GENETIC PROGRAMMING
Poster Papers

Riccardo Poli, chair






GENETIC PROGRAMMING POSTERS

887

Comparison of Evolving Against Peers and Fixed Opponents Using
Corewars

Jason Cooper
Department of Computer Science
Loughborough University
LEICS, LE11 3TU
j-l.cooper@lboro.ac.uk

Abstract

Two methods of evolving Corewars programs
are compared, one against a fixed set of op-
ponents, another against the other programs
in the generation. The fixed opponent system
improves faster initially but is limited overall.
The second is slower to evolve but achieves a
better final result.

EVOLVING COREWARS WARRIORS

Corewars[1] is a game where two programs written in
a language called redcode, try to destroy each other.
The programs fight against each other in a simulator.
A program wins when all of its opponent’s processes
have terminated with invalid instructions.

A group of warriors evolved against fixed opponents
(Group F) was compared with a similar group evolv-
ing against their peers (Group P). An unseen control
set of 10 fixed opponents (Group C), was used as a
benchmark to compare the other two groups giving a
common fitness indicator for both sets. The warriors
in the control group had competed in previous inter-
national Corewars tournaments in 1989 and 1990.

The values shown on the graph in Figure 1 are the
average fitness level of Group P and Group F, over
300 generations, when tested against Group C. The
initial performance of Group F can be explained by
the more stable environment they are in. Later on
though, Group F reach a stage where they are getting
reasonable results most of the time against their fixed
opponents. Individuals in Group P do not stay ahead
of one another for long as the best strategies propagate
through the rest of the population over the next few
generations and so any successful individual must find
a better strategy to enable them to win. The strate-
gies evolved by both groups are transferable as neither
group has any knowledge of the control group.

Chris Hinde
Department of Computer Science
Loughborough University
LEICS, LE11 3TU
c.j.-hinde@lboro.ac.uk

Figure 1: Fitness levels of Group P and Group F

Fitness Levels of Both Warriors

Fitness Level
@ @
8 &
—

‘Group F ——
Group P’ -----—

0 50 100 150 200 250 300
Generations

Table 1: League table of Group C and the best indi-
vidual in Group P and Group F at generation 350

Position Warrior Fitness
1.4 Control Opponent 6,4,9,8 | 91 .. 122
Best Individual of
) Group P after 350 71
Generations
6 Control Opponent 10 62
Best Individual of
7 Group F after 350 61
Generations
8..12 Control Opponent 3,5,2,1,7 | 41 .. 57

Acknowledgements

The authors of this paper would like to acknowledge
the support of Nortel Networks.

References

[1] Dewdney A.K., 1990, The Magic Machine: A
handbook of Computer Sorcery. ISBN 0-7167-
2125-2.



GENETIC PROGRAMMING POSTERS

Open BEAGLE: A New C++ Evolutionary Computation Framework

Christian Gagre

and Marc Parizeau

Laboratoire de Vision et Sysemes Nuneriques (LVSN)
Universie Laval, Quebec (QC), Canada, G1K 7P4.
E-mail: fcgagne,parizeag@gel.ulaval.ca

Abstract

This poster introduces a new C++ Evolu-
tionary Computation (EC) framework named
Open BEAGLE. This framework is freely
available on the projets Web page at
http://www.gel.ulaval.ca/~beagle

Open BEAGLE! is a C++ framework for doing al-
most any kind of EC. Its architecture follows the prin-
ciples of Object Oriented (OO) programming, where
some abstractions are represented by loosely coupled
objects and where it is common and easy to reuse code.
Open BEAGLE has a three level architecture as illus-
trated by Figure 1. The OO foundations are the basis
of this architecture, as an object oriented extension of
C++, inspired by design patterns(Gamma et al., 1994;
Lenaerts and Manderick, 1998). It o ers basic func-
tionalities like smart pointers and garbage collection,
object allocators, standard containers, and XML I/O
streams. The generic EC framework implements basic
mechanisms and structures for designing versatile spe-
cialized Evolutionary Algorithms (EA). It is summa-
rized in Figure 2. It comprises three main components:
a vivarium, an evolution system, and an evolver. The
vivarium is a container for demes of generic individ-
uals. The individuals themselves are specied by an
abstract genotype. This genotype can be instantiated
to any relevant structure (in Figure 2, it is shown as
a bit string, but this is just an example). Individuals
and demes can also be specialized if needed.

