
GENET IC PROGRAMMING
Pos te r Pape rs
Riccardo Po l i , cha i r

Comparison of Evolving Against Peers and Fixed Opponents Using
Corewars

Jason Cooper

Department of Computer Science

Loughborough University

LEICS, LE11 3TU

j.l.cooper@lboro.ac.uk

Chris Hinde

Department of Computer Science

Loughborough University

LEICS, LE11 3TU

c.j.hinde@lboro.ac.uk

Abstract

Two methods of evolving Corewars programs

are compared, one against a �xed set of op-

ponents, another against the other programs

in the generation. The �xed opponent system

improves faster initially but is limited overall.

The second is slower to evolve but achieves a

better �nal result.

EVOLVING COREWARS WARRIORS

Corewars[1] is a game where two programs written in

a language called redcode, try to destroy each other.

The programs �ght against each other in a simulator.

A program wins when all of its opponent's processes

have terminated with invalid instructions.

A group of warriors evolved against �xed opponents

(Group F) was compared with a similar group evolv-

ing against their peers (Group P). An unseen control

set of 10 �xed opponents (Group C), was used as a

benchmark to compare the other two groups giving a

common �tness indicator for both sets. The warriors

in the control group had competed in previous inter-

national Corewars tournaments in 1989 and 1990.

The values shown on the graph in Figure 1 are the

average �tness level of Group P and Group F, over

300 generations, when tested against Group C. The

initial performance of Group F can be explained by

the more stable environment they are in. Later on

though, Group F reach a stage where they are getting

reasonable results most of the time against their �xed

opponents. Individuals in Group P do not stay ahead

of one another for long as the best strategies propagate

through the rest of the population over the next few

generations and so any successful individual must �nd

a better strategy to enable them to win. The strate-

gies evolved by both groups are transferable as neither

group has any knowledge of the control group.

Figure 1: Fitness levels of Group P and Group F

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

F
itn

es
s

Le
ve

l

Generations

Fitness Levels of Both Warriors

’Group F’
’Group P’

Table 1: League table of Group C and the best indi-

vidual in Group P and Group F at generation 350

Position Warrior Fitness

1..4 Control Opponent 6,4,9,8 91 .. 122

Best Individual of

5 Group P after 350 71

Generations

6 Control Opponent 10 62

Best Individual of

7 Group F after 350 61

Generations

8..12 Control Opponent 3,5,2,1,7 41 .. 57

Acknowledgements

The authors of this paper would like to acknowledge

the support of Nortel Networks.

References

[1] Dewdney A.K., 1990, The Magic Machine: A

handbook of Computer Sorcery. ISBN 0-7167-

2125-2.

GENETIC PROGRAMMING POSTERS 887

Open BEAGLE: A New C++ Evolutionary Computation Framework

Christian Gagn�e and Marc Parizeau
Laboratoire de Vision et Syst�emes Num�eriques (LVSN)

Universit�e Laval, Qu�ebec (QC), Canada, G1K 7P4.
E-mail: f cgagne,parizeaug@gel.ulaval.ca

Abstract

This poster introduces a new C++ Evolu-
tionary Computation (EC) framework named
Open BEAGLE. This framework is freely
available on the projet's Web page at
http://www.gel.ulaval.ca/~beagle .

Open BEAGLE1 is a C++ framework for doing al-
most any kind of EC. Its architecture follows the prin-
ciples of Object Oriented (OO) programming, where
some abstractions are represented by loosely coupled
objects and where it is common and easy to reuse code.
Open BEAGLE has a three level architecture as illus-
trated by Figure 1. The OO foundations are the basis
of this architecture, as an object oriented extension of
C++, inspired by design patterns(Gamma et al., 1994;
Lenaerts and Manderick, 1998). It o�ers basic func-
tionalities like smart pointers and garbage collection,
object allocators, standard containers, and XML I/O
streams. The generic EC framework implements basic
mechanisms and structures for designing versatile spe-
cialized Evolutionary Algorithms (EA). It is summa-
rized in Figure 2. It comprises three main components:
a vivarium, an evolution system, and an evolver. The
vivarium is a container for demes of generic individ-
uals. The individuals themselves are speci�ed by an
abstract genotype. This genotype can be instantiated
to any relevant structure (in Figure 2, it is shown as
a bit string, but this is just an example). Individuals
and demes can also be specialized if needed.

