
���������	
���	���	����������	���	����������	
������	��	��������
��������	�������	��	������������	
������

Joachim Wegener, Kerstin Buhr, Hartmut Pohlheim
DaimlerChrysler AG, Research and Technology

Alt-Moabit 96a, D-10559 Berlin, Germany, +49 30 39982 232
{Joachim.Wegener, Kerstin.Buhr, Hartmut.Pohlheim}@DaimlerChrysler.com

��������

Testing is the most important analytic quality assur-
ance measure for software. The systematic design
of test cases is crucial for test quality. Structure-
oriented test methods, which define test cases on the
basis of the internal program structures, are widely
used.
Evolutionary testing is a promising approach for the
automation of structural test case design which
searches test data that fulfil given structural test
criteria by means of evolutionary computation.
In this paper we present our evolutionary test envi-
ronment, which performs fully automatic test data
generation for most structural test methods. We
shall report on the results gained from the testing of
real-world software modules. For most modules we
reached full coverage for the structural test criteria.

� ��
�� !
���

A great number of today’s products is based on the deploy-
ment of embedded systems. In industrial applications em-
bedded systems are predominantly used for controlling and
monitoring technical processes. There are examples in nearly
all industrial areas, for example in aerospace technology,
railway and motor vehicle technology, process and automa-
tion technology, communication technology, process and
power engineering, as well as in defense electronics. Nearly
90% of all electronic components produced today are used in
embedded systems.

In order to achieve high quality in the development of em-
bedded systems, central importance is attributed to analytical
quality assurance. In practice, the most important analytical
quality assurance measure is dynamic testing. Thorough
testing of the systems developed is essential for product
quality. The aim of the test is to detect errors in the system
under test, and, if no errors are found during comprehensive
testing, to convey confidence in the correct functioning of the
system. This is the only procedure which allows the testing
of dynamical system behavior in a real application environ-
ment.

The most significant weakness of the test is that the postu-
lated functioning of the tested system can, in principle, only
be verified for those input situations selected as test data.
Testing can only show the existence and not the non-
existence of errors. Therefore, the correctness proof can only
be produced by a complete test. In practice, a complete test,
with the exception of a few trivial cases, is not executable
because of the enormous amount of possible input situations.
Thus, the test is a sampling procedure. Accordingly, a task
which is essential to testing is the selection of an appropriate
sample containing the most error-sensitive test data.

Among the different test activities (test case design, test
execution, monitoring, test evaluation, test planning, test
organization, and test documentation – see Fig. 1) test case
design is of essential importance.

Test Evaluation

Test Execution

Specification Program

T
est O

rgan
ization

Te
st D

o
cum

en
tatio

n

Test Planning

Monitoring

7HVW�&DVH
'HVLJQ

E\�PHDQV
RI�($

6HOHFWLRQ

5HLQVHUWLRQ

5HFRPELQDWLRQ

0XWDWLRQ

(YDOXDWLRQ

Fig. 1 Structure and interaction of test activities including
test case design by means of evolutionary algorithms

For most test objectives an automation of test case design is
difficult to achieve. Thus, test case design usually has to be
performed manually. Manual test case design, however, is
time-intensive and susceptible to errors. The quality of the
testing is heavily dependent on the performance of the single
tester.

To increase the effectiveness and efficiency of the test, and
thus to reduce the overall development costs for software-
based systems, we require a test which is systematic and
extensively automatable. For this reason, DaimlerChrysler
Research works in the area of ���������	
�������� [19]. The

aim of the work is to increase the quality of the tests and to
achieve substantial cost savings in system development by
means of a high degree of automation of test case design.

Evolutionary testing is a promising approach for fully auto-
mating test case design for various test aims. For instance,
evolutionary tests can be used to systemize and automate the
testing of non-functional properties and to generate test cases
for conventional test methods. In this paper we shall concen-
trate on structural testing.

The only prerequisites for the application of evolutionary
testing are an executable test object and its interface specifi-
cation. For the automation of structural testing the source
code of the test object must be available to enable its instru-
mentation.

