed in an equal way

of individuals presenting various reproduction con-

straints, that we classify as gender types. In the mat-

ing process, some of them require speci�cally a partner

of di�erent gender in order to reproduce, while others

can mate with a partner of any gender. Part of them

can even self-duplicate.

The gender type is inherited by the o�spring from the

parents in a random fashion with no particular prefer-

GENETIC ALGORITHMS634

ence. The goal of the experiment is to analyse the

composition of the population as it evolves toward

individuals of higher �tness through the mechanism

of natural selection. Thus, the gender distribution in

the �nal population is determined by two factors: the

probability of occurrence of each gender type in the

next generation based on the reproduction constraints,

and the gender inherited by the �ttest individuals in

a given generation, which are more likely to be chosen

for reproduction.

In our model, we have four types of individu-

als: male (M), female (F), self-fertilizing (S-F), and

hermaphrodite (H). The gender of the individual is

assigned by random in the initial population with no

preference for any of the four types. This parameter is

inherited by the o�spring and thus evolves by natural

selection.

Each of the four gender types has a di�erent constraint

in the mating process. The self-fertilizing individuals

can mate with any individual regardless of their gen-

der, including themselves. The hermaphrodite indi-

viduals can mate with any individual other than them-

selves. The males and females can mate an individual

of any gender type di�erent from their own. Thus, we

suppose that in the initial conditions of gender sepa-

ration, a male or a female could mate with either a

female, or with a hermaphrodite individual presenting

the features of both gender types.

The male - female mating constraints can lead the al-

gorithm to a deadlock in the case where the population

becomes exclusively composed of one of these two gen-

der types, such that the reproduction is not possible

anymore. We prevent these situations by introducing

the possibility of spontaneous sex change from male

to female or the reverse in the situation where an in-

dividual has made a number of unsuccessful mating

attempts equal to the least of 25 and the quarter of

the population size.

The o�spring inherits the gender type of the par-

ents randomly, with an equal probability assigned to

each parent. Let us denote by n0M , n0F , n0S , and

n0H the number of male, female, self-fertilizing, and

hermaphrodite individuals respectively in a given gen-

eration. We can compute the expected number of oc-

currences of each gender type n1M , n1F , n1S�F , and

n1H in the next generation considering exclusively the

mating scheme we have described and ignoring the

mechanism of natural selection. Let n0M + n0F +

n0S�F + n0H = n, the size of the population.

The general reproduction scheme that we have used

consists in selecting two parents for reproduction by

crossover, and producing exactly two children by this

operation. Since the gender type is randomly inher-

ited by the o�spring, we expect the children to have

the same gender distribution as the parents. For ex-

ample, from a male and a hermaphrodite we expect to

produce again a male and a hermaphrodite, only with

a di�erent genetic code.

The male and female individuals can be found in the

next generation either if they are selected as the �rst

parent, or if the �rst parent has a di�erent gender than

their own and they are selected as a second parent.

The probability that a random individual from the

initial population is a male is equal to n0M=n, and

the probability of the contrary event is (n � n0M)=n.

Considering that we select n=2 individuals as the �rst

parent and the same number as the second parent, we

can compute the expected number of occurrences of

the male gender type in the next generation as

n1M =
n

2

n0M

n
+

n

2

(n� n0M)

n

n0M

n

= n0M
2n� n0M

2n
< n0M

The same computation can be done for female individ-

uals.

n1F =
n

2

n0F

n
+

n

2

(n� n0F)

n

n0F

n

= n0F
2n� n0F

2n
< n0F

We can �nd a hermaphrodite in the new generation if

a hermaphrodite was chosen as a �rst parent, or if the

second parent is a hermaphrodite and not identical to

the �rst one. We have

n1H =
n

2

n0H

n
+

n

2

n� n0H

n

n0H

n
+

n

2

n0H

n

n0H � 1

n

= n0H
2n� 1

2n
< n0H

In this formula, the �rst term of the sum corresponds

to the event that the �rst parent is hermaphrodite.

The second term corresponds to the event that the �rst

parent is not a hermaphrodite, but the second parent

is, in which case they cannot be the same individual.

The third term corresponds to the event that the both

parents are hermaphrodites and di�erent individuals.

The number of self-fertilizing individuals should re-

main stable, since they can constitute any of the par-

ents, regardless of what the other parent is.

GENETIC ALGORITHMS 635

n1S�F = 2
n

2

n0S�F

n
= n0S�F

As the sum of these numbers is inferior to n, we should

scale them correspondingly with a factor greater than

1. This would most probably modify the expected

number of hermaphrodite individuals in the new gen-

eration such that n1H � n0H . The result is that the

number of self-fertilizing and hermaphrodite individu-

als are expected to increase, while the two others may

converge to 0.

2.2 EXPERIMENTAL CONDITIONS

This section presents the �tness functions that the GA

must optimize and the parameter settings that we have

used for the experiment.

Fitness Functions

We have chosen three classes of problems: the set of

10 standard test functions, an NP-complete problem

and several deceptive functions. Each class presents a

special challenge for the GA.

Standard functions This class contains 10 standard

minimization functions used in many cases to experi-

ment with GAs (Whitley et al., 1996).

Deceptive problems This class of problems is based

on the phenomenon of deception (Whitley, 1990; Deb

and Goldberg, 1994) and contains problems that are

known to be diÆcult for GAs. For this reason, they are

a frequent choice as test functions in the study of GAs

(Goldberg, Deb and Horn, 1992; Kingdon and Dekker,

1995; Mohan, 1998). Their diÆculty comes from the

fact that the optimal individual is isolated from other

individuals of high performance, and there are one or

more suboptimal individuals that are easier to reach

by hill-climbing.

We have chosen 8 deception problems that consist in

concatenating a number of 3-bit functions as shown in

Table 1. For these problems, the optimal individual is

represented by a string of 3 bits whose closest neigh-

bors display the lowest performance. We have con-

ducted our experiences with individuals composed of

100 strings of 3 bits, so the optimal individual should

have a performance of 3000.

Hamiltonian circuit (HC) Given a graph, does

there exist a circuit that passes once and only once

through each vertex? This problem is known to be

NP-complete (Brassard and Bratley, 1994).

We have performed our experiences with 10 HC prob-

lems with graphs of 9 to 150 vertices and up to 3000

edges. The direct representation of a HC problem for

Table 1: Deception functions

000 001 010 011 100 101 110 111

decep1 28 26 22 0 14 0 0 30

decep2 28 26 22 14 14 26 22 30

decep3 22 0 28 26 0 30 14 0

decep4 0 14 30 0 26 28 0 22

decep5 22 14 28 26 22 30 14 26

decep6 26 14 30 22 26 28 14 22

decep7 22 14 28 26 14 30 24 14

decep8 14 22 30 14 24 28 14 26

the GAs can be diÆcult. De Jong and Spears (1989)

suggest to transform the HC instances into SAT in-

stances, whose genetic representation is easier.

SAT (Boolean satis�ability) Given a Boolean expres-

sion depending on some variables, does there exist an

assignment to those variables such that the expression

evaluates as true?

A detailed description of the reduction of a HC in-

stance into a SAT instance can be found in (Brassard

and Bratley, 1994) or (Vrajitoru, 1999). For any given

graph, a Boolean variable corresponds to each edge,

and is given the true value if the edge belongs to the

HC. Thus, if we represent each variable as a gene, the

size of an individual is equal to the number of edges

in the graph.

To evaluate a Boolean expression to more than true or

false, we have used fuzzy logic measures, also proposed

by De Jong and Spears (1989). The 'and' operation

is evaluated to the average of the terms, while the 'or'

operation returns the maximum of the terms. Thus,

the �tness function takes values between 0 and 1, and

the optimal individual has a �tness of 1.

2.3 PARAMETER SETTINGS

We have performed for each problem 100 runs of the

GA, half of which without mutation, and half with a

mutation rate of 0.01. The crossover rate is equal to 1

in all the cases. Each generation contains 50 individu-

als and the number of generations is limited to 500. We

have used the �tness proportionate or roulette wheel

selection (Goldberg, 1989), and a variant of the elitist

reproduction called monotone: the worst individual in

the new generation is replaced by the ancient best in-

dividual, if and only if the new generation contains

nothing better than it (Vrajitoru, 1999).

GENETIC ALGORITHMS636

Table 2: Gender convergence in 500 generations

M/F H S-F

Standard 9 438 553

Deception 6 370 424

HC 11 973 1116

Total 26 1781 2093

% 0.67 45.67 53.66

We have used a crossover operator called combined

balanced that combines four variations of crossover in

each generation : the 1-point (Holland, 1975), 2-point

(De Jong, 1975), uniform (Syswerda, 1989), and dis-

sociated (Vrajitoru, 1999). For each operation, one of

the four crossover forms is used by a random choice

giving each of them equal chances.

2.4 SIMULATION RESULTS

The parameter that interests us in this �rst experi-

ment is the composition of the population in the last

generation. The simulation has shown that the distri-

bution of the gender types in the population converges

to one of the four types very fast.

To illustrate this fact, Figure 1 shows the evolution

of the gender types in 30 generations, computed over

80 runs on 4 HC problems of various diÆculty. The

measure that we have plotted is the average number of

occurrences of each type in the population according

to the generation number.

From this �gure we can see that the male and fe-

male gender types have completely disappeared after

30 generations. In 77 out of 80 runs, the population is

already completely composed of one of the two remain-

ing gender types. In the conditions of our experiment,

the gender converges much more rapidly than the rest

of the genetic material.

A second set of results shows that after 500 genera-

tions, the population is composed completely of one

gender type in all the cases. Table 2 shows the dis-

tribution of each gender type in the last generation

for each class of problems. We can remark that al-

though the general distribution of gender types follows

the tendency that we have also observed in Figure 1,

the number of resulting populations that are composed

of male/female individuals is not equal to the expected

number (0).

This fact is due to the inuence of the natural selection

mechanism. Thus, the best individuals are more likely

to be chosen for mating, and their gender type will be

transmitted to a greater number of the new individuals

than expected from the mating constraints.

This factor can explain the mechanism by which a ge-

netic feature that restrains the potential number of

individuals with which a given individual can mate,

has survived and currently dominates an important

part of our natural system. We can entail that the

�rst organisms developing only one gender type also

presented some adaptation to their environment that

made them stronger and allowed the feature to survive

and spread.

Figure 1: Gender evolution in 30 generations

3 COMPARING THE

REPRODUCTION MODES

In this section we compare several reproduction

schemes based on the gender types previously de-

scribed. We are interested in the inuence of the self-

fertilization and of the gender separation on the per-

formance of the GAs.

3.1 REPRODUCTION SCHEMES

We propose four reproduction schemes that we com-

pare using the average performance over 100 runs on

each test problem.

The �rst reproduction scheme is the usual one based

on the �tness-proportionate selection. In this case, all

the individuals are self-fertilizing, and thus the process

of mating doesn't require any special operation. We

denote this scheme by simple.

The second scheme is the one presented in the previous

section, where the gender types belong to any of the

four categories. They are assigned randomly in the

initial population and evolve through generations. We

denote this scheme by mixed.

The last two schemes, denoted by gender and

GENETIC ALGORITHMS 637

Table 3: Results on the standard test functions

Problem Simple Mixed Gender Herm

F1 0.192 0.177 0.155 0.182

F2 0.449 0.31 0.59 0.365

F3 11.85 11.84 11.97 11.83

F4 2.894 3.053 2.751 3.013

F5 5.14 6.208 4.765 3.943

F6 3.205 3.407 3.228 3.475

F7 616.627 620.549 616.096 596.507

F8 2.115 2.306 2.429 2.237

F9 0.125 0.132 0.13 0.138

F10 1.456 1.725 1.357 1.622

Table 4: Results on deception problems

Problem Simple Mixed Gender Herm

d1 2684.36 2697.44 2699.16 2689.32

d2 2851.22 2929.4 2853.84 2857.02

d3 2494.2 2502.12 2504.92 2503.88

d4 2504.94 2498.54 2501.22 2500.7

d5 2767.86 2771.5 2767.1 2772.42

d6 2764.82 2765.42 2769.24 2768.92

d7 2650.18 2652.48 2653.22 2651.22

d8 2665.78 2667.86 2666.9 2668.4

herm, are based on populations completely formed

of male/female and hermaphrodite individuals respec-

tively. For both of them, an individual cannot self-

duplicate. For the �rst one, the mating choice is lim-

ited to about half of the population.

3.2 EXPERIMENTAL RESULTS

Table 3 presents the average performance over 100

runs in 500 generations achieved by each reproduction

scheme on the set of standard function. Each problem

in this class is a minimization problem, so that the

smaller results are the best ones.

Table 4 presents the results under the same conditions

on the deception problems. This class contains opti-

mization problems, where the maximal performance is

equal to 3000.

Table 5 shows the results of the reproduction schemes

on the HC problems. The maximal performance in

this case is equal to 1.

From these tables we can notice that the best average

performance is obtained almost in all the cases by ei-

ther the two-gender or the hermaphrodite populations.

Table 5: Results on HC problems

Problem Simple Mixed Gender Herm

hc9 0.968 0.97 0.972 0.97

hc10 0.966 0.966 0.966 0.964

hc11 0.965 0.963 0.964 0.965

hc12 0.963 0.962 0.962 0.962

hc13 0.96 0.96 0.961 0.962

hc14 0.959 0.959 0.962 0.961

hc15 0.959 0.959 0.96 0.96

hc20 0.958 0.958 0.958 0.957

hc25 0.953 0.952 0.953 0.953

hc30 0.944 0.943 0.943 0.944

hc50 0.937 0.937 0.937 0.937

hc60 0.94 0.938 0.938 0.939

hc70 0.939 0.939 0.939 0.939

hc80 0.94 0.94 0.94 0.94

hc90 0.94 0.94 0.94 0.942

hc100 0.94 0.939 0.939 0.94

hc110 0.942 0.941 0.94 0.942

hc120 0.938 0.938 0.939 0.94

hc130 0.939 0.939 0.939 0.937

hc140 0.935 0.935 0.936 0.937

hc150 0.941 0.94 0.935 0.938

The mixed scheme, where the gender type evolves by

genetic operations, is almost never the best one. We

can deduce that avoiding self-fertilization can improve

the performance of GAs.

Table 6 summarizes the results presented in the pre-

vious tables, by counting the number of times each

scheme presents the best average performance for each

class of problems (the columns marked by �). We have

also considered the number of problems where each

scheme presented the best result for the optimal run

out of 100 (the columns marked by opt). This table

emphasizes the conclusions we have made based on the

previous tables, and shows that the best reproduction

scheme for the GAs is the hermaphrodite. This means

that for the size of the population we have considered,

it is better to allow a wider mating choice for each

individual, while avoiding the self-duplication.

From this second set of experiments, we can deduce

that given the success of gender separation in our nat-

ural system, this factor must contribute to the capac-

ity of survival and of adaptation of the individuals to

their environment in other ways than just providing a

means of preserving the genetic diversity.

One of the possible advantages of gender separation

is the development of complex communication sys-

GENETIC ALGORITHMS638

Table 6: Summary of results

standard deception HC Total

� opt � opt � opt

Simple 3 3 1 3 7 5 22

Mixed 1 2 1 2 2 3 11

Gender 4 1 4 3 4 3 19

Herm 2 4 2 0 8 10 26

tems that are enhances by the necessities of �nding

a mate. A second factor could be the fact that the bi-

ological di�erences between the two genders has given

way to the raise of a social structure for some of

the more evolved organisms and to the distribution

of the survival tasks. This phenomenon has evolved

into the complex social systems of the human beings,

and is also a positive factor for developing the intelli-

gence and for preserving the experience accumulated

through generations. These hypothesis constitute the

subject of a future research.

4 THE ROLE OF THE

POPULATION SIZE

The previous experiences have shown that in the given

conditions, the gender separation can be slowing down

the search for the optimal individual. This is probably

due to the fact that during the crossover operation, a

given individual can only mate with half of the indi-

viduals in the population. Thus, the best individuals

that were found so far may not be available in the pro-

cess because they are of the same gender as the �rst

parent selected for reproduction.

In the natural habitat, the populations are in general

much larger than the experimental size for the GAs.

When the population size increases and if there is a

balanced distribution of the two genders in the popu-

lation, it is possible for an individual to �nd an indi-

vidual of high �tness among the opposite sex.

Our hypothesis is that the mating restriction inherent

to the gender separation presents a signi�cant disad-

vantage only in the conditions where the population

size is small. In the following experiences we will an-

alyze the impact of the population size on the model

with gender separation and on the model where the

individuals are hermaphrodite but cannot mate with

themselves.

We have performed experiences with a HC problem

based on a graph with 150 vertices. This problem

presents an interesting challenge because the size of

Table 7: Results on HC problems

Population size Simple Gender Herm

50 0.961 0.962 0.963

60 0.968 0.969 0.968

70 0.970 0.971 0.970

80 0.972 0.972 0.972

90 0.973 0.973 0.973

100 0.973 0.974 0.974

the individual is around 3000 genes according to the

number of edges in the graph.

Table 7 shows the performance of the simple self-

fertilizing model, of the model with gender separation,

and of the model with hermaphrodite individual that

cannot reproduce with themselves. From this table, we

can see that in general, for a diÆcult problem, avoiding

the self-fertilization can help the GA in �nding �tter

individuals.

Figure 2 shows the evolution of the performance of the

two models that avoid self-fertilization (gender sepa-

ration and hermaphrodite) in 500 generations as the

population size increases. The measure that we have

considered is the average �tness based on 10 experi-

ences in the same conditions. From this �gure we can

remark that the di�erence between the performance of

the models decreases as the population size increases.

A second remark is that in a given number of genera-

tions, both models can �nd individuals of better �tness

when the population is larger.

Figure 2: Comparing performance of the models ac-

cording to the population size

To emphasize the e�ect of the population size on the

performance of the models that we are interested in,

Figure 3 shows the evolution of the absolute di�erence

between the average performance of the gender sepa-

rated model and that of the hermaphrodite model. We

can clearly see that as the population size increases,

GENETIC ALGORITHMS 639

the di�erence between the average performance of the

two models is dramatically reduced.

Figure 3: Absolute di�erence between the models ac-

cording to the population size.

The experiments introduced in this section have shown

that although the hermaphrodite model can present an

advantage over the model with gender separation, as

suggested by the previous experiences, this advantage

seem to disappear as the population size increases.

This phenomenon can explain the large occurrence of

gender separation in nature, where the size of the pop-

ulations is much higher than in our simulations. We

can also observe a disadvantage of gender separation

for some of the endangered species, where the popula-

tion size is too small. For some of these species, like

the Panda bears, �nding a mate can be a real challenge

because of the small number of available individuals in

a given geographical area.

5 CONCLUSIONS

In this paper, we have used the GAs to analyse some

of the aspects related to a phenomenon that is largely

encountered in the natural system, the gender separa-

tion.

Section 2 has introduced a model in which the gen-

der type evolves through the genetic operations as the

individuals try to adapt to a speci�c problem. From

these experiments we can deduce that the �rst individ-

uals that developed this feature must have presented

some adaptation advantages over the others to allow

this feature to survive.

Section 3 compares the quality of the individuals that

evolve through various reproduction modes, some of

which are based on gender separation. The results

presented in this section suggest that for small size

populations, gender separation can slow down the rate

by which the individuals can adapt to a problem.

To continue the idea from the second experiment, Sec-

tion 4 examines the inuence of the population size

on the performance of each of the models. These last

results suggest that the di�erence between the mod-

els concerning the �tness of the evolved individuals

becomes insigni�cant as the population size increases.

Moreover, for a larger size of the population, avoiding

the self-duplication can be an advantage.

Acknowledgments

The experiments presented in this paper have been

partially developed in the LCVM2 laboratory, EPFL,

Switzerland.

References

[Allenson, 1992] Allenson, R. (1992). Genetic algo-

rithms with gender for multi-function optimisation.

Technical Report EPCC-SS92-01, Edinburgh Paral-

lel Computing Centre, Edinburgh, Scotland.

[Brassard and Bratley, 1994] Brassard, G. and Brat-

ley, P. (1994). Fundamentals of Algorithmics.

Prentice-Hall.

[De Jong, 1975] De Jong, K. (1975). An Analysis of

the Behaviour of a Class of Genetic Adaptive Sys-

tems. PhD thesis, University of Michigan.

[De Jong and Spears, 1989] De Jong, K. and Spears,

M. (1989). Using genetic algorithms to solve NP-

complete problems. In Proceedings of the Inter-

national Conference on Genetic Algorithms, pages

124{132, Fairfax (VA). George Mason University.

[Deb and Goldberg, 1994] Deb, K. and Goldberg,

D. E. (1994). SuÆcient conditions for arbitrary bi-

nary functions. Annals of Mathematics and Arti�-

cial Intelligence, 10:385{408.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic

Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, Reading (MA).

[Goldberg et al., 1992] Goldberg, D. E., Deb, K., and

Horn, J. (1992). Massive multimodality, deception

and genetic algorithms. In Manner, R. and Man-

derick, B., editors, Proceedings of Parallel Problem

Solving from Nature II, pages 37{46.

[Hamilton et al., 1990] Hamilton, W., Axelrod, R.,

and Tanese, R. (1990). Sexual reproduction as an

adaptation to resist parasites. Proceedings of the

National Academy of Sciences, 87:3566{3573.

GENETIC ALGORITHMS640

[Hemelrijk, 1999] Hemelrijk, C. (1999). E�ects of co-

hesiveness on intersexual dominance relationships

and spatial structure among group-living virtual en-

tities. In Proceeding of the European Conference on

Arti�cial Life V, pages 524{534. Springer Verlag.

[Holland, 1975] Holland, J. H. (1975). Adaptation in

Natural and Arti�cial Systems. University of Michi-

gan Press, Ann Arbor.

[Kingdon and Dekker, 1995] Kingdon, J. and Dekker,

L. (1995). The shape of space. In Proceedings of the

Conference on Genetic Algorithms in Engineering

Systems: Innovations and Applications (GALESIA

'95), pages 543{548, London (UK). IEE.

[Mohan, 1998] Mohan, C. K. (1998). Selective

crossover: Towards �tter o�spring. In Proceedings

of the Symposium on Applied Computing (SAC'98),

Atlanta (GA).

[Noble, 1999] Noble, J. (1999). Sexual signalling in

an arti�cial population: When does the handicap

principle work? In Floreano, D., Mondada, F.,

and Nicoud, J.-D., editors, Proceeding of the Euro-

pean Conference on Arti�cial Life V, pages 644{653.

Springer Verlag.

[Syswerda, 1989] Syswerda, G. (1989). Uniform

crossover in genetic algorithms. In Scha�er, J. D.,

editor, Proceedings of the International Conference

on Genetic Algorithms, San Mateo (CA). Morgan

Kaufmann Publishers.

[Todd, 1997] Todd, P. (1997). Searching for the next

best mate. In Conte, R., Hegselmann, R., and

Terna, P., editors, Simulating social phenomena,

pages 419{436, Berlin. Springer-Verlag.

[Todd and Miller, 1997] Todd, P. and Miller, G.

(1997). Biodiversity through sexual reproduction.

In Langton, C. and Shimohara, K., editors, Proceed-

ings of Arti�cial Life V, pages 289{299, Cambridge

(MA). MIT Press/Bradford Books.

[Vrajitoru, 1999] Vrajitoru, D. (1999). Genetic pro-

gramming operators applied to genetic algorithms.

In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 686{693, Orlando

(FL). Morgan Kaufmann Publishers.

[Werner and Todd, 1997] Werner, G. and Todd, P.

(1997). Too many love songs: Sexual selection and

the evolution of communication. In Husbands, P.

and Harvey, I., editors, The Fourth European Con-

ference on Arti�cial Life, Cambridge (MA). MIT

Press/Bradford Books.

[Whitley, 1990] Whitley, D. (1990). Fundamental

principles of deception in genetic algorithms. Foun-

dations of Genetic Algorithms, pages 221{241.

[Whitley et al., 1996] Whitley, D., Mathias, K., Rana,

S., and Dzubera, J. (1996). Evaluating evolutionary

algorithms. Arti�cial Intelligence, 85:245{276.

GENETIC ALGORITHMS 641

A Fixed Point Analysis of a Gene Pool GA with Mutation

Alden H. Wright ∗

Computer Science
University of Montana

USA
wright@cs.umt.edu

44 121 414 2793

Jonathan E. Rowe
Computer Science

University of Birmingham
UK

j.e.rowe@cs.bham.ac.uk

Riccardo Poli
Computer Science
University of Essex

UK
rpoli@essex.ac.uk

Christopher R. Stephens
Instituto de Ciencias Nucleares

UNAM, Mexico
stephens@nuclecu.unam.mx

Abstract

This paper analyzes a recombina-
tion/mutation/selection genetic algorithm
that uses gene pool recombination. For linear
fitness functions, the infinite population model
can be described by ` equations where ` is the
string length. For linear fitness functions, we
show that there is a single fixed point and that
this fixed point is stable. For the ONEMAX
fitness function, the model reduces to a linear
recurrence in a single variable which can be
explicitly solved. The time-to-convergence for
ONEMAX is given.

1 Introduction

A major goal of genetic algorithm theory is a tractable
model of a GA that gives quantitative predictions over mul-
tiple generations. The Vose dynamical system model [9] is
exact in the infinite-population limit, but it tends to be in-
tractable for results on specific problems due to the fact
that the model keeps track of the frequency of every string.
What is needed is a “coarse-grained” model that simplifies
the model. One natural way to attempt to coarse-grain a GA
model is to look at the representations of schemata, espe-
cially low-order schemata. (See [7] and [10].) One would
like to track schema averages over multiple generations.

Crossover does not change the schema frequencies of or-
der 1 schemata. Stated another way, it preserves the fre-
quencies of each allele. The effect of crossover on a pop-
ulation is to move the population closer to linkage equi-
librium. In other words, it decorrelates the alleles at dif-
ferent positions. In a linkage equilibrium population, the
representation of any string is determined by the allele fre-
quencies. Geiringer’s theorem [1] shows that the limit of

∗This paper was written while Alden Wright was visiting the
School of Computer Science, University of Birmingham, UK,
supported by EPSRC grant GR/R47394.

repeated applications of crossover is a population in link-
age equilibrium (also known as Robbins’ proportions).

In gene pool recombination, the population is taken directly
to linkage equilibrium in one step. In other words, the alle-
les are completely decorrelated, and the population is com-
pletely described by the allele frequencies. This can be im-
plemented for a finite population by choosing the genes for
a new individual from a pool constructed from the whole
population. In other words, the population allele distribu-
tion at a particular locus defines a probability distribution,
and the allele at that position in a new individual is selected
from that probability distribution. Gene pool recombina-
tion was introduced by Voigt and Mühlenbein in [8].

After a gene pool recombination step, the complete state of
the population is determined by the allele frequencies, and
the number of these variables is linear rather than expo-
nential in the string length. This “coarse-graining” makes
the gene pool much more tractable for analysis than the
two-parent recombination GA, and this is the focus of this
paper.

Mühlenbein, Mahnig and others have done considerable
work on the Univariate Marginal Distribution Algorithm
(UMDA) [6], [4]. This algorithm uses gene pool recombi-
nation, and selection, and no mutation. Response to selec-
tion is computed or approximated for a variety of selection
methods. In [3], Mahnig and Mühlenbein introduce muta-
tion into UMDA by a technique called Bayesian prior. The
emphasis is on the interaction of the mutation rate and the
population size.

By using the Walsh basis, we are able to analyze a GA that
uses gene pool recombination, selection, and mutation. We
find and rigorously prove the stability of fixed points which
is a different approach than has been taken in the work on
UDMA which is primarily oriented towards “response to
selection”. Our work shows how the Vose dynamical sys-
tem model framework can be used to model algorithms like
UMDA.

We will call the GA that uses gene pool recombination,

GENETIC ALGORITHMS642

selection, and mutation a gene pool GA.