In the evolution system, the context contains the state
of the genetic engine, such as the current deme and
generation number. This concept is similar to the exe-
cution context of a computer. The register is a central
repository for all evolution parameters. The evolving
process itself is governed by anevolver that de�nes
sequences of operations, contained in operator sets,

1The recursive acronym BEAGLE means the Beagle En-
gine is an Advanced Genetic Learning Environment .

Figure 1: Open BEAGLE Framework Architecture.

Figure 2: Generic EC Framework Architecture

that are iteratively applied to demes. The evolver ap-
plies the bootstrap operator set to initialize the �rst
generation, and themain-loop operator setto the sub-
sequent generations. For common EA, standard op-
erators have been de�ned, such as common selection
schemes, crossovers, mutations, statistics calculation,
and evolution checkpoint backup.

The specialized frameworks are at the top level of
the architecture. Currently, only classical genetic al-
gorithms and genetic programming frameworks have
been implemented. But we are looking forward to ex-
ternal contributions by interested researchers for other
specialized EA. Extensive documentation is available
on the Open BEAGLE's Web page.

References

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J.: 1994, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley

Lenaerts, T. and Manderick, B.: 1998, Building a
genetic programming framework: The added-value
of design patterns, in Proceedings of EuroGP '98,
Vol. 1391 of LNCS, pp 196{208, Springer-Verlag

GENETIC PROGRAMMING POSTERS

How Statistics Can Help in Limiting the Number of Fitness Cases
in Genetic Programming

Mario Giacobini, Marco Tomassini, Leonardo Vanneschi

Institut d'Informatique, University of Lausanne, 1015 Lausanne, Switzerland

fMario.Giacobini,Marco.Tomassini,Leonardo.Vanneschig@iis.unil.ch

For most real world applications of GP it is well known

that �tness evaluation is the most time consuming

operation. It would thus be interesting to establish

criteria that can help in limiting the time spent in

this phase as much as possible without compromising

results in terms of quality. One is thus confronted

with two problems: how to select a suÆcient num-

ber of �tness cases and how to choose those �tness

cases in such a way that they are e�ective in driving

the learning process towards a solution. Here we ap-

proach the former problem from a standard statistical

and information-theoretical viewpoint.

Let us consider a GP problem where the target func-

tion is de�ned on N �tness cases. It can be shown that

the mean distance of all the individuals of a popula-

tion from the target function is normally distributed

(�x � N(�; �)). A standard result for the con�dence

interval gives [2]:

P

�
�x� t�=2

�
�p
n

�
< � < �x+ t�=2

�
�p
n

��
� 1� �;

where 1�� is the con�dence with which we can expect

the mean � to be contained in the given interval. The

t�=2 is the Student cumulative distribution such that

the mean deviates from its true value in the interval

(�t�=2; t�=2). The standard deviation � is unknown

but can be estimated by the sample variance S. If we

set K = 2t�=2(�=
p
n), the length of the con�dence in-

terval, we get a function relating the number of �tness

cases n that must be used in order for the mean �tness

to be estimated to be in the con�dence intervalK with

a given probability 1� �.

The target function g : fx1; :::; xNg ! fy1; :::; yMg can
be seen, from another viewpoint as a random variable,

and it is thus possible to calculate its entropy:

H(g(x)) = � 1

ln(N)

MX
j=1

pj ln(pj);

where pj = P (g(x) = yj) for j 2 f1; :::;Mg. Such a

measure indicates the quantity of information needed

to determine the function itself, i.e., the minimal num-

ber of �tness cases needed for a reliable reconstruction

of the target function g.