In Section 2 we give a short overview of evolutionary testing.
Section 3 describes the different aspects of structural testing.
Our evolutionary test environment is presented in Section 4.
A large number of real-world software modules have already
been tested. The results are presented in Section 5. Our con-
cluding remarks are set out in Section 6 along with our out-
look for future research.

" �#�$
�����%	
��
���

Evolutionary testing is characterized by the use of meta-
heuristic search techniques for test case generation (see
Fig. 1). The test aim considered is transformed into an opti-
mization problem. The input domain of the test object forms
the search space in which one searches for test data that
fulfils the respective test aim. Additionally, a numeric repre-
sentation of the test aim is necessary. This numeric repre-
sentation is used to define objective functions suitable for the
evaluation of the generated test data. Depending on which
test aim is pursued, different objective functions emerge for
test data evaluation. Section 4 describes objective functions
for structural testing in detail.

Due to the non-linearity of software (if-statements, loops
etc.) the conversion of test problems to optimization tasks
mostly results in complex, discontinuous, and non-linear
search spaces. Neighborhood search methods like hill
climbing are not suitable in such cases. Therefore, meta-
heuristic search methods are employed, e.g. evolutionary
algorithms, simulated annealing, or taboo search. In our
work, evolutionary algorithms are used to generate test data
because their robustness and suitability for the solution of
different test tasks has already been proven in previous work,
e.g. [14], [6], [19].

As we assume the reader to be familiar with evolutionary
algorithms we shall only describe the interaction of the evo-
lutionary algorithm with the other testing activities in this
paper. Please refer to [18] and [17] for a longer description
of evolutionary algorithms in the context of evolutionary
testing.

Figure 2 presents the structure of evolutionary testing from
the point of view of the evolutionary algorithm. The interac-
tion with the other testing activities occurs during the
evaluation of the individuals.

6HOHFWLRQ

5HLQVHUWLRQ

5HFRPELQDWLRQ

0XWDWLRQ

)LWQHVV�(YDOXDWLRQ

Individuals

Test Data

Monitoring

Objective Values

Test
Execution

7HUPLQDWLRQ"

Fig. 2 Structure of Evolutionary Testing

Each individual within the population represents a test datum
with which the test object is executed. For each test datum
the execution is monitored and the objective value is deter-
mined for the corresponding individual. Next, population
members are selected with regard to their fitness and sub-
jected to recombination and mutation to generate new off-
spring. It is important to ensure that the test data generated
are in the input domain of the test object. Offspring individu-
als are then evaluated by executing the test object with the
corresponding test data. A new population is formed by
combining offspring and parent individuals, according to the
survival procedures defined. From now on, this process
repeats itself until the test objective is fulfilled or another
given termination criterion is reached.

& �
� !
 ��$	
��
���

Structural testing is widespread in industrial practice and
stipulated in many software-development standards, e.g.
[13], [5], and [3]. The execution of all statements (statement
coverage), all branches (branch coverage), or all conditions
with the logical values True and False (condition coverage)
are common test aims. Structural test methods are usually
applied to unit tests. There are no enforced structure test
criteria for integration tests or system tests.

The aim of applying evolutionary testing to structural testing
is the automatic generation of a quantity of test data, which
leads to the best possible coverage of the respective structural
test criterion. In the case of statement testing, the goal of the
test is to execute each program statement at least once. In the
case of branch testing the empty branches also have to be
executed. The test goals are based on the assumption that a

test, which does not include each statement and all branches
(of the system under test being executed) at least once, does
not present a thorough check of the test object. Therefore, the
overall goal of the test case design is to define a set of test
data which guarantees that each statement or each branch is
executed.

Whereas all previous work has concentrated on selected
structural test criteria (statement-, branch-, condition and
path test), our test environment has been developed to sup-
port all common control-flow and data-flow oriented test
methods.

