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Abstract

Gaphyl is an application of genetic al-

gorithms (GA's) to phylogenetics, an ap-
proach used by biologists to investigate the
evolutionary relationships among organisms.
Typical phylogenetic software packages use
heuristic search methods to navigate through
a space of possible trees in an attempt to
�nd the most plausible evolutionary hypothe-
ses, as exhaustive search is not practical in
this domain. Gaphyl substitutes an evolu-
tionary search mechanism, with the result
that on a complex problem from the litera-
ture (the major clades of the angiosperms),
Gaphyl is able to �nd a more complete so-
lution (more equally plausible hypotheses) in
less time than the standard approach. Con-
tributions of GA operators are investigated,
as are some possibilities for hybrid systems.

1 INTRODUCTION

The human genome project and similar projects in bi-
ology have led to a wealth of data and the rapid growth
of the emerging �eld of bioinformatics, a hybrid disci-
pline between biology and computer science that uses
the tools and techniques of computer science to help
manage, visualize, and �nd patterns in this data. The
work reported here is an application to biology, and
indicates gains from using genetic algorithms (GA's)
as the search mechanism for the task.

Phylogenetics [6] is a method widely used by biologists
to reconstruct hypothesized evolutionary pathways fol-
lowed by species currently or previously inhabiting the
Earth. Given a dataset that contains a number of dif-
ferent species, each with a number of attribute-values,
phylogenetics software constructs phylogenies, which
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Figure 1: A toy example data set, sample phylogeny, and
sample network. In this example, there are four species
and three features. The tree formed shows the hypothesis
that species B is related to species A, gaining the third
feature. Similarly, C and D are more closely related to B
than to A, also acquiring new features.

are representations of the possible evolutionary rela-
tionships among the given species. A typical phy-
logeny is a tree structure: The species nearest the
root of a tree can be viewed as the common ances-
tor, the leaves of a tree are the species, and subtrees
are subsets of species that share a common ancestor.
Each branching of a parent node into o�spring repre-
sents a divergence in one or more attribute-values of
the species within the two subtrees. In an alternate
approach, sometimes called \unrooted trees" or \net-
works", the root of the tree is not assumed to be an
ancestral species, although these hypotheses are often
drawn as trees as a convenience. Unrooted trees rep-
resent hypothetical relationships between species, but
do not attempt to model ancestral relationships.

An example phylogeny for a toy data set is shown in
Figure 1. In this example, species A is the common
ancestor in the tree, and B is the common ancestor
of the subtree below A (assuming the tree is rooted).
The relationships between species is also shown in the
network representation, to better understand the un-
rooted tree.

Phylogenies are evaluated using metrics such as par-
simony: A tree with fewer evolutionary changes is
considered better than one with more evolutionary



changes. The work reported here used Wagner par-
simony. Wagner parsimony is straightforward to com-
pute (requiring only a single pass through the tree)
and incorporates few constraints on the evolutionary
changes that will be considered. For example, some
parsimony approaches require the assumption that
species will only grow more complex via evolution |
that features will be gained, but not lost in the process.

The typical phylