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Abstract 
Simulation studies are useful in various 
disciplines for a number of reasons including the 
development and evaluation of new 
computational and statistical methods.  This is 
particularly true in human genetics and genetic 
epidemiology where new analytical methods are 
needed for the detection and characterization of 
disease susceptibility genes whose effects are 
complex, nonlinear, and partially or solely 
dependent on the effects of other genes.  Despite 
this need, the development of complex genetic 
models that can be used to simulate data is not 
always intuitive.  In fact, only a few such models 
have been published.  In this paper, we present a 
strategy for identifying complex genetic models 
for simulation studies that utilizes genetic 
algorithms. The genetic models used in this 
study are penetrance functions that define the 
probability of disease given a specific DNA 
sequence variation has been inherited.  We 
demonstrate that the genetic algorithm approach 
routinely identifies interesting and useful 
penetrance functions in a human-competitve 
manner. 

1 INTRODUCTION 
One goal of human genetics is to identify genes that 
confer an increased risk of disease in certain individuals.  
The identification of disease susceptibility genes has the 
potential to improve human health through the 
development of new prevention, diagnosis, and treatment 
strategies.  Although achieving this goal is an important 
public health endeavor, it is not easily accomplished for 
common diseases, such as essential hypertension, due to 
the complex multifactorial nature of the disease (Kardia, 
2000; Moore and Williams, 2002).  That is, in such cases, 
risk of disease is due to a complex interplay between 
multiple genes and multiple environmental factors.  The 
identification of genes that influence risk of disease only 
through complex interactions with other genes (i.e. gene-

gene interactions) and/or environmental factors (i.e. gene-
environment interactions) remains a statistical and 
computational challenge (Templeton, 2000; Moore and 
Williams, 2002).  The statistical challenge is to consider 
high-dimensional interactions without loss of degrees of 
freedom while the computational challenge lies in the size 
and complexity of the search space.  Gene-gene 
interactions are examples of attribute interactions, a major 
challenge for data mining (Freitas, 2001). 

Several new methods have been developed in an attempt 
to address the statistical and computational challenges of 
detecting and characterizing complex disease 
susceptibility genes.  These methods can be classified as 
either data reduction approaches or pattern recognition 
approaches.  Data reduction methods such as the 
multifactor dimensionality reduction or MDR approach 
(Ritchie et al., 2001) seek to reduce the dimensionality of 
the problem in order to facilitate exploratory data analysis 
and hypothesis testing.  MDR reduces multiple predictor 
variables to a single variable, thereby reducing the 
dimensionality of the problem.  In contrast, pattern 
recognition and machine learning strategies such as neural 
networks (Lucek et al., 1998; Saccone et al., 1999) and 
cellular automata (Moore and Hahn, 2002) consider the 
full dimensionality of the data by considering patterns of 
DNA sequence variations.  Although these methods are 
promising, the power of these approaches for identifying 
gene-gene and gene-environment interactions has not 
been fully evaluated.  The evaluation of power is best 
accomplished using simulated data. 

The goal of this study was to develop a genetic algorithm 
(GA) strategy for discovering complex genetic models in 
the form of penetrance functions that can be used to 
simulate data for the evaluation of new statistical and 
computational methods.  Penetrance functions define the 
probability of disease given a particular combination of 
DNA sequence variations has been inherited.  Penetrance 
functions of interest in this study exhibit gene-gene or 
attribute interactions in the absence of independent main 
effects.  We begin in Section 2 with an overview of 
genetic models in terms of penetrance functions.  In 
Section 3, we describe our GA approach to discovering 



complex genetic models.  A summary and discussion of 
the results are presented in Sections 4 and 5 respectively.  
The conclusions are presented in Section 6.  The results 
presented in this paper demonstrate a GA strategy is 
capable of routinely identifying interesting and useful 
genetic models in a human-competitve manner. 

2 PENETRANCE FUNCTIONS AS 
GENETIC MODELS  

Penetrance functions represent one approach to modeling 
the relationship between genetic variations (i.e. variation 
in the DNA sequence of a gene) and risk of disease.  
Penetrance is simply the probability of disease given a 
particular combination of genotypes.  A single genotype 
is determined by one allele (i.e. a specific DNA sequence 
state) inherited from the mother and one allele inherited 
from the father.  For most genetic variations, only two 
alleles (A or a) exist in the biological population.  
Therefore, because the order of the alleles is unimportant, 
a genotype can have one of three values:  AA, Aa or aa.   
Penetrance functions define the probability of disease for 
all genotypes for one or more genetic variations.  Once 
the penetrance functions are specified, genetic data can 
easily be simulated for people with the disease and for 
people without the disease.  For example, the penetrance 
function for an autosomal recessive disease (i.e. a disease 
that requires two copies of the same allele) such as cystic 
fibrosis in which only one of the three genotypes leads to 
disease might look like Table 1.  Here, individuals who 
inherit the AA or Aa genotypes have zero probability of 
disease while individuals who inherit the aa genotype are 
certain to have the disease.  From this simple recessive 
Mendelian model, data can simply be simulated by giving 
affected individuals aa genotypes and unaffected 
individuals AA or Aa genotypes, in proportion to their 
defined population frequencies. 

 

Table 1.  Penetrance values for three genotypes from a 
gene acting under an autosomal recessive disease model. 

AA Aa aa 

0 0 1 

 

More complex genetic models can be developed by 
assigning disease risk to more than one genotype from 
one or more genetic variations.  Table 2 illustrates a 
penetrance function that relates two genetic variations, 
each with two alleles and three genotypes, to risk of 
disease.  In this example, the alleles each have a 
biological population frequency of p = q = 0.5 with 
genotype frequencies of p2 for AA and BB, 2pq for Aa and 
Bb, and q2 for aa and bb, consistent with Hardy-Weinberg 
equilibrium (Hartl and Clark 1997).  Thus, assuming the 
frequency of the AA genotype is 0.25, the frequency of Aa 
is 0.5, and the frequency of aa is 0.25, then the marginal 
penetrance of BB (i.e. the effect of just the BB genotype 
on disease risk) can be calculated as (0.25 * 0) + (0.5 * 0) 

+ (0.25 * 1) = 0.25.  This means that the probability of 
disease given the BB genotype is 0.25, regardless of the 
genotype at the other genetic variation.  Similarly, the 
marginal penetrance of Bb can be calculated as (0.25 * 0) 
+ (0.5 * 0.5) + (0.25 * 0) = 0.25.  Note that for this model, 
all of the marginal penetrance values (i.e. the probability 
of disease given a single genotype, independent of the 
others) are equal, which indicates the absence of main 
effects (i.e. the genetic variations do not independently 
affect disease risk).  This is true despite the table 
penetrance values not being equal.  Here, risk of disease is 
greatly increased by inheriting exactly two high-risk 
alleles (e.g. a and b are defined as high risk).  Thus, 
aa/BB, Aa/Bb, and AA/bb are the high-risk genotype 
combinations.  This model was first described by Frankel 
and Schork (1996).  What makes this model complex is 
the absence of a main effect for either of the genetic 
variations.  Thus, each genetic variation only has an effect 
on disease risk in the context of the other genetic 
variation.  Such gene-gene interactions are believed to 
play an important role in determining an individual’s risk 
for developing common diseases (Moore and Williams, 
2002; Templeton, 2000). 

 

Table 2.  Penetrance values for combinations of 
genotypes from two genes exhibiting interactions but not 

main effects. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) 0 0 1 .25 

Bb (.50) 0 .50 0 .25 

bb (.25) 1 0 0 .25 

Margin 
penetrance 

values 
.25 .25 .25  

 

Table 3.  Penetrance values for combinations of 
genotypes from two genes exhibiting interactions but not 

main effects. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) 0 1 0 .50 

Bb (.50) 1 0 1 .50 

bb (.25) 0 1 0 .50 

Margin 
penetrance 

values 
.50 .50 .50  

The gene-gene interaction model described in Table 2 was 
developed by trial and error.  That is, a human derived 
this model by substituting various allele frequencies and 



penetrance functions until a model was found that had 
attribute or gene-gene interaction effects without 
independent main effects.  This is one of only a few 
complex genetic models that have been described in the 
literature. The scarcity of complex genetic models in the 
literature is primarily due to the extraordinary 
combinatorial complexity of the problem, as has been 
discussed by Culverhouse et al. (2002).  Effectively, there 
are an infinite number of possible penetrance functions 
that could be developed for just two genetic variations.  
Only some of these models would exhibit a complex 
relationship with disease risk.  The size of the search 
space precludes the human-based trial and error approach 
as well as exhaustive computational searches without 
specific restrictions and assumptions about the allele 
frequency and penetrance function values.  For example, 
Li and Reich (2000) enumerated every possible 
penetrance function using probability values restricted to 
zero and one.  This yielded a manageable 29 total models.  
Only one of these models exhibits interaction effects in 
the absence of main effects (see Table 3).  Culverhouse et 
al. (2002) have also enumerated a restricted set of models.  
The goal of the present study was to develop a machine 
intelligence approach to discovering complex genetic 
models in the form of penetrance functions.  The next 
section describes the GA approach we used. 

3 THE GENETIC ALGORITHM 

3.1 OVERVIEW OF GENETIC ALGORITHMS 

Genetic algorithms have been shown to be a very 
effective strategy for implementing beam searches of 
rugged fitness landscapes (Goldberg, 1989).  Briefly, this 
is accomplished by generating a random population of 
models or solutions, evaluating their ability to solve a 
particular  problem, selecting the best models or solutions, 
and generating variability in these models by exchanging 
model components among different models.  The process 
of selecting models and introducing variability is iterated 
until an optimal model is identified or some termination 
criteria are satisfied.  This general procedure was inspired 
by the problem solving abilities of evolution by natural 
selection in biological populations.  Using similar 
language, GAs operate using populations of chromosomes 
(models) that undergo selection according to fitness, 
reproduction, recombination, and mutation. 

3.2 DESCRIPTION OF OUR GENETIC 
ALGORITHM 

3.2.1 SOLUTION REPRESENTATION 

A solution or model consists of a set of nine penetrance 
values or probabilities on the interval from zero to one in 
increments of 0.001.  Thus, the entire search space 
consisted of 1027 possible models.  Each penetrance value 
represents the probability of disease given a particular 
combination of two genotypes.  Each of the nine real-

valued probabilities was encoded as 32 bits for a total GA 
chromosome length of 288 bits. 

3.2.2 FITNESS FUNCTION 

Fitness was determined by maximizing the variance of the 
table penetrance values (Vt) and minimizing the variance 
of the marginal penetrance values (Vm).  Maximizing Vt 
ensures that we identify interesting patterns of genotypes 
while minimizing Vm ensures the size of the main effect 
of each genotype is small.  We stopped the GA when a 
model satisfied both Vt ≥ 0.1 and Vm ≤ 0.0001.  These 
values were selected to ensure interaction effects without 
main effects of each genetic variation. 

3.2.3 GA PARAMETERS 

Table 4 summarizes the GA parameters used in this study.  
We ran the GA a total of 100,000 times with each run 
consisting of a maximum of 10,000 generations.  

 

Table 4.  GA parameters. 

Objective Discover complex models  

Fitness function Vt - Vm 

Number of runs 100,000 

Stopping criteria Vt ≥ 0.1 and Vm ≤ 0.0001 

Population size 200 

Generations 10,000 

Selection Stochastic uniform sampling 

Crossover Uniform, by variable 

Crossover probability 0.60 

Mutation Gaussian 

Mutation probability 0.01 

 

3.2.4 SOFTWARE AND HARDWARE 

Our GA implementation used GAlib, a C++ class library 
for UNIX, Windows and Mac operating systems 
(http://lancet.mit.edu/ga/). Coarse-grained parallelism, 
utilizing 10 processors to perform 10 sets of 10,000 runs, 
for a total of 100,000 runs, used the MPICH parallel 
programming library on a 110-node Beowulf-style 
parallel computing cluster running Linux. 

4 RESULTS 
The GA was run for a total of 100,000 times, and the best 
model was saved from each.  Of the 100,000 best models 
discovered by the GA, there were no duplicates.  Thus, 
each model was unique.  We first wanted to know 
whether penetrance function models that have been 
previously described in the literature were discovered by 



the GA.  The GA -generated model illustrated in Table 5 
(Vt = .154764 and Vm = .000044) is very similar to the 
model shown in Table 2 while the model illustrated in 
Table 6 (Vt = .21157 and Vm = .000082) is very similar to 
the model shown in Table 3.  Subtle variations of the 
models shown in Tables 2 and 5 were discovered in 13 
out of the 100,000 GA runs.  Similarly, subtle variations 
of the models shown in Tables 3 and 6 were discovered in 
three out of the 100,000 GA runs.  Thus, the GA routinely 
discovered models that have been described previously. 