In order to search for the test data set the test is divided into
partial aims. Each partial aim represents a program structure
that requires execution to achieve full coverage, for example
a certain statement or branch. For each partial aim, an indi-
vidual objective function is formulated and a separate opti-
mization is undertaken to search for a test datum executing
the partial aim.

In order to direct the search toward program structures not
covered, the objective function computes a distance for each
individual that indicates how far away it is from executing
the desired program structure. Individuals which are closer
to the execution of the desired program structure will be
selected as parents and combined to produce offspring indi-
viduals.

The objective functions of the partial aims consist of two
components – the approximation level and the local distance
calculation.

&'� �((��)�*�
���	$�#�$!�$! $�
���

The approximation level supplies a figure for an individual
that gives the number of branching nodes lying between
program structures covered by the individual and the desired
program structure. For this computation, only those branch-
ing nodes are taken into account that contain an outgoing
edge that results in a miss of the desired program structure.

An example is given in Figure 3. The program graph contains
four branching nodes which could result in a miss of the
target node (representing the desired statement or branch).
Each node is assigned the corresponding approximation level
(level 4 to level 1). An individual that branches away from
the target node at the first branching node attains a lower
approximation level (level 4) than an individual which
reaches level 3 etc. The figure shows the execution of an
individual which misses the target node in the branching
node with the approximation level 2. The individual passes
the branching nodes in the levels 4 and 3 as desired but
misses the target node at level 2.

&'" $�!�$	��
��!�	!�$! $�
���

The calculation of the local distance is performed in order to
distinguish different individuals executing the same program
path. For this, a distance to the execution of the other pro-
gram path is calculated for the individual by means of the
branching conditions in the branching node in which the
target node is missed. Figure 4 illustrates this calculation.

For example, if a branching condition x==y needs to be
evaluated as True to reach the target node, then the objective
function may be defined as |x-y|. If an individual obtains the
local distance 0, a test datum is found which fulfils the
branching condition: x and y have the same value.

If a branching node contains multiple conditions the local
distance is a combination of the local distances of each con-
dition. For a node of the type a ∨ b the local distance of an

Target

Level 4

Level 3

Level 2

Level 1

Figure 3. Approximation level calculation (objective
function for structural testing)

Level 1

Level 2

Level 3

Level 4

Condition
fulfilled

Distance to
condition

Figure 4. Local distance calculation (objective function for
structural testing)

individual is obtained from the minimum value for each
single predicate a and b. In the case of a ∧ b the local dis-
tance of an individual is the result of the sum of the distances
determined for each single predicate.

&'& �+,�!
�#�	- �!
���

The overall objective function value of an individual with
respect to a certain partial aim is defined as the sum of its
approximation level and its normalized local distance:

F(pa, i) = AL(pa, i) + (1 – LD(N(pa, AL(pa, i)), i),
• F(pa, i): objective value of individual i for the partial

aim pa,
• AL(pa, i): highest approximation level of the individual

i for the partial aim pa,
• N(pa, al): branching node with the highest approxima-

tion level for the partial aim pa,
• LD(n, i): normalized local distance of the individual i

in branching node n.

An individual with an objective value of 0 leads to the
passing of the desired program structure. This provides a
natural termination criteria for the optimization of this partial
aim.

Even though the evolutionary test works up only one partial
aim after the other, the execution of a test datum usually
leads to passing several partial aims. Thus, the test soon
focuses on those program structures which are difficult to
reach. After having worked up all partial aims, a minimal
amount of test data is returned to the tester. This test data set
leads to an execution of all reached partial aims.

. �#�$
�����%	
��

��#����*��

In order to automate test case design for different structural
testing methods with evolutionary tests we have developed
a tool environment which consists of six components:
• parser for the analysis of test objects,
• graphical user interface for the specification of the in-

put domain of the test objects,
• instrumenter which captures program structures exe-

cuted by the generated test data,
• test driver generator which generates a test bed running

the test object with the generated test data,
• test control which includes the identification and ad-

ministration of the partial aims for the test and which
guarantees an efficient test by defining a processing or-
der and storage of initial values for the partial aims,

• toolbox of evolutionary algorithms to generate the test
data.