The paper considers linear fitness functions. Other classes
of fitness functions, such as the class of single-peak
(needle-in-the-haystack) fitness functions will be consid-
ered elsewhere.

There has been a long history of research on the analysis
of fitness functions by means of their Walsh coefficients.
The Vose model [9] uses the Walsh transform to simplify
the model for crossover and mutation. This paper makes a
connection between these two lines of research. It should
be the first step in a research program that uses the Walsh
transform to analyze selection/mutation/recombination ge-
netic algorithms.

In addition, the gene pool GA can suggest general proper-
ties of recombination that can then be tested for a GA that
uses two-parent recombination.

We show that for any linear fitness function over fixed
length binary strings, there is a unique fixed point which is
asymptotically stable. For the ones-counting (ONEMAX)
fitness function, explicit formulas are given for all fixed
points of the G function that defines the infinite popula-
tion model. To our knowledge, this is the first time that
formulas for fixed points have been given for a GA that
involves selection, recombination, and mutation and for ar-
bitrary string length.

A gene pool recombination GA can either be used as an
approximation to a two-parent recombination GA or as an
alternative GA. We show empirically that the gene pool GA
is a good approximation to a two-parent recombination GA
for linear fitness functions.

For all results where separate proofs are given, the proofs
are in the appendix.

2 Notation

Notation in this paper mostly follows [9].

The search space for this paper is the set of all binary
strings of length ` which will be denoted Ω. The binary
representation of a string induces a correspondence from
the elements of Ω to the set of integers from 0 to 2` − 1.
Thus, the integer 0 corresponds to the all-zeros string, and
the integer 2` −1 corresponds to the all-ones string. A sum
over i ∈ Ω is equivalent to a sum from i = 0 to i = 2` − 1.

The bitwise mod 2 sum of two strings j and k is denoted
by j⊕k; Ω is a group under this operation. Note that j⊕k
is also the XOR of j and k. The identity element is the
string of zeros, which will be denoted by 0. The bitwise
product of strings j and k is denoted by j ⊗ k. The ones-
complement of k is denoted by k.

The number of ones in a binary string k is denoted by #k.

For each u ∈ Ω, Ωu = {i ∈ Ω : i ⊗ u = i}; Ωu

is the set of binary strings which have a 1 only in posi-
tions where u has a 1. It is also a schema denoted by a
string over {0,∗} where there are asterisks in those posi-
tions where the corresponding bit of u is 1, and where the
fixed positions are all zeros. For example, if ` = 4 and
u = 0101, then Ωu is the special schema 0∗0∗, and is also
the set {0000, 0001, 0100, 0101}. Note that Ωu is a sub-
group of Ω.

Let L = {j ∈ Ω : #j = 1}. Under the identification of
Ω with the integers, L = {2k : k = 0, 1, . . . , ` − 1}. Let
Lu = {j ∈ L : j ⊗ u = j} = L ∩ Ωu. For example,
if ` = 6 and u = 21, Lu = {20, 22, 24} = {1, 4, 16} =
{000001, 000100, 001000}.

The set L will be used extensively as an index set. This
might seem unnatural since L is a subset of Ω which does
not correspond to consecutive integers. If this bothers the
reader, a product over i ∈ L, such as

∏
i∈L Si, could be

rewritten as
∏`−1

k=0 S2k .

A population (a multiset of Ω) is represented as a popula-
tion vector x indexed by Ω; xv = xv0v1...v`−1

is the frac-
tion of the population which is string v = v0v1 . . . v`−1,
where v0, v1, . . . , v`− are the bits of v. For example, if
` = 2 and the population as a multiset is {00, 01, 01, 11},
then the corresponding population vector is [14 ,

1
2 , 0, 1

4]T .
A population vector is a population-size independent rep-
resentation of a population, and thus is natural for infinite-
population models.

If a population x depends on time (or GA generation) t,
then x(t) is the population at time t.

All population vectors are contained in the simplex Λ =
{x :

∑
j∈Ω xj = 1 and xj ≥ 0 for all j}. The simplex

is a natural setting for the dynamical systems model since
it allows population vectors to range continuously over a

subset of IR2`

and thus allows derivatives and calculus to
be used.

The Walsh matrix W is an 2` by 2` matrix defined by
Wi,j = 2−`/2(−1)#(i⊗j) The Walsh matrix is symmetric
and W = W−1. For example, the Walsh matrix for ` = 2
is:

W =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

If x is a population vector, then the Walsh transform of
x is Wx and is denoted by x̂. Let e0, e1, . . . , eN−1 be
the standard basis vectors for IRN . Then the vectors
ê0, ê1, . . . , êN−1 form the Walsh basis for IRN . If x is a
vector then x̂ = Wx is expressed in the Walsh basis. In
other words, xj is the jth coordinate of x in the standard
basis and x̂j is the jth coordinate of x in the Walsh basis.
If A is a 2` by 2` matrix, then WAW is the Walsh trans-

GENETIC ALGORITHMS 643

form of A and is denoted by Â.

3 Linkage Equilibrium

This section gives some basic results relating schema aver-
ages, the Walsh representation of a population, and proper-
ties of a population that is at linkage equilibrium.

These results will show how string and schema frequencies
can be determined from the Walsh coefficients that we use
to describe our models.

If x is a population vector and u ∈ L, let

x(u)
v =

∑

i∈Ω

xiδi⊗u,v

where δj,k = 1 iff j = k. In other words, x(u)
v de-

notes the proportion of individuals i in the population such
that the position of i corresponding to u is the same as
the corresponding position of v. For example, if x =
1
64 [19, 5, 29, 11]T , then x

(01)
00 = 48/64 and x

(01)
01 =

16/64.

Definition 1 A population x is in linkage equilibrium if

xk =
∏

u∈L

x
(u)
u⊗k

Thus, a population is in linkage equilibrium if the fre-
quency of each string is the product of the correspond-
ing 1 schema averages. For example, the popula-
tion 1

64 [19, 5, 29, 11]T (with Walsh basis representation
1
32 [16, 8, −4, −1]T) is in linkage equilibrium.

The following relates the schema sums of the order 1
schemata and the order 1 Walsh coefficients. It follows
from the formula for the Walsh coefficients.

Lemma 2 If u ∈ L,

x(u)
v =

1

2

(
1 + (−1)#v2`/2x̂u

)

The frequency of any string can be found from the Walsh
basis representation of the population.

Corollary 3 Let x be in linkage equilibrium. For any v ∈
Ω,

xv = 2−`
∏

i∈L

(
1 + (−1)#(i⊗v)2`/2x̂i

)

The following theorem gives the relationship of linkage
equilibrium to the Walsh basis representation of a popu-
lation. The result follows easily from theorem 10.9 of [9].

Theorem 4 If population x is in linkage equilibrium, then

x̂k = 2(#k−1)`/2
∏

i∈Lk

x̂i

Remark: While higher-order schemata will not be used
in this paper, it is interesting to note that the higher order
schemata are products of order 1 schemata for a popula-
tion at linkage equilibrium. Thus, in traditional notation,
the frequency of the schema 0∗1∗ is the product of the fre-
quencies of 0∗∗∗ and ∗∗1∗.

Theorem 5 If x ∈ Λ, then |x̂k| ≤ 2−`/2 for all k ∈ Ω.

4 The Gene Pool Model in the Walsh Basis

In this paper, one generation of the gene pool GA will con-
sist of the following three steps:

1. Gene pool recombination.
2. Proportional selection.
3. Mutation.

The dynamical system model will be described by a func-
tion G : Λ −→ Λ. In other words, if x(t) is the population
at generation t, then the population at generation t + 1 is
given by x(t+ 1) = G(x(t)).

G is a composition of M, F , and U (i. e., G = U ◦F ◦M).
The M, F , and U functions are described below.

The next three subsections tell how to compute F , U , and
M in the Walsh basis.

4.1 Proportional selection

Following [9], the effect of proportional selection can be
described by a function F : Λ −→ Λ. The probability that
an individual k ∈ Ω is chosen to be in the new population
is F(x)k. Or stated another way, if proportional selection
is applied to a population x, then the expected frequency
vector for the resulting population is F(x).

If f ∈ IR2`

is the fitness function (i. e., fk is the fitness of
k) then

F(x) =
Fx

fTx

where F is the diagonal matrix such that Fk,k = fk.

The average fitness fTxwhen computed in the Walsh basis

is the same: f̂T x̂ = (fTW)(Wx) = fTx. Thus,

F̂(x) =
WFx

f̂T x̂
=
WFWWx

f̂T x̂
=

F̂ x̂

f̂T x̂

Lemma 6 For any i, j ∈ Ω,

F̂i,j = 2−`/2f̂i⊕j

GENETIC ALGORITHMS644

Let σk denote the 2` × 2` matrix defined by (σk)i,j =
δi⊕k,j . Then it is easy to show that (σkx)i = xi⊕k.

The following corollary tells how to compute proportional
selection in the Walsh basis.

Corollary 7

F̂ (x)k =

∑
i∈Ω f̂i⊕kx̂i

2`/2f̂T x̂
=

∑
i∈Ω f̂ix̂i⊕k

2`/2f̂T x̂
=

f̂Tσkx̂

2`/2f̂T x̂

4.2 Mutation

The effect of mutation can be described by a function U :
Λ −→ Λ. The probability that an individual k ∈ Ω is
chosen to be in the new population is U(x)k.

If the probability that a bit is mutated (flipped) is µ, then
the probability that an individual i ∈ Ω is mutated to an
individual j is µ#(i⊕j)(1−µ)`−#(i⊕j). (Note that #(i⊕j)
is the Hamming distance from i to j.) Thus, we can define
a 2` × 2` mutation matrix U with Ui,j = µ#(i⊕j)(1 −

µ)`−#(i⊕j), and U(x) = Ux.

Following Vose (section 4.3 of [9]), we define a vector µ
indexed over Ω by

µi = (µ)#i(1 − µ)`−#i

(Whether µ denotes the scalar mutation rate or the mutation
vector should be clear from the context.) The following
lemma is proved in [9].

Lemma 8
µ̂k = 2−`/2(1 − 2µ)#k

The Walsh transform of U is easily shown to be diagonal.

Lemma 9 Û is a diagonal matrix which diagonal entries
given by:

Ûi,i = (1 − 2µ)#i

Theorem 10

Û(x)k = (Û x̂)k = (1 − 2µ)#kx̂k

Thus, mutation is very simple in the Walsh basis: it corre-
sponds to multiplication by a diagonal matrix.

4.3 Gene pool recombination

To implement gene pool recombination in a finite popula-
tion GA, the order 1 schema sums x(u) for #u = 1 are
computed from the current population x. Then each indi-
vidual of the new population is constructed by choosing
each bit according the probabilities determined by these
schema sums. Thus, the probability that the bit at posi-

tion i is 0 is x(2i)
0 and the probability that the bit at position

i is 1 is x(2i)
2i .

In the infinite population model, the population y resulting
from applying gene pool recombination to population x has
the property that ŷu = x̂u for #u = 1. In addition, y is at
linkage equilibrium. Thus, the Walsh coefficients of the
population after gene pool recombination can be computed
from theorem 4.

As with proportional selection and mutation, we can de-
scribe gene pool recombination through a function M :
Λ −→ Λ. By theorem 4, we have:

M̂(x)k = 2(#k−1)`/2
∏

i∈Lk

x̂i = 2−`/2
∏

i∈Lk

2`/2x̂i

This formula tells how to compute gene pool recombina-
tion in the Walsh basis. Note that if k ∈ L (i. e., #k = 1),

then M̂(x)k = x̂k. In other words, M is the identity on
the order-1 Walsh coefficients.

5 Linear fitness and the ONEMAX problem

Definition 11 A fitness function represented by a fitness
vector f is linear if

fi = c+
∑

j∈L

bjδi⊗j,j

where c and bj , j ∈ L are constants. (Note that if j = 2k ∈
L, then i⊗ j = j if and only if bit k of i is 1.)

Without loss of generality, we can assume that bj ≥ 0 for
j ∈ L. If some bj < 0 where j = 2p, this says that a string
with 0 at position p is more fit than the same string with a
1 at that position. Thus, a change of representation where
0 and 1 are interchanged in all strings at that position will
make bj > 0.

The ONEMAX fitness function is the linear fitness function
where c = 0 and bj = 1 for all j ∈ L.

The following lemma shows that when a linear fitness is
expressed in the Walsh basis, only the order 0 and order 1
coefficients are nonzero.

Lemma 12 For any k ∈ Ω,

f̂k =

2`/2c+ 2`/2−1
∑

j∈L bj if k = 0

−2`/2−1bk if k ∈ L

0 otherwise

If c ≥ 0 and bj ≥ 0 for j ∈ L, then f̂j ≤ 0 and f̂0 ≥

−
∑

j∈L f̂j .

Since we are working in the Walsh basis, it will convenient
to simply characterize a linear fitness in terms of its Walsh
coefficients. So in this section, we assume that f̂k = 0 for
k /∈ L ∪ {0}, f̂j ≤ 0 for j ∈ L and f̂0 +

∑
j∈L f̂j ≥ 0.

GENETIC ALGORITHMS 645

These correspond to the assumptions that fitness is linear,
bj ≥ 0, and c ≥ 0.

We can now compute selection in the Walsh basis. For k ∈
L,

F̂(y)k =
f̂Tσkŷ

2`/2f̂T ŷ

=

∑
i∈Ω f̂iŷi⊕k

2`/2
∑

i∈Ω f̂ix̂i

=
2−`/2f̂k + f̂0ŷk + 2`/2

∑
j∈L\{k} f̂j ŷj⊕k

f̂0 + 2`/2
∑

j∈L f̂j ŷj

Now assume that y = M(x) where M denotes gene pool
recombination. Then ŷk = x̂k and ŷj⊕k = 2−`/2x̂j x̂k for
for j, k ∈ L by theorem 4.

For k ∈ L,

Ĝ(x)k = êT
k U(F(M(x)))k

= (1 − 2µ)
2−`/2f̂k + f̂0x̂k + 2`/2x̂k

∑
j∈L\{k} f̂j x̂j

f̂0 + 2`/2
∑

j∈L f̂j x̂j

This formula is a recurrence that defines the gene pool
model for linear fitness in terms of the variables x̂k for
k ∈ L.

Notation is simplified by a variable substitution. Let ẑk =
2`/2x̂k. Then if z is in the simplex, lemma 5 shows that
−1 ≤ ẑ ≤ 1. The recurrence written in terms of the ẑk is:

Ĝ(z)k = (1 − 2µ)
f̂k + f̂0ẑk + ẑk

∑
j∈L\{k} f̂j ẑj

f̂0 +
∑

j∈L f̂j ẑj

= (1 − 2µ)ẑk + (1 − 2µ)
f̂k(1 − ẑ2

k)

f̂0 +
∑

j∈L f̂j ẑj

(1)

Later we will want to be able to evaluate the average fitness
in terms of the ẑj . The average fitness is

fTx = f̂T x̂ = 2−`/2f̂0 +
∑

f̂j x̂j

= 2−`/2f̂0 +
∑

f̂j2
−`/2ẑj

= 2−`/2(f̂0 +
∑

f̂j ẑj)

The fixed point equations are:

f̂kẑ
2
k +

2µ

1 − 2µ

f̂0 +

∑

j∈L

f̂j ẑj

 ẑk − f̂k = 0 (2)

Lemma 13 If fitness is linear and 0 < µ < 1/2, then the
gene pool GA has a unique fixed point in the simplex.

Theorem 14 For linear fitness and 0 < µ < 1/2, the gene
pool GA model has a unique fixed point, and this fixed point
is asymptotically stable.

5.1 The ONEMAX problem

For a rescaled ONEMAX fitness function, we can take
f̂0 = ` and f̂j = −1 for all j ∈ L. Rescaling has no
effect on the G function or the fixed points, but it does af-
fect the total fitness. From lemma 12, this original ONE-
MAX fitness is 2`/2−1 times the rescaled ONEMAX fit-
ness. From an earlier remark, the average rescaled fitness
is 2−`/2(f̂0 +

∑
f̂j ẑj) = 2−`/2(`−

∑
ẑj). Thus, the aver-

age ONEMAX fitness is 1
2 (f̂0 +

∑
f̂j ẑj) = 1

2 (`−
∑
ẑj).

If we assume a symmetric population, i. e., if we assume
that ẑj = w for all j, then the recurrence simplifies to:

G(w(t)) = w(t+ 1) = (1 − 2µ)
(`− 1)w(t) − 1

`

=
(1 − 2µ)(`− 1)

`
w(t) −

1 − 2µ

`

For µ = 0, this recurrence is equivalent to one given in [4].

This linear recurrence can easily be solved. Let A =
(1−2µ)(`−1)

` , C = 1−2µ
` .

Gt(w) = w(t) = Atw(0) − C

(
At − 1

A− 1

)

The fixed point is:

wfixed =
−C

A− 1
= −

1 − 2µ

2µ(`− 1) + 1

We can evaluate the average fitness for the original ONE-
MAX fitness at this fixed point. From above, the aver-
age ONEMAX fitness is 1

2 (` −
∑
ẑj) = 1

2 (` − `w) =
`
2 (1 − w). At the fixed point w = wfixed, this evalu-

ates to `(1+µ`−2µ)
1+2µ`−2µ . If the mutation rate is µ = 1

` , this is
`(2−2/`)
3−2/` ≈ 2`

3 .

Theorem 15 Let ε > 0 and let α = `µ so that µ = α/`. If
the gene pool GA model is started on the ONEMAX fitness
function from a random population (w(0) = 0), and if t
generations are done where t is chosen so that

t >
−` ln ε

1 + 2α

then
|Gt(0) − wfixed|

|wfixed|
< ε

In other words, the relative error after t generations is at
most ε.

The theorem says that for a fixed mutation rate, the number
of generations is Θ(`). Section 13.2 of [9] says that G for
general fitness is logarithmically convergent. Theorem 15
agrees with this result, only it gives explicit values for the
constants for the ONEMAX fitness function.

GENETIC ALGORITHMS646

The theorem also says that the time to convergence goes
down as the mutation rate increases. However, as the muta-
tion rate increases, the fixed point moves closer to the mid-
dle of the simplex, so the algorithm has less far to go. When
the mutation rate is 1/2, the fixed point is at the center of
the simplex, and the algorithm starts at the fixed point.

5.2 Empirical comparisons

The gene pool GA gives a good approximation to a two-
parent GA for linear fitness functions. Figure 5.2 show the
average fitness and figure 5.2 shows the number of opti-
mal individuals for 99 generations with gene pool, uniform,
and one-point recombination, where a crossover rate of 1 is
used for uniform and one-point recombination. The string
length was 18, and the mutation rate was 0.01. The graph
shows an average of 10 runs, each with a population size of
500000. The errors are negligible.

0 10 20 30 40 50 60
8

9

10

11

12

13

14

15

16
ONEMAX, string length 18, mutation rate 0.01

Generation

A
ve

ra
ge

 fi
tn

es
s

OnePoint
Uniform
Genepool

Figure 1: The average fitness for different types of recom-
bination

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 ONEMAX, string length 18, mutation rate 0.01

Generation

C
ou

nt
 o

f i
nd

iv
id

ua
ls

 o
f m

ax
im

um
 fi

tn
es

s

OnePoint
Uniform
Genepool

Figure 2: The number of optimal individuals for different
types of recombination

6 Discussion and Conclusion

In the paper we have given an exact infinite population
model of a selection/mutation/recombination genetic algo-
rithm that is tractable for large string lengths. We have
shown that for linear fitness functions, there is a unique
fixed point, and this fixed point is asymptotically stable
in the space of all populations. For the ONEMAX prob-
lem, the model reduces to a single variable, and an explicit
solution to the recurrence equation is given for symmetric
populations. The fixed point equation is a single quadratic
equation in one variable, so an explicit formula for the fixed
point is given. The time to convergence is shown to beO(`)
generations, where ` is the string length.

This paper should be the first step in the unification of
the Walsh basis analysis of crossover/mutation given in [9]
with the Walsh basis analysis of fitness functions.

7 Appendix

First is a technical lemma.

Lemma 16

∑

j∈Ωu

(−1)#(j⊗w) =

{
2#u if w ∈ Ωu

0 otherwise

Proof. Suppose that w ∈ Ωu. This implies that j ⊗ w = 0
for all j ∈ Ωu. Thus, the summation is equal to the number
of elements in Ωu, which is 2#u.

Now suppose w /∈ Ωu. The we can write w = q ⊕ v where
#q = 1, q ∈ Ωu, and q ⊗ v = 0. Note that Ωq = Ωu⊗q =
{0, q}. Then

∑

j∈Ωu

(−1)#(j⊗w)

=
∑

i∈Ωu⊗q

∑

k∈Ωu⊗q

(−1)#((i⊕k)⊗(q⊕v)) (3)

=
∑

i∈Ωu⊗q

(−1)#(i⊗q)
∑

k∈Ωu⊗q

(−1)#(k⊗v) (4)

=
∑

k∈Ωu⊗q

(−1)#(k⊗v) −
∑

k∈Ωu⊗q

(−1)#(k⊗v) = 0 (5)

Equation (4) follows from (3) since (i ⊕ k) ⊗ (q ⊕ v) =
(i⊗q)⊕(k⊗v), and since #((i⊗q)⊕(k⊗v)) (mod 2) =
#(i⊗ q)+#(k⊗ v) (mod 2) . Equation (5) follows from
(4) since Ωq = Ωu⊗q = {0, q}. 2

Proof of lemma 5: The simplex Λ is the convex hull of the
basis vectors e0, e1, . . . , eN−1 of the standard basis. The
vectors ê0, ê1, . . . , êN−1 are the same geometric points ex-
pressed in the Walsh basis, so the simplex is still the convex
hull of these points. But these correspond to the columns
of the Walsh matrix, and every entry of the Walsh matrix

GENETIC ALGORITHMS 647

is ±2−`/2. Thus x̂k is a convex combination of 2−`/2 and
−2−`/2. 2

Proof of lemma 6:

F̂i,j = 2−`
∑

u∈Ω

(−1)#(u⊗i)
∑

v∈Ω

(−1)#(v⊗j)Fu,v

= 2−`
∑

u∈Ω

(−1)#(u⊗i)
∑

v∈Ω

(−1)#(v⊗j)δu,vFu,u

= 2−`
∑

u∈Ω

(−1)#(u⊗i)(−1)#(u⊗j)fu

= 2−`
∑

u∈Ω

(−1)#(u⊗(i⊕j)fu

= 2−`/2f̂i⊕j

2

Proof of lemma 12:

f̂k = 2−`/2
∑

i∈Ω

(−1)#(k⊗i)fi

= 2−`/2c
∑

i∈Ω

(−1)#(k⊗i)

+ 2−`/2
∑

j∈L

bj
∑

i∈Ω

(−1)#(k⊗i)δi⊗j,j

= 2`/2cδk,0 + 2−`/2
∑

j∈L

bj

∑

v∈Ωj

(−1)#(k⊗v)
∑

u∈Ωj

(−1)#(k⊗u)δ(v⊕u)⊗j,j

Note that (v ⊕ u) ⊗ j = v ⊗ j and δv⊗j,j = 1 iff v = j.
Thus,

f̂k = 2`/2cδk,0 + 2−`/2
∑

j∈L

bj(−1)#(k⊗j)
∑

u∈Ωj

(−1)#(k⊗u)

= 2`/2−1δk,0(2c+
∑

j∈L

bj) − 2`/2−1
∑

j∈L

δk,jbj

The last statement of the lemma follows easily from the
formula. 2

Proof of Lemma 13: Let ẑ be a fixed point in the simplex.

In the special case where f̂k = 0, ẑk = 0, so throughout
the rest of the proof we assume that f̂k < 0.

Let B = µ
1−2µ (f̂0 +

∑
j∈L f̂j ẑj). Solving equation (2) for

ẑk gives:

ẑk =
1

f̂k

(
−B ±

√
B2 + f̂2

k

)
(6)

We claim that for a solution to be in the simplex, the plus
sign must be used in equation (6). So assume that ẑ repre-
sents a solution in the simplex.

First we claim that B > 0. Recall that we assumed that
f̂0 +

∑
j∈L f̂j ≥ 0 and f̂j < 0 for all j. Since ẑ is in

the simplex, and since mutation is positive, ẑj < 1 for all
j ∈ L by lemma 5. It follows easily that B > 0.

Now we assume that the minus sign is used in equation (6)
and derive a contradiction. Thus,

ẑk < 1 =⇒
1

f̂k

(
−B −

√
B2 + f̂2

k

)
< 1

=⇒ B +

√
B2 + f̂2

k < −f̂k

=⇒

√
B2 + f̂2

k < −f̂k −B

=⇒ B2 + f̂2
k < f̂2

k + 2f̂kB +B2

=⇒ 0 < 2f̂kB

Since f̂k < 0 and B > 0, this is a contradiction.

Thus, the plus sign must always be used in equation (6),
and there is a unique fixed point. 2

To prove theorem 14 we will use the Gershgorin Circle
Theorem (page 685 of [2]).

Theorem 17 Let J by an n by n real-valued matrix, and
let λ be an eigenvalue of J . For some integer k,

|Jk,k − λ| ≤
∑

j 6=k

|Jk,j |

Proof of theorem 14: The existence and uniqueness of the
fixed point was proved in lemma 13.

We calculate the differential of G from equation (1).

∂G(ẑ)k

∂ẑi
= (1 − 2µ)

f̂kf̂i

(
ẑ2
k − 1

)
(
f̂0 +

∑
j f̂j ẑj

)2

∂G(ẑ)k

∂ẑk
= (1 − 2µ)

(
f̂0 +

∑
j∈L\{k} f̂j ẑj

)2

− f̂2
k

(
f̂0 +

∑
j f̂j ẑj

)2 (7)

Equation (2) can be rewritten in the form:

2µẑk

f̂0 +

∑

j∈L

f̂j ẑj

 + (1 − 2µ)f̂k

(
ẑ2
k − 1

)
= 0 (8)

We claim that for a solution ẑ of these equations, ẑk ≤ 0
for all k. This follows from the equations since we have
assumed that f̂k ≤ 0 and f̂0 +

∑
j∈L f̂j ẑj ≥ 0, and we

know that |ẑk| ≤ 1 since ẑ corresponds to a point in the
simplex.

GENETIC ALGORITHMS648

Assume that ẑ is a fixed point. Then using equation (8):

∂G(ẑ)k

∂ẑi
=

−2µf̂iẑk

(
f̂0 +

∑
j f̂j ẑj

)

(
f̂0 +

∑
j f̂j ẑj

)2 =
−2µf̂iẑk

f̂0 +
∑

j f̂j ẑj

We assumed earlier that −
∑

j f̂j ≤ f̂0. Since ẑ corre-
sponds to point in the simplex, ẑk ≥ −1, or −ẑi ≤ 1.
Thus,

∑

i∈L\{k}

∣∣∣∣
∂G(ẑ)k

∂ẑi

∣∣∣∣ =
2µ(−ẑk)

f̂0 +
∑

j f̂j ẑj

∑

i∈L\{k}

(−f̂i)

≤
2µ

f̂0 +
∑

j f̂j ẑj

f̂0 < 2µ

Using equation (7),

∂G(ẑ)k

∂ẑk
≤ (1 − 2µ)

The Gershgorin Circle Theorem shows that any eigenvalue
of the differential is less that 1. 2

Proof of Theorem 15: The relative error after t generations
is:

|Gt(0) − wfixed|

|wfixed|
=

∣∣∣−C(At−1)
A−1 − C

A−1

∣∣∣
C

A−1

= At

Further,

At < ε⇐⇒ t lnA < ln ε⇐⇒ t >
− ln ε

− lnA

Let x = 1/` and let

f(x) = − lnA = − ln

(
1 −

2α+ 1

`
+

2α

`

)

= − ln(1 − (2α+ 1)x+ 2αx2)

The first-order Taylor series with remainder for f about
x = 0 is

f(x) = (2α+1)x+
−8α2ξ − 4αξ + 8α2ξ2 + 4α2 + 1

(1 − (2α+ 1) ξ + 2αξ2)
2

x2

2

where 0 < ξ < x.