In the evolution system, the context contains the state
of the genetic engine, such as the current deme and
generation number. This concept is similar to the exe-
cution context of a computer. The register is a central
repository for all evolution parameters. The evolving
process itself is governed by arevolver that de nes
sequences of operations, contained in operator sets,

1The recursive acronym BEAGLE means the Beagle En-
gine is an Advanced Genetic Learning Environment.

Figure 1: Open BEAGLE Framework Architecture.

Figure 2: Generic EC Framework Architecture

that are iteratively applied to demes. The evolver ap-
plies the bootstrap operator setto initialize the rst
generation, and themain-loop operator setto the sub-
sequent generations. For common EA, standard op-
erators have been de ned, such as common selection
schemes, crossovers, mutations, statistics calculation,
and evolution checkpoint backup.

The specialized frameworks are at the top level of
the architecture. Currently, only classical genetic al-
gorithms and genetic programming frameworks have
been implemented. But we are looking forward to ex-
ternal contributions by interested researchers for other
specialized EA. Extensive documentation is available
on the Open BEAGLE's Web page.

References

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J.: 1994, Design Patterns: Elements of Reusable
Object-Oriented Software Addison-Wesley

Lenaerts, T. and Manderick, B.: 1998, Building a
genetic programming framework: The added-value
of design patterns, in Proceedings of EuroGP '98
Vol. 1391 of LNCS, pp 196{208, Springer-Verlag



GENETIC PROGRAMMING POSTERS

889

How Statistics Can Help in Limiting the Number of Fitness Cases
in Genetic Programming

Mario Giacobini, Marco Tomassini, Leonardo Vanneschi
Institut d’Informatique, University of Lausanne, 1015 Lausanne, Switzerland
{Mario.Giacobini,Marco.Tomassini,Leonardo.Vanneschi}@iis.unil.ch

For most real world applications of GP it is well known
that fitness evaluation is the most time consuming
operation. It would thus be interesting to establish
criteria that can help in limiting the time spent in
this phase as much as possible without compromising
results in terms of quality. One is thus confronted
with two problems: how to select a sufficient num-
ber of fitness cases and how to choose those fitness
cases in such a way that they are effective in driving
the learning process towards a solution. Here we ap-
proach the former problem from a standard statistical
and information-theoretical viewpoint.

Let us consider a GP problem where the target func-
tion is defined on N fitness cases. It can be shown that
the mean distance of all the individuals of a popula-
tion from the target function is normally distributed
(z ~ N(u,0)). A standard result for the confidence
interval gives [2]:

P(w—ta/2 (%) <P <T A+ o (%)) >1—a,

where 1—« is the confidence with which we can expect
the mean p to be contained in the given interval. The
ta/2 is the Student cumulative distribution such that
the mean deviates from its true value in the interval
(=ta/2,ta2). The standard deviation o is unknown
but can be estimated by the sample variance S. If we
set K = 2t,/5(0/+/n), the length of the confidence in-
terval, we get a function relating the number of fitness
cases n that must be used in order for the mean fitness
to be estimated to be in the confidence interval K with
a given probability 1 — «.

The target function g : {x1,...,x} = {y1,...,ym} can
be seen, from another viewpoint as a random variable,
and it is thus possible to calculate its entropy:

1 M
H(g(n) = ~ 1755 _ij In(p;),

where p; = P(g(x) = y;) for j € {1,..,M}. Such a
measure indicates the quantity of information needed

to determine the function itself, i.e., the minimal num-
ber of fitness cases needed for a reliable reconstruction
of the target function g.

To test the validity of our assumptions we have studied
two simple problems: a seven variables boolean func-
tion, and a step function. The aim is to show the sta-
tistical behavior of the GP evolutions when the num-
ber of fitness cases is decreased. For such a purpose
standard GP has been run 50 times for each percentage
of fitness cases, randomly chosen with uniform proba-
bility. For both target functions we observe a similar
statistical behavior. When the number of fitness cases
is such that the level of confidence is 0.99 we observe
a normal convergence behavior, while with a number
of fitness cases lower than such a value we get oscil-
lating curves and the length of the confidence interval
drastically increases. Such a result is consistent with
the entropy which is found to be close to that value
of n. For the boolean function the minimal n is about
18 with respect to 128 fitness cases, while for the step
function we get 27 instead of the full 100 cases.