To test the validity of our assumptions we have studied

two simple problems: a seven variables boolean func-

tion, and a step function. The aim is to show the sta-

tistical behavior of the GP evolutions when the num-

ber of �tness cases is decreased. For such a purpose

standard GP has been run 50 times for each percentage

of �tness cases, randomly chosen with uniform proba-

bility. For both target functions we observe a similar

statistical behavior. When the number of �tness cases

is such that the level of con�dence is 0.99 we observe

a normal convergence behavior, while with a number

of �tness cases lower than such a value we get oscil-

lating curves and the length of the con�dence interval

drastically increases. Such a result is consistent with

the entropy which is found to be close to that value

of n. For the boolean function the minimal n is about

18 with respect to 128 �tness cases, while for the step

function we get 27 instead of the full 100 cases.

Our results are of a statistical nature and thus they do

not depend on the particular problem. Some previous

works have tackled the problem of limiting the number

of �tness cases heuristically (e.g. [1]). Knowing that

the number of �tness cases can be signi�cantly reduced

for statistical reasons can be useful for selecting a re-

duced but suÆcient number of signi�cant �tness cases.

References

[1] C. Gathercole and P. Ross. Tackling the boolean even N
parity problem with genetic programming and limited-
error �tness. In John R. Koza, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba,
and Rick L. Riolo, editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages
119{127, San Francisco, CA, USA, 1997. Morgan Kauf-
mann.

[2] S. M. Ross. Introduction to Probability and Statistics
for Engineers and scientists. Academic Press, New
York, 2000.

GENETIC PROGRAMMING POSTERS 889

A New Mo del to Realize V ariable Size Genetic Net w ork

Programming

Hironobu Katagiri, Kotaro Hirasa w a, Jinglu Hu and Junic hi Murata

Departmen t of Electrical and Electronic Systems Engineering, Kyush u Univ ersit y ,

6-10-1 Hak ozaki, Higashi-ku, F ukuok a 812-8581, Japan

Genetic Net w ork Programming (GNP) [1] is an exten-

sion of Genetic Programming motiv ated b y the strong

expression abilit y of graph. A program in GNP is an

arbitrary directed graph, comp osed of no des connected

to eac h other b y directed arcs. Figure 1 sho ws the basic

sc heme of GNP system. Previously , the program size

of GNP w as �xed. In the pap er, a new metho d is pro-

p osed, where the program size is adaptiv ely c hanged

dep ending on the frequency of use of no des. Generally ,

large programs ha v e high expression abilit y , while their

ev olutions are disturb ed b y their enormous searc h s-

paces, also they o ccup y man y memory resources and

consume m uc h calculation time. T o con trol and to de-

cide a prop er program size are imp ortan t and di�cult

problems in Ev olutionary Computation. W e in tro duce

t w o additional op erators, add op er ator and delete op-

er ator , that can c hange the n um b er of eac h kind of

no de functions in a GNP program based on the degree

of con tribution of a no de function to the �tness v alue.

A GNP program is comp osed of judgement no des (J s),

pr o c essing no des (P s), and a sp eci�c start no de . A

judgemen t no de p erforms a kind of judgemen t func-

tion, then it transfers con trol to one of no des connected

b y its arcs according to the judgemen t result. That is,

the judgemen t no des are conditional branc h decision

functional no des. A pro cessing no de p erforms a kind

of action function, then it transfers con trol to a no de

connected b y its arc. A program run starts from the

start no de. The con tin uous con trol o w through a GN-

P program can express an in telligen t and complicated

program, b ecause a graph can include the temp oral

information and sequen tial information implicitly .

The basic concepts of the prop osed t w o op erators are

the follo wing simple and v alid rules. A frequen tly used

no de function through a program run w ould b e an im-

p ortan t no de function, then the no de function should

b e added; on the con trary , a scarcely used no de could

b e unimp ortan t no de, then the no de should b e delet-

ed. That is, the prop osed metho d v aries program sizes

not b y applying genetic op erators randomly , but b y

taking accoun t of the in teraction b et w een the curren t

program and the en vironmen t prop erly .