Fig. 5 presents the structure of the evolutionary test environ-
ment and shows the information exchange between these
tools. The parser, interface specification, instrumenter and
test driver generator constitute the test preparation. During

test execution the test control and the evolutionary algorithm
toolbox are employed.

.'� (�����

The parser identifies the functions in the source files which
form the possible test objects. It determines all necessary
structural information on the test objects. Control-flow and
data-flow analyses are carried out for every test object. These
analyses determine the interface, the control-flow graph, the
contained branching conditions with their atomic predicates,
as well as semantic information on the used data structures,
e.g. the organization of user-defined data types.

.'" ���(/�!�$	 ���	��
��-�!�	-��
��
��-�!�	�(�!�-�!�
���

To ensure efficient test data generation and to avoid the
generation of inadmissible test data from the beginning, the
tester may have to define the test object interface determined
by the parser more precisely. For this, the developed tool
environment provides a graphical user interface that displays
the test objects and their interfaces as they have been deter-
mined by the parser.

The tester can limit the value ranges for the input parameters
and enter logical dependencies between different input pa-
rameters. These will then be considered during test data
generation. It is also possible to enter initial values for single
or for all input parameters. As a result, test data of a previous
test run or data of an already existing functional test, as well
as specific value combinations for single input parameters,
can be used as a starting point for test data generation (seed-
ing).

.'& ���
� *��
��

The third component in the tool environment is the instru-
menter that enables test run monitoring. In order to eliminate
influences on program behavior the instrumentation has to
take place in the branching conditions of the program. The

77HHVVWW��33UUHHSSDDUUDDWWLLRRQQ

77HHVVWW��(([[HHFFXXWWLLRRQQ

,QVWUXPHQWHU

*($7E[7HVW�&RQWURO

7HVW�'ULYHU
*HQHUDWRU

3DUVHU

,QWHUIDFH
6SHFLILFDWLRQ�*8,

Prepared
Test Object

...source..
 if (...)
else ...

7HVW�REMHFW
VRXUFH�FRGH

Figure 5. Components of the evolutionary test environment

instrumentation of the branching conditions is always the
same, independent of the selected structural test criterion.

The atomic predicates in the branching nodes of the test
object are instrumented to measure the distances individuals
are away from fulfilling the branching conditions (see Sec-
tion 3.2). The instrumentation also provides information on
the statements and program branches executed by an individ-
ual.

.'.
��
	��#��	������
��

The test driver generator generates a test bed that calls the
test object with the generated individuals and returns the
monitoring results provided by the execution of the instru-
mented test object to the test control. When the test object is
called by the test driver, the individuals are mapped onto the
interface of the test object. It is important that user specifica-
tions for the test object interface are taken into account.
Individuals that do not represent a valid input are extracted
and assigned a low fitness value.

.'0
��
	!��
��$

The most complex component of the evolutionary test envi-
ronment is the test control. It is responsible for several diffi-
cult tasks: the management of the partial aims with their
processing status, the collection of suitable initial values for
the optimization of partial aims, and the recording of test data
fulfilling partial aims.

The test control identifies partial aims for the selected struc-
tural test criterion. Partial aims are determined on the basis
of the control–flow graph provided by the parser. The test
control manages the determined partial aims and regulates
the test progress. One after the other, the different partial
aims are selected in order to search for test data with the
evolutionary test. Independent optimizations are performed
for every partial aim.

Although only one partial aim is considered for the optimi-
zation at a time, all individuals generated are evaluated with
regard to all unachieved partial aims. Thus partial aims
reached by chance are identified, and individuals with good
objective values for one or more partial aims are noted and
stored. Subsequent testing of these partial aims then uses the
stored individuals as initial values (also compare [9]). This
method is called seeding. It enhances the efficiency of the
test because the optimization does not start with an entirely
randomly generated set of individuals.