We claim that B = −8α2ξ− 4αξ+8α2ξ2 +4α2 +1 ≥ 0.
Make the substitution ξ = ψ + 2α+1

4α . Then the expression
becomes 8α2ψ2+ 1

2 (4α2−4α+1) which is clearly positive.

Thus, f(x) = (2α+ 1)x+B ≥ (2α+ 1)x, and

−` ln ε

1 + 2α
≥

− ln ε

(1 − 2α)
(

1
`

)
+B

(
1
`

)2 =
− ln ε

f
(

1
`

) =
− ln ε

− lnA

2

References

[1] H. Geiringer. On the probability of linkage in
mendelian heredity. Annals of Mathematical Statis-
tics, 15:25–57, 1944.

[2] Erwin Kreyszig. Advanced Engineering Mathemat-
ics. John Wiley and Sons, New York, third edition,
1972.

[3] Thilo Mahnig and Heinz Mühlenbein. Optimal muta-
tion rate using bayesian priors for estimation of distri-
bution algorithms. In K. Steinhüfel, editor, Stochastic
Algorithms: Foundations and Applications, LNCS.
Springer-Verlag, 2001.

[4] Heinz Mühlenbein. The equation for the response
to selection and its use for prediction. Evolutionary
Computation, 5(3):303–346, 1998.

[5] Heinz Mühlenbein and Thilo Mahnig. FDA – a scal-
able evolutionary algorithm for the optimization of
additively decomposed functions. Evolutionary Com-
putation, 7(4):353–376, 1999.

[6] Heinz Mühlenbein and Thilo Mahnig. Evolutionary
algorithms: from recombination to search distribu-
tions. In L. Kallel, B. Naudts, and A. Rogers, ed-
itors, Theoretical Aspects of Evolutionary Computa-
tion, pages 137–176. Springer Verlag, 2000.

[7] C. R. Stephens and H. Waelbroeck. Effective degrees
of freedom in genetic algorithms and the block hy-
pothesis. In Thomas Back, editor, Proceedings of the
Seventh International Conference on Genetic Algo-
rithms, pages 34–40, San Mateo, 1997. Morgan Kauf-
man.

[8] H. Voigt and H. Mühlenbein. Gene pool recombina-
tion and the utilization of covariances for the breeder
genetic algorithm. In Z. Michalewicz, editor, Proc. of
the 2nd IEEE International Conference on Evolution-
ary Computation, pages 172– 177, New York, 1995.
IEEE Press.

[9] M. D. Vose. The Simple Genetic Algorithm: Founda-
tions and Theory. MIT Press, Cambridge, MA, 1999.

[10] M. D. Vose and A. H. Wright. Form invariance
and implicit parallelism. Evolutionary Computation,
2001.

GENETIC ALGORITHMS 649

���������
	����������������	������
� !�
��"#"#�$��%�'&(��")$�*���,+-�.�/�
	�"0�
	�12"3������45$��2�
	�1
�7698����:	��
;��<"

=)>0?A@)BDC#EGF�@0BIH�FJ@)B
KML�NJOQPSRUT-L�VWR2XZY#[\O]RU^DL�T_OQRU`badc2O�VAegfhXZT�NDiARUL9P$jka�`bLdVAa�L

l$VA`nmoL9PUcS`nRqp�XZY#r#L�`badL�csRUL�P
l$VA`bmZL�PUcS`nRqp�tuXoOQe0vDr)Ld`ba�LdcsRUL9P2r)w%x�y]tuz�vDl${

w|T}OQ`�~��
c�� pWO�VA�k�%T_a�c�� ~bL���O�a�� i��

���M�Z�k�D�
���

� ^AL'�ZL�VAL�RU`ba�O�~b�ZX�PU`nRU^AT �q�$����`�c(O�T-L�R�O]�
^ALdi�PU`bcsRU`ba�cSLdOQPUa�^�O�~b�ZX�PU`nRU^AT<�JO�cSL�e�XZV�T_L�a�^��
O�VA`bcST_c�OQ�DcsRSP�O�a9RULde�YGPUX�T�N�XQNJiA~�OQRU`bXZV��ZL�VAL�RS�
`badc�� � ^�PUXZiA�Z^�RU^AL$N X�NDiA~GO]RU`�X�V0vWRU^DL��$�¡`bT-ND~b`ba��
`nRU~bp-T}O�`bVoR�O�`bVAchRU^ALMcsR�OQRU`bcsRU`badc¢OQ� XZi�R£RU^AL$cSL¤OQPUa�^
csNJO�adL�� � ^A`�c�`bT-ND~b`bad`nR}csR�OQRU`bcsRU`ba�c�adO�V���L¥iDcSL�e
L�¦WNJ~b`ba�`bRU~np§RUX§LdVA^DO�VAadL��$��¨ c�N L9PUY©X�PUT_O�VAadL���ª«V
RU^A`�c¬N�O]N�L9Pdv/O�VAL95csR�OQRU`bcsRU`badcs���JO�cSL�e®O�eDOQNARU`nmoL
VAXZV��¯iDVA`bY©XQPUT°a�PUXZcScSXdmoL�P¢�qjW�$±$l$²���`bc)NAPUX�N XZcSL�e0�
jW�$±$l$²�iAcSLdc.RU^DL£csR�OQRU`bcsRU`badc³`�VAYGX�PUT}O]RU`�X�V�XZYDRU^AL
O�~b~bLd~bL2eA`bcsRSPU`b�Di�RU`bXZV_`bV_L¤OQa�^}~bXka�iDc
RUX�OQeJO]NDRU`nmoL�~np
O�e]´SiAcsRµRU^AL-a�PUX�cScSX¤moL9P�XQN�L9P�OQRU`bXZV��¬¶$i�PµNAPUL�~b`�T��
`bVJO]PSp\L�¦WN�L9PU`bT_L�VoR�PUL�cSiA~nRUcµcS^AX¤!RU^DOQR-jW�$±$l$²
`bc_T_X�PUL§L9·_a�`bLdVoR-RU^JOQV¸RSP�O�eA`nRU`�X�VJOQ~2XZVAL���N XZ`bVoRdv
Rq¢X���N XZ`bVoRdv�OQVDe¹iAVA`�YGX�PUTºa�PUXZcScSXdmoL�P�O�a9PUXZcSc»O
PUL�NAPUL�cSLdVoR�OQRU`nmoLMcSL�RuXZY³cSLdOQPUa�^�NAPUX��D~�L�T-c��

¼ ½o¾°¿2ÀÂÁÄÃ®ÅÂÀg½�Æ»¾°¿

Ç2O�cSL�e�X�V-z$X�~�~�O�VAe�¨ c³cS`�T�ND~bL¢�ZL�VAL�RU`ba£OQ~���X�PU`nRU^DT(��z$XZ~b~�O�VAe0v
x¤ÈoyQÉo��v¤RU^DL9PUL:^DOdmZL:� LdL�V�T_O�VopMm�OQPU`�OQRU`bXZVAc0eAL9moL�~�XQN�L�eM� X�RU^
`bV��$��¨ c}T_O�a9PUX��¯csRSPUiAa�RUi�PUL¥O�VAe�T-`ba�PUX��¯csRSPUiAa9RUi�PULÊ�q�$XZ~be��
� L�PU��v§x¤ÈZËZÈZ��� � ^ALÌ�$��v�O�cÂXZVAL���`bVAe�X�Y¬�ZL�VAL�P�O]RU`�X�VA�
�JO�cSL�e�L�mZXZ~biARU`bXZVDOQPSp�O�~b�ZX�PU`nRU^AT�v�T_O�`bVWR�OQ`�VAc2O�N X�NDiA~�OQRU`bXZV
XZY£adO�VAeA`beJO]RUL_cSXZ~biARU`bXZVAc/RUX¥O��Z`nmoLdV\NDPUXQ�J~bL�T�v#u^A`ba�^ÄOQPUL
L9mZO�~biDOQRUL�e�O�a�a�X�PUeA`�VA�µRUX�O�NAPUX��D~�L�T��¯csN�L�a�`bÍDauÍARUVAL�cSc£YGiAVDa9�
RU`bXZV¸RU^JO]R¬eAL�ÍDVALdc�RU^AL¥L�VWmk`bPUX�VDT-L�VWR�YGX�P¬RU^AL¥L9moXZ~bi�RU`�X�V0�
±$L9�N X�NDiA~�OQRU`bXZV�`bc�a9PUL¤O]RULde¸�Wp�cSL�~�L�a9RU`�VA�ÂPUL�~�OQRU`nmoL�~bpÄÍAR
T-LdTµ� L�PUchXZY RU^AL%NDPUL�cSL�VWRhN X�NDiD~�OQRU`bXZV}O�VAe�L9moXZ~nm�`bVA�µRU^AL�T
RU^�PUXZiA�Z^¬PUL�a�XZT��D`bVDOQRU`bXZV¬O�VAe¬T�i�R�OQRU`bXZV�X�N L�P�O]RU`�X�VDc�� � ^DL
N L�PUYGX�PUT_O�VAadL�XZY%OI�$�3`bc�eAL�N L�VAeDL�VoR-XZV»T_O�VopÄY©O�a�RUXQPUc�v
cSiAa�^�O�c)L�VDa�XkeA`bVA�ucSa�^DL�T-LZvQcSL�~bLda9RU`bXZV/T_L9RU^AXke�v]N X�NDiA~�OQRU`bXZV
cS`bÎdL�v£a�PUX�cScSX¤moL9P�OQVDe¸T�i�R�OQRU`bXZV¸X�N L9P�OQRUX�PUc�� � ^A`bc}T_OQ�oL�c
`nR�eD`n·_a�iA~nRdv
`bY£VAX�R�`bT-N XZcScS`n�D~bLZv#RUX¥a�^AXkXZcSL�X�N L9P�OQRUX�PUc�YGX�P
X�NARU`bT}OQ~|N�L9PUY©XQPUT}O�VAa�LZ�¥ª«VÊRU^A`bc�N�O]N�L9P�¢L�Y©Xka�iAc�XZVÊRU^DL
PUL�adXZTµ�D`bVJO]RU`�X�V¬X�N L�P�OQRUXQPd�

ª«V-T_XZcsR¢�$�$c�voPULda�XZTµ�D`�VDOQRU`bXZV�X�N L�P�O]RUX�PUc|O�a�R:XZV_OMNJO�`nP|X�Y
`bVAeD`nm�`beAiDO�~bc��ÏNJOQPULdVoRUc��uRUX�NAPUXkeAiAa�L-VAL9ÐX�Ñ csNDPU`bVA�Zc-��a�^A`b~b�
e�PULdV����Wp�L9¦�a�^JOQVD��`�VA�ÂcSL��ZT_L�VoRUc_XZY$RU^AL�NJOQPUL�VoRUc�¨|adX�PSPUL9�
csN XZVAeA`�VA�Ä�ZL�VAL�RU`ba¥T}O]RUL�PU`�O�~�� � ^A`�c}��`bVAeÒXZY/Rq¢X���NJOQPUL�VoR
PUL�adXZTµ�D`bVJO]RU`�X�V-`bc:iAcSiDO�~b~bp�adO�~b~�L�egÓUa9PUXZcScSX¤moL9PUÔA� � ^ALuVWiAT��
� L�P
XZYJa9PUXZcScSX¤moL9P
N XZ`bVoRUc
eAL9RUL�PUT-`bVDL�c³^AX¤¸T}OQVWp�cSL��ZT-LdVoRUc
OQPUL/L�¦ka�^DO�VA�ZL�e�� � P�O�eA`nRU`bXZVDO�~b~bpZvJ�$�$c2^DOdmoL�iAcSL�e�RU^AL�X�VDL9�
N XZ`bVoR�a9PUXZcScSX¤moL9P§OQVDeÒRq¢X���N XZ`bVWR�a9PUXZcScSX¤mZL�P¬RU^JO]R�a�^AXkXZcSL
a9PUXZcScS`bVD�ÊN XZ`bVoRUc�iAVA`�YGX�PUT-~bp¸OQR�P�OQVDeAXZT�� � ^A`bc�eALda�`bcS`�X�V
£O�c�cSi�NAN X�PSRULdeIRU^ALdX�PUL9RU`ba¤OQ~�~npÂOQVDeÄL�T-ND`nPU`ba¤OQ~�~np¥�WpIL¤OQPU~np
¢X�PS��XZY_�$��¨ c�PULdcSLdOQPUa�^DL9PUcÊ��KMLÂÕoXZVA�Av_x¤ÈoyQÉkÖ�z$XZ~b~�O�VAe0v
x¤ÈoyQÉo���×z$X¤¢L9moL9Pdv-PULdcSLdOQPUa�^AL�PUcI^DOdmoL�O�~bcSX®adOQPSPU`bLdeÐXZi�R
L9¦kN L�PU`bT-LdVoRUc-u`nRU^�T�iD~nRU`n��N XZ`bVoR}a9PUXZcScSX¤moL9Pd�gRU^DL§Ø ��N XZ`bVWR
a9PUXZcScSX¤moL9P%��w|cS^AL�~bT}O�V�vDx¤ÈZË�Èo�)u^A`�a�^�L�¦ka�^DO�VA�ZL�c:Ø$Ù¬x£cSLd�Q�
T-LdVoRUc-XZY$RU^AL�Rq¢XÂNJOQPUL�VoRUc}O�VAe�RU^DL�iAVA`�YGX�PUTÚa�PUX�cScSX¤moL9P
��tuLdL�e�v � XkXZTµ�Jc/O�VAe\Ç2OQPSPU`badL�~b~b`¯v.x¤È�ÛoyWÖ
jop�cs¢L9PUeDO�v|x¤È�ËZÈo�
u^A`ba�^_�ZL�VAL�P�O]RULdc|XQÑ�csNAPU`bVA�Zc:�kp�cs£OQNAND`�VA�µLdO�a�^-�D`nR|XZY�RU^DL
NJOQPUL�VWRUc/u`nRU^ÂO�ÍA¦�L�eÂNAPUX��JOQ�D`b~b`nRqp_ÜÄÝ!Þ�ß�Ék��joN�LdOQPUc�O�VAe
KML\ÕoXZVA�à�SxdÈZÈ�x]�-NDPUXQN�X�cSLdeÌRU^DOQR¬RU^AL\cs£OQNAND`bVA�»NDPUXQ��O]�
�D`b~�`nRqpIiAVAeDL9P-iAVA`bY©X�PUTáa9PUXZcScSX¤mZL�P-a�XZiA~�eÊ��L�ÍA¦�L�eÄRUX¥mZOQ~b�
iALdc£X�RU^AL9P£RU^DO�V�Þ��âÉW�:tuL�adL�VoRU~bpZvkPULdcSLdOQPUa�^DL9PUc£^JO�moL/OQNANJ~b`bL�e
O�eDOQNAR�OQRU`bXZV°RUL�a�^AVA`�ãWiALdcgRUXÌPUL�a�XZT��D`bVDOQRU`bXZV°RUXÌLdVA^DO�VAadL
�$��¨ chadOQNJOQ�D`b~b`bRU`bL�c|O�VAe}^DOdmoL%T}OQeDL2RU^DL%O�eDOQNAR�OQRU`bXZV}XZY PUL9�
a�XZT��D`bVDOQRU`bXZV}XQN�L9P�OQRUX�PUc¢OQVDe�ä]XQP¢RU^ALd`nP|NJOQP�O�T-L�RUL9PUchXZVAL$X�Y
RU^AL�T-XZcsR2NAPUXZT-`bcS`�VA��PUL�cSL¤OQPUa�^§OQPULdO�c2`bV¥�$�$c��
�$c#OucSLdOQPUa�^�O�~b�ZX�PU`nRU^AT���OQcSLdeµXZV�T_L�a�^DO�VA`bcST-c#OQ�DcsRSP�O�a9RULde
YGPUX�TÐN�XQNJiA~�OQRU`bXZV-��LdVAL9RU`�a�c�vZRU^DL$�$�Ì`�T�ND~b`�a�`nRU~npµT_O�`bVoR�O�`bVDc
RU^AL}csR�OQRU`bcsRU`�a�c�O]��X�iAR�RU^AL}cSLdOQPUa�^ÄcsNJO�a�L}m�`�O�RU^AL}N X�NDiA~�OQ�
RU`bXZV��MªqR/iAcSLdc$RU^AL�cSL�~�L�a9RU`�X�V0v a9PUXZcScSX¤moL9PµO�VAegT�i�R�OQRU`bXZV§RUX
L9¦kND~�`ba�`nRU~bp}L�¦WRSP�O�a�R2RU^AL�`bT�ND~�`ba�`nR2csR�OQRU`bcsRU`badc2YGPUXZTåRU^DL�N X�NA�
iA~�OQRU`bXZVÊRUXgPULdO�a�^ÄRU^AL¬VDL9¦kR�cSL�R�XZY2N�X�`�VoRUc�`�VÊRU^DL¬cSLdOQPUa�^
csNJO�a�LZ� � ^A`bc�`bT�NJ~b`ba�`bRµcsR�O]RU`�csRU`ba�c�adO�VÄ� L�iAcSLde»L9¦kND~b`bad`nRU~np
RUXgL�VA^JOQVDa�L§�$��¨ c�N L�PUYGX�PUT}OQVDa�L��\ª«VÊRU^A`bc�N�O]N�L9PdvhO§VDL9
csR�OQRU`bcsRU`badcs���JO�cSL�eIO�eDOQNARU`nmoL_VAXZV��¯iAVA`bY©X�PUT7a�PUX�cScSX¤moL9P�XQN�L9PS�
OQRUX�Pdv³adO�~b~bLdeÄjW�$±$l$²�v)`bc/NDPUXQN�X�cSLde��§jk�$±$l$²(L9¦kND~b`bad`nRU~np
iAcSLdc_RU^DL§csR�OQRU`bcsRU`badc_`�VAYGX�PUT}O]RU`�X�V¸XZYMRU^AL§eD`bcsRSPU`n�Di�RU`�X�V�X�Y
O�~b~bLd~bL�c|`bV}L¤O�a�^��ZL�VAL$~bXkadiAchX¤mZL�PhRU^DL%N X�NDiA~�OQRU`bXZV_RUX�O�eDOQNA�
RU`nmoL�~bpg�ZiA`�eAL-RU^AL_NAPUXka�L�cSc�XZY£a9PUXZcScSX¤moL9Pd��æÌ`bRU^ÄjW�$±$l$²�v
RU^AL_NAPUX��JOQ�D`b~b`bRqp\XZY£cs£OQNAND`�VA�¥O�~b~�L�~bLdc�XZY¢RU^AL_NJOQPULdVoRUc�YGX�P

GENETIC ALGORITHMS650

LdO�a�^�~bXkadiAc-`bc-eAL�PU`nmoL�e¸Y�PUXZTáRU^DL�eD`bcsRSPU`n�Di�RU`�X�V�XZYMOQ~�~bL�~bLdc
`bV¸RU^DOQR}~bXka�iDc_X¤moL9P}RU^AL�N X�NDiA~GO]RU`�X�VÒOQVDe¸RU^WiAc�`bc}O�eDOQNA�
RU`nmoL�~bp�O�e]´siDcsRUL�e�u`nRU^µRU^AL|NAPUXZ��PUL�cSc
XZY�RU^ALu�$���¤ª«V�RU^ALhPUL�csR
XZY³RU^A`�c2NJOQN L9PdvJ¢L�ÍAPUcsR%�APU`bL��Ap¬PUL9m�`bL�àNDPUL9m�`bXZiAcuPUL�~bL�m�O�VoR
¢X�PS� v�RU^ALdVgeALdcSa9PU`n��L_jW�$±$l$²!`bV\eAL9R�O�`b~�v ÍDVJOQ~�~np�NAPULdcSL�VoR
XZi�P:L9¦kN L�PU`bT-LdVoR.csRUiAeApµRU^JO]R:a�XZT�N�O]PULdc|jW�$±$l$²�X¤moL9P
RSP�OQ�
eA`nRU`�X�VJOQ~�XZVAL���N XZ`bVoRdv�Rq¢X���N XZ`bVoR\O�VAe¡iAVA`bY©X�PUT a�PUX�cScSX¤moL9P
�JO�cSL�e�XZV§O�PUL9NAPULdcSL�VoR�OQRU`nmoL/cSL9R%XZY)RULdcsR2NAPUX��D~bL�T_c��

� Á�����½���� Æ
	 Á���� � À����� ÆÄÁ��

����� ������������� �"!$#%��#&�('*),+��

� ^ALÊN�L9PUY©XQPUT}O�VAa�LÄXZY_Oà�$�ÚcS`���VD`nÍDadO�VoRU~bpàeAL�N L�VAeDcgXZV
RU^ALÊX�N L�P�O]RUX�PUcgO�VAe®PULd~bL9mZOQVWR�NJOQP�O�T-L�RUL9PUc¥iAcSL�e��5z$X¤2�
L9moL�Pdv.a�^AXkXZcS`bVA�§RU^AL}PU`b�Z^oR_�$�åX�N L9P�OQRUX�PUc�O�VAe�O]NDNAPUX�NAPU`n�
OQRUL�NJOQP�OQT_L9RUL�PUcM`�c�O¬eA`b·-adiA~nR/R�O�cs� � � P�O�eA`nRU`bXZVDO�~b~npov RU^AL�p
OQPUL�eAL9RUL�PUT-`bVDL�e¬�Wp¬L�¦WN�L9PU`bLdVAa�L/X�P2NDPU`bT_OQPSp�L�¦WN�L9PU`bT_L�VoRUc
YGPUX�T O�NJOQPSRU`badiA~�OQPgeAXZT_O�`bV°`bV�OQeAm�O�VAa�L�OQVDe¡RU^ALdV�OQPUL
ÍA¦�L�e�eAi�PU`�VA��RU^ALMPUiAVAVA`bVD��XZY)RU^AL��$��� � ^A`�c¢��`bVAe¬XZY³a�XZV��
csR�O�VoR�N�O]P�O�T_L9RUL9P�cSL�RSRU`bVA�¥OQNANAPUXoO�a�^Ä`�c�RU`�T-L9�¯adXZVAcSiAT-`�VA�Av
adO�V�~bL¤OQeÌRUXÄcSiA�A�¯X�NARU`bT_O�~$N�L9PUY©XQPUT}O�VAa�L¥u^ALdVÒN�O]P�O�T_L9�
RUL9PUc_O]PUL�`bVDOQNANAPUX�NAPU`�OQRULd~npÊcSL9Rd�»�$VAeÄu^DOQR-`�c�¢X�PUcSL�~b`bLdc
`bV¥RU^AL�VDOQRUi�PUL�RU^DOQR$RU^DL�XQNDRU`bT_O�~)NJOQP�O�T-L�RUL9P$m�O�~biDL�cMT_Odp
m�OQPSpÄu`bRU^�RU^AL�L�moX�~�i�RU`bXZV»NAPUXka�LdcSc_XZYµ�$�$c��Ìz$L�VAadL�v¢PUL9�
cSLdOQPUa�^AL9PUcÂ^JO�moL�OQNAND~b`bLde�T_O�Vop�O�eDOQNAR�OQRU`bXZV�RUL�a�^AVA`�ãWiALdc
`bVoRUXÂ�$�$cµRUX§LdVA^DO�VAadL_RU^DL�`nPµN�L9PUY©XQPUT}O�VAa�L¥��w|`n� L�V0v³z$`bVA�
RUL9PUeD`bVA��OQVDe\[¥`�a�^DO�~bL�u`ba�ÎZv
x¤ÈZÈ�Èo����Ç2O�cSL�eÂXZVgRU^AL-T-L�a�^��
O�VA`bcST�XZY:a�^DO�VA�ZL�v)O�eDOQNAR�OQRU`bXZVg`�VI�$�$cMa¤OQVg��L�ad~�O�cScS`nÍDL�e
`bVoRUX�RU^�PULdL-a¤O]RULd�ZXQPU`�L�c���-�.0/1.0243658795;:</�5>=@?A-A?4B�/>?C/�5EDF7�u^AL�PUL
RU^AL§m�O�~biAL§XZY/OIcsRSP�OQRULd�Qp�NJOQP�O�T-L9RUL�P}`�c�O�~nRUL9PULde�O�ada�X�PUe��
`bVA�ÒRUXÌcSXZT-L»eAL9RUL�PUT-`bVA`�csRU`baÂPUiA~�L�v�?A-A?4B�/�58GH.I?A-A?4B�/>?C/�5EDF7
u^AL�PUL¢RU^AL�PUL¢`�c.cSXZT-L2YGX�PUTÐXZYJYGLdL�e��JO�a���`�VAYGX�PUT}O]RU`�X�V�Y�PUXZT
RU^AL�cSLdOQPUa�^�NAPUXka�LdcSc-RU^DOQR_`bc_iAcSL�e�RUXIeA`nPUL�a�R-RU^AL�a�^DO�VA�ZL
XZYhO¬csRSP�OQRUL���p§NJOQP�O�T-L9RUL�Pdv)O�VAe
:�.�J K4LM?A-A?4B�/�5;GF.�?A-A?4B�/>?C/�5EDF7
u^AL�PUL§RU^AL§NJOQP�O�T-L�RUL9P�RUXÊ� LgO�eDOQNARUL�eÒ`�c}LdVAa�XkeALdeÒ`�VoRUX
RU^AL�a�^�PUXZT-XZcSXZT-L�cÊOQVDeÐiAVAeDL9PU�ZXkL�cI�ZL�VAL�RU`ba»X�N L�P�O]RU`�X�VDc
��^ALdVAa�LZvDO�~bcSX-adO�~b~�L�eN=<DHLO.0GFDHJQPR/�5>DF7k���

���8� ������������� �"!$#%��#TS�U�! =³= !(V�)WU

jW`bVDa�L�a9PUXZcScSX¤moL9P�`bc_XZVAL§XZY%RU^AL�NAPU`bT}O]PSp»�ZL�VAL�RU`ba�X�N L9P�OQ�
RU`bXZVAc}`�V��$�$c�vuO�eDOQNAR�OQRU`bXZVÒ`bV�a9PUXZcScSX¤mZL�P¬X�N L�P�O]RUX�PUc}^JOQc
~bXZVA�¥� LdL�VÄcsRUiAeD`bL�e»O�VAeÄRU^AL9PUL¬^DOdmZL�� L�LdVÄT_O�VopIPULdcSiA~nRUc
�qjoN L¤OQPUc�v�x¤ÈZÈoyZ��� �$L�VAL�P�O�~b~np°csN�LdOQ��`bVA�Av_O�eDOQNAR�OQRU`bXZVÐ`bV
a9PUXZcScSX¤moL9P%^DOQNAN LdVAcu`bV¬RU^�PUL�L�~bL9moLd~bc£YGPUXZT(RUX�N�RUX�� X�RSRUXZT��

���8����� ��X F9Y[ZQE©@)BNZ]>)? �W\ Y
?^]`_ S(a]`bcb�]Rd�? a
ª«V(RU^A`�cÄRUX�Nå~bL�mZLd~�v�a9PUXZcScSX¤moL9P�X�N L9P�OQRUX�PUc¸OQPULÌRU^ALdT-cSL�~�Y
O�eDOQNARUL�eÒeAi�PU`bVD�ÊOÂPUiAVÒX�YMRU^AL\�$���hK/Odmk`�c§�Sx¤ÈZËZÈZ��NDPUXQ�
N XZcSL�e\RU^DOQRMRU^AL��$�!VDL�L�eDV�¨ RµOQNAND~bp§� X�RU^\a9PUXZcScSX¤mZL�PµO�VAe
RU^ALdV�T�i�R�OQRU`bXZVÄRUXgRU^AL�cSL�~bLda9RUL�e»NJOQPUL�VoRdvh`bVDcsRULdO�e�`nR-adO�V
cSL�~�L�a9R�XQN�L9P�OQRUX�PUcµY�PUXZT�O�cSL�R�X�Y2X�N L9P�OQRUX�PUc�v.LdO�a�^Iu`nRU^ÊO