Sim ulation results sho w that the prop osed metho d is

clearly of great adv an tage to ev olv e GNP programs. It

seems that the prop osed metho d sa v es the time to seek

the prop er initial program size and reduces the anxi-

et y of the program bloat. Moreo v er, these additional

op erators can automatically distinguish imp ortan t n-

o de functions from unimp ortan t no de functions for the

target en vironmen t.

start node0

d72

d3 d41

P1

3J

2P

J1

2J

d71

1 2

3

4 5 6

7

8

9

d42

J1

2J

2P

d6

P1

Phenotype

2

2

2

1

1
1

1

1
1

1

2
2

2

3

5

1

1

1
1

5

5

3
1

6

8 6
9
1
5

0
0

00

0

0

0

0

node 1
node 2 3 0

4 0

node 3
node 4
node 5
node 6
node 7
node 8
node 9

2 0

node 0 0 0 0 2 0

2

1

2

1 1

5

2 8

7

0

0

0

Genotype

NT ID d CCi1 Ci2 in----NN i d d di2 ini1i i

node gene connection gene

i ii
ark ark

ENVIRONMENT

Agent

Agent fitness
 value

crossover mutation elite preserve add delete

Genetic Operators

reproduction

evolution

coding / encoding

Figure 1: The Basic Sc heme of GNP System

References

[1] Katagiri, H., Hirasa w a, K., Hu, J., and Murata,

J. (2001). Net w ork structure orien ted ev olutionary

mo del-genetic net w ork programming-and its com-

parison with genetic programming. In Go o dman,

E. D., editor, 2001 Genetic and Evolutionary Com-

putation Confer enc e L ate Br e aking Pap ers , pages

219{226, San F rancisco, California, USA.

GENETIC PROGRAMMING POSTERS

Controlling the Genetic Programming Search

Emin Erkan Korkmaz

Department of Computer Engineering

Middle East Technical University

Ankara-Turkey

korkmaz@ceng.metu.edu.tr

G�okt�urk �U�coluk

Department of Computer Engineering

Middle East Technical University

Ankara-Turkey

ucoluk@ceng.metu.edu.tr

Traditional GP randomly combines subtrees by apply-

ing crossover. In this study a new approach is pre-

sented for guiding the recombination process. Our

method is based on extracting the global information

of the promising solutions that appear during the ge-

netic search. The aim is to use this information to

control the crossover operation afterwards. [1] pro-

poses a method based on calculating the performance

values for subtrees of a GP tree during evolution and

then applying recombination so that the subtrees with

high performance are not disturbed. The aim is to con-

trol recombination by determining the building blocks.

However for the deceptive class of problems focusing

on the building blocks is questionable. The interac-

tion between the partial solutions is high for these

problems. Hence it is di�cult to determine isolated

building blocks.

The frequency information of the elements and their

distribution in the tree have been used to determine

the global information of a GP tree. The information

is represented as a vector. In order to transform a

GP tree to a vector, the elements are mapped to base

vectors �rst and a bottom up construction is used to

obtain a single vector for the whole tree. A leaf node is

only mapped to its base vector while the vector for an

internal node is obtained by adding the vectors of its

children plus the base vector corresponding to it. Note

that the dimension of the vector is the total number

of elements used for the problem at hand. However

this formalization would enable us to hold only the

frequency information. To represent the distribution

information too, the depth knowledge is used. This

new information is represented as a fractional value

to make a distinction with the frequency information.

For example if X(X1; X2) is a subpart of a three, then

the vector corresponding to X is determined as:

VX = VX1
+ VX2

+ VXbase
+ VXbase

� 0:01 � depth(X)

A Control Module is designed to process this global in-

formation. The genetic search is started and for each

chromosome the corresponding vector is formed. The

control module collects the vectors and �tnesses for a

certain period of generations, which we call the learn-

ing period. Then "C4.5, Decision Tree Generator"

is used to generate an abstraction over the data col-

lected. Then for each crossover, the genetic engine

sends to the control module three di�erent alterna-

tive crossover points. The control module predicts if

the alternative o�springs will be in the positive or the

negative class. Certainly the best alternative is cho-

sen and the learning process is repeated at the end of

each learning period. CFG induction and the N-Parity

Problem have been selected as the testbeds. Both of

them can be considered as highly deceptive. Figure 1

presents the progress obtained for the N-Parity prob-

lem. The results denote the average best �tness change

for basic GP and for our method. Eight di�erent runs

are used to calculate the averages. An improvement

has been achieved for the CFG induction problem too.