In order to calculate the objective values for the individuals
the test control determines the program paths executed by
every individual, on the basis of the data attained by test
monitoring and the test object’s control-flow graph. Objec-
tive values are then evaluated by applying the objective
functions described in Section 3, that take into account the
local distance measurement for the branching conditions as
well as the approximation level.

The processing sequence for the partial aims that have not
yet been attained is guided by the test control depending on
the availability of suitable initial values. The partial aim for
which the individuals with the best objective values are
available is selected as the next one for the test. This ensures
that the test quickly achieves a high coverage because partial
aims which are difficult to execute or infeasible do not slow
down the overall testing process. When no initial values are
available, or several equally good initial values for different
partial aims exist, then a breadth-first search is carried out. If
the search fails to find a test datum for a partial aim it is
marked as already processed and not fulfilled. During the
remaining optimization process it is possible to reset this
status if an individual with a better objective value for this
partial aim is found accidentally. The partial aim is then
targeted again for an additional test employing the attained
values for initialization.

Once all partial aims have been processed the test is finished.
The test data for the separate partial aims are then compiled
and displayed with the obtained coverage. On this basis, the
tester is able to check whether program structures that were
not covered are infeasible, or whether the evolutionary test
was not able to generate suitable test data.

In addition, the test control offers a simple application pro-
gramming interface (API) to export test data found, and
actual values for the output parameters of the test object, in
order to support automatic test evaluation on the basis of test
oracles. Moreover, it provides test and monitoring informa-
tion for the visualization of the test progress.

.'1 ����
�!	��	�#�$
�����%
�$����
/*�	
��$+�)	���
+)

We have applied the ��������	������������	
������
����
����������
����������	��	��(������) [10]. This is a very
powerful tool that supports real and integer number repre-
sentation of individuals as well as binary coding. Almost any
hybrid form of evolutionary algorithm can be implemented,
including genetic algorithms and evolution strategies. The
toolbox offers a large number of different operators for the
components of evolutionary algorithms, and also enables the
application of sub-populations, migration and competition
between sub-populations, and possesses extensive visualiza-
tion functions for displaying the optimization state and prog-
ress. It is possible to specify admissible value domains for
the parameters of an individual. The toolbox automatically
ensures that these value domains are observed during the
generation of individuals. Thus, the test driver only needs to
check for dependencies between the single variables of an
individual.

0 �(($�!�
���	�-	�#�$
�����%

��
���

Our tool environment has already been applied in experi-
ments with typical real-world examples. Currently, our work
concentrates on the automatic generation of test data for
statement and branch tests, which has yielded excellent
results. For all test objects a complete or very high coverage
was achieved by the evolutionary test.

0'�
��
	�+,�!
�

Table 1 presents a selection of examined test objects. To
assess and compare the complexity of the software modules
we report a number of software metrics. These figures are
taken from a larger study examining the complexity of more
than 40 different software modules [2].

The basic metric is lines of code. The cyclomatic complexity
gives information on the test object’s control flow. The
nesting complexity assesses the nesting level and can indi-
cate the difficulty in reaching a partial aim with respect to the
control-flow. Myer’s interval shows the complexity of cer-
tain branching conditions.

����� calculates the arcsin or arccos for the passed argument
(1 double) and is a typical C library function.
Prototype: double asin(double arg);

������ is another typical C library function. It converts strings
to the corresponding floating point value. ������ contains
several evaluations which check the input string for its valid-
ity. In the experiments the maximum string length was set to
10 characters in ASCII coding. Accordingly, the size of the
search space is 25510. For this test object each test datum
(individual of the evolutionary algorithm) consists of 10
integer variables, each with a possible value of 1 to 255.
Prototype: double atof(char InStr[10]);

The ��	���
�	�� function is an implementation of the classic
triangle classifier example used in a large number of testing
papers. It is used in two different data type versions. The
input domain is given either by three floating point values or
by three integer values.
Prototype: void classifTria(double a, double b, double c);

In ������ a passed floating point value is raised to a passed

integer value. The input consists of 1 double and 1 integer.
Prototype: double powi(double x, int nn);

 ������� is a larger test function. It calculates the incomplete
beta-integral of the passed argument (3 doubles).
Prototype: double incbet(double aa, double bb, double xx);

In the experiments the double values were bounded in [-106,
106].