ÍA¦�L�eÂNAPUX��JOQ�D`b~b`nRqpo��w|cS^ALd~bT_O�VIO�VAe»jWa�^DOQÑ L�P}�Sx¤È�ÈFek�uNDPUXQ�
N XZcSL�e-O�V�O�eDOQNARU`bmZL£T-L�a�^DO�VA`bcST°RU^DOQR
iAcSL�c.PULdcsR�O]PSRUc£�Ïu^ALdV
a�XZVomoL�PU��Lde�vZRU^DL£N X�NDiA~�OQRU`bXZV�`bc.NJOQPSRU`�O�~b~np�X�P:Y©iA~b~np�P�OQVDeAXZT��
`bÎdL�e¥L�¦kadL9NAR$RU^DL�� L�csR/`bVAeA`bmk`�eAiDO�~©�£O�VAeg� L9Rq¢LdL�V¥PUL�csR�OQPSRUc
csu`nRUa�^AL�c\� L9Rq¢LdL�V°Rq¢Xàa9PUXZcScSX¤moL9PIX�N L�P�O]RUX�PUcg�JO�cSLdeÐXZV
RU^ALd`nP_N L9PUY©X�PUT_O�VAadL��¡joN LdOQPUc¥�Sx¤È�ÈZÉo�-O]NDN L�VAeDL�e¸RUXIL¤OQa�^
`bVAeD`nm�`beAiDO�~uX�VDLf/>?hg�i45�/2RU^DOQR�a�X��¯L9moXZ~nmoL�c}u`nRU^�RU^AL¥`bVAeA`b�
m�`beAiDO�~uO�VAe�`bc_iAcSL�e¸RUXIcsu`nRUa�^�� L�Rq¢L�L�V¸Rq¢XQ��N�X�`�VoR}O�VAe
iAVA`�YGX�PUT3a9PUXZcScSX¤moL9Pd�hª«Y#��XQRU^�RU^AL/R�O����D`bRUcuXZY#Rq¢X-NJOQPUL�VoRUc
OQPUL�x�vWa�^AXkX�cSLuRq¢XQ��N�X�`�VoR|a9PUXZcScSX¤moL9PdÖk`�YJ� X�RU^_OQPUL%ÞkvWa�^AXkXZcSL
iAVA`�YGX�PUTåa9PUXZcScSX¤moL9PdÖJX�RU^AL9PSu`bcSLZvAa�^AXkXZcSL�L�`bRU^AL9P2P�OQVDeAXZT-~npo�

���8���8� ��X F9Y[ZQE©@)BNZ]>)? U FjZd?^]`_ S a]`bcb�]RdJ? a
ª«V5RU^A`�c°T-L�eD`biAT ~bL�moL�~�v�RU^AL!P�OQRUL¹X�P°NAPUX��JOQ�D`�~b`nRqp7X�Y
a9PUXZcScSX¤moL9PM`bc$O�~nRUL�PUL�e�eDi�PU`bVA��O-PUiAV¥XZY.RU^AL��$����ÕoiA~bcsRSPUXZT
�Sx¤ÈZÈ�Éo� NAPUX�N XZcSLde�O�V�O�eDOQNARU`nmoL|T_L�a�^DO�VA`bcST®RU^DOQR#PUL��ZiA~�OQRULdc
RU^AL\P�OQRU`bX»� L9Rq¢LdL�Vàa�PUX�cScSX¤moL9P¥O�VAe®T�i�R�OQRU`bXZVÌ�JO�cSL�e®XZV
RU^ALd`nP/N L�PUYGX�PUT}OQVDa�L��¬fhX�PUVALZv#tuXZcSc�OQVDek�O�VA�I�Sx¤ÈZÈFeW�$eDL9�
m�`bcSL�e-RU^DLMf2¶%csR¢Ç£O�cSLde_X�N L�P�O]RUX�Pht%OQRULu�$eDOQNAR�OQRU`bXZV§�qf2¶u�
Ç£tu���µT_L9RU^AXke»Y©X�P}OQeJO]NDRU`bVA�\X�N L9P�OQRUX�P�NAPUX��JOQ�D`�~b`nRU`bLdc�`bV
RU`bT_L9R�OQ�D~b`bVD�/NAPUX��D~�L�T-c��.æ�`nRU^�f2¶%Ç£tu�àRU^AL��$�àN L�PU`bXkeA`n�
adO�~b~bp�cs£OQNDch�Z`nmoL�V�l�ÍA¦�Lde�NAPUX��JOQ�D`b~�`nRU`bL�c.��L9Rq¢L�LdV�l�XQN�L9PS�
OQRUX�PUc:�Wp-�Z`nm�`bVD�/RU^AL%^A`b�Z^AL�csR|NAPUX��JOQ�D`�~b`nRqp�RUX�RU^AL%XQN�L9P�OQRUX�P
RU^DOQR|^DO�c:� LdL�V�NDPUXWeDiAa�`bVD�/RU^AL2T_XZcsR:�oO�`bVAc|`bV�ÍARUVALdcSc�� � i��
cSXZV}O�VAe-tuXZcSc%�Sx¤ÈZÈ�Ëo�³L�¦kRUL�VAeALde�RU^AL$f2¶$Ç£tu�ÒT_L9RU^AXke��Wp
L�VDa�XkeA`bVA��`bVWRUXµL¤O�a�^�`bVAeA`bmk`�eAiDO�~DRU^AL%a�PUXZcScSXdmoL�P2O�VAe�T�i�R�OQ�
RU`bXZV}NAPUX��JOQ�D`b~b`bRU`bL�c¢O�c¢PULdO�~ VWiAT�� L9PUc���VAX�PUT_O�~b`bÎdL�e_RUX�X�VDL]�
RU^DOQR%OQPUL/iAcSLde��Wp�O�VAe�a�X��¯L�mZXZ~nmoLMu`nRU^¬RU^AL/`�VAeA`nm�`beAiJOQ~¯�

���8���nm ��X F9Y[ZQE©@)BNZ]>)? S(a]`bcb¤EÏ@)B �]`b¤EnZQEn] @�] a
=�o�F9YpY.EÏ@)B � a]rq³Fjq
E�sÏEtZ \ EÏ@) Fru�>�vw]xu�y[b

ª«V�RU^A`bc2� X�RSRUXZT ~�L9moL�~�v�RU^DL/N XZcS`nRU`bXZV¬XZY³a�PUXZcScS`bVA�_X�Pucs£OQNA�
ND`bVD��NAPUX��JOQ�D`b~b`nRqp}`bV�L¤O�a�^¬~bXka�iDc¢`bc£O�eDOQNARULde¬eAi�PU`bVA�-OµPUiAV
XZY³RU^AL��$���JtuXZcSL�Vo� L�PU�§�Sx¤ÈZÛoyZ�¢OQRSR�O�a�^ALde�RUX_LdO�a�^§~bXka�iAc{z
O�V¥`bVoRULd�ZL9PW|r}�~��WxF�dß�ßdß0�9yA��O�VAegadO�~ba�iD~�OQRUL�e�RU^AL�a9PUXZcScS`bVA�
NAPUX��JOQ�D`b~�`nRqp�Ür}.XZY#~bXka�iAc�z:Y�PUXZT(RU^DL$NAPUX��JOQ�D`b~b`bRqp}eA`bcsRSPU`n�DiA�
RU`bXZV�eAL�ÍDVAL�e��WpuÜr}³Ý�|r}M����|r}s�|jWa�^DOQÑ L9P|O�VAe�[¥X�PU`bcS^A`bT}O
�Sx¤ÈZËZyZ�#NDPUXQN�X�cSLde}O�V}cSL�~bYG� O�eDOQNARU`nmoL2cSa�^DL�T-LuRU^DOQRhOQNAN�L�VAeAc
OQR%RU^AL�L�VAe¥XZY
LdO�a�^¥`bVAeA`bmk`�eAiDO�~#O_a9PUXZcScSX¤moL9P$�D`nRUT}OQN§RU^DOQR
csN Lda�`nÍDLdc\OQ~�~bX¤£O]�J~bLÊa�PUXZcScS`bVA�ÒN XZcS`nRU`�X�VDcgO�VAe�a�X��¯L�mZXZ~nmoLdc
u`nRU^-RU^AL%`bVDeA`nm�`beAiDO�~��³Ç£XkX��oL9P$�Sx¤ÈZÈC�o�.`bVoRSPUXkeAiDa�L�e-RU^DLuVDXQ�
RU`bXZV}X�Y PULda�XZTµ�J`bVDOQRU`bXZV_eA`bcsRSPU`n�Ji�RU`bXZVAc:u^A`ba�^}eAL�cSa�PU`n� L2RU^DL
NAPUX��JOQ�D`b~�`nRqp¥XZY¢O�~b~.N XZcScS`n�J~bL�PUL�a�XZT��D`bVDOQRU`bXZV\L9moLdVoRUc��_KM`bYG�
Y©L9PUL�VWR�NAPUX��JOQ�D`�~b`nRqpIeA`�csRSPU`n�Di�RU`bXZVAc�eDL�cSa9PU`b� L¬eA`nÑ L�PUL�VoR�X�NA�
L9P�OQRUX�PUc��'æ�^A`nRULÊO�VAeÐ¶uNANJO�a�^AL9P»�Sx¤È�ÈFek��eDL9moL�~bX�N Lde¡O�V
O�eDOQNARU`nmoLgiAVA`bY©X�PUT a9PUXZcScSX¤mZL�P¬u^DL9PULgL¤O�a�^Ò�D`bR¬csRSPU`bVA�»`bV
RU^AL$N X�NDiA~�OQRU`bXZV�`bc£O�iA�ZT_L�VoRULde�O]R2LdO�a�^��D`bRhN XZcS`nRU`�X�V}u`nRU^
O�V§O�i�RUXZT_OQRU`bXZV�u^AXZcSLµcsR�OQRUL�T_OQNDcuRUX}O-a�PUX�cScSX¤moL9P%NAPUX��A�
OQ�D`b~b`bRqp�YGX�P$RU^DOQR%�J`nR$~bXka¤O]RU`�X�V0�ur)L9moLdVA`baU�Ê�SxdÈZÈZÉo�£`bVDcSL9PSRUL�e
O»T-L�R�OQ�D`nR¬� LdYGX�PULÂLdO�a�^��D`bR�XZYµRU^ALÂ`bVAeA`nm�`beDiDO�~��¹ª«Y�RU^DL
T-L�R�OQ�D`nR-£O�cÂÓdx�ÔI`bV���XQRU^�NJOQPUL�VWRUc_cs£OQNAND`�VA�IXWada�i�PSPULde
u`nRU^���OQcSLhNAPUX��JOQ�D`b~�`nRqp �p��v�X�RU^AL9PSu`bcSL|u`bRU^�PUL�eAiDa�L�eµNAPUX��A�
OQ�D`b~b`bRqp��������|L9�ZO]PU`GO$O�VAe}fh~GO]PS���Sx¤ÈZÈ�Èo�)NAPUX�N XZcSL�e�RU^AL�ÓUcSL9�

GENETIC ALGORITHMS 651

~bLda9RU`nmoLµa�PUX�cScSX¤moL9PUÔ�u^D`ba�^§�J`�O�cSL�c/OQ~�~bL�~bLdcuRU^DOQR/OQPUL���VAX¤uV
RUX¥^DOdmoL�`bVAa�PULdO�cSL�eÄO�VÄ`bVDeA`nm�`beAiDO�~�¨ c�ÍARUVAL�cSc��gªqR�OQRSR�O�a�^DL�c
OÊPULdO�~$mZLda9RUX�P¬RUX»O�V�`bVAeA`bmk`�eAiDO�~uRUX�O�a�adiAT�iA~GO]RUL¥ÍARUVAL�cSc
`bVAY©X�PUT_OQRU`bXZVÂ`bV\NAPUL�mk`�X�iDc��ZL�VDL9P�OQRU`bXZVAcµO�VAeIiDcSL�c�RU^A`�c�`bV��
Y©XQPUT}OQRU`bXZV�RUX�NDPUL�cSL9PSmoL/��VAX¤uV�ÍAR%O�~b~bLd~bL�c��
��iAVA`GãoiDL:RUX�ND`bah`bV�RU^A`bc#~�L9moL�~W`bc#RU^AL|csRUiAeAp�XZYrg�.47�.�J 5;7 � ?hg�.�v
RU^AL�NAPUX�N L�PSRqp�XZYM��PUXZi�ND`bVD�Ê`bVoRUL9P�O�a�RU`nmoL��ZL�VALdc_RUXIL�mZXZ~nmoL
RU^ALdT�RUX��ZL�RU^AL9Pd�NkDP�O�cSL9P§�Sx¤È�ÉoyQO�vux¤ÈZÉoy¤� ��X�Ñ L�PUL�e�X�VDL¬X�Y
RU^AL�LdOQPU~b`�L�csR_a�XZT�NJi�RUL9P}cS`bT�iA~GO]RU`�X�VDc�XZY$�ZL�VDL9RU`ba�csp�csRULdT-c
u^AL�PUL�^ALµcSiA�Z�ZL�csRULde§O-a9PUXZcScSX¤moL9P%RU^DOQR$O�cScSXka�`�OQRULdcuO�mZO]PU`b�
OQ�D~bL:cs£OQNAND`bVA�uNAPUX��JOQ�D`b~b`nRqpMYGX�P)L¤O�a�^µ~bXka�iAc0XZYAO£csRSPU`bVD���)ª«V��
RUL9P�O�a�RU`bXZV/� L�Rq¢L�LdVµ�ZL�VALdc#adX�iD~be�� L¢O�eAe�PULdcScSL�e��Wp�YGX�PUT-`�VA�
~b`bVA��O��ZL��QPUXZi�NJc/�JO�cSL�eÂX�VgRU^DL�`nP�cs£OQNAND`bVD�¬NAPUX��JOQ�D`b~b`bRU`bL�c��
� ^AXZcSL%�ZL�VALdc:u`nRU^_cST_O�~b~n��mZOQ~�iAL�e�NAPUX��JOQ�D`b~�`nRU`bL�cu��`�� L��bvWa�~bXZcSL
RUX_Î�L�PUXk�¢YGX�PUT�O-~b`bV��oLde���PUXZi�N§� LdadO�iAcSLµ`bRu`bc%iAVA~b`n�oLd~np¬YGX�P
a9PUXZcScSX¤moL9PMRUX¬eA`bcsPUi�NDRMRU^DOQRM��PUXZi�N0���$XZ~be���L9PU�Av�{�XQPS�ÂO�VAe
KML��Â�SxdÈZËZÈo�|eAL9m�`bcSLde}RU^AL�ÓUT_L�cScsp��$�$Ô-O�c£O�V�OQRSRUL�T�NDRhRUX
L9¦kND~�`ba�`nRU~bp}~b`�V����ZL�VALdcuiDcS`bVA�_mZO]PU`GO]�J~bL�~bL�VD�QRU^§csRSPU`bVA�Zc��2�$V
O�~nRUL9PUVJO]RU`bmZL�cSa�^ALdT-L�£O�cuNAPULdcSL�VoRULde��Wp�zMOQPU`n��O�VAe\�$XZ~be��
� L�PU���Sx¤ÈZÈ�Ûo�|RU^DOQR$OQRSRUL�T�NDRUL�e¬RUX�adX��¯L9moXZ~nmoLMRU^AL/N XZcS`nRU`�X�VDc
O�VAe�mZO�~biAL�cuXZY.��LdVAL�c%iAcS`bVA�}O�PUL�NAPUL�cSLdVoR�OQRU`bXZV¬u^D`ba�^§a�XZV��
cS`beAL�P�~�XWad`MO�c¬N�X�`�VoRUc¬XZVàO»a�`bPUa�~bL¥u`nRU^ÒRU^DLgPULdO�~n��m�O�~biDL�e
eA`bcsR�O�VAadLu� L�Rq¢L�LdV_N�X�`�VoRUcheDL�VAX�RU`bVA�µRU^ALd`nP¢~b`bVA��O��ZL��|jWT-`nRU^
O�VAe�kJXZ�ZOQPSRqp¥�Sx¤ÈZÈZÛZ�|eAL9moL�~�XQN�L�e�O�r#`bV���O��ZL$w:moX�~bmk`�VA�-�$L9�
VAL�RU`ba2¶uN L�P�OQRUXQP£��r)w£��¶�� RU^DOQR
OQRSR�O�a�^DL�c#RUX$L¤OQa�^��ZL�VDL|Rq¢X
�JO��Zc�v
eALdVAX�RU`bVA�§u^DL9RU^AL�P�`bR�`�c�~b`bVA�ZLdeIRUX§`bRUc�VALd`b�Z^o� XZi�PUc
XZV¬RU^ALM~�L�YGR2O�VAe�PU`b�Z^oR£PUL�csN Lda9RU`nmoL�~bpZ�.�¡NJO�`nP2XZY#�ZL�VALdc£^DO�e
RUX§� L}�D`b�¯eA`nPUL�a�RU`bXZVDO�~b~np\~b`bVA�ZLdeI�WpIcSL�RSRU`bVA�§RU^AL}PU`b�Z^oR��JO��
XZV�X�VDL�O�VAe�RU^AL/~�L�YGR��JO��-XZV¬RU^DL�XQRU^DL9P2� LdYGX�PULMRU^AL9p�¢L�PUL
a�XZVAcS`�eAL9PULde�O%�J~bXkaU� �³r)w£��¶ÒO�~b~�Xduc³RU^ALdcSL¢�D~�XWa���c#RUX/a�XZT-L
RUXZ�ZL9RU^AL�P2YGPUX�T3T�iA~bRU`n��NJOQPUL�VoRUc£RUX-YGX�PUTåVDL9®`bVAeD`nm�`beAiDO�~bc��

���nm �(U�!��$��� � v �c� H�� �6� =)W�
!$�(� ��� �
	w��� �"!$#&� v + !$U��c�('�� =

tuLda�L�VWRU~npZvu��OQcSLde�XZVÌRU^DL\a�XZVomoL9PU�ZL�VDa�LgNAPUX�N L�PSRqp�XZY�RU^DL
�$��vAO�VkiATµ� L�P£XZY.�$�%�¯~b`n�oLMO�~b�ZXQPU`bRU^AT-ch^DOdmoL$� LdL�V¬eAL9moL�~b�
X�N L�egRU^JO]R/PUL�ND~�O�a�L�RU^DL}�$��¨ c/N X�NDiA~�OQRU`bXZVÂOQVDe\a�PUX�cScSX¤moL9P
X�N L9P�OQRUX�P/u`nRU^\O¬NAPUX��JOQ�D`b~b`bcsRU`�a�PUL9NAPULdcSL�VoR�OQRU`bXZVÂO�VAeÂ��LdV��
L9P�OQRU`bXZVÒT-L9RU^DXWe0� � ^AL�.X�NDiA~�OQRU`bXZV��¯Ç2O�cSL�e�ª«VAa�PUL�T_L�VoR�O�~
r)L¤OQPUVA`bVA�����|Ç¢ª«r.�:�Wp¬Ç£O�~biQ´SO¬�Sx¤ÈZÈFek�:L�moX�~bmZLdc2O�NAPUX��JOQ�D`b~b�
`nRqp-moL�a�RUXQPdvkRU^ALumZOQ~�iAL�chXZY�u^A`�a�^�OQPUL$`bVA`bRU`�O�~b`bÎ�Lde�RUX�Þ���Ék�
�
VWiAT�� L9P$X�Y.cSXZ~bi�RU`�X�VDcuOQPULµ��LdVAL9P�OQRULde¬��OQcSLde§XZV�RU^AL/NAPUX��A�
OQ�D`b~b`bRU`bL�c%`bV¥RU^AL�mZLda9RUX�Pd� � ^AL�NAPUX��JOQ�D`b~�`nRqp�moL�a�RUXQPM`�c%RU^ALdV
NDiAcS^DL�e�RUX¤£OQPUeAcuRU^AL��ZLdVAL9P�OQRUL�e§cSXZ~bi�RU`bXZV�u`nRU^�RU^ALµ^A`b�Z^��
L�csR�L9mZOQ~�iDOQRU`bXZV��§�åVAL�(cSL9R�XZY£cSXZ~bi�RU`bXZVAc�OQPUL}�ZL�VAL�P�O]RULde
O�a�adXQPUeD`bVA��RUX/RU^AL%i�N eDOQRUL�e-moLda9RUX�PdvkO�VAe_RU^ALua�p�a�~bL2adX�VWRU`bV��
iALdc
RU`b~b~�RUL9PUT_`bVDOQRUL�e��³�$c|cSLdOQPUa�^-NAPUXZ�QPULdcScSL�c�vWRU^AL2m�O�~biALdc
`bV
RU^AL$moL�a9RUX�P£��P�OQeDiDO�~b~np_cS^A`bYGRhRUX�PUL�NAPUL�cSLdVoR£^A`���^�L�m�O�~biDOQRU`bXZV
cSXZ~bi�RU`bXZVÒmoL�a9RUX�PUc��!zMO]PU`b��vur#X�� X�OQVDe®�$XZ~be�� L�PU�Ì�Sx¤ÈZÈZËo�
NAPUX�N XZcSL�eÂRU^AL_a�XZT�N�OQa�R��$�'��aQ�$���%RU^DOQRµO�~bcSX�L9moXZ~nmoL�cµO
NAPUX��JOQ�D`b~�`nRqp/mZLda9RUX�P.`bVD`nRU`�O�~b`bÎdL�e/RUX/Þk�âÉ%YGX�P.L¤OQa�^��ZL�VAL¢~�XWadiAc��
� ^A`bc.NDPUXQ��O]�J`b~b`nRqp�moL�a�RUX�P
`bc:O�~bcSXMiDcSL�e�RUXM�ZL�VAL�P�OQRUL2OMcSL9R:X�Y
cSXZ~bi�RU`bXZVAc£�Ji�Ru`bc£iAN eDOQRUL�e�u`nRU^�O�eA`nÑ L�PUL�VoRu~bLdOQPUVA`bVD��PUiA~bL

YGPUX�T��|Çhª«r|�

� ¿2À � À¥½A¿2Àg½AÅÄ¿���� � ¿���� � � ��� Àg½C� �
¾°ÆÄ¾��QÃ�¾Ì½A	_Æ»Á�� ÅÂÁ¸Æ¸¿$¿$Æ � ��Á

m ��� S ��# !6#*�"S � v�� #�����!6U�� S�U�! =³= !(V�)WU

l$VA`bY©X�PUT a9PUXZcScSX¤moL9P�`�c�RU^AL¡�ZL�VDL9P�O�~b`bÎ¤O]RU`�X�V3XZY\Ø ��N XZ`bVWR
a9PUXZcScSX¤moL9P\�qjop�cs¢L9PUeJOkvµx¤È�ËZÈo���àªqR�a�PULdOQRUL�c}X�Ñ csNAPU`bVA�Zc}�Wp
eALda�`beA`�VA�Av0YGX�P�LdO�a�^g�J`nR/XZY:RU^AL�NJOQPUL�VoRdv0u^AL9RU^DL9P/RUX¬cs£OQN
RU^AL}OQ~�~bL�~bL-X�YhRU^DOQR��D`nR�u`bRU^\RU^AL-adX�PSPUL�csN XZVAeA`�VA�§O�~b~bLd~bL�X�Y
RU^AL}X�RU^AL�P�NJOQPULdVoRd� � ^AL}eALda�`bcS`�X�VÊ`�cµT}O�eAL}iAcS`bVD�gO§a�XZ`bV
�D`nN)vZ`¯� LZ�nvZRU^AL£NAPUX��JOQ�D`b~b`nRqp�X�Y�cs£OQNAND`bVD�/`bc�Ü¬Ý�Þ�ß�Ék� k³`���iAPUL
x$cS^AX¤uc2O�V¬L9¦AO�T�ND~bL$XZY)OQNANJ~np�`bVA�µRU^DL$iAVD`bYGX�PUT(a�PUX�cScSX¤moL9P
X�N L9P�OQRUX�P2RUX�Rq¢X}Û¤���J`nRucsRSPU`bVA��NJOQPUL�VWRUc��

jo£OQNAND`bVD���:PUX��0�n� Ü Ü Ü Ü Ü Ü
fhX�`�V�k.~b`nNAND`�VA�A��� � � � � �

f|PULdOQRUL�e�[gO�cs��� Þ x Þ x Þ x
�%NAND~np�`bVA�-[gO�cs��� � � �

�
OQPUL�VoRW�! �� Þ x Þ x x x
�
OQPUL�VoRW�#"]� x x x x x Þ
jo£OQNAND`bVD��� � � �

fh^D`b~be%$& �� Þ x Þ x x Þ
fh^D`b~be%$'"]� x x x x x x

k.`b�Zi�PUL�x�� �$V5L9¦AO�T�ND~bL!X�N L9P�OQRU`bXZV5X�Y»RU^AL!iAVD`bYGX�PUT
a9PUXZcScSX¤moL9Puu^AL9PUL£Ü�ÝÌÞ�ßâÉk�

æ�^AL�V�N L9PUY©X�PUT-`bVD�$iAVD`bYGX�PUT�a�PUXZcScSXdmoL�P:X�V�Rq¢XMNJOQPUL�VoRUc���
O�VAe@�#"Qvk¢L%ÍAPUcsR£��LdVAL9P�OQRULMOµT_O�cs�_�D`nR|�kp_�D`nRh�Wp �D`nNAND`�VA�
OµadXZ`bV}iAVo�J`�O�cSL�eA~npov�`�� LZ�nv���LdVAL9P�OQRU`bVD��Þ�X�P/xuu`nRU^¬OQV�L¤ãoiJOQ~
NAPUX��JOQ�D`b~�`nRqpµÜ�ÝàÞ�ß�Ék� � ^AL��ZLdVAL9P�OQRUL�e�T}OQcs��`bc2RU^ALdV�iAcSL�e
RUX��ZiA`beALµRU^AL�a9PUXZcScSX¤mZL�P$�kp§L9¦�a�^DO�VA�Z`bVA�_RU^AXZcSL��D`nRUc$XZY���
O�VAe��#"�RU^JO]R�a�X�PSPUL�csN XZVAeIRUX�RU^DL_N XZcS`nRU`bXZVAc�u^AL9PUL}RU^AL9PUL
OQPUL§OÌÓ¤x9ÔI`bV»RU^DL�T}O�cs��O�VAe�~�LdOdm�`bVA�\RU^AL��D`nRUc-XZY$XQRU^DL9P
~bXka�`0XZY �! %O�VAe �#"/iAVAa�^DO�VA�ZL�e��¢�$c%`b~b~biAcsRSP�OQRULde¬`bV*k³`���iAPUL
x�vkRU^ALMeAX¤uVo£OQPUe�O]PSPUX¤uc2T_OQPS�oL�e}�kpIÓ(�0Ô�`bV}RU^ALM~b`bVDL�c¢X�Y
ÓU�%NAND~np�`bVD�¬[gO�cs�kÔ§OQVDeÌÓ9jo£OQNAND`�VA�ZÔ�adX�PSPUL�csN XZVAe\RUX�RU^DL
N XZcS`nRU`bXZVAcuu^AL9PUL�RU^DL9PULµ`bc$OÂÓ¤x9Ô�`bV�RU^ALµT}OQcs��O�VAe§u^AL�PUL
RU^ALµOQ~�~bL�~bLdc£X�Y �! %OQVDe*�)"/O]PUL�L9¦�a�^JOQVD��Lde��
ª«VÌN�O]P�O�T_L9RUL9PU`�Î�L�e�iAVA`bY©X�PUT a9PUXZcScSX¤mZL�PÊ�qjoN�LdOQPUc�O�VAe�K/L
ÕoXZVA�Avµx¤È�È�x]��v£RU^AL¥eAL�ad`bcS`bXZV�YGX�P¬LdO�a�^Ò~bXka�iAc�`bc}T_O�eAL§�Wp
�D`�O�cSLde�adX�`�V
�D`nNAND`�VA�Av|`¯� LZ�nvhRU^AL�cs£OQNAND`bVD�\NDPUXQ��O]�J`b~b`nRqp§Ü
a�XZiA~�e�� LµX�RU^AL9P$RU^DO�V¥Þ���Ék�uz$X¤¢L9moL9Pdv�RU^ALµeDL���PUL�L�XZY³�D`GOQc�v
`�� L��bv�RU^DL�mZO�~biAL�X�Y)Ü#v0`�cMRU^AL�cUO�T_L�Y©X�PµOQ~�~.~bXka�`:O�VAe\^DL�VAadL
RU^AL�x9���D`nRUc2OQPUL$iAVD`bYGX�PUT_~np_eA`bcsRSPU`n�DiARUL�e�X¤mZL�P£RU^AL$T}O�cs���
ª«V
YÏOQa�RdvhRU^AL�mZO�~biAL�XZY|ÜÌT_OdpÄ� L§eA`nÑ L�PUL�VoR}YGX�P}LdO�a�^¸~�XWadiAc�v
RU^DOQR-`bc�v:RU^AL\x9���D`nRUc-T_OdpI� L¬VDX�VA�¯iAVA`bY©X�PUT-~npÊeA`bcsRSPU`b�Di�RUL�e