7

8

9

10

11

12

13

14

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Be
st F

itne
ss

Va
lue

Generation Number

Figure 1: The dashed lines denote the performance of controlled

search. Learning period is 500.

References

[1] Hitoshi Iba and Hugo de Garis, Extending Genetic Programming with

Recombinative Guidance, In P. Angeline and K. E. Kinnear, Jr., ed-

itors, Advances in Genetic Programming 2, chapter 4. MIT Press,

Cambridge, MA, USA, 1996.

GENETIC PROGRAMMING POSTERS 891

MB GP IN MODELLING A ND PREDICTION

Carlos Oliver-Morales
DISCA-IIMAS-UNAM

Circuito Escolar, Cd. Universitaria
O4510 Mexico City, MEXICO

Katya Rodríguez Vázquez
DISCA-IIMAS-UNAM

Circuito Escolar, Cd. Universitaria
O4510 Mexico City, MEXICO

Abstract. The paper describes a hybrid approach for
dynamic system modelling. This proposal is mainly based
on a Least Squares algorithm and a Multi-Branch Genetic
Programming (MB-GP) encoding. Having multiple
branches representing an individual allows us to get
simpler mathematical expressions, and therefore, reduces
the computational evaluation time.

1 INTRODUCTION
The encoding proposed in this work is illustrated in Figure
1. It is composed of an n number of branches, n+1
coefficients (one for each branch and the constant term)
and the addition function. The branches are mathematical
expressions representing function terms and encoding as
traditional GP structures; however, the maximum depth of
theses branches are much more lower than the one of an
approach using traditional GP encoding. Coefficients of
each branch are estimated by means of a Least Squares
algorithm. The addition function has the aim of adding the
product of each branch with its associated coefficient in
order to construct the model.
Crossover operator was specifically defined for the MB-
GP encoding. Crossing over two parent individuals
consists of selecting randomly a branch in each parent and
swapping selected branches. Mutation consists of
randomly selecting a branch, eliminating the selected
branch, and finally, substituting it for a new branch
created randomly from primitive functions.

ADDER

r1 r2 rn

C1 C2 Cn

· · ·

· · ·

Cn+1

Figure 1. MB-GP encoding.

2 PRELIMINARY RESULTS
The data used in this work (local behaviour of temperature
in a large period of time) was measured near Mexico City,
at Texcoco Lake. Temperature (T), relative humidity (H),
solar radiation (R) and wind speed (V) and direction (D)
were recorded. The time interval was 15 minutes.

Based on gathered data, 15% of information
corresponding to 324 observations was used for
modelling. Experiments were carried out depending on
each encoding (MB-GP and Koza-style GP). Cost
function was predictive error-based metric. For each
experiment, 20 runs were evaluated in order to provide
relevant statistical information. The model, which
exhibited the best performance from 20 runs, is shown and
used to predict future observations (testing data). Based on
Koza-style GP (Koza, 1992), the following expression
emerged:

(+ (divd TT-1 (- (+ (- (.* VT-2 RT-2) (- HT-1 RT-3)) (divd
(divd (exp VT-2) (exp DT-3)) (.* (- TT-1 DT-2) (divd
0.54707 DT-3)))) (cos (sin (sin (sin VT-2)))))) (+ TT-1 (divd
(exp (divd -0.77074 DT-1)) (- (+ (exp (exp VT-3)) (cos RT-

2)) (cos (cos (.* DT-2 TT-2)))))))

In this case, translating previous expression into a
mathematical function turns into a difficult task due to
complexity in structure. It is also clear that this expression
corresponds to a complex function.
In the case of MB-GP, the following expression was
generated,

(model TT-1 RT-1 (.* TT-2 RT-1) RT-3 (.* RT-3 TT-2) 0.95716
0.021437 -0.00087839 -0.020309 0.00090912 0.02055)

Equivalent to,
() () () ()

() () () ()320009.0120008.0
30203.010214.019572.00255.0

--+---
---+-+=

tRtTtRtT
tRtRtTtT

3 CONCLUSIONS AND FUTURE WORK
An alternative representation in GP for dynamic system
modelling and prediction was presented. This MB-GP
approach has used small values of GP parameters but
these preliminary results showed this encoding could
produce simple functions and reduce the search space
without penalising complex solutions. MB-GP showed
also to be consistent in all experiments.