0'" �#�$
�����%	
��
���	��
 (

Evolutionary testing was carried out using an evolutionary
algorithm with the following configuration:
• linear ranking with a selective pressure of 1.7,
• selection by stochastic universal sampling,
• generation gap of 0.9,
• discrete recombination with a recombination rate of 1,
• real or integer valued mutation employing different

mutation range for each subpopulation in the range
[0.1, 0.01, ..., 10-6] and a mutation rate of (1/number of
variables),

• regional population model dividing the population into
subpopulations,

• migration between subpopulations every 20 genera-
tions in a complete net structure (5% migration rate),

• competition between subpopulations every 5 genera-
tions (division pressure of 3),

• maximal number of generation of 200.

The sizing of the subpopulations depends on the complexity
of the software module under test. We employed 9 subpopu-
lations with 100 individuals each. This number is relatively
large and therefore more appropriate for the complex soft-
ware modules (������ and ��������). In order to compare the
results more easily we used this number for all the modules
in all the experiments.

Structural testing exhibits a natural termination criteria. As
soon as a partial aim is reached the corresponding optimiza-
tion process can terminate. Thus, an upper bound for the
number of generations is only defined if a partial aim can not
be reached.

There is one straightforward mechanism for the dynamic
adaptation of evolutionary testing in the context of our work
which has already been successfully employed: the use of

Table 1 Metrics and number of partial test aims of the used test objects

�������2������� ���� ���� �������
��� 3��� ������

lines of code 13 36 41 51 159

cyclomatic complexity 4 16 14 15 23

Myer’s interval 0 27 7 2 3

nesting complexity 4 32 17 19 43

no. of statement cover aims 10 40 30 36 58

no. of branch cover aims 12 56 42 49 79

multiple strategies and competing subpopulations. The use of
multiple strategies (different mutation range for each sub-
population) leads to different search strategies: from a glob-
ally oriented search when employing a large mutation range
to a very fine search when employing a small mutation range.
Additionally, depending on the test process, the most suc-
cessful strategies will be assigned more resources. This leads
to an efficient distribution of resources during the whole
optimization and a more robust search. For a longer discus-
sion of competing subpopulations see [11].

0'& !�*(������	�-	�#�$
�����%	��
����*	
��
���

We compare the results of evolutionary testing (ET) to those
of random testing (RT) for all test objects. The availability of
other means of comparison is very limited. One could also
compare the results with those of an expert with good knowl-
edge of the modules under test. However, this would involve
a great deal of effort which would not be justifiable for real-
world problems. We have carried out this kind of comparison
for several modules in order to test temporal behavior [12].
In these cases RT performed nearly as well as the expert,
whereas ET always proved itself to be better or at least as
good as the expert.

The results of the experiments are presented in Table 2. The
number of individuals generated for random testing was
equivalent to that for evolutionary testing. Each experiment
was repeated 10 times. The mean values for the respective
results are presented.

The evolutionary test achieved full statement and branch
coverage for the first 3 software modules in a very short
time. Random testing was unable to reach full coverage for
any of the software modules. The coverage values are much
lower in general.

For the more complex software modules ������ and ��������
evolutionary testing reached high coverage values. However,
full coverage (100%) was not reached. We are still investi-
gating if these coverage values are the highest possible val-

ues (because of infeasible statements and branches). It is thus
quite possible that for these test objects, the maximal possi-
ble coverage has been reached.

When we compare the results of evolutionary testing and
random testing for these two modules the advantage of evo-
lutionary testing is much more apparent. Especially for ���!
�����, the coverage of random testing is substantially lower
than that of evolutionary testing.

This suggests, that evolutionary testing is currently the only
sensible procedure of structural testing of large and complex
software modules.