 

Table 5.  GA -generated model similar to the previously 
described model in Table 2. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .083 .076 .964 .29 

Bb (.50) .056 .508 .085 .30 

bb (.25) .977 .098 .062 .30 

Margin 
penetrance 

values 
.30 .29 .31  

 

 

Table 6.  GA -generated model similar to the previously 
described model in Table 3. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .094 .905 .097 .51 

Bb (.50) .967 .097 .937 .52 

bb (.25) .027 .990 .080 .51 

Margin 
penetrance 

values 
.50 .52 .52  

 

 

Table 7.  A GA -generated model. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .967 .314 .137 .43 

Bb (.50) .313 .312 .742 .43 

bb (.25) .129 .779 .075 .42 

Margin 
penetrance 

values 
.43 .42 .44  

Our second question was whether the GA routinely 
generated new and interesting models.  All of the models 
identified by the GA exhibited gene-gene interactions 
with minimal or no main effects.  In fact, other than the 
class of models illustrated in Tables 5 and 6, none have 
been described previously in the literature.  Thus, 
approximately 99,987 mo dels are unique.  Tables 7-10 
illustrate four of the new models discovered by the GA. 

 

Table 8.  A GA -generated model. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .967 .139 .799 .51 

Bb (.50) .057 .655 .627 .50 

bb (.25) .974 .544 .019 .52 

Margin 
penetrance 

values 
.51 .50 .52  

 

 

Table 9.  A GA -generated model. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .017 .451 .711 .42 

Bb (.50) .520 .571 .039 .41 

bb (.25) .640 .053 .949 .43 

Margin 
penetrance 

values 
.41 .43 .42  

 

 

Table 10.  A GA -generated model. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .954 .256 .360 .44 

Bb (.50) .010 .731 .300 .45 

bb (.25) .801 .093 .808 .44 

Margin 
penetrance 

values 
.46 .44 .45  

 

The model summarized in Table 7 (Vt = .106238 and Vm 
= .000052) indicates that individuals with genotype 



combinations of AA/BB, Aa/bb, and aa/Bb are at highest 
risk of disease while those with AA/Bb, Aa/BB, and Aa/Bb 
are at intermediate risk.  The remaining individuals are at 
relatively low risk.  This nonlinear pattern of high-risk 
and low-risk genotype combinations is indicative of gene-
gene interactions.  Risk of disease is not significantly 
different between single genotypes (represented by 
margin penetrance values), confirming an absence of 
main effects. 

The models summarized in Table 8 (Vt = .140427 and Vm 
= .000091), Table 9 (Vt = .110712 and Vm = .000098), 
and Table 10 (Vt = .120743 and Vm = .000035) have 
different nonlinear combinations of genotypes associated 
with varying risk of disease.  Again, none of the 
genotypes in these models is associated with disease risk 
independent of the other genotypes.  This indicates gene-
gene or attribute interaction in the absence of main 
effects. 

5 DISCUSSION 
In the present work, we focused on genetic models with 
just two genetic variations.  However, we anticipate that 
genetic models incorporating more than just two genetic 
variations will be useful in simulation studies since most 
common diseases are likely to be influenced by many 
genes.  This is evident in the study by Ritchie et al. (2001) 
that identified a combination of four genetic variations 
that is associated with risk of sporadic breast cancer in a 
complex nonlinear manner.  Our future studies will focus 
on expanding the GA to search for combinations of three 
or more genetic variations that exhibit attribute interaction 
in the absence of main effects.  Further, it will be 
important to explore a range of allele frequencies as well 
as methods for categorizing models into similar classes. 

Human genetics is undergoing an information explosion 
and a comprehension implosion.  In fact, our ability to 
measure genetic information, and biological information 
in general, is far outpacing our ability to interpret it.  As 
demonstrated in this study, machine intelligence strategies 
such as GAs hold promise for dealing with genetic data 
that is high-dimensional and complex.  However, the 
present study is not the first to apply evolutionary 
algorithms to a genetics problem.  In fact, evolutonary 
algorithms have been used to optimize data analysis 
approaches in genetic epidemiology studies (Congdon et 
al., 1993; Carlborg et al., 2000; Tapadar et al., 2000; 
Moore and Hahn, 2002), gene expression studies (Moore 
and Parker, 2001; Moore et al., 2001; Parker and Moore, 
2001), and studies of gene networks (Koza et al., 2001).  
We anticipate an increase in applications of GAs in the 
field of human genetics as more investigations begin to 
focus on the challenge of simulating and analyzing 
complex, high-dimensional genetic data. 

6 CONCLUSIONS 
The results of this study document the utility of GAs for 
the discovery of complex genetic models that can be used 
for simulation studies in human genetics.  In fact, our GA 
discovered approximately 99,987 models that have not 
been previously described in the literature.  Thus, the 
results are human-competitive and routine.  To our 
knowledge, this is the first application of a machine 
intelligence approach to the discovery of complex genetic 
models such as penetrance functions. 
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