Our results are of a statistical nature and thus they do
not depend on the particular problem. Some previous
works have tackled the problem of limiting the number
of fitness cases heuristically (e.g. [1]). Knowing that
the number of fitness cases can be significantly reduced
for statistical reasons can be useful for selecting a re-
duced but sufficient number of significant fitness cases.

References

[1] C. Gathercole and P. Ross. Tackling the boolean even N
parity problem with genetic programming and limited-
error fitness. In John R. Koza, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba,
and Rick L. Riolo, editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages
119-127, San Francisco, CA, USA, 1997. Morgan Kauf-

mann.

[2] S. M. Ross. Introduction to Probability and Statistics
for Engineers and scientists. Academic Press, New
York, 2000.



GENETIC PROGRAMMING POSTERS

reproduction

coding / encoding

A
0




GENETIC PROGRAMMING POSTERS

891

Controlling the Genetic Programming Search

Emin Erkan Korkmaz
Department of Computer Engineering
Middle East Technical University
Ankara-Turkey
korkmaz@ceng.metu.edu.tr

Traditional GP randomly combines subtrees by apply-
ing crossover. In this study a new approach is pre-
sented for guiding the recombination process. Our
method is based on extracting the global information
of the promising solutions that appear during the ge-
netic search. The aim is to use this information to
control the crossover operation afterwards. [1] pro-
poses a method based on calculating the performance
values for subtrees of a GP tree during evolution and
then applying recombination so that the subtrees with
high performance are not disturbed. The aim is to con-
trol recombination by determining the building blocks.
However for the deceptive class of problems focusing
on the building blocks is questionable. The interac-
tion between the partial solutions is high for these
problems. Hence it is difficult to determine isolated
building blocks.

The frequency information of the elements and their
distribution in the tree have been used to determine
the global information of a GP tree. The information
is represented as a vector. In order to transform a
GP tree to a vector, the elements are mapped to base
vectors first and a bottom up construction is used to
obtain a single vector for the whole tree. A leaf node is
only mapped to its base vector while the vector for an
internal node is obtained by adding the vectors of its
children plus the base vector corresponding to it. Note
that the dimension of the vector is the total number
of elements used for the problem at hand. However
this formalization would enable us to hold only the
frequency information. To represent the distribution
information too, the depth knowledge is used. This
new information is represented as a fractional value
to make a distinction with the frequency information.
For example if X (X, X5) is a subpart of a three, then
the vector corresponding to X is determined as:

Vx = Vx, + Vx, + Vx,... + V.o * 0.01 x depth(X)

A Control Module is designed to process this global in-

Goktiirk Ucoluk
Department of Computer Engineering
Middle East Technical University
Ankara-Turkey
ucoluk@ceng.metu.edu.tr

formation. The genetic search is started and for each
chromosome the corresponding vector is formed. The
control module collects the vectors and fitnesses for a
certain period of generations, which we call the learn-
ing period. Then ”C4.5, Decision Tree Generator”
is used to generate an abstraction over the data col-
lected. Then for each crossover, the genetic engine
sends to the control module three different alterna-
tive crossover points. The control module predicts if
the alternative offsprings will be in the positive or the
negative class. Certainly the best alternative is cho-
sen and the learning process is repeated at the end of
each learning period. CFG induction and the N-Parity
Problem have been selected as the testbeds. Both of
them can be considered as highly deceptive. Figure 1
presents the progress obtained for the N-Parity prob-
lem. The results denote the average best fitness change
for basic GP and for our method. Eight different runs
are used to calculate the averages. An improvement
has been achieved for the CFG induction problem too.

Best Finess Value

7

© 2000 4000 6000 B0OOO 10000 12000 14000 16000 18000 20000
Generation Number

Figure 1:

The dashed lines denote the performance of controlled

search. Learning period is 500.

References

[1] Hitoshi Iba and Hugo de Garis, Extending Genetic Programming with
Recombinative Guidance, In P. Angeline and K. E. Kinnear, Jr., ed-
itors, Advances in Genetic Programming 2, chapter 4. MIT Press,
Cambridge, MA, USA, 1996.