ACKNOWLEDGEMENT S
Authors gratefully acknowledge the financial support of CONACyT
under the project J34900-A. They also thank Dr. Rojano who provided
the data.

REFERENCES
KOZA, J.R. (1992) Genetic Programming: On the Programming of

Computers by Means of Natural Selection. MIT Press.

GENETIC PROGRAMMING POSTERS

Self-Impro v emen t for the AD A TE Automatic Programming System

Roland Olsson

Computer Science Dept.

�stfold College

1750 HALDEN, Norw a y

Roland.Olsson@hiof.no

+47 69215369

h ttp://www-ia.hiof.no/ � rolando

Bro c k Wilco x

Northern Arizona Univ ersit y

NA U Bo x 8087

Flagsta�, AZ 86011, USA

rb w3@cet.nau.edu

928 - 523 - 4903

Automatic Design of Algorithms Through Ev olution

(AD A TE) [2] is a system for automatic programming

based on the neutral theory of ev olution [1] . This

theory states that the ma jorit y of molecular c hanges

in ev olution are due to neutral or almost neutral m u-

tations. A consequence is that most of the v ariabil-

it y and p olymorphism within a sp ecies comes from

m utation-driv en drift of alleles that are selectiv ely neu-

tral or nearly neutral. In AD A TE, as w ell as in natural

ev olution, neutral w alks in genot yp e space are essen tial

for a v oiding com binatorial explosions due to complex

m utations.

The comp ound transformations in AD A TE w ere de-

signed according to this mo del of transition from one

sp ecies to the next. In AD A TE, the �rst part of a com-

p ound program transformation is the neutral w alk and

the t ypically small second part is the brutal m utation.

W e ha v e tak en aim at using AD A TE to impro v e it-

self b y ev olving b etter transition (neutral transforms

and m utations) op erators. There are man y di�eren t

paths to self-impro v emen t of these transition op era-

tors. W e explore t w o suc h metho ds whic h w e'v e called

SIG-reshaping and SIG-rewriting.

SIG-rewriting is the automatic syn thesis of seman tics-

preserving rewriting rules that are emplo y ed for neu-

tral random w alks. Suc h rules increase the n um b er of

connections in a neutral net w ork and thereb y also the

n um b er of genot yp es reac hable through a neutral w alk

without �tness computation.

Since AD A TE is optimized to exploit neutralit y , it is

more di�cult to impro v e AD A TE using SIG-rewriting.

An adv an tage of automatically syn thesized rewrite

rules, ho w ev er, is that they can b e optimized to the

sp eci�c problem in a w a y that could not b e an ticipated

when w e designed AD A TE. Emplo ying sev eral syn the-

sized rewriting rules in AD A TE sho w ed no signi�can t

p erformance increase.

The primary goal of SIG-reshaping is to alter the

distribution of syn thesized (m utated) expressions so

that they co v er as man y equiv alence classes as p ossi-

ble. F or example syn thesizing and using b oth E and

not(not(E)) or b oth or(E

1

,E

2

) and or(E

2

,E

1

) for

arbitrary b o olean expressions E , E

1

and E

2

ma y b e a

w aste of time. SIG-reshaping syn thesizes an accep-

tance predicate that determines if a giv en syn thesized

expression is used.

The �tness function used in our exp erimen ts requires

that a syn thesized acceptance predicate accepts at

least one minim um size expression in eac h equiv alence

class and rejects as man y other expressions as p ossi-

ble. Giv en this �tness function AD A TE generated an

acceptance predicate that rejects 999 out of the 1055

expressions of size �v e or less consisting of not , and ,

or , false , true and three v ariables X1 , X2 , X3 { while

still accepting at least one minim um size mem b er of

eac h class.

SIG-reshaping has demonstrated some self-

impro v emen t. After generating an acceptance

predicate for b o olean expressions, limiting the use of

equiv alen t expressions, the predicate w as tested on

four, �v e, and six bit xor problems. Comparing the

results with and without the predicate indicate that

self-impro v emen t has o ccurred.