GENETIC ALGORITHMS652

X¤moL9P¢RU^AL$T}O�cs��� � ^A`�ch`bchPULdO�~b`�Î�L�e�O�eDOQNARU`nmoL�~bp-`�V�jW�$±$l$²��

m �8� = ������� = � �"S = � �$� =)W�%�������(� �0V�)
!$# � � #*����!$U�� S(U�! =³= !(V@)WU

kDX�P�RU^DLga�XZVomoLdVA`bL�VDa�LgXZYµeDL�cSa9PU`bNARU`bXZV�O�VAeàO�VDO�~np�cS`bc�v%¢L
ÍAPUcsRµ`bVoRSPUXkeAiAadL�RU^AL�adX�VDa�L9NDRUc/XZY|`bVWRSPU`bVAcS`ba-OQRSRSPU`n�Di�RUL�O�VAe
L9¦kRSPU`bVDcS`ba�RULdVAeALdVAa9p»XZYMO�~b~bLd~bL�m�O�~biD`bVA�ÂYGX�P}OÂ��LdVAL�~�XWadiAc��
ª«V\RU^AL_X�NARU`bT_O�~
cSXZ~bi�RU`�X�V¸��L�VDa�XkeAL�eÂ`bV\�J`bVDOQPSpgcsRSPU`bVA�k�$X�Y
O\��`bmZLdV»NAPUX��D~bLdT�vhYGX�P}O\��LdVAL�~bXkadiAc-`bY%`nRUc_OQ~�~bL�~bL¬`bc�x¬`bR
`bc¥adO�~b~bLde � L1587r/�245;79: 5>=9vµ`bY�`nRUcgO�~b~bL�~�LÂ`bcgÞ¸`nR¥`bc§a¤O�~b~bL�e��HL
5;79/�245;79:<5E=9v2X�RU^AL�PSu`bcSL�`bYM`nRUc�O�~b~bL�~�L�adO�V¸��L§L�`nRU^AL�P�ÞIX�P¥x
`nR/`�c/adO�~b~�L�e�7�.0PR/�2 ?CJâ��æ�^AL9RU^DL9PµO¬~bXka�iDcM`�c�x9�¯`bVWRSPU`bVAcS`baZv)ÞQ�
`bVoRSPU`�VAcS`ba�v$XQP�VALdi�RSP�O�~MeAL9N�L�VAeAc�X�V�RU^AL¥NDPUXQ�J~bL�T cSX�~bmZLde
O�VAe�L�VAadXWeD`bVA�ÌcSa�^ALdT-L�v�L�� ���bv�u^AL9RU^DL9P\`bVoRSPUXZVAcÂO]PUL»`bV��
cSL9PSRULdeI��r)L9moLdVA`baU� v0x¤ÈZÈZÉZ���:K/i�PU`bVA�-RU^ALMPUiAVDVA`bVA�_X�Y.O}�$��v
Y©XQP_O¥�ZL�VAL¬~bXkadiAc�v:`bY2RU^AL�YGPULdãWiALdVAa9pÊXZY�x�¨ c�`�VÄ`bRUc�OQ~�~bL�~bLdc
X¤moL9P/RU^AL�N X�NDiA~�OQRU`bXZV¥RUL�VAeDc$RUX¬`�VAa9PUL¤OQcSL��ÏRUX}RU^DL�~b`�T-`nRMX�Y
x�� ÞW��u`bRU^¸RU`bT_LZ���ZL�VAL�P�OQRU`bXZV���v¢`nR�`bc�adO�~b~bLde � L1587�=�J 5;7`. -�Ö/`bY
RU^AL�YGPULdãWiAL�VDa9p�XZY2x�¨ c%RULdVAeAcuRUX}eALda9PULdO�cSL��ÏRUX_RU^AL�~b`bT-`bRuX�Y
Þ�� ÞW��v£`bR}`bc_a¤O�~b~bL�e��HL>5;7�=0JQ587�. -�Ö$X�RU^AL�PSu`bcSL�v£`bY$RU^AL9PUL§`bc}VAX
RUL�VDeAL�VAa�p§X�Y:`bVAa�PULdO�cS`bVA��XQPMeDL�a9PUL¤O�cS`bVA�Av�`nR$`bc$a¤O�~b~bL�eN7�DF7rL
5;7`=�J 5;7�. -��/æ�^AL9RU^DL9P/O}~�XWadiAc$`bc�x9�¯`bVAa�~�`bVAL�e0v ÞQ�¯`bVAad~b`bVALde�v X�P
VAXZV��¯`bVDa�~b`bVDL�e_eAL�N L�VAeDchXZV_RU^ALuNAPUX��D~�L�T¹cSXZ~nmoL�e�vkLdVAa�XkeA`�VA�
cSa�^DL�T-LZvA�ZLdVAL9RU`ba/X�N L�P�O]RUX�PUcuO�VAe�`bVA`bRU`�O�~ a�XZVAeD`nRU`bXZVAc��
l$cSiDO�~b~np/O�VAe�^AX�N L�Y©iA~b~bp$O�c0RU^AL¢�$�ÄNAPUXZ�QPULdcScSL�c�v]RU^AXZcSL:�ZL�VDL
~bXka�`#RU^DOQR�O]PUL¬x9�¯`bVWRSPU`bVAcS`ba¬��XQPµÞ]�¯`�VoRSPU`bVAcS`baQ�¢u`b~�~³OQNAN L¤OQP$RUX
� L¬x9�¯`bVAad~b`bVALdeÊ��X�P/ÞQ�¯`bVAad~b`bVALde���v `�� LZ�nv RU^AL�Y�PUL¤ãWiAL�VAa�p§X�Yux�¨ c
`bVgRU^AL_OQ~�~bL�~bLdc$XZY|RU^ALdcSL�~bXka�`³u`b~�~³L�moL�VoRUiDO�~b~bp¥a�XZVomoL9PU�ZL�RUX
x���X�P£ÞW���¢jW�$±$l$²àT_OQ�oL�c¢iAcSLMXZY�RU^A`�c¢a�XZVomoL9PU�ZLdVAa�L$`bVDYGX�PS�
T_OQRU`bXZV_O�c:Y©L�L�eA�JO�aU��`bVAY©X�PUT_OQRU`bXZV�RUX�eA`nPUL�a�R
RU^DL2a�PUX�cScSX¤moL9P
�Wp�OQeQ´siAcsRU`�VA��RU^AL/cs£OQNAND`�VA��NAPUX��JOQ�D`�~b`nRqp�YGX�PuLdO�a�^�~�XWadiAc��
æILgu`b~�~$iAcSLÂRU^AL\Y�PUL¤ãWiAL�VAa�pÒXZY}x�¨ c�`bVÌRU^ALIOQ~�~bL�~bLdc�`bVàO
~bXka�iDc�X¤mZL�P�RU^AL\N X�NDiA~�OQRU`bXZVÐ��LdãWiA`bm�O�~bL�VWRU~np�¢LIadO�VàO�~bcSX
iAcSL/RU^AL�Y�PUL¤ãWiAL�VAa�p�XZY³Þ�¨ cuO�c£RU^ALµOQPU��iDT-L�VWR9�|RUX�a¤O�~ba�iA~GO]RUL
a�X�PSPULdcsN XZVAeA`bVA�/cs£O]NDND`bVA�$NDPUXQ��O]�J`b~b`nRqpµXZYARU^JO]R:~bXka�iAc�� � ^DL
YGPULdãWiAL�VDa9pÊXZY�x�¨ c�`bV»Og~bXka�iAc�¨ c�O�~b~bL�~�L�c�a¤O�VÊ� L¬~bXkX��oL�e»OQc
RU^ALMeAL���PULdL$XZY)a�XZVomoL9PU�ZLdVAa�L$RUX¥Ó¤x�Ô�Y©XQP£RU^DOQR£~bXka�iAc��
r#L9R��
� L�RU^DL�~bL�VD�QRU^\XZY:�D`bVJO]PSp¥csRSPU`�VA�Zc�v�� ¤�Ez �
	U���Ez2ÝåxH��ßdß�ß����¢�
eALdVAX�RUL¢RU^AL2Y�PUL¤ãoiDL�VAa�p�XZY³x�¨ c:`bV�RU^ALuO�~b~bL�~�L�c.`bV�~bXka�iAc z)X¤moL9P
RU^ALMN X�NDiA~GO]RU`�X�V�OQR2RU`bT-L����ZL�VAL�P�O]RU`�X�V ��	¢O�VAe�Ü�¤�Ez �
	U�%�Ez.Ý
xH��ßdß�ß����¢�.eDL�VAX�RUL2RU^AL%cs£OQNAND`�VA�µNAPUX��JOQ�D`b~b`nRqp�XZY�~bXkadiAcwz³OQR
RU`bT_L�	�� � ^ALdV�vhOQc-cS^AX¤uV»`bV
k.`b�Zi�PUL*�kv
RU^DL¬adO�~ba�iD~�OQRU`bXZV
LdãWiDOQRU`bXZV�Y�PUXZT�� ¤�Ez �
	U�|RUXMÜ�¤�Ez �
	U�h`bc2�Z`nmoL�V�O�c2Y©XZ~b~bX¤uc��
Ü�¤�Ez ��	U�
Ý�� � ¤�Ez �
	U�<� `bY�� ¤�Ez �
	U���¸Þ�ß�É

x2Ù�� d�Ez ��	U�<�7`bY�� ¤�Ez �
	U���¸Þ�ß�É �Sx]�

±$X¤ÌeDi�PU`bVA��RU^AL$L9moXZ~bi�RU`bXZV}XZY�RU^DL/�$��vAO�Y�RUL�P£OµVAL�ÌN X�NA�
iA~�OQRU`bXZV�^DO�cu��L�L�V§�ZLdVAL9P�OQRUL�e0vD¢L�ÍAPUcsRMadO�~badiA~�OQRULMRU^AL�eA`bcs�
RSPU`n�DiARU`bXZV§XZYuxQ¨ c�� ¤�Ez ��	U�/��^ALdVAa�L�RU^AL�cs£OQNANJ`bVA��NAPUX��JOQ�D`b~b�
`nRqp}Ü�¤�Ez ��	U�S�%YGX�P�L¤O�a�^Â~bXkadiAc/XdmoL�P�RU^AL�N X�NDiA~�OQRU`bXZV�� � ^ALdV
¢L}a¤OQVIN L9PUY©X�PUTájW�$±$l$² XQN�L9P�OQRU`bXZVAc���æÌ^ALdVÊOQNAND~bpk`�VA�

0.0

Sw
ap

pi
ng

 P
ro

ba
bi

lit
y

0.5

1.00.5 1−Inclined0−Inclined0.0

Frequency of 1’s in the Alleles in a Locus

k.`b�Zi�PUL��W�¢f¢O�~badiA~�OQRUL/O�~bXka�iDc�¨ c2cs£OQNAND`�VA��NAPUX��JOQ�D`�~b`nRqpZ�

jW�$±$l$²�v$RU^AL»T_O�cs�®`�c¥�D`nRg�Wp¡�D`bRg�ZLdVAL9P�OQRUL�e°�Wp �J`nNA�
ND`bVD��OMadXZ`bV��D`�O�cSLdeA~np�RUX/�ZL�VDL9P�OQRULuO�Ó¤x�ÔMu`nRU^�NAPUX��JOQ�D`b~b`nRqp
Ü�]�Ez ��	U���$k.`bVJOQ~�~npZv0RU^AL-�ZL�VAL�P�O]RULdeÂT_O�cs�\`bc�iAcSL�eÂRUX��ZiA`beAL
RU^ALua�PUXZcScSXdmoL�P|RU^ALucUO�T_L2£Odp_O�c|`nR|�ZiA`�eAL�c:RU^AL2RSP�O�eA`bRU`bXZVDO�~
iAVA`�YGX�PUT'a9PUXZcScSX¤moL9Pd�(k.`b�Zi�PUL��}cS^AX¤uc�O�VgL�¦�O�T-ND~bL�XZY|OQNA�
ND~np�`bVD��jW�$±$l$²'RUXÊRU^AL¥cUO�T-L§N�O]PULdVoRUc�O�c�`bV�k.`b�Zi�PUL»xQ�

x�¨ c{kAPUL¤ãJ�:`bV�~bXka�`¯� Þ�� e Þ�� � Þ��âÛ Þ���È Þ��âÈ Þk�Q�
f¢O�~ba�iA~GO]RU`�VA�A� � � � � � �

jo£OQNANJ`bVA���:PUX��0�b� Þ�� e Þ�� � Þ�� e Þ��bx Þ���x Þk�Q�
Ç£`�O�cSL�e�k.~b`nNDND`bVA�A� � � � � � �

f|PUL¤O]RULde�[gO�cs� � x Þ x Þ Þ Þ
�%NAND~bpk`�VA��[gO�cs� � � �

�
OQPUL�VWR �! d� Þ x Þ x x x
�
OQPUL�VWR �#"Q� x x x x x Þ
jo£OQNANJ`bVA�A� � �

fh^A`b~be%$& d� x x x x x x
fh^A`b~be%$'"Q� Þ x Þ x x Þ

k³`���iAPUL��k�:�$V�L9¦AO�T�NJ~bLMX�N L9P�OQRU`bXZV�XZY:jW�$±$l$²��
m �nm �@� = S �¥=³= �"!$# = !$# = ��# ���
�$a�adX�PUeA`bVA��RUX�RU^AL�ad~�O�cScS`nÍDa¤O]RU`�X�VgX�YhO�eDOQNAR�OQRU`bXZVgY©X�P��$�$c
PUL9m�`bL�¢L�e§`bV§cSL�a�RU`bXZV �Wv)jW�$±$l$²°��L�~bXZVA�ZcuRUX-RU^DLµad~�O�cSc%X�Y
O�eDOQNARU`nmoL2O�eDOQNAR�OQRU`bXZV�RU^DOQR:XWada�i�PUc:OQR
RU^AL£� X�RSRUXZT��¯~bL�mZLd~kX�Y
a9PUXZcScSX¤moL9P�� LdadO�iAcSL-`nR�iAcSLdc/RU^AL-YGLdL�e��JO�a��g`bVAY©X�PUT_OQRU`bXZVgX�Y
O�~b~bLd~bL�eA`bcsRSPU`b�Di�RU`bXZVÂeAi�PU`bVA��RU^DL�PUiAVAVD`bVA�§XZYhRU^AL¬�$� O�VAe
O�e]´SiAcsRUc£RU^DL/cs£OQNAND`bVD��NAPUX��JOQ�D`b~�`nRqp}Y©X�PuLdO�a�^��ZL�VDL/~bXka�iDc��
jW�$±$l$²à`bc¢T�iDa�^�cS`bT�NJ~bL9PhRU^DO�V}RU^AXZcSL/OQeJO]NDR�O]RU`�X�V�T-L�a�^��
O�VA`bcST_chRU^DOQR2O�eAe�L9¦kRSP�O�R�O����D`nR/��L�� ���bvJjka�^DOQÑ L�P2O�VAe¬[gXQPS�
`bcS^A`�T_O�vMx¤ÈZËoyWÖ%r)L�mZLdVA`ba���v/x¤ÈZÈ�Éo��X�P_mZOQ~�iALI��LZ� �A�bv£tuXZcSL�V��

GENETIC ALGORITHMS 653

�Di�PU�Av¬x¤ÈZÛZyWÖ�kDP�OQcSL�Pdv¬xdÈZÉoy¤� ��N L9P\��LdVAL9RU`�aI�D`bRgO�VAe�a�X��
L9moXZ~nmoL�c/RU^DL�cSL�R�O����D`nRUc�X�Pµm�O�~biALdc/u`nRU^ÂLdO�a�^I`bVAeD`nm�`beAiDO�~��
æ�`nRU^°jW�$±$l$²�v£u^JO]R§¢LÊO�eAeàRUX¸RSP�O�eA`nRU`�X�VJOQ~/iAVD`bYGX�PUT
a9PUXZcScSX¤moL9P.OQPUL:csNJO�ad`�O�~b~npMXZVA~npMXZVAL:PULdO�~ZmoL�a�RUX�P0RU^DOQR)PULda�X�PUeAc
RU^AL\Y�PUL¤ãoiDL�VAa�p¸XZYµX�VDL�c�YGX�P¬L¤O�a�^Ì~bXkadiAc�v$O�VAeÌadX�T-NDi�R�OQ�
RU`bXZVDO�~b~np§X�VD~np§X�VDL�csR�OQRU`bcsRU`badc%N L9P���LdVAL9P�OQRU`bXZV§RU^JO]R�adO�~ba�iA�
~�OQRUL�c¢RU^AL/YGPULdãWiALdVAa9p�XZY#X�VDL�c/��^DL�VAadL$RU^DLMcs£OQNAND`bVA��NAPUX��A�
OQ�D`b~b`bRqpD�_YGX�P�L¤O�a�^�~�XWadiAc�� � ^D`bc�cS`bT-ND~bL\L9¦kRSP�O»csR�O]RU`�csRU`ba�c
O�eAeALde\`bc%¢Ld~b~³PUL9£OQPUeALde\`bV¥RU^AL�cSLdVAcSL�XZY|a�XZT�NJi�R�OQRU`bXZVDO�~
a�XZT-ND~bL9¦�`nRqpo�IkJXQP}L¤O�a�^¸a�PUX�cScSX¤moL9P�X�N L9P�OQRU`bXZV¸OQR_�ZLdVAL9P�OQ�
RU`bXZV 	�v.RU^AL}VWiAT�� L9P�XZY¢cs£OQNANJ`bVA�Zc�XZVÊcsRSPU`bVA�Zc�X�Y2~bL�VD�QRU^��`�c ���H�§XZVÄRU^AL�OdmoL9P�O��ZL�u`nRU^ÄiAVA`�YGX�PUT�a9PUXZcScSX¤moL9P_O�VAe
� } ���}
�
 Ü�]�Ez �
	U��u`nRU^�jW�$±$l$²��:æ�^AL�V�RU^DL�N X�NDiD~�OQRU`bXZV¸`bc

P�O�VAeAXZT-~bp�`bVA`nRU`GOQ~�`bÎ�Lde�v¢RU^AL\Y�PUL¤ãoiDL�VAa�p�XZY_x�¨ c¬`bVÒRU^ALÂOQ~b�
~bLd~bL�c¥��^AL�VDa�L§RU^AL§cs£OQNANJ`bVA�ÊNAPUX��JOQ�D`�~b`nRqpJ��`bV�L¤O�a�^Ò~bXka�iDc
`bc�csR�O]RU`�csRU`badO�~b~npÂOQ� XZi�R�Þ���Ékv
u^A`ba�^Ä�Z`nmoL�c�X�VÊRU^AL¬OdmoL9P�O��ZL���H�µa�PUX�cScS`�VA�Zc¢Y©X�P$jW�$±l²��kz$X¤¢L9moL9Pdv�u`nRU^}RU^DL%PUiAVDVA`bVA�
XZYµRU^ALÊ�$��v�x9�¯`bVoRSPU`�VAcS`baÂO�VAeàÞQ�¯`bVWRSPU`bVAcS`ba\�ZL�VDL�c¬RULdVAeÌRUX
a�XZVomoL�PU��L�RUX\x�O�VAeÂÞ�PUL�csN Lda9RU`nmoLd~np§O�VAegRU^ALd`nP�O�cScSXka�`�OQRUL�e
cs£OQNAND`bVD��NDPUXQ��O]�J`b~b`nRU`bLdcheDL�a9PUL¤O�cSL/O�ada�X�PUeA`bVA��RUX�L¤ãoiJO]RU`�X�V
�Sx]��� � ^A`bc%PUL�cSiA~nRUc$`bV�PUL�eDiAa�Lde§VWiDTµ� L�PMX�Y
a9PUXZcScS`bVA�Zc%u`nRU^
jW�$±$l$²�v�`�� LZ�nvx� } ���}

�
 Ü�]�Ez ��	U��� ���H�k�%�$VAe§RU^AL9PULZ¨ c$T_X�PUL��

�cRU^AL�N X�NDiA~GO]RU`�X�VgadX�VWmZL�PU�ZL�c�v0u`nRU^giAVA`bY©X�PUT'a9PUXZcScSX¤mZL�Pdv
`bV»YÏOQa�Rdv:Y©L9¢L�P-O�VAe�YGL�¢L9P�x�¨ c�`�VÊRU^DL¬T_O�cs�Iu`b~�~h`bVWmZXZ~nmoL
O�a�^DO�VA�ZL�vJRU^DOQRu`bc�vJT_O�Vop¬a�PUXZcScS`bVA�Zc%OQPUL/£O�csRUL�e�XZV�RU^AXZcSL
a�XZVomoL�PU��Lde-�D`nRUc��.[gX�csRhXZY�RU^DL�cSL2£OQcsRULde_a9PUXZcScS`bVA�Zc|�Wp�iDVA`n�
Y©XQPUT(a�PUXZcScSXdmoL�P2OQPULMcUOdmZLde��Wp�jW�$±$l$²��k�$c¢`b~b~�iAcsRSP�OQRUL�e}`bV
k.`b�Zi�PULÄx¥O�VAe �kvuO�Y�RUL�P�a�L�PSR�O�`bV���LdVAL9P�OQRU`bXZVAc}RU^AL¥eA`bcsRSPU`b�
�Di�RU`�X�VÊXZYMx�¨ cµX¤moL9P�~bXka�`:T}Odpg� L�O�cµcS^DXduVÊ`�VNk.`b�Zi�PUL �Wv
iAVA`�YGX�PUTÐa�PUXZcScSXdmoL�P|T}O�eAL£VAX�iDcSL2XZYJRU^A`�c
`bVDYGX�PUT_OQRU`bXZV�O�VAe
csRU`b~b~��ZLdVAL9P�OQRUL�e ��a�PUXZcScS`bVA�Zc£u^D`b~bL�jW�$±$l$²¡�ZL�VAL�P�O]RULde �k�
�$VAX�RU^AL�P2T-X�PUL/`bT-N X�PSR�OQVWR¢N�X�`�VoR2XZY
jW�$±$l$²¡`bc2`nRUc¢NAPUX�NA�
L9PSRqp XZYg`bT-ND~b`bad`nR��ZL�VDLà~b`�V���O��ZL�� jW`�T-`b~�OQP�RUX kAP�O�cSL9Pd¨ c
a9PUXZcScSX¤moL9P��EkDP�O�cSL9Pdv�x¤ÈZÉoyd����v�jW�$±$l$²�O�eDOQNARU`bmZLd~np¡~b`�V���c
�ZL�VALdcµ�JO�cSL�eÊXZVIRU^AL�`bP�cs£OQNAND`bVA�§NAPUX��JOQ�D`b~�`nRU`bL�c���kDX�P�L9¦k�
O�T�ND~�L�v.`bVfk.`b�Zi�PUL ��~bXka�`we¥O�VAe�É§O]PUL�T-X�PUL}a�XZVomoL�PU��LdVoR
O�VAe�`�T�ND~b`�a�`nRU~np�~b`bV��oLde_� L�a¤O�iAcSL%RU^AL%NAPUX��JOQ�D`b~�`nRqp_YGX�P¢RU^AL�T
RUX�a�X��¯L9moXZ~nmoLum�`�O�a9PUXZcScSX¤moL9P£`bc¢Þ�ßbx��)Þ�ß�x	�¥Þ�ß�È
�)Þ�ßâÈ�ÝÌÞ�ßâËC�W�
jW�$±$l$²�eA`bÑ L9PUc#YGPUXZT kAP�O�cSL9Pd¨ c³a9PUXZcScSX¤moL9P
`bV�RU^JO]R|jW�$±$l$²
O�eDOQNARUc¢XZVAL$NAPUX��JOQ�D`b~b`bRqp�moLda9RUX�P¢Y©X�P2O�~b~�`bVDeA`nm�`beAiDO�~bc|�JO�cSL�e
XZV\XZVAL-cS`bT�ND~�L�csR�OQRU`bcsRU`badc$N L�P/�ZLdVAL9P�OQRU`bXZVgu^A`b~�L kAP�O�cSL9Pd¨ c
a9PUXZcScSX¤moL9P|T-XkeA`nÍJL�c.XZVAL£NAPUX��JOQ�D`b~b`bRqp�moL�a�RUX�P:YGX�P:LdO�a�^�`bVAeA`b�
m�`beAiDO�~ N L�Pua9PUXZcScSX¤moL9Pu�JO�cSL�e�XZV�O�P�OQVDeAXZTå~bL¤O]PUVD`bVA��PUiA~�L��
z$L9PUL�¢L�T�iAcsR�VDXQRUL�RU^AL�PUL�~�OQRU`bXZVAcS^A`bNg� L�Rq¢L�L�VÄjW�$±$l$²
O�VAe/NAPUX��JOQ�D`b~�`nRqpk���JO�cSL�e�O�~b�ZXQPU`bRU^AT-c
��Ç2O�~bi]´UO�vWxdÈZÈFeAÖ�zMOQPU`n� v
x¤ÈZÈ�Ëo��� � ^DL9p�OQPULµO�~b~���OQcSLde�XZV�NDPUXQ��O]�J`b~b`nRqp�eD`bcsRSPU`n�Di�RU`�X�V0�
z$X¤¢L9moL9Pdv�RU^DX�cSL¸O�~b�ZX�PU`nRU^AT_cgiAcSL»RU^DL»L9¦kND~�`ba�`nRU~bpàT_O�`bVA�
R�O�`bVALde°NAPUX��JOQ�D`b~b`bRqp®moL�a9RUX�PÂRUX�cUO�T�NJ~bL»cSXZ~bi�RU`�X�VDcgu^A`�~bL
jW�$±$l$²°X��AR�O�`bVAcuRU^AL�eA`bcsRSPU`n�Ji�RU`bXZV¬NAPUX��JOQ�D`b~�`nRqp�YGPUX�TåRU^DL
csR�OQRU`bcsRU`badc-`bVAY©X�PUT_OQRU`bXZV¸`bT�ND~�`ba�`nR-`bV¸RU^AL�N X�NDiA~�OQRU`bXZV��Ìª«V
RU^AL$cSL�VAcSLMXZY0OQNAND~bpk`�VA��NAPUX��JOQ�D`b~�`nRqp�moLda9RUX�PdvWRU^AL�p_OQPUL$eAiDO�~
O�~b�ZX�PU`nRU^AT-c�� � ^AL$T_XQRU`bm�OQRU`bXZV-X�Y³jW�$±$l$²à`bc|RUX�L9¦kND~b`bad`nRU~np
iAcSL�RU^AL}csR�OQRU`bcsRU`badcµ`bVAY©X�PUT_OQRU`bXZVI`bT-ND~b`bad`nR�`�VIRU^AL}N X�NDiA~�OQ�

RU`bXZV¬RUX��ZiA`�eALMRU^AL�a9PUXZcScSX¤moL9Pd�

� À� � À�¥¿2À � Á¸Æ �f� � � ¿

�[��� �('*) � � � !$#*) = � U�!�� v) �

� ^AL}[\O]¦�¶%VALdcµNAPUX��D~bLdT5cS`�T�ND~npÂa�XZiAVoRUc�RU^DL}XZVAL�c�a�XZV��
R�O�`bVALde¥`bVgO}�D`bVDOQPSp§csRSPU`�VA�¬OQcMRU^ALµÍARUVDL�cScMXZY
RU^DOQRMcsRSPU`bVD���
� ^AL\O�`bT `bc�RUXÄT_OQ¦�`bT_`bÎ�L§XZVALdc¬`bVÌOÄcsRSPU`bVA�A�Ð�7csRSPU`�VA�
~bLdVA��RU^¬XZY¢x�ÞZÞ��D`nRUc££O�c2iDcSL�e�YGX�PuXZi�P%csRUiAe�po�

�[�8� �('*) U�! H � v U�! ��� � � # S � �"!$# =

� ^ALhtuX¤poO�~Wt%XZO�eµY©iAVAa�RU`bXZVAch�EkDX�PSPULdcsR.OQVDeµ[g`nRUa�^ALd~b~�vkx¤È�ÈC�o�
OQPUL-eAL9m�`bcSLdegRUX�`bVomoL�csRU`��ZOQRUL}�$��¨ c/N�L9PUY©XQPUT}O�VAa�L�u`bRU^gPUL9�
csN Lda9R�RUXgcSa�^DL�T_O¥NDPUXWadL�cScS`bVD�\O�VAeÄPULda�XZTµ�J`bVDOQRU`bXZVÄ`bV�O�V
`beAL¤O�~b`bÎ�Lde¬YGX�PUT��
tuX¤pWO�~0t%XZO�e�Y©iAVAa9RU`�X�VDc�� %O�VAe�� "Ma�XZV��
R�O�`bV»R�O�`b~bX�PS�¯T_O�eAL¬�DiA`�~beA`bVA�\�D~bXka��kc§��cSa�^ALdT_O�c��µ��OQcSLde¸XZV
ÛFe����D`nR%�D`bVDOQPSp�csRSPU`bVA�Zc��uwhO�a�^¥cSa�^AL�T}O���}:`�c%�Z`nmoL�V¥O_adXkL�YG�
ÍDad`bL�VoR��4}:u^D`ba�^¥`bc%L¤ãWiDO�~)RUX}`nRUc%X�PUeAL�P��k����}q�/�¯O}cSa�^ALdT_O�¨ c
X�PUeAL9PÊ`bcÂRU^AL�VkiATµ� L�PÊX�Y�ÍA¦�L�eÐN XZcS`nRU`bXZVAc\u`nRU^D`bV�RU^DOQR
cSa�^DL�T_OW����� ua�XZVAcS`bcsRUcuXZY
Ë�eA`bc©´SiAVAa�RU`nmoLMX�PUeAL�PS�qË�cSa�^AL�T}OQc
XZY0u^A`�a�^¬LdO�a�^¬^DO�c%Ë�O�e]´UO�a�L�VWR2XZVAL�c���� "$adX�VDcS`bcsRUc£XZY)Y©XZi�P
~bL�mZLd~bcµXZY2cSa�^DL�T_O�c��_~bL�mZLd~hÞÊ�Ï��XQRSRUXZT�~bL9moLd~©�$`�cµRU^AL}cUO�T_L
O�c�� �v|~bL9moL�~Mx¬^DO�c6e\XQPUeDL9PS�Ux¤Û§cSa�^AL�T}OQc-X�Yuu^A`ba�^»L¤OQa�^
a�XZT��D`bVALdchRq¢X_OQeQ´SO�a�LdVoR2cSa�^AL�T}O�c£`bV¬~bL�moL�~�Þ�vA~bL�moL�~x��a�XZV��
R�O�`bVAc��/X�PUeAL�PS� �C��cSa�^DL�T_O�chL¤OQa�^}a�XZT��D`bVA`bVD��Rq¢X�OQeQ´SO�a�LdVoR
cSa�^DL�T_O�c�`bVà~bL�moL�~�x�v�OQVDe�ÍDVJOQ~�~npÒ~bL�moL�~��Ì�ÏRU^ALÂX�NARU`bT}O�~
cSa�^DL�T_OW�hadX�T��D`bVALdc£RU^AL(��cSa�^AL�T}OQcu`bV�~�L9moL�~[�k�
� ^AL¬ÍDRUVAL�cSc_X�Y$Og�D`nR-csRSPU`�VA� |�YGX�P�� ¤�E|���O�VAe�� "��E|��µ`bc
a�XZT-NDi�RUL�e¥�Wp¥cSiDT-T-`�VA�}RU^AL�adXkL9·_a�`bLdVoRUc��4}¢adX�PSPUL�csN XZVAe��
`bVA�\RUXÂLdO�a�^�XZYuRU^DL��Z`nmoL�V�cSa�^DL�T_O���}/XZYuu^D`ba�^I|�`bc_O�V
`bVAcsR�O�VAadL�� � ^ALgXQNDRU`bT_O�~%cSXZ~bi�RU`bXZVAc¬YGX�P�� �O�VAe�� "¥OQPUL
�Z`nmoL�V�O�c���� ¤�SxZx�x�ßbßbx]�
Ý�ÛFe_O�VAe�� "Q�SxZxZx�ßnß�x]�
Ý°x¤ÈC�k�

�[�nm �('*) v �9= � ��� U�!�� v) � +@)W#)WU@� �6!$U

� ^AL2P�O�VAeDX�T¹r0�«jW� � NAPUX��D~bL�T!�ZL�VAL�P�OQRUXQP$��KML2ÕoXZVA�Av �.X�RS�
RUL9P/O�VAeIjoN�LdOQPUc�v
x¤ÈZÈoy��2`�cMO_� XkXZ~bLdO�V¥cUOQRU`bcsÍJOQ�D`b~b`bRqp¬NAPUX��A�
~bLdT��ZLdVAL9P�OQRUX�P
eAL�m�`bcSL�e�RUX/`bVWmZLdcsRU`b�oOQRULhRU^AL£L�Ñ L�a�RUc
XZYJL�ND`bcs�
R�O�cS`bc}XZV¸RU^DL�N L�PUYGX�PUT}OQVDa�L§XZYµ�$�$c��®ªqR}�ZL�VDL9P�OQRUL�c_P�O�V��
eAXZT5� XkX�~�LdO�VIL9¦kNAPUL�cScS`�X�VDcµ`�VIa�XZV]´SiAVAa�RU`nmoL_VAX�PUT_O�~|YGX�PUT
XZY£a�~�O�iAcSLdcµcSiA�k´SL�a�RµRUX�RU^APUL�L_NJOQP�OQT_L9RUL�PUc�����VWiAT�� L9P�X�Y
� XkXZ~bLdO�VIm�OQPU`�OQ�D~bLdc���v)$���VWiATµ��L9P�XZY£eA`bc©´SiAVAa�RU`nmoL_X�P�a�XZV��
´SiAVAa9RU`bmZL\ad~�O�iAcSL�c���O�VAe �7�ÏRU^AL\~bLdVA��RU^�X�YµRU^AL\ad~�O�iAcSL�c����
whO�a�^¸a�~�O�iAcSL�`�c�a�PULdOQRUL�e»�kp»cSL�~bLda9RU`bVD� ��XZY���mZO]PU`GO]�J~bL�c
iAVA`�YGX�PUT-~bp\P�OQVDeAXZT-~npÊO�VAeÄVALd�ZOQRU`bVD�§L¤OQa�^Êm�OQPU`�OQ�D~�L-u`nRU^
NAPUX��JOQ�D`b~�`nRqp»Þ��âÉk� kDX�P}L¤O�a�^¸�ZL�VDL9P�OQRUL�e���XWXZ~bL¤O�V�L�¦WNDPUL�cs�
cS`bXZV�v RU^AL�OQ`�T�`�c%RUX_ÍJVAe\OQV\O�cScS`b�ZVAT_L�VoRMXZY
RSPUi�RU^¥m�O�~biALdc
RUXIRU^AL �5m�OQPU`�OQ�D~�L�c-RU^DOQR�T}O]�oLdc_RU^AL¥LdVoRU`nPUL§L9¦kNAPULdcScS`bXZV
RSPUiALZ�ÊjW`bVDa�L}RU^AL}��XWXZ~bL¤O�VÊL9¦kNAPUL�cScS`�X�V»`bc�P�O�VAeAXZT-~npÊ��LdV��
L9P�OQRULde�v�RU^DL9PUL/`bc2VAX-�ZiDOQP�O�VoRUL�L/RU^DOQRucSiAa�^§O�V�O�cScS`b�ZVAT-LdVoR
L9¦�`bcsRUc�� � ^AL/a�XZT�NJ~bL9¦�`nRqp}XZY)RU^ALMNAPUX��D~bLdT m�OQPU`bL�c¢u`nRU^�RU^DL
NJOQP�O�T-L�RUL9PUc!��v $(O�VAe �2� kDX�P/L9¦AO�T�ND~�L�v `bVDa9PULdO�cS`bVD�_RU^DL

GENETIC ALGORITHMS654

VWiAT�� L9P�X�Y|a�~�O�iAcSLdc$`bVDa9PULdO�cSLdc%RU^AL�L�ND`bcsR�O�cS`bc�� � ^DL�ÍARUVAL�cSc
Y©iAVAa9RU`�X�V�Y©XQP2RU^DL/r0�«jk� � NAPUX��D~bLdT `�cuOQcuY©X�~�~bX¤uc��

�)� � ��� ���¥�.Ý x
$

��
}
�

�)� �	��
� ����}q�

æ�^AL9PUL � ��� ���!adX�VDcS`bcsRUc³XZY $�ad~�O�iAcSL�c.O�VAe�RU^AL|ÍARUVALdcSc.a�XZV��
RSPU`n�DiARU`bXZVÄXZYua�~�O�iAcSL@zUv��#� �	��
�� ����}q��v|`bc�x�`bYuRU^AL¬a�~�O�iAcSL¬`bc
cUOQRU`bcsÍDLde�X�P%Þ�X�RU^AL9PSu`�cSL��
ª«V�XZi�P
L9¦kN L9PU`�T-L�VWRUc)¢LhiAcSLde�RU^ALhcUO�T-LhNJOQP�O�T-L9RUL�PUc³O�c³K/L
ÕoXZVA�Av �.XQRSRUL�P|O�VAe�joN�LdOQPUc��.æIL¢ÍA¦�Lde�RU^AL2VWiATµ��L9P|XZYJmZO]PU`b�
OQ�D~bLdc���RUX�xdÞZÞ2OQVDe/RU^AL:~bLdVA��RU^MXZYkRU^AL
ad~�O�iAcSL�c ��RUX �k� � ^DL
VWiAT�� L9P2XZY)a�~�O�iAcSLdc $¡`�chmZOQPU`bL�e�YGPUX�T ��ÞZÞ���~bX¤�L9ND`�csR�OQcS`�c��
RUX�xh�QÞZÞ���T-LdeA`biATåL9ND`bcsR�O�cS`bc��|RUX��FeoÞZÞ¬��^D`b�Z^�L9ND`�csR�OQcS`�c����

� ��� � ��Á»½ � ��¾àÀ � �ÚÁ��¥¿2Ã �hÀÄ¿

kDX�PuLdO�a�^�L9¦kN L�PU`bT-LdVoR£XZY)adX�T��D`bVA`�VA��a9PUXZcScSX¤moL9PuX�N L9P�OQRUX�PUc
�Sx9��N XZ`bVoRdvj�]��N XZ`bVoRdvkiAVA`bY©X�PUT!a�PUXZcScSXdmoL�P£OQVDe�jW�$±$l$²��.O�VAe
RUL�csR�NAPUX��D~bL�T_c�vµxdÞ�ÞÊ`bVAeDL9N LdVAeAL�VWR}PUiAVAc�¢L9PUL¥L�¦kLda�i�RULde��
ª«V-X�PUeAL9P:RUX�^DOdmoLuO/csRSPU`ba9R:a�XZT�NJOQPU`bcSXZV�� L�Rq¢L�L�V-a�PUX�cScSX¤moL9P
X�N L9P�OQRUX�PUc-RU^AL§cUOQT_LIxdÞZÞÂeA`nÑ L�PUL�VoR_P�O�VAeAXZT�cSL�L�eDc-¢L�PUL
iAcSLde§RUX_�ZLdVAL9P�OQRUL�N X�NDiD~�OQRU`bXZVAc%YGX�P%RU^AL�xdÞ�Þ-PUiAVAc$XZY
L¤OQa�^
L9¦kN L�PU`bT-LdVoRd��ª«VIO�~b~.RU^AL-L�¦WN�L9PU`bT_L�VoRUc�v0RU^AL��$�(iAcSL�c/RU^DL
ÍARUVALdcSc:NAPUX�N X�PSRU`bXZVDOQRUL2cSL�~bLda9RU`bXZV�u`nRU^�RU^ALucsRUXka�^DO�csRU`ba2iDVA`n�
moL9PUcUO�~McUOQT-ND~b`bVD�Ì��Ç2O]�oL�PdvµxdÈZËoyZ�}O�VAeÒRU^ALgL�~�`nRU`bcsR�T_XWeDL�~
��KMLÂÕoXZVA�Av�xdÈoy�Éo��v/O�VAe��D`nR��J`nNàT�i�R�OQRU`bXZV��(�$VAe�RqpkND`b�
adO�~b~bp}RU^AL/NAPUX��JOQ�D`b~�`nRU`bL�c2XZY³a9PUXZcScSX¤moL9P$O�VAe§T�i�R�OQRU`bXZV¬¢L�PUL
ÍA¦�L�e�RUX�Þ�ßâÛ�O�VAe�Þ�ß�ÞZÞ�x%PULdcsN L�a�RU`nmoL�~np}O�VAe�RU^ALMN X�NDiA~�OQRU`bXZV
cS`bÎdL�£O�c�cSL9R}RUXÒxdÞZÞIY©XQP¬LdO�a�^�PUiAV0� kJXQP¬L¤OQa�^¸PUiAV0v2¢L
PUL�adX�PUeAL�e§RU^AL�� LdcsRS�¯cSX��¯Y©OQP%ÍDRUVAL�cSc$L9moL9PSpIxdÞ�Þ}L9m�O�~biJO]RU`�X�VDc��
z$L9PULZv¢XZVA~bpÄRU^AXZcSL§a�^�PUXZT_X�cSXZT_L�c_a�^JOQVD��Lde¸�Wp�a�PUX�cScSX¤moL9P
O�VAeÌT�i�R�OQRU`bXZVÒXQN�L9P�OQRU`bXZVAc¬OQPUL¥L�m�O�~biDOQRULdeÌOQVDeÌa�XZiAVoRULde
`bVoRUX�RU^AL-VWiDTµ� L�PµX�YhL�m�O�~biDOQRU`bXZVAc��_w|O�a�^ÂL9¦kN L�PU`bT-LdVoR/PUL9�
cSiA~nRu`�cuO�moL�P�OQ�ZLde�X¤mZL�P2RU^DL-xdÞZÞ�`�VAeAL9N�L�VAeALdVoR2PUiAVAc��

����� U�) = �*v � = !$# � � � !$#*) = � U�!�� v) �

� ^AL$L�¦WN�L9PU`bT_L�VoRhPUL�cSiA~nRUchY©X�PhRU^DL$[gOQ¦¬¶%VDL�chNAPUX��D~bL�T OQPUL
cS^AX¤uV§`bV*k.`b�Zi�PUL eA� kAPUXZT k.`b�Zi�PUL e_`bRuadO�V�� L�cSLdL�V�RU^DOQR
jW�$±$l$²'X�iARSN L9PUY©X�PUT-c�OQ~�~£RSP�O�eA`nRU`�X�VJOQ~2a�PUXZcScSXdmoL�P�X�N L9P�OQ�
RUX�PUc2XZV¬RU^DL/[gOQ¦§¶%VALdc£NDPUXQ�J~bL�T��

���8� U�) = �*v � = !$# � ��#*� � "

� ^ALÊL9¦kN L9PU`�T-L�VWR�PULdcSiA~nRUc§XZV®PUX¤poO�~�PUXoO�e®Y©iAVAa�RU`bXZVAc¥OQPUL
cS^AX¤uVÒ`bV�k³`���iAPULgÉIO�VAe�k.`b�Zi�PULgÛ\PULdcsN L�a�RU`nmoL�~npo� kDPUXZT
RU^ALdcSL2ÍJ��iAPUL�ch`nRhadO�V_� L%cSL�LdV-RU^DOQR¢eAi�PU`bVA�µRU^ALuLdOQPU~np-csR�O��ZL
XZY)�$��¨ c|cSL¤O]PUa�^A`bVA�Av x9��N XZ`bVWRhO�VAe@�]��N XZ`bVoR¢OQPULu� L9RSRUL�P:RU^DO�V
jW�$±$l$²��Wz$X¤¢L9moL�Pdv�O�Y�RUL�P¢a�L9PSR�O�`bV}L9mZO�~biDOQRU`bXZVAc�vWu^AL�V_RU^DL
�$�7^DO�c}�DiD`b~nR�i�NÌcSXZT-L¥iAcSLdYGiD~$cSa�^ALdT_O�c�jW�$±l²�XZi�RS�
N L�PUYGX�PUT-c/RU^DL�T7eAiAL-RUX�`nRUc�`bT�ND~�`ba�`nR/�ZL�VAL_~b`bV��ZO���LZ� � ^A`bc
`bc%O�~bcSX-NDPUXdmoLde��WpgjW�$±$l$²�¨ c2adXZVAcS`bcsRUL�VWR$O�e�m�O�VoR�O��ZLµX¤moL9P

60

65

70

75

80

85

90

95

100

0 50 100 150 200

A
ve

ra
ge

 B
es

t F
itn

es
s

Evaluations (x 100)

1-Point
2-Point

Uniform
SANUX

k.`b�Zi�PUL eA�$�%mZL�P�O���L�� LdcsRMadi�PSmoL�cMY©X�P��$�$c$u`nRU^geA`nÑ�L9PUL�VWR
a9PUXZcScSX¤moL9P%XZV�[\O]¦§¶$VAL�c2NAPUX��D~bLdT��

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600

A
ve

ra
ge

 B
es

t F
itn

es
s

Evaluations (x 100)

1-Point
2-Point

Uniform
SANUX

k.`b�Zi�PUL-Ék�$�%mZL�P�O���L�� LdcsRMadi�PSmoL�cMY©X�P��$�$c$u`nRU^geA`nÑ�L9PUL�VWR
a9PUXZcScSX¤moL9P%XZV�t%XdpWO�~0tuXoO�e�YGiDVAa9RU`bXZV � d�

iAVA`�YGX�PUTåa9PUXZcScSX¤moL9P%X�V�� X�RU^ � %O�VAe�� "Q� � ^A`bc2`bc2YGi�PSRU^DL9P
NAPUX¤moL�eÊ�WpÂRU^AL}X��DcSL9PSmZOQRU`bXZVIRU^DOQR-jW�$±$l$² XZi�RSN L�PUYGX�PUT_c
RSP�O�eA`nRU`bXZVDO�~�a�PUXZcScSXdmoL�P#X�N L9P�OQRUX�PUc)T�iAa�^/��L9RSRUL9P#X�V � ".RU^DO�V
XZV� d� � ^A`bc�^DOQNAN LdVAcM� LdadO�iAcSL�RU^AL-`bVoRSPUXkeAiDa9RU`bXZVgXZYh`bV��
RUL9PUT_L�eA`GO]RUL�cSa�^AL�T}O�c%`bVoRUX�� "�`bVAa�PULdO�cSL�cuRU^ALµL�ND`bcsR�O�cS`bc%XZV
u^A`ba�^�jW�$±$l$²ÒcS^DXduc|T_XQPULuO�e�mZO�VoR�O���L2RU^DO�V�RSP�O�eA`bRU`bXZVDO�~
X�N L9P�OQRUX�PUc2eAiAL/RUX-`nRUc2`bT�NJ~b`ba�`bR¢�ZL�VDL/~b`bVA��O��ZLMadOQNJOQ�D`b~�`nRqpZ�

���nm U�) = �*v � = !$# v �9= ���,�(U�!�� v) � =

� ^ALµL�¦kN L9PU`bT_L�VoRuPUL�cSiD~nRUc%X�V§r)�«jW� � NDPUXQ�J~bL�T_c2u`nRU^�~�Xd�v
T-LdeA`biAT3O�VAe§^A`b�Z^�L9ND`bcsR�O�cS`bc%OQPUL��Z`nmoL�V�`bV*k.`b�Zi�PUL�yWv9k.`b���
i�PUL�ËWvhO�VAe
k.`b�Zi�PUL�È�PUL�csN�L�a9RU`bmZLd~npZ� kAPUXZT�RU^AL�cSL�ÍD�Zi�PUL�c
`nR�a¤O�VI� L}cSL�LdVIRU^JO]R�eAi�PU`bVA�¥~bX¤(L9ND`�csR�OQcS`�c�O�~b~|a�PUX�cScSX¤moL9P
X�N L9P�OQRUX�PUc¢¢X�PS��L¤ãWiDO�~b~np�O�c¢¢Ld~b~ u`nRU^¬iAVA`�YGX�PUT a�PUX�cScSX¤moL9P
cS~b`b�Z^oRU~bp�� L9RSRUL�P%RU^DO�VgRU^AL�X�RU^AL�PMX�N L�P�O]RUX�PUc��/z$X¤¢L�mZL�Pdv0OQc
L9NJ`bcsR�O�cS`bc¬`bc�`bVAa9PUL¤O�cSL�eÌRUX»T-L�eD`biAT O�VAe�^A`���^0v�jW�$±$l$²
XZi�RSN L�PUYGX�PUT-c�O�~b~:RSP�O�eA`nRU`bXZVDO�~:a9PUXZcScSX¤mZL�P�XQN�L9P�OQRUX�PUc�� � ^A`bc
Y©i�PSRU^AL9PµcS^AX¤uc/RU^JO]R�jW�$±$l$²!^DO�c�T_XQPUL_O�e�mZOQVWR�OQ�ZL-X¤moL9P
RSP�O�eA`nRU`bXZVDO�~:a�PUXZcScSXdmoL�P�X�VÊNAPUX��D~bLdT-c�u`bRU^Ê^A`b�Z^ÊL9ND`�csR�OQcS`�c
eAiAL/RUX-`nRUc2`bT�NJ~b`ba�`bR¢�ZL�VDL/~b`bVA��O��ZLMadOQNJOQ�D`b~�`nRqpZ�

GENETIC ALGORITHMS 655

0

20

40

60

80

100

120

0 100 200 300 400 500 600

A
ve

ra
ge

 B
es

t F
itn

es
s

Evaluations (x 100)

1-Point
2-Point

Uniform
SANUX

k.`b�Zi�PUL-Ûk�$�%mZL�P�O���L�� LdcsRMadi�PSmoL�cMY©X�P��$�$c$u`nRU^geA`nÑ�L9PUL�VWR
a9PUXZcScSX¤moL9P%XZV�t%XdpWO�~0tuXoO�e�YGiDVAa9RU`bXZV � "Q�

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 50 100 150 200

A
ve

ra
ge

 B
es

t F
itn

es
s

Evaluations (x 100)

1-Point
2-Point

Uniform
SANUX

k.`b�Zi�PUL_yW�$�%mZL�P�O���L�� LdcsRMadi�PSmoL�cMY©X�P��$�$c$u`nRU^geA`nÑ�L9PUL�VWR
a9PUXZcScSX¤moL9P%XZV�r)�«jW� � NAPUX��D~bL�T_c£u`nRU^�~bX¤®L9ND`bcsR�O�cS`bc��

� ÅÄÆ»¾°Å��Ã®¿¢½AÆ»¾°¿

ª«V®RU^A`bc§NJOQN L9Pdv�O�VAL9�csR�OQRU`bcsRU`badcs���JO�cSL�e°O�eDOQNARU`nmoLIVAXZV��
iAVA`�YGX�PUT�a9PUXZcScSX¤mZL�P
X�N L�P�O]RUX�PdvkjW�$±$l$²�v]`bc³NAPUX�N XZcSLde�� � ^DL
T-X�RU`nmZOQRU`bXZV¸XZY�jW�$±$l$²7`bc�RUXÄT}O]�oLgiAcSL\X�Y�RU^ALgcsR�OQRU`bcs�
RU`badc
`bVAY©XQPUT}OQRU`bXZV�`bT�ND~�`ba�`nRU~bp/a�XZVoR�O�`bVALde�`bV�RU^DL£N X�NDiA~�OQRU`bXZV
L9¦kND~�`ba�`nRU~bp\RUXÂ�ZiA`beAL¬RU^DL¬a�PUX�cScSX¤moL9P}X�N L�P�OQRU`bXZV���jW�$±$l$²
O�a�^A`�L9moL�chRU^A`bch�Wp}iAcS`bVD�µRU^AL$csR�OQRU`bcsRU`badch`bVAY©X�PUT_OQRU`bXZV_XZY�RU^DL
O�~b~bLd~bL�eA`bcsRSPU`n�Ji�RU`bXZV�`bV§RU^AL�a�iAPSPUL�VoR$N X�NDiA~�OQRU`bXZV�RUX�O�e]´SiAcsR
RU^ALÊcs£O]NDND`bVA�¸NAPUX��JOQ�D`b~�`nRqpÌY©X�P¥LdO�a�^¡��LdVALI~�XWadiAc§O�eDOQNA�
RU`nmoL�~bp-eDi�PU`bVA��RU^ALML9moXZ~bi�RU`bXZVDOQPSp-NDPUX���PULdcSc£XZY0RU^ALµ�$�����$V
`bT-N X�PSR�OQVWR2NAPUX�N L9PSRqp�X�Y|jW�$±$l$²°`bcu`nRUc2adOQNJOQ�D`b~�`nRqp�XZY³`bT-�
ND~b`�a�`nRU~np_~b`bV���`bVA���ZL�VDLM��PUX�iANDc��¢jk�$±$l$²à`bc2O�~bcSX�adX�T-NDi�R�OQ�
RU`bXZVDO�~b~np}L�·_a�`bLdVoR2RU^�PUXZiA�Z^�cUOdm�`bVA�-a�PUXZcScS`bVA�Zc��
� ^AL2NDPUL�~b`bT_`bVDOQPSp�L9¦kN L�PU`bT-LdVoR
PULdcSiA~nRUc|XZY�RU^A`�c:csRUiDe�p�cS^DXd
RU^DOQRIjW�$±$l$²áN L�PUYGX�PUT-c¥� L9RSRUL�P§RU^DO�V¡RSP�O�eA`nRU`�X�VJOQ~�X�VDL9�
N XZ`bVoRdvkRq¢XQ��N�X�`�VoR£O�VAe�iAVD`bYGX�PUT(a9PUXZcScSX¤mZL�P£X�N L9P�OQRUX�PUc¢X�V¬O
cSL9R2XZY)RqpkND`ba¤OQ~)�$��¨ c¢RULdcsR¢NDPUXQ�J~bL�T_c�� � ^AL/L9¦kN L�PU`bT-LdVoR¢PUL9�
cSiA~nRUc)`bVDeA`badOQRUL.RU^DOQR.jk�$±$l$²ÊT}O�pM� L|O£�ZXkXke�adO�VAeA`�eDOQRUL:OQc
O�a�PUX�cScSX¤moL9PuX�N L�P�OQRUXQPuYGX�P$�$�$c��¢jW`bVDa�LµjW�$±l²®¢X�PS��c2OQR
RU^AL
��XQRSRUXZT-�¯~bL9moL�~�XZYka�PUX�cScSX¤moL9Pdv�`nR)a¤OQV/��L:LdO�cS`b~npMa�XZTµ�J`bVAL�e