1 !��!$ ���	��*��4�

The thorough test of embedded systems could include a
number of demanding testing tasks. The test case design for
various test objectives is difficult to master on the basis of
conventional function-oriented and structure-oriented testing
methods. Moreover, automation of test case design is prob-
lematic. Usually, test cases have to be defined manually.

The aim of the work presented in this paper is the automatic
generation of test data for structural tests. For this, a tool
environment has been developed that applies evolutionary
testing to C programs. Test data are generated by means of
evolutionary algorithms.

With evolutionary testing a new test method for testing em-
bedded systems is provided, which enables the complete
automation of test case design for various test objectives. The
idea of evolutionary testing is to search for relevant test cases
in the input domain of the system under test with the help of
evolutionary algorithms. As described in this paper, evolu-
tionary testing enables the complete automation for structural
test case design.

Due to the full automation of the evolutionary testing, the
system could be tested with a large number of different input
situations. In most cases, more than several thousand test
data sets are generated and executed within only a few min-
utes. The prerequisites for the application of evolutionary

Table 2 Results of statement and branch coverage for evolutionary testing (ET) and random testing (RT)

���� ���� �������
��� 3��� ������

���������	����� ET / RT ET / RT ET / RT ET / RT ET / RT

coverage [%] 100 / 50 100 / 61.5 100 / 13.3 90.7 / 77.8 87.9 / 8.6

no. of generations 18 82 172 855 1944

no. of individuals 15 048 66 481 139 476 689 510 813 204

testing time [s] 62 570 1225 7489 12339

�����5	����� ET / RT ET / RT ET / RT ET / RT ET / RT

coverage [%] 100 / 50 100 / 61.8 100 / 11.9 83.7 / 73.5 72.2 / 7.6

no. of generations 16 74 206 1610 3224

no. of individuals 12 944 60 046 166 298 1 298 394 2 600 249

tests are few. Only an interface specification of the system
under test is needed to guarantee the generation of valid input
values. For structural testing the source code of the test ob-
ject is also required. The evolutionary test is universally
applicable because it adapts itself to the system under test.

In order to guarantee an efficient overall test, the test control
of the evolutionary test environment evaluates every individ-
ual with regard to every partial aim that has not been
reached. Partial aims reached purely by chance are thus
identified immediately. Individuals suitable for one or more
partial aims are noted, stored, and used as seeds at the opti-
mization of these partial aims. The processing sequence of
the partial aims is guided by the quality of the available
initial values. In this way, the test quickly achieves the high-
est possible coverage. Experiments utilizing this strategy
have proved successful, and the overall testing procedure has
been accelerated considerably.

Evolutionary testing has already produced very good results
in the application field. Therefore, evolutionary testing seems
to have the potential to increase the effectiveness and effi-
ciency of existing test processes. Evolutionary tests thus
contribute to quality improvement and to reduction of devel-
opment costs.

The users applying evolutionary testing in industrial practice
can not be assumed to have any knowledge of evolutionary
algorithms. Thus, the selection of evolutionary algorithms
employed for the testing of a system needs to take place
without the participation of the users. By means of extended
evolutionary algorithms (Section 5.2), which combine global
and local search procedures in several subpopulations, robust
optimization results are obtained for a large number of dif-
ferent testing tasks.

Since research in the field of evolutionary computation is
carried out intensively world-wide, further improvements of
the search techniques can be expected in the future. Evolu-
tionary testing could directly benefit from such improve-
ments by incorporating new search techniques into test data
generation, thus leading to a further increase in the effective-
ness and efficiency of the tests.

At present, statement tests, branch tests, condition tests, and
segment tests can be applied. Work on multiple-condition
testing is drawing to a close. The test environment will also
be extended for structural testing of object-oriented Java
programs. Furthermore, a visualization component for ob-
serving the testing progress will be included and the distribu-
tion of tests to several computers will be supported.

����������
[1] %DUHVHO��$�: Automatisierung von Strukturtests mit evolu-

tionären Algorithmen (Automation of Structural Testing using
Evolutionary Algorithms). Diploma Thesis, Humboldt Univer-
sity, Berlin, Germany, 2000.