Our w eb site con tains an AD A TE sp eci�cation �le for

SIG-reshaping as w ell as the source co de of AD A TE

itself, whic h should mak e it easy to repro duce our re-

sults.

References

[1] J.L. King and T. H. Juk es (1969). Non-Darwinian

ev olution. Scienc e 164 : 788{798.

[2] J. R. Olsson (1995). Inductiv e functional pro-

gramming using incremen tal program transforma-

tion. A rti�cial Intel ligenc e. V ol. 74, No. 1, 55{83.

GENETIC PROGRAMMING POSTERS

Ev olving Readable P erl

Mark S. Withall

Departmen t of Computer Science

Lough b orough Univ ersit y

Leics. LE11 3TU, UK

m.s.withall2@lb oro.ac.uk

Chris J. Hinde

Departmen t of Computer Science

Lough b orough Univ ersit y

Leics. LE11 3TU, UK

c.j.hinde@lb oro.ac.uk

Roger G. Stone

Departmen t of Computer Science

Lough b orough Univ ersit y

Leics. LE11 3TU, UK

r.g.stone@lb oro.ac.uk

1 INTR ODUCTION

A program is informally deemed readable, for the pur-

p ose of this exp erimen t, if it is easy for a p erson to

follo w the steps that the program tak es to solv e the

problem. In this exp erimen t, readabilit y is ac hiev ed

b y constraining the a v ailable syn tax for generating so-

lutions.

The Genetic Programming (GP) system created uses

the target language P erl b ecause it is an in terpreted,

un t yp ed, robust pro cedural language whic h has go o d

error handling and reco v ery .

2 GENETIC PR OGRAM

The genotyp e and phenotyp e ha v e b een separated to

mak e genetic manipulation simpler. Eac h program is

represen ted as a �xed-length in teger arra y and then

mapp ed on to Bac kus-Naur F orm (BNF). The program

statemen ts used are sho wn in Figure 1a. The BNF is

designed to minimise the size of the genome that de-

scrib es a program. The mapping, b et w een the geno-

t yp e and phenot yp e, is similar to Gr ammatic al Evolu-

tion [2].

The GP w as tested using the sym b olic regression prob-

lem X

4

+ X

3

+ X

2

+ X [1]. A p opulation size of 500

and m utation rate of 1 gene in 5000 w ere used for the

test problem. The p opulation w as initialised randomly

and eac h test run w as of 100 generations. The �tness

v alues for the programs w ere giv en as the absolute dif-

ference b et w een the target v alue and the actual v alue.

3 RESUL TS AND CONCLUSIONS

All results w ere of the correct order (X

4

) and 5 out

of the 8 test runs pro duced en tirely correct solutions.

An example of an optimal program is giv en in Figure

1b.

The results of the exp erimen t w ere encouraging. As

a comparison the solution ev olv ed b y Koza[1] is giv en

in Figure 1c, whic h is only really understandable b y

LISP users.

STMT F ORMA T

Assign X = Y

Add X = Y + Z

Sub X = Y � Z

Mul X = Y � Z

If if(X cmp Y) f

F or for X (0 ::Y) f

End g

Header

$x = $ARGV[0];

$res = 0;

Evolved Code

$res = $x * $x;

$x = $x + $res;

$res = $x * $res;

$res = $res + $x;

Footer

print "$res";

(a) (b)

(+X(*(+X(*(*(+X (- (CO S(-XX)) (-X X))) X)X)) X))

(c)

Figure 1: (a) List of program statemen ts used. (b) Ex-

ample of co de pro duced to solv e the problem. (c) LISP

result from Koza[1].

Ac kno wledgemen ts

Thanks to ev eryb o dy and all their friends.

References

[1] Koza J.R. (1992). Genetic Programming: On the

Programming of Computers b y Means of Natural

Selection. MIT Press.

[2] Ry an C. O'Neill M. & Collins J.J. (1998). Gram-

matical Ev olution: Ev olving Programs for an Ar-

bitrary Language. Lecture Notes in Computer

Science 1391. First Europ ean W orkshop on Ge-

netic Programming 1998.

GENETIC PROGRAMMING POSTERS