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0 50 100 150 200

A
ve

ra
ge

 B
es

t F
itn

es
s

Evaluations (x 100)

1-Point
2-Point

Uniform
SANUX

k.`b�Zi�PUL-Ëk�$�%mZL�P�O���L�� LdcsRMadi�PSmoL�cMY©X�P��$�$c$u`nRU^geA`nÑ�L9PUL�VWR
a9PUXZcScSX¤moL9P%XZV�r)�«jW� � NAPUX��D~bL�T_c£u`nRU^�T-L�eD`biATåL9ND`�csR�OQcS`�c��

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0 50 100 150 200

A
ve

ra
ge

 B
es

t F
itn

es
s

Evaluations (x 100)

1-Point
2-Point

Uniform
SANUX

k.`b�Zi�PUL-Èk�$�%mZL�P�O���L�� LdcsRMadi�PSmoL�cMY©X�P��$�$c$u`nRU^geA`nÑ�L9PUL�VWR
a9PUXZcScSX¤moL9P%XZV�r)�«jW� � NAPUX��D~bL�T_c£u`nRU^�^A`b�Z^�L9NJ`bcsR�O�cS`bc��

`bVoRUXÂRU^AL§X�RU^AL�P_Rq¢XÊ~bL9moLd~bc-XZY/OQeJO]NDR�O]RU`�X�V�`bV�a9PUXZcScSX¤mZL�Pd�
�$eAeA`bRU`bXZVDO�~b~npZv�jW�$±$l$² `�cÂeDiDO�~-RUXàRU^AXZcSL¸NAPUX��JOQ�D`b~b`nRqpk�
�JO�cSL�e¬OQ~���X�PU`nRU^DT-c:`bV_RU^AL%cSL�VDcSL%XZY�iAcS`bVA�µNAPUX��JOQ�D`b~b`nRqp�moLda9�
RUX�P-O�VAeÊRU^WiAc�T_OdpÊO�a�R�O�c�RU^DL_��OQcS`�c�Y©X�P�O�VDO�~np�Î�`bVD�¥O�VAe
eALdcS`b�ZVA`bVA�-VAL�àPUL�~�OQRUL�e�O�~b�ZX�PU`nRU^AT-c��

U ?R_�? a ?�@�uZ?Rb
ÕD� wu� Ç2OQ�oL9P��Sx¤ÈZËZyZ���MtuL�eAiDa�`bVA���D`�O�cMO�VAeg`bVAL�·-ad`bL�VDa9p�`bV
RU^AL�cSL�~�L�a9RU`�X�V¸O�~b�ZX�PU`nRU^AT_c���ª«V¸ÕD�|ÕD�¢�%PULdYGLdVAcsRUL�~b~�LÂ��L�e�� ��v
��2 Dh=����A7`-��479/��
	wDF7cK�� DF7�{.07�.0/�5>=�� J g�DF245;/���36:�v)x�e��M�kx��
jJ�kÇ2OQ~�i]´SO-�Sx¤ÈZÈFek���#�.XQNJiA~�OQRU`bXZV����JO�cSL�e�`bVAa9PULdT-LdVoR�O�~A~�LdOQPUV��
`bVA�A� � L�a�^AVA`ba¤OQ~�tuL9N�XQPSRhfh[¥l%�«f2jo�qÈZÉ]�UxdÈ �kv�f¢OQPUVAL��Z`bL¢[¥L�~b�
~bXZV�l$VA`bmZL�PUcS`nRqpZ�
r:�JÇM�JÇ£XkX��oL9P��SxdÈZÈC�o���¢t%L�a�XZT��D`bVDOQRU`bXZV�eA`bcsRSPU`n�Ji�RU`bXZVAcuYGX�P
�ZL�VAL�RU`ba�O�~b�ZX�PU`nRU^AT_c��$ª«V\K���æ�^A`nRU~bL�pI��L�e0�â��v��[DFP 7`-A?C/�5>DF79:
D K��{.47�.�/�5E=��WJ gADF245�/���36:��ov`�ZÈ]�>eHeA�
K��WfhXQPUVDL�v �.��tuXZcSc:OQVDe�z�� �¯r|�HkJO�VA���Sx¤ÈZÈFeW���:�$�¸PULdcSLdOQPUa�^
VAX�RUL�yW�¢YÏOQcsR%NAP�O�a�RU`badO�~0L�mZXZ~biARU`bXZVDOQPSp�RU`bT_L9R�OQ�D~b`bVD��� � Lda�^��
VA`ba¤O�~}tuL9N�XQPSRdv¬KML�NJOQPSRUT-LdVoRÄXZY��%PSRU`bÍDa�`�O�~_ª«VoRUL�~�~b`b�ZL�VAadL�v

GENETIC ALGORITHMS656

l$VA`nmoL�PUcS`nRqp}XZY³w|eA`bVo�DiAPU��^0vDl${-�
r:�|K/Odm�`bc§�Sx¤ÈZË�Èo���Ì�$eDOQNARU`�VA�ÂX�N L9P�OQRUX�P_NAPUX��JOQ�D`b~�`nRU`bL�c-`bV
�ZL�VAL�RU`ba�O�~b�ZX�PU`nRU^AT_c��/ª«VgK��#jWa�^DOQÑ L9P-��Lde�� ��v���2 Dh=���D K /��j.
� 2 -��<7r/��
	�DF7hK ��DF7�{.47�.�/�5E=�� J gADF245�/���3 :�v�Û�ÞQ�qÛZÈk�
{������WKML$ÕoXZVA���Sx¤Èoy�ÉZ��� � 7 �{7`?CJ��H:<58:�D KW/��j.�� . �R?HGh5EDF2 D K
? 	 J ?H:<:�D K �{.07�.0/�5>= �{-A?4B�/�58GH.����H:4/1.436:�� �:^DK � ^ALdcS`bc�v�K/L9�
NJOQPSRUT-LdVoR/XZY£fhXZT-NDi�RUL9PµOQVDeÊfhX�T_T�iAVD`badOQRU`bXZVIjWa�`�L�VAadL�c�v
l$VA`nmoL�PUcS`nRqp}XZY³[¥`ba�^A`b�oO�V�vA�$VDV��%� X�Pd�
{������QKMLhÕoXZVA�AvZ[Ê�Q�����.X�RSRUL9P
O�VAe�æ��Q[Ê�ojWN LdOQPUc£�Sx¤È�ÈoyZ���
l$cS`bVA�%NAPUX��D~bLdT°��LdVAL9P�OQRUX�PUc#RUX$L9¦kND~bX�PUL:RU^DLhL9Ñ Lda9RUc³XZYAL�ND`bcs�
R�O�cS`bc��.ª«V � �kÇ	�O�aU�¥��L�e�� ��v ��2 Dh=��WD KW/��j.�
h/����47r/�� 	�DF7hK��WDF7
�{.47�.�/�5E=�� J g�DF245;/���36:�v � �ZË¤� �FeWÉk�
���dwu�¤w:`b� L�V�vQt��¤z$`bVoRUL�PUeA`bVA�AvQOQVDe�#�¤[¥`ba�^DO�~bL9u`badÎ2�Sx¤È�ÈZÈo���
�
OQP�OQT_L9RUL�P�adXZVoRSPUXZ~h`bVÊL9moXZ~bi�RU`bXZVDOQPSpIOQ~���X�PU`nRU^DT-c�� �������
� 2 ?H79: ��DF7���GHDHJ PR/�5>DF7`?H2�� 	�DF3WB`PR/>?C/�5>DF7 m �1�Z����xh�FeQ�Ux�eDx��
r:�0w|cS^ALd~bT_O�V�v)t��³f¢OQPUiDO�VDO�v³O�VAe\ÕD�)K��³jWa�^DOQÑ L�P}�Sx¤È�ËZÈo���
Ç£`�O�cSL�cu`bV�RU^AL�a9PUXZcScSX¤moL9P$~�O�VAeAcSa¤OQN L��|ª«V ��2 Dh=�� D K�/��j. � 2 -
�<7r/��
	�DF7hK�� DF7 �{.47�.�/�5E= �WJ g�DF245;/���36:�v)xdÞ]�Ux¤Èk�
r:�_w:cS^DL�~bT}OQV3OQVDe ÕD�_K���jWa�^DOQÑ L9P¡�Sx¤È�ÈFek��� �
PUXkeAiDa9�
RU`nmoLÄPULda�XZTµ�J`bVDOQRU`bXZV�O�VAeÐNAPUX�NJO��oO]RU`�VA�àO�VAeÐNAPUL�cSL�PSmk`�VA�
cSa�^DL�T_OQR�O��¥ª«VÄ[Ê���|X�cSL�O�VAeÊK��#æ�^A`nRU~bL�p���LdeAc��â��v �[DFP 7rL
-A?C/�5>DF7j:�D K��{.07`.�/�5>= � J g�DF245�/���3 : � v`��ÈZÈ]� ��x �W�
���hj���kDP�OQcSL�P§�Sx¤ÈZÉoy]OW���ÌjW`�T�iA~�OQRU`bXZV»XZY$�ZL�VAL�RU`ba¬csp�csRULdT-c
�Wp}O�i�RUXZT_OQRU`baueD`b�Z`nR�O�~Da�XZT-NDi�RUL9PUc��.ª��oª«VoRSPUXkeAiDa9RU`bXZV�� � P :4L
/�2 ?CJ 5E?H7��RDFP 247`?CJ�D K��{5EDHJ D<gF5>= ?CJ�� =05E.07�= .0: ��� � eoËFe��>eWÈ�xQ�
���kjJ�CkAP�O�cSL�Pu�Sx¤ÈZÉoyd�����:jW`�T�iA~�OQRU`bXZV�XZY���LdVAL9RU`�a¢csp�csRULdT-c.�Wp
O�i�RUXZT_OQRU`ba�eA`���`bR�OQ~.a�XZT�NDiARUL9PUc��µªSª���w:Ñ L�a�RUcMXZY|~b`bV��ZOQ�ZL�X�P
P�OQRUL�c�XZY2O�e�mZOQVDa�L}iAVDeAL9P�cSL�~�L�a9RU`�X�V0� �{PR:</�2 ?CJ 5�?H7��RDFP 247`?CJ
D K���5>DHJ D gH5E= ?CJ�� =05E.07�=<.4: ��� � eWÈC�]�>eoÈZÈk�
jJ��kDX�PSPUL�csR�O�VAeg[Ê� [¥`nRUa�^DL�~b~h�SxdÈZÈC�o���$tuLd~�OQRU`nmoL/�JiA`b~beA`�VA���
�D~bXka��}ÍARUVALdcScuOQVDe¬RU^DL$�JiA`b~beA`�VA�����D~bXkaU�}^opkN X�RU^ALdcS`bc��
ª«V�K��
æ�^A`nRU~bL�p¥��Lde��â��v �[DFPR7`-A?C/�5EDF79:�D K��{.07�.0/�5>= � J gADF245�/���3 : �o�
K��Wwu�D�$X�~�e�� L9PU���SxdÈZËZÈo��� �{.47�.�/�5E= � J g�DF245;/���36:{5;7�� . ?H2 = ���
� B�/�5;3 5! c?C/�5EDF7"��?H7`-�# ?�= ��587�.%$[. ?H24795;7�g��¬t%LdO�eA`bVA�Av³[¥���
�$eAeA`�cSX�VA��æIL�cS~bL�pZv
���)wu�.�$X�~�e�� L9PU�Av#ÇM�0{�X�PS�ÊO�VAeI{��)KML����Sx¤ÈZË�Èo���_[¥LdcScsp
�ZL�VAL�RU`ba_O�~b�ZXQPU`bRU^AT-c��/[gXQRU`bm�OQRU`bXZV�v#OQVJOQ~bpkcS`�cµOQVDe\ÍAPUcsRµPUL9�
cSiA~nRUc�� 	wDF3 B�Jt.'&%���F:4/1.03 : m � Éo��� eoÈ �]�qÉ ��Þk�
���]zMO]PU`b��O�VAe����]w2�o�$X�~�e�� L9PU���SxdÈZÈZÛo���#r#LdOQPUVA`bVA�%~b`bV��ZOQ�ZLZ�
ª«V �[DFP 7`-A?C/�5>DF7j:�D K��{.07`.�/�5>= �WJ g�DF245;/���36:�(�v`�Feky¤�M�ZyH�k�
���.zMOQPU`n� v k¢�.r)X�� XgO�VAe����.wu�|�$XZ~be�� L�PU�Ä�Sx¤È�ÈZËo��� � ^DL
a�XZT-NJO�a9R.��LdVAL9RU`�a¢OQ~���X�PU`nRU^DT��)ª«V ��2 Dh=��{D K�/��j. �*)�)*+ �������
	�DF7hK�.42<.47�=<. DF7,��GHDHJ PR/�5>DF7`?H2�� 	wDF3 B`Pj/>?C/�5EDF7Dv�ÉH� �]�qÉC�ZËW�
ÕD� z�� z$XZ~b~GOQVDeÊ�Sx¤Èoy�ÉZ��� �{-A?4B�/>?C/�5>DF75;7�- ?C/�P 2 ?CJ ?H7`- �{20L
/�5 .w=05E?CJ����F:4/1.03 :��:l$VA`nmoL�PUcS`nRqp�XZY#[g`ba�^A`��ZO�V �:PUL�cSc��
ÇM��ÕoiA~�csRSPUX�T �Sx¤ÈZÈ�Éo��� æ�^DOQRI^JO�moL¸poXZi�eAXZVAL�YGX�PÊT-L

~�OQRUL�~bp0/ÄO�eDOQNARU`bVA�ÌX�N L9P�OQRUX�P¥NAPUX��JOQ�D`b~�`nRU`bL�c¥`bV�OÒcsRULdO�e�pk�
csR�OQRUL£�ZL�VDL9RU`ba2O�~b�ZX�PU`nRU^AT��#ª«V�r:�oÕD�Zw|cS^AL�~bT}O�V¬��Lde��â��v ��2 Dh=��
D K�/��j.%1F/�� �<7r/��
	�DF7hK�� DF7 �{.47�.�/�5E= �WJ g�DF245;/���36:�v�Ë�x��qËoyW�
ÕD��r)L�mZLdVA`ba��(�Sx¤ÈZÈ�Éo��� [¥L�R�O]�J`nRUc��Ð�ZL�VAL�RU`ba»LdVAeAXZ�ZL�VAXZiAc
a9PUXZcScSX¤moL9P-a�XZVoRSPUXZ~��gª«V»r:�.ÕD�³w|cS^ALd~bT_O�VÌ��L�e�� ��v ��2 D"= ��D K
/��j.%1F/�� �<7r/��
	�DF7hK�� DF7 �{.47�.�/�5E= �WJ g�DF245;/���36:�v�ËZË¤�qÈZÉk�
ÕD�WtuLdL�e�vktµ� � XkXZTµ�Dc�vAOQVDe}±��o���WÇ2OQPSPU`ba�Ld~b~b`0�Sx¤ÈZÛoyZ���|jW`bT-�
iA~�OQRU`bXZVµXZY��J`bXZ~bXZ��`�adO�~oL9moXZ~bi�RU`bXZV�O�VAe�T_O�a�^D`bVAL|~�LdOQPUVA`bVA�A�0ª��
jWLd~bL�a�RU`bXZV�XZY�cSL�~bYG��PUL9NAPUXkeAiDa�`bVA��VkiAT-L�PU`ba£N�O]RSRUL�PUVAc:�kp�eDOQR�O
NAPUXka�LdcScS`bVA�µT_O�a�^D`bVAL�c�vWL�Ñ L�a�RUc|X�Y�^AL9PULdeA`nR�OQPSp�a�XZVoRSPUXZ~�vWT�i��
R�OQRU`bXZV�RqpkN LµO�VAe�a�PUX�cScS`�VA�A���RDFP 247`?CJ�D K � �j.<DF2 .�/�5>= ?CJ���5EDHJ L
D g2� �"3 � ��x¤È¤� �Fe��k�
t���jJ�JtuXZcSL�VW� L9PU�¥�Sx¤È�ÛoyZ�����r5836PRJ ?C/�5>DF7fD K ��.07�.0/�5>=��{D<B`PjL
J ?C/�5>DF79:54 5�/����5>Dh= �j.0365E= ?CJ ��2 D<B9.020/�5>.4:��#�:^DK � ^ALdcS`bc�vol$VA`b�
moL9PUcS`nRqp¬X�Y.[¥`ba�^D`b�oOQV0vA�$VAV��%� X�Pd�
ÕD�hK��2jWa�^DOQÑ L9P¬O�VAeÌ���h[¥X�PU`bcS^A`bT}O¸�Sx¤ÈZËoy����¡�$VÒO�eDOQNA�
RU`nmoL�a9PUXZcScSX¤mZL�P_eA`�csRSPU`n�Di�RU`bXZV�T-L�a�^DO�VA`bcSTÚYGX�P_�ZL�VAL�RU`ba�OQ~b�
�ZX�PU`nRU^AT-c��|ª«V§ÕD�DÕD�0�%PUL�Y©L�VAcsRULd~b~bL-��L�e0�â��v ��2 Dh=�� D K /��j. �A7`-
�<7r/��
	�DF7hK�� DF7 �{.47�.�/�5E= �WJ g�DF245;/���36:�v �ZÛ¤�>eoÞ��
ÕD�kwu�DjWT_`nRU^�OQVDe � �Jf%��kJX��oOQPSRqp§�Sx¤ÈZÈZÛo���.t%L�a�XZT��D`bVDOQRU`bXZV
csRSP�OQRUL���p\O�eDOQNAR�OQRU`bXZV\mk`GO�L�mZXZ~biARU`bXZV\X�Yh�ZLdVAL-~b`�V���O��ZL���ª«V
��2 Dh=�� D K@/��j. � 2 - ������� �<7r/�� 	wDF7cK�� DF7���GFDHJQPR/�5>DF7r?H2��
	�DF3WB`PR/>?C/�5>DF7DvJËC�ZÛ]�qË �kx��
æ��£[Ä�%jWN LdOQPUc�O�VAeà{-�£���2KML\ÕoXZVA�®�Sx¤ÈZÈkx]����¶%VÌRU^DL
m�`nPSRUiALdcµXZYhN�O]P�O�T_L9RUL9PU`�Î�L�eIiAVD`bYGX�PUT5a�PUX�cScSX¤moL9Pd��ª«V ��2 Dh=��
(j/�� �47r/�� 	wDF7hK � DF7 �{.07`.�/�5>= � J g�DF245�/���3 :�v`� ��ÞQ�M� �ZÛk�
æ��|[Ê�2jWN LdOQPUc¥�Sx¤ÈZÈZÉZ���à�$eDOQNARU`�VA�Ia�PUX�cScSX¤moL9P¬`bV�L9moXZ~bi��
RU`bXZVDOQPSp}O�~b�ZXQPU`bRU^AT-c��³ª«V � 2<Dh= �WD KW/��j.�(j/���� 7j79P9?CJ0��GFDHJQPRL
/�5>DF7r?H2�����2 D<gF2 ?H3636587 g 	wDF7hK0.02 .07`=<.9v �ZÛoyd� �ZËFeA�
æ���[Ê�0jWN LdOQPUc��SxdÈZÈoyZ���%tuLda�XZTµ�D`�VDOQRU`bXZV�NJOQP�OQT_L9RUL�PUc��uª«V
� �]Ç	�O�aU� vQK��]ÇM�"kDXZ�ZL�~�vZO�VAe%�#�][¥`ba�^DO�~bL9u`�a�Îu��LdeAc��â��v76 ?H7`-CL
i<DhD � D K8��GHDHJ PR/�5>DF7`?H2�� 	�DF3WB`PR/>?C/�5>DF7DvÄw%x�� �k��x9�¯wux�� �k�bxZx��
¶u¦�Y©X�PUe�l$VA`nmoL9PUcS`bRqp��:PUL�cSc��
���#jop�cs¢L9PUeDOg�Sx¤È�ËZÈo���/l$VA`�YGX�PUT�a9PUXZcScSX¤moL9P/`bVg�ZL�VDL9RU`ba�OQ~b�
�ZX�PU`nRU^AT-c��.ª«V�ÕD��K��DjWa�^JO]Ñ�L9P/��Lde��â��v ��2 Dh=��WD KW/��j. � 2 - �479/��
	�DF7hK�� DF7 �{.47�.�/�5E= �WJ g�DF245;/���36:�v`�]�qÈW�
��� � iDcSX�VgO�VAe%�³�JtuXZcSc��SxdÈZÈZËo���¢�$eJO]NDRU`bVA�-X�N L�P�OQRUXQP$cSL9RS�
RU`bVA�Zc)`bV���LdVAL9RU`�a:O�~b�ZX�PU`nRU^AT_c��9��GFDHJ Pj/�5EDF7`?H2���	wDF3 B`Pj/>?C/�5EDF7
: �1�o���bx¤Û�x9�Ux¤Ë"eA�
{�� �:L���OQPU`�O¥O�VAeÒf%�|fh~�OQPUaU���Sx¤ÈZÈZÈo���ÂÇ£`�O�cSL�c�`bVoRSPUXkeAiDa�L�e
�Wp�RU^AL�O�eDOQNARU`nmoLµPUL�adX�T��D`bVDOQRU`bXZV§X�N L�P�O]RUX�PUc��%ª«V � � Ç	�OQa��
��L�e0�â��v���2 Dh=��%D KN/��j. �*)�)�) �{.47�.�/�5E=I?H7`-���GFDHJQPR/�5>DF7r?H2��
	�DF3WB`PR/>?C/�5>DF7 	wDF7cK�.02 .47�=<.9vuÛoyQÞQ�qÛoy�yW��jkO�V�[gOQRUL�XAv%fh���
[¥X�PU�oO�V�{µO�iAYGT}O�VAV��
� ��æ�^A`nRULuOQVDe6k¢��¶uNDNJO�a�^AL�P%�Sx¤È�ÈFek���.�$eDOQNARU`nmoL£a�PUX�cScSX¤moL9P
iAcS`bVD�\O�i�RUXZT_OQR�O��\ª«V<;��³K/Odm�`beAX�Pdv:z��|jka�^o¢LdYGLd~£O�VAe»t��
[=�O�VAVAL�P$��LdeAc��â��v ��2 D"= �WD K�/��j. � 2 -��479/�� 	�DF7hK��WDF7 ��?H2 ?CJ8Jt.0J
��2 DAi�J .43>� DHJ Gh5;7�g K<2 DF3?- ?C/�PR2 .�v��H�ZÈ]�M� �ZËW�

GENETIC ALGORITHMS 657

An Enhanced Annealing Genetic Algorithm for Multi-Objective
Optimization Problems

Zhong-Yao Zhu
Dept. of Computer Science & Engineering

Chinese University of Hong Kong
Hong Kong

Kwong-Sak Leung
Dept. of Computer Science & Engineering

Chinese University of Hong Kong
Hong Kong

Abstract

In this paper, we present a new algorithm —
an Enhanced Annealing Genetic Algorithm
for Multi-Objective Optimization problems
(MOPs). The algorithm tackles the MOPs
by a new quantitative measurement of the
Pareto front coverage quality — Coverage
Quotient. We then correspondingly design
an energy function, a fitness function and
a hybridization framework, and manage to
achieve both satisfactory results and guaran-
teed convergence.

1 Introduction

Many real world decision-making problems involve si-
multaneous optimization of several incommensurable
and often competing objectives. Usually, there is no
single optimal solution, but rather a set of alterna-
tive solutions. These solutions are known as Pareto-
optimal solutions, to which no other solutions in the
search space are superior in all the objectives.

Often, for a multi-objective optimization problem
(MOP), a full perception of all the Pareto-optimal so-
lutions would be highly desirable (even imperative) to
the decision-makers so that a comprehensive and high
quality decision can be made. To achieve this, a prac-
tical algorithm should have the capability of simul-
taneously searching a set of Pareto-optimal solutions.
Among various candidates, Evolutionary Algorithms
(EAs) are particularly suitable for this purpose.

In this paper, we present a new algorithm — an
Enhanced Annealing Genetic Algorithm (eAGA) for
MOPs. The algorithm tackles the MOPs by introduc-
ing a quantitative measurement of the Pareto front
coverage quality — Coverage Quotient (CQ). Based on
CQ we can derive the energy function in the Simulated

Annealing Algorithm (SAA) and the fitness function
in the Genetic Algorithm (GA). In the algorithm, a
population is interpreted as a state in the search space.
The proposed algorithm explores the search space from
state to state by means of genetic operations (selection,
crossover, and mutation) and converges to a minimal
energy state containing only Pareto optima. Both sat-
isfactory results and guaranteed convergence can be
achieved with the eAGA.

The paper is organized as follows: Section 2 gives
a brief introduction to multi-objective optimization
problems and an overview of the EA implementation.
Our algorithm is detailed in section 3, followed by the
theoretical analysis in section 4. The simulation re-
sults are presented in section 5. The last section is the
conclusion and the future work.

2 Background

In this section, the basic concepts of multi-objective
optimization problems are introduced. A brief survey
of EAs implementation in MOPs and their strength
and weakness are briefed as the motivation of our al-
gorithm.

2.1 Multi-objective Optimization

A general multi-objective optimization problem is to
optimize a set of objectives subject to some constrains.
Mathematically, a MOP may be stated as in (Rao,
1991):

Min/Max fi(x) i = 1, 2, ..., N
Subject to gj(x) ≤ 0 j = 1, 2, ..., J

hk(x) = 0 k = 1, 2, ..., K

where alternative x is a p-dimensional vector having
p design or decision variables, fi(x) (i = 1, 2, ..., N)
are the objective functions, and gj(x) (j = 1, 2, , ..., J)
and hk(x) (k = 1, 2, ...,K) are the constraint functions.

GENETIC ALGORITHMS658

Solutions to the MOP are mathematically character-
ized in terms of the non-dominated alternatives. Let
F (x) = (f1(x), f2(x), ..., fN (x)) represent the objec-
tive vector. In a minimization problem, for instance,
alternative x(1) is said to be partially less than alter-
native x(2) (denoted by x(1) ≺ x(2)), if no component
of F (x(2)) is less than that of F (x(1)) and there is at
least one component of F (x(2)) is strictly greater than
that of F (x(1)). If x(1) is partially less than x(2), alter-
native x(1) is said to dominate x(2). Any alternative
that is not dominated by others is said to be a non-
dominated point. Any non-dominated points associ-
ated with the MOP are called optimal solutions (more
precisely, Pareto-optimal solutions or non-dominated
solutions) of the MOP. Usually, the image of all Pareto
optimal solutions in objective space is called the Pareto
front.

2.2 Multi-objective Evolutionary Algorithms

According to Zitzler (Zitzler, 1998), the current EA
implementation can be categorized as plain aggre-
gation approaches, population-based non-Pareto ap-
proaches and Pareto-based approaches.

Plain aggregation approaches combine the objectives
into a higher scalar function which is used for fitness
calculation; they produce one single solution and re-
quire profound domain knowledge which is often not
available. Population-based non-Pareto approaches,
however, are able to evolve multiple non-dominated
solutions in parallel; thereby, the population is mostly
monitored for Pareto optima. However in contrast to
the Pareto-based approaches, they do not make di-
rect use of the concept of Pareto dominance. Such
designed algorithms are effective to some extent, but
they usually suffer from prematuring to some special
areas (Schaffer, 1985). Pareto-based EAs compare so-
lutions according to the ≺ relation in order to deter-
mine the reproduction probability of each individual.
This strategy can meet our requirement well. Nev-
ertheless identifying the ≺ relation among individu-
als usually brings higher running time consumption
(Srinivas, 1994).