[2] %XKU��.�: Einsatz von Komplexitätsmaßen zur Beurteilung
Evolutionärer Testbarkeit (Complexity Measures for the As-
sessment of Evolutionary Testability). Diploma Thesis, Techni-
cal University Clausthal, 2001.

[3] Capability Maturity Model for Software, Software Engineering
Institute, Carnegie Mellon University.

[4] .RUHO��%�: Automated Test Data Generation. IEEE Transactions
on Software Engineering, vol. 16 no. 8 pp.870-879, 1990.

[5] IEC 65A Software for Computers in the Application of Indus-
trial Safety-Related Systems (Sec 122).

[6] -RQHV��%��)���(\UHV��'��(��DQG�6WKDPHU��+��+�: A Strategy for
using Genetic Algorithms to Automate Branch and Fault-based
Testing. The Computer Journal, vol. 41, no. 2, pp. 98 – 107,
1998.

[7] *URFKWPDQQ��0���DQG�:HJHQHU��-�: Test Case Design Using
Classification Trees and the Classification-Tree Editor CTE.
Proceedings of Quality Week ’95, San Francisco, USA, 1995.

[8] 0DWKZRUNV��7KH: Matlab - UserGuide. Natick, Mass.: The
Mathworks, Inc., 1994-1999. http://www.mathworks.com/

[9] 0F*UDZ��*���0LFKDHO��&���6FKDW]��0�: Generating Software
Test Data by Evolution. Technical Report RSTR-018-97-01,
RST Corporation, Sterling, Virginia, USA, 1998.

[10] 3RKOKHLP��+�: GEATbx - Genetic and Evolutionary Algorithm
Toolbox for Matlab. http://www.geatbx.com/, 1994-2002.

[11] 3RKOKHLP��+�: Evolutionäre Algorithmen - Verfahren, Operato-
ren, Hinweise aus der Praxis. Berlin, Heidelberg: Springer-
Verlag, 1999. http://www.pohlheim.com/eavoh/

[12] 3RKOKHLP��+��DQG�:HJHQHU��-�: Testing the Temporal Behavior
of Real-Time Software Modules using Extended Evolutionary
Algorithms. in Banzhaf, W. (ed.): GECCO'99 - Proceedings of
the Genetic and Evolutionary Computation Conference, San
Francisco, CA: Morgan Kaufmann, p. 1795, 1999.

[13] RTCA/DO-178B Software Considerations in Airborne Systems
and Equipment Certification.

[14] 6WKDPHU��+��+�: The Automatic Generation of Software Test
Data Using Genetic Algorithms. PhD Thesis, University of
Glamorgan, Pontyprid, Wales, Great Britain, 1996.

[15] 7UDFH\��1���&ODUN��-���0DQGHU��.��DQG�0F'HUPLG��-��������� An
Automated Framework for Structural Test-Data Generation.
Proceedings of the 13th IEEE Conference on Automated Soft-
ware Engineering, Hawaii, USA.

[16] :DWNLQV��$�: A Tool for the Automatic Generation of Test Data
Using Genetic Algorithms. Proceedings of the Software Quality
Conference ’95, Dundee, Great Britain, pp. 300-309, 1995.

[17] :HJHQHU��-�: Evolutionärer Test des Zeitverhaltens von Real-
zeit-Sytemen (Evolutionary Testing of the Temporal Behaviour
of Real-Time Systems). Shaker Verlag, 2001.

[18] :HJHQHU��-���%DUHVHO��$���6WKDPHU��+�: Evolutionary Test Envi-
ronment for Automatic Structural Testing. Information and
Software Technology, Special Issue devoted to the Application
of Metaheuristic Algorithms to Problems in Software Engi-
neering, vol. 43, pp. 841 – 854, 2001.

[19] :HJHQHU��-���DQG�*URFKWPDQQ��0�: Verifying Timing Con-
straints of Real-Time Systems by Means of Evolutionary Test-
ing. Real-Time Systems, 15, pp. 275-298, 1998.