GENETIC PROGRAMMING POSTERS

MB GP IN MODELLING A ND PREDICTION

Carlos OliverMorales
DISCA-IIMAS-UNAM
Circuito Escolar, Cd. Universitaria
04510 Mexico City, MEXICO

Abstract. The paper describes a hybrid approach for
dynamic system modelling. This proposal is mainly based
on a Least Squares algorithm and a MiBtanch Genetic
Programming (MBGP) encoding. Having multiple
branches representing an individual allows us to get

Katya Rodriguez Vazquez
DISCA-IIMAS-UNAM
Circuito Escolar, Cd. Universitaria
04510 Mexico City, MEXICO

Based on gathered data, 15% of information
corresponding to 324 observations was ustx
modelling. Experiments were carried out depending on
each encoding (MEP and Kozsstyle GP). Cost
function was predictive errdrased metric. For each

simpler mathematical expressions, and therefore, reduces experiment, 20 runs were evaluated in order to provide

the computational evaluation time.

1 INTRODUCTION

The encoding proposed in this work is illustrated in Figure
1. It is composed of am number of branchesp+1
coefficients (one for each branch ane ttonstant term)

relevant statistical information. The modelwhich
exhibited the best performance from 20 runs, is shown and
used to predict future observations (testing data). Based on
Kozastyle GP (Koza, 1992), the following expression
emerged:

and the addition function. The branches are mathematical (+ (divd Tr.1 (- (+ (- (* V12 Rr2) (- Hra Rra)) (divd
expressions representing function terms and encoding as(divd (exp V12) (exp Dr3) (* (- TT-1 Drp) (divd

traditional GP structures; however, the maximum depth of

0.54707 R3.3)))) (cos (sin (sin (sin ¥2)))))) (+ Tr.1 (divd

theses branches are much more lower than the one of an(exp (divd-0.77074 B.;)) (- (+ (exp (exp W) (cos R.

approach usingraditional GP encoding. Coefficients of

2)) (cos (cos (-Dr.2 T1-2)))))))

each branch are estimated by means of a Least Squares

algorithm. The addition function has the aim of adding the
product of each branch with its associated coefficient in
order to construct the model.

Crossover opator was specifically defined for the MB
GP encoding. Crossing over two parent individuals

In this case, translating previous expression into a
mathematical function turns into a difficult task due to

complexity in structure. It is also clear that this expression
corresponds to a complex function.

In the case of MBGP, the following expression was

consists of selecting randomly a branch in each parent andgenerated,

swapping selected branches. Mutation consists of
randomly selecting a branch, eliminating the selected
branch, and finally, substituting it for a new branch
created randomly from primitive functions.

c, cC

n+1

r r, r

Figure 1. MB-GP encoding.

2 PRELIMINARY RESULTS

The data used in this work (local behaviour of temperature
in a large period of time) was measured near Megitn

at Texcoco Lake. Temperature (T), relative humidity (H),

solar radiation (R) and wind speed (V) and direction (D)

were recorded. The time interval was 15 minutes.

(mOdel Tr1 R (.* Tt RT.]_) Rrs (.* Rrs TT.2) 0.95716
0.021437-0.000878390.020309 0.00090912 0.02055)

Equivalent to,
T(t)=0.0255 +0.9572 T (t - 1)+ 0.0214 R(t - 1)- 0.0203 R(t - 3)
- 0.0008T (t- 2)R(t- 1)+0.0009 T (t - 2)R(t- 3)

3 CONCLUSIONS AND FUTURE WORK

An alternative representation in GP for dynamic system
modelling and prediction was presented. This -MB
approach hs used small values of GP parameters but
these preliminary results showed this encoding could
produce simple functions and reduce the search space
without penalising complex solutions. MBP showed
also to be consistent in all experiments.

ACKNOWLEDGEMENT S

Authors gratefully acknowledge the financial support of CONACyYT
under the project J34900 They also thank Dr. Rojano who provided
the data.

REFERENCES

Koza, J.R. (1992) Genetic Programming: On the Programming of
Computers by Means of Natural SelectiohiT Press.



GENETIC PROGRAMMING POSTERS



GENETIC PROGRAMMING POSTERS