More comprehensive overviews of EAs in MOPs can
be found in (Zitzler, 1999) (Carlos, 1999),

3 The Enhanced Annealing Genetic
Algorithm

In this section, we present the new algorithm — an
Enhanced Annealing Genetic Algorithm (eAGA) for
MOPs. As most of non-dominated sorting GAs, we
design our algorithm based on two considerations: 1)

the non-dominance of solutions, and 2) the coverage
of the Pareto front.

As suggested by its name, the new algorithm is a
hybridization of the Simulated Annealing Algorithm
(SAA) (Laarhoren, 1989) and the Genetic Algorithm
(GA) (Goldberg, 1989). The algorithm tackles the
MOPs by introducing a quantitative measurement of
the Pareto front coverage quality — Coverage Quo-
tient (CQ). The energy function in SAA and the fit-
ness function in GA are derived from this measurement
correspondingly. In the algorithm, a population is in-
terpreted as a state in the search space. The neighbor-
hood relationship between states is defined in terms of
their individual discrepancy. The proposed algorithm
explores the search space from state to state by means
of genetic operations (selection, crossover, and muta-
tion). Ultimately, the exploration converges to a min-
imal energy state which can be proved to contain only
Pareto optima. The details are given in the following
subsections.

3.1 Uniform Expression of Population

For clarity and simplicity, we define an alternative rep-
resentation of populations. In this representation, all
populations that differ from each other only in the
order of individuals are treated as the same and ex-
pressed in a unique format.

Suppose the individuals are all expressed as L bits bi-
nary strings. Then the individual space is given by
{0, 1}L and can be isomorphic to the finite-state space:

{0, 1, · · · , i, · · · , 2L − 1}

where i (0 ≤ i ≤ 2L − 1) is the index of indi-
viduals (Reeves, 1993). From this point of view, a
population Φ with size n can then be represented as
Φ = (φ0 φ1 · · · φi · · · φ2L−1) where φi is the number
of times of individual i appearing in the population Φ.
It is clear that there are at most n nonzero elements

in Φ and
2L−1∑
i=0

φi = n.

The set consisting of all the populations with size
n is denoted as Sn. Each population is interpreted
as a state in Sn. The neighbors of a state Φ =

(φ0 φ1 · · · φ2L−1) are defined as all the populations

Φ′ = (φ′0 φ
′
1 · · · φ′2L−1) which satisfy:

2L−1∑
i=0

|φi−φ′i| = 2.

All the neighbors of Φ are denoted as N(Φ).

GENETIC ALGORITHMS 659

3.2 The Pareto Front Coverage Quality
Measurement

The Coverage Quotient (CQ) gives a quantitative mea-
surement of the Pareto front coverage quality. It is
based on the idea that a good coverage of the Pareto
front by a population Φ should minimize the potential
that a non-Pareto point is wrongly judged as a Pareto
point when compared against Φ. The formal definition
is given as follows:

Definition. 1: Given F is a MOP and N is the number
of objectives:.

• Let Pmini, Pmaxi be the minimum and maximum of
all the Pareto points in objective i (1 ≤ i ≤ N), the
hyper-cube

U = [Pmin1, Pmax1] × ... × [PminN , PmaxN],

which contains all the Pareto points, is defined as P-
Cube of F .

• Given a population Φ = {d1, d2, ..., dn},

D(di) = [F (di)1,∞]× ... × [F (di)N ,∞], and
Dn(Φ) = D(d1) ∪D(d2) ∪ ... ∪D(dn)

(1)
are defined as the dominating region of individual di
(1 ≤ i ≤ n) and dominating region of population Φ
respectively.

• The Coverage Quotient (CQ) of Φ is defined as

CQ(Φ) = |U | − |U ∩Dn(Φ)|. (2)

• The population Φ is said to be an optimal coverage of
the Pareto front if

CQ(Φ) = min
Φ′
{CQ(Φ′)| Φ′ ∈ Sn}.

Figure 1: The Coverage Quotient in 3 cases: (a) evenly

distributed Pareto points, (b) crowded Pareto points, and

(c) non-Pareto points

A graphic illustration of Def.1 is given in Figure 1.
Assuming the curve is the Pareto front, the shadowed
regions represent the Coverage Quotient in 3 cases re-
spectively.

In Def.1, when we identify an individual’s non-
dominance by comparing it with population Φ, it can
be correctly justified only if it is located inside Dn(Φ).

Thus we can reduce the risk of misjudgment by max-
imizing the dominating region Dn(Φ) or equivalently,
minimizing the Coverage Quotient CQ(Φ). However,
a direct calculation of CQ from Formulas (1) and (2) is
difficult for high dimension objectives. Thus in Def.2,
an alternative definition of the Coverage Quotient is
presented:

Definition 2: Given F , N , Φ, U and D(·) as in Def.1:

• Let P (Φ) = {d1, d2, .., dnp} ⊂ Φ (np ≤ n) be all the
individuals which satisfy;

1. di 6= dj (1 ≤ i, j ≤ np);

2. ∀ di ∈ P (Φ), 6 ∃ dj ∈ Φ, s.t. dj ≺ di
(1 ≤ i ≤ np, 1 ≤ j ≤ n).

The Coverage Quotient (CQ) of Φ is defined as

CQ(Φ) = −
∑

di 6=dj∈P (Φ)

|(D(di) ∪D(dj)) ∩ U |.

In Def.2, the calculation of CQ just needs n2 running
time complexity. Meanwhile, with such defined CQ,
the proposed algorithm can be guaranteed to converge
to a population consisting of only distinct Pareto in-
dividuals as proved in section 4.

Correspondingly, we define the energy function of a
state Φ as:

E(Φ) = CQ(Φ),

and the fitness function of an individual di ∈ Φ (1 ≤
i ≤ n) as:

fit(di,Φ) = e
CQ(Φ\di)−MinCQ(Φ)

MaxCQ(Φ)−MinCQ(Φ) ,

in which:

MinCQ(Φ) = min
d∈Φ
{CQ(Φ\d)}

MaxCQ(Φ) = max
d∈Φ
{CQ(Φ\d)}

3.3 State Transformation (ST) Operation

In the eAGA, the ST operation is the primary search
technique. A GA-like evolutionary process is adopted
to form the backbone of the ST operation. Further-
more, an additional acceptance procedure is employed
to guarantee the global convergence of our algorithm.
The framework of this operation is given as follows:
For a population Φ = {φ0 φ1.......... φ2L−1}:

1. Perform Roulette selection on Φ to choose two indi-
viduals d1 and d2 as the parents.

2. Perform crossover and mutation on d1 and d2 to pro-
duce two children d′1 and d′2.

GENETIC ALGORITHMS660

3. Randomly select a parent d ∈ {d1, d2} and a child
d′ ∈ {d′1, d′2}.

4. Replace d in Φ with d′ to form a new population Φ′.

5. Accept Φ′ to be the new state at probability

min{1, P (d,Φ′)
P (d′,Φ)}

in which, P (k,Φ) is the probability at which individual
k (k ∈ {0, 2L − 1}) is produced by performing selec-
tion, crossover, and mutation on population Φ. It is
calculated as follows:

Given the indices of the nonzero elements in Φ are

0 ≤ p1 < p2 < p3 <pn′ ≤ 2L − 1 (n′ ≤ n),

then
P (k,Φ) = F̃ T (Φ)R̃(k)F̃ (Φ), (3)

where F̃ (Φ) = (F̃0(Φ), ..., F̃n′(Φ)) ∈ Rn′ with

F̃i(Φ) =
fit(pi,Φ)φpi

n′∑
j=1

fit(pj ,Φ)φpj

i = 1, ..., n′. (4)

and R̃(k) = (R̃(k)i,j) = (rpi,pj (k)) ∈ Rn′×n′ .
ri,j(k) (i, j = p1, . . . , pn′) is the probability at which
individual k is produced from the crossover and mu-
tation of the individuals i and j. It is computed by
means of the transformation:

ri,j(k) = ri⊕k,j⊕k(0) (5)

and

ri,j(0) = 1
2

L∑
k=0

Rc
L+1 ((1−Rm)L−H(m1(i,j,k))R

H(m1(i,j,k))
m

+(1−Rm)L−H(m2(i,j,k))R
H(m2(i,j,k))
m)

+ 1
2 (1−Rc)((1−Rm)L−H(i)R

H(i)
m

+(1−Rm)L−H(j)R
H(j)
m)

where

m1(i, j, k) = i ⊗ (2k − 1)⊕ j ⊗ (2k − 1),

m2(i, j, k) = i ⊗ (2k − 1)⊕ j ⊗ (2k − 1), 0 ≤ k ≤ L,

with Rc being the crossover rate; Rm being the muta-
tion rate; ⊕ being the exclusive-or operator; ⊗ being
the logical-and operator; − being the inverse opera-
tor; and H(m) being the Hamming distance between
individuals m and 0 (Vose, 1991) (Vose, 1995).

3.4 P-Cube Approximation

Notice that identifying P-Cube requires pre-knowledge
of all the Pareto optima, which is usually unavailable
in most cases. In the eAGA, a dynamic estimation ap-
proach is adopted which can approximate the P-Cube

as the algorithm proceeds. In the algorithm, two ar-
rays Bmini and Bmaxi and 2N binary strings Imini
and Imaxi (1 ≤ i ≤ N) are maintained. The Bmini
and Bmaxi record the minimal and maximal values in
the ith objective of all the Pareto points ever found
and the Imini and Imaxi (1 ≤ i ≤ N) record the in-
dividuals which attain Bmini and Bmaxi in the ith
objective respectively. For Imini/Imaxi, it is replaced
by a new Pareto point d iff

• d ≺ Imini/Imaxi; or

• d and Imini/Imaxi are non-dominated to each
other, but F (d)i < Bmini/F (d)i > Bmaxi.

(Note: / denotes or).
Once an Imini/Imaxi is modified, Bmax and Bmin
must be updated correspondingly by:

Bmini = min {F (Imink)i, F (Imaxk)i| k = 1, ..., N}
Bmaxi = max {F (Imink)i, F (Imaxk)i| k = 1, ..., N}

(1 ≤ i ≤ N.)
(6)

It is proved in section 4 that this estimation can ap-
proximate and eventually converge to the P-Cube as
the algorithm progresses.

3.5 Algorithm Framework

The overall framework of our algorithm is given as
follows:

1. Initialization

1.1 Select an initial population Φ

1.2 Select an initial temperature T

1.3 Select an annealing function S(T) = α · T
1.4 Perform non-dominated sorting on Φ and fill the

Bmin, Bmax, Imin and Imax

2. State Transformation

2.1 Perform Roulette selection on Φ to choose two
individuals d1 and d2 as the parents.

2.2 Perform crossover and mutation on d1 and d2 to
produce two children d′1 and d′2.

2.3 Randomly select a parent d ∈ {d1, d2} and a child
d′ ∈ {d′1, d′2}.

2.4 Replace d in Φ with d′ to form a new population
Φ′.

2.5 Update the Bmin, Bmax, Imin and Imax with
individual d′.

2.6 Accept Φ′ to be the new state at probability

min(1,
P (d,Φ′)

P (d′,Φ)
) min{1, eE(Φ)−E(Φ′)

T
}

2.7 If Φ′ is accepted, then Φ := Φ′,

3. T := S(T)

GENETIC ALGORITHMS 661

4. If stop criterion is not met, then goto 2.1

5. Exit.

Note: α is an annealing parameter which satisfies 0 <
α < 1.

4 Convergence Analysis

In this section, the theoretical analysis of the proposed
algorithm is presented.

Lemma 1: For MOP F , suppose Bmingi and
Bmaxgi (1 ≤ i ≤ N) are minimal and maximal val-
ues of all Pareto points in the ith objective; Imingi
and Imaxgi ∈ {0, 1}L (1 ≤ i ≤ N) are the individu-
als which attain Bmingi and Bmaxgi in the ith objec-
tive respectively. Given mutation rate Rm is nonzero,
the estimations Bmini and Bmaxi will converge to
Bmingi and Bmaxgi (1 ≤ i ≤ N) as the algorithm
progresses.

Proof: We prove the Lemma in two steps:

1. We will prove that Imingi (1 ≤ i ≤ N) will be found
as the algorithm proceeds. Let pni be the probability
that Imingi is not found in iteration n. It is obvious

that pni ≤ 1−RLm < 1. Then the probability P ni that
Imingi (1 ≤ i ≤ N) is not found in the first n iteration
is:

Pni =

n∏

j=1

pji < (1−Rm)n −→ 0 (n→∞).

2. We will prove that once an Imingi (1 ≤ i ≤ N) is
found, it cannot be replaced by other individuals.
Suppose Imingi is found, then an individual d will
replace it iff

Case 1: d ≺ Imingi ; or

Case 2: d and Imingi are non-dominated to each
other, but F (d)i < Bmingi .

Because Imini is a Pareto point, Case 1) would not
happen. If Case 2) happens, this means that there
exists another non-dominated individual d′ satisfies:
F (d′)i < Bmingi which contradicts with the assump-
tion.

The Imaxgi (1 ≤ i ≤ N) case can be proved in the same
way.

Combining 1, 2 and Formula (6), we finish the proof of

Lemma 1.

Lemma 2: Given population Φ = {d1, d2, ..., dn} is
the optimal coverage in Def.1, then di (1 ≤ i ≤ n) are
all Pareto individuals. (Suppose there exist more than
n Pareto individuals).

Proof: (By contradiction). Suppose dk (1 ≤ k ≤ n) is not
a Pareto individual. Then there exists a Pareto individual
d which dominates dk.

1. If d ∈ Φ, then replace dk with a Pareto individual
d′ 6∈ Φ to form a new population Φ′. It is easy to see
that:

E(Φ) > E(Φ′),

which contradicts with the definition of optimal cov-
erage.

2. If d 6∈ Φ, then replace dk with d to form a new popu-
lation Φ′. It is the same as in 1 that:

E(Φ) > E(Φ′),

which contradicts with the definition of optimal cov-
erage.

This finishes our proof of Lemma 2.

Lemma 3: Given population Φ = {d1, d2, ..., dn} is
the optimal coverage in Def.2, then di (1 ≤ i ≤ n) are
all distinct Pareto individuals. (Suppose there exist
more than n Pareto individuals).

Proof: The proof of Lemma 3 is similar to that of Lemma

2 with minor modification.

Theorem : As T→ 0, the eAGA converges to a pop-
ulation consisting of only distinct Pareto individuals.

Proof: It is clear that for any fixed temperature T, as the
population evolves, the eAGA defines a homogeneous finite
state population Markov chain. Let M be the number of
total populations. Then the probability transition matrix
of the Markov chain can be expressed as (Iosifescu, 1980):
For states Φi and Φj ,

Pi,j(T) =

Gi,j(T)Ai,j(T) j 6= i

1−
M∑

l=1,l6=i
Gi,l(T)Ai,l(T) j = i . (7)

Here

Gi,j(T) =

{
P (Φi,Φj)min{1, P (d,Φi)

P (d′,Φj)} Φj ∈ N(Φi)

0 otherwise.
(8)

and Ai,j(T) = min{1, e(
E(Φi)−E(Φj)

T
)}, (9)

in which: d ∈ Φj and d 6∈ Φi; d′ ∈ Φi and d′ 6∈ Φj .

From Formula 8, we can see that Gi,j(T) = Gj,i(T).

From Formula 9, it follows that whenever E(Φi) ≤
E(Φj) ≤ E(Φk),

Ai,k(T) = min{1, e(
E(Φi)−E(Φk)

T
)} = Ai,j(T)Aj,k(T)

and whenever E(Φi) ≤ E(Φj), 0 ≤ Ai,j(T) ≤ 1 and

lim
T→0

e(
E(Φi)−E(Φj)

T
) = 0.

GENETIC ALGORITHMS662

Accordingly, lim
T→0

Ai,j(T) = 0. By the Folklore’s lemma

(Laarhoren, 1989), the stationary distribution q(T) of the
Markov chain exists and satisfies

lim
T→0

qi(T) =
1

|Sopt|
χSopt(i), (10)

in which Sopt = {Φ|E(Φ) attains the minimum}, and

χSopt(i) =

{
1 i ∈ Sopt
0 otherwise.

from Formula 10, lim
T→0

Φ(T) ∈ Sopt follows.

This finishes the proof of the Theorem.

5 Simulation

In this section, we show the effectiveness and efficiency
of the eAGA in a set of simulations. The test problems
are given as follows:

Min. T1(x) = (f1(x), f2(x))
f1(x) = 1 − exp(−

∑n

i=1
(xi − 1√

n
)2)

f1(x) = 1 − exp(−
∑n

i=1
(xi + 1√

n
)2)

where −4 ≤ xi ≤ 4, n = 3

Min. T2(x) = (f1(x), f2(x))
f1(x) = x1

f2(x) = g(x)h(f1(x), g(x))
g(x) = 1 + 9 ×

∑n

i=2
xi/(n − 1)

h(f1, g) = 1 −
√
f1/g

where 0 ≤ xi ≤ 1, n = 30

Min. T3(x) = (f1(x), f2(x))
f1(x) = x1

f2(x) = g(x)h(f1(x), g(x))
g(x) = 1 + 9 ×

∑n

i=2
xi/(n − 1)

h(f1, g) = 1 − (f1/g)2

where 0 ≤ xi ≤ 1, n = 30

Min. T4(x) = (f1(x), f2(x))
f1(x) = x1

f2(x) = g(x)h(f1(x), g(x))
g(x) = 1 + 9 ×

∑n

i=2
xi/(n − 1)

h(f1, g) = 1 −
√
f1/g − (f1/g) sin(10πfi)

where 0 ≤ xi ≤ 1, n = 30

The simulations are carried out to verify: 1) the
efficiency of the eAGA, and 2) the effectiveness of
the Coverage Quotient in both definitions. For these
purposes, the execution results of eAGA-I, eAGA-II,
SPEA (Zitzler, 1999) and NSGA (Srinivas, 1994) are
compared in terms of: 1) the non-dominance of result-
ing solutions, and 2) the coverage of the Pareto front,
which are two main considerations in most of the cur-
rent EA-based MOP algorithms. (Note: eAGA-I and
eAGA-II are abbreviations for the eAGA with CQ de-
fined by Def.1 and Def.2 respectively).

To make the comparisons fair, the algorithms are ex-
ecuted 30 times on each of the test problems. In each
run, all algorithms begin from the same initial pop-
ulation. The final results are taken as the average of
these 30 runs. All algorithms are executed for the same
length of time.

Independent of the algorithms and the test problems,
each simulation is carried out using the following pa-
rameters:

Population size : 100
Crossover rate : 0.8
Mutation rate : 0.01
Individual length : 12
Niching parameters σshare : 0.48862
Elitist population size : 100

Particularly, in the eAGA we take:

Initial Temperature T : 1000
Annealing Parameter α : 0.97

In Figures 2 to 5, the Pareto fronts achieved by the
different algorithms are displayed.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(1)

f1

f2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(2)

f1

f2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(3)

f1

f2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(4)

f1

f2

Figure 2: Test function T1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(1)

f1

f2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(2)

f1

f2

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
(3)

f1

f2

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
(4)

f1

f2

Figure 3: Test function T2

GENETIC ALGORITHMS 663

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(1)

f1

f2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(2)

f1

f2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(3)

f1

f2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(4)

f1

f2

Figure 4: Test function T3

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5
(1)

f1

f2

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5
(2)

f1

f2

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5
(3)

f1

f2

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5
(4)

f1

f2

Figure 5: Test function T4

(1): eAGA-I (2): eAGA-II (3): SPEA (4): NSGA

It can be observed from the figures that eAGA-I has
the best performance in all the four test problems.
In T2, T3, and T4, eAGA-II can yield similar per-
formance as eAGA-I. However, in T1, SPEA slightly
outperforms eAGA-II which misses some Pareto op-
tima close to the boundaries.

In measuring the non-dominance of results, we adopt
a quantitative metric, C metric, presented in (Zitzler,
1999). To identify the non-dominance of a solution,
we need to compare it with all the other individuals in
the search space. This is definitely unrealistic. Thus,
instead of identifying the absolute non-dominance of
a solution, C metric compares the non-dominance re-
lationship between the outcomes of two algorithms.
Given a pair of algorithms A1 and A2, C metric es-
timates the non-dominance of A1 by calculating the
percentage of the solutions of A1 which are dominated
by those of A2. Mathematically, C metric is defined
as follows:

Let X ′, X ′′ ⊆ X be two sets of decision vectors.
The function C maps the ordered pair (X ′, X ′′)

to the interval [0,1]:

C(X ′, X ′′) =
|{a′′ ∈ X ′′; ∃a′ ∈ X ′ : a′ ≺ a′′}|

|X ′′| .

The value C(X ′, X ′′) = 1 means that all solutions in
X ′′ are dominated by or equal to solutions in X ′. The
opposite, C(X ′, X ′′) = 0 represents the situation that
none of the solutions in X ′′ are covered by the set X ′.
Note that both C(X ′, X ′′) and C(X ′′, X ′) have to be
considered, since C(X ′, X ′′) is not necessarily equal to
1-C(X ′′, X ′).

The comparison results of C metric are given in Ta-
ble 1. For each ordered algorithm pair, there are 30
C values according to the 30 runs performed. Each C
value is computed on the basis of the non-dominated
sets achieved by the pair of algorithms with the same
initial population. The final result is taken as the av-
erage of these 30 C values.

Table 1: Comparison of C(X ′, X ′′) and C(X ′′, X ′), in
which X ′′ is the outcomes of eAGA-I and X ′ is the

outcomes of eAGA-II, SPEA, and NSGA respectively.

C(x′, x′′) T1 T2 T3 T4
eAGA-II 0.1791 0.3492 0.2646 0.4751

SPEA 0.2388 0.1384 0.4101 0.2214
NSGA 0.1194 0.0776 0.1124 0.1041

C(x′′, x′) T1 T2 T3 T4
eAGA-II 0.3024 0.7152 0.5490 0.6964

SPEA 0.2928 0.8412 0.4483 0.7108
NSGA 0.7137 0.9927 0.8334 0.9174

In measuring the coverage of the Pareto front, we
adopted the metric presented by (Deb, 2000). This
metric is based on the consecutive distances among
the non-dominated solutions. The non-dominated so-
lutions are compared with a uniform distribution and
the deviation is computed as follows: Given a set of
non-dominated solutions P ,

∆ =

|P |∑

i=1

|di − d|
|P | ,

in which, di is the Euclidean distance between two
consecutive solutions in P in the phenotype space and
d is the average of all the dis. In order to ensure that
this calculation takes into account of the spread of so-
lutions in the entire region of the Pareto front, the
boundary solutions are included in P . In our imple-
mentation, the boundary solutions are the individuals
which attend minimum in at least one objective func-
tion.

GENETIC ALGORITHMS664

The deviation measure ∆ of these consecutive dis-
tances is then calculated for each run. An average of
these deviations over 30 runs is calculated as the mea-
sure (∆) for comparing different algorithms. Thus, it
is clear that an algorithm having a smaller (∆) is bet-
ter, in terms of its ability to widely and evenly spread
solutions in the Pareto front.

Table 2 shows the average deviation, (∆) in all the test
problems.

Table 2: Comparison of average deviation ∆ obtained
using eAGA-I, eAGA-II, SPEA, and NSGA.

T1 T2 T3 T4
eAGA-I 0.0064 0.0175 0.0093 0.0222
eAGA-II 0.0072 0.0211 0.0101 0.0338

SPEA 0.0069 0.0261 0.0144 0.0482
NSGA 0.0174 0.0318 0.0295 0.0765

The quantitative comparison in Tables 1 and 2 con-
forms with our observation in Figures 2 to 5. In all
the four test problems, eAGA-I is observed to have the
best performance in both the non-dominance of solu-
tions and the coverage of the Pareto front. In T2 and
T4, the results of eAGA-I can cover more than 70%
of those of SPEA. Nevertheless, the results of SPEA
can only cover less than 23% of the those of eAGA-
I. Similar performances are yielded by eAGA-I and
SPEA in T2 and T3. But the results of eAGA-I have
much more even distribution along the Pareto front as
shown in Table 2. As eAGA-II, in T2 and T3, eAGA-I
outperforms it by covering more than 53% of its re-
sults. Meanwhile, it can only cover less than 35% of
those of eAGA-I. In T1 and T4, eAGA-I still has bet-
ter performance, even the superiority is not so remark-
able. In measuring the coverage of the Pareto front,
eAGA-I and eAGA-II outperform SPEA and NSGA
in most of the cases. However, in T1 and T4, eAGA-
II fails to find the Pareto optima in the regions near
the boundaries. We believe that this failure is caused
by the limitation of Def.2 which assigns less reproduc-
tion potential to the individuals in these regions. We
acknowledge the existence of such limitation and will
focus our attention to improve this weakness in the
future work.

6 Conclusion

In this paper, we have presented an Enhanced Anneal-
ing Genetic Algorithm (eAGA) for Multi-Objective
optimization problems. We have also proved its con-
vergence. On four difficult test problems borrowed
from the literatures, it is found that the proposed
eAGA-I and eAGA-II outperform SPEA and NSGA

— two well known multi-objective EAs in the explicit
goals of the non-dominance of the solutions and the
coverage of the Pareto front. With the properties of
high effectiveness and superior performance, the eAGA
should find increasing attention and applications in the
near future.

Acknowledgments

This research is partially supported by a Hong Kong
Government RGC Earmarked Grant, Ref. No. CUHK
4212/01E.

References

Carlos, A. C. (1999), A Comprehensive Survey of
Evolutionary-based Multi-objective Optimization Tech-
niques. Knowledge and Information Systems. An Inter-
national Journal, 1(3):269-308.

Deb, K., Agrawal, S., Pratap, A. & Meyarivan, T (2000), A
Fast Elitist Non-dominated Sorting Genetic Algorithm for
Multi-objective Optimization: NSGA-II. KanGAL Reports
No. 200001, Indian Institute of Technology Kanpur.

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. MA: Addison-wesley.

Iosifescu, M. (1980), Finite Markov Processes and Their
Application, New York: John Wiley & Sons.

Laarhoren, P. J. M. Van., & Aarts, E. H. L. (1989). Sim-
ulated Annealing: Theory and Applications. Kluwer Aca-
demic Publishers.

Rao, S. S., (1991), Optimization Theory and Application,
New Delhi: Wiley Eastern Limited.

Reeves, C. R. (1993). Modern Heuristic Techniques for
Combinatorial Problem. Halsted Press, John Wiley &
Sons.

Schaffer, J.D. (1985). Multiple Objective Optimization
with Vector Evaluated Genetic Algorithms. In J.J. Grefen-
stette (Eds.), Genetic algorithms and their applications:
Proceedings of the First International Conference on Ge-
netic Algorithms, 93-100.

Srinivas, N., & Deb, K. (1994). Multi-objective Optimiza-
tion using Non-dominated Sorting in Genetic Algorithms.
Evolutionary Computation. 2(3):221-248.

Vose, M. D.,& Liepins, G. E. (1991), Punctured equilibria
in genetic search, Complex system, Vol.5:31-44.

Vose, M. D. (1995), Modeling simple genetic algorithms.
Evolutionary computation, 33(4):453–472.

Zitzler, E., & Thiele, L. (1998), Multi-objective Optimiza-
tion Using Evolutionary Algorithm — A Comparative Case
Study. Parallel Problem Solving from Nature V:292-301,
Netherlands: Springer.

Zitzler, E., & Thiele, L. (1999), Multi-objective Evolu-

tionary Algorithms: A Comparative Case Study and the

Strength Pareto Approach. Evolutionary Computation,

3(4): 257-271.

GENETIC ALGORITHMS 665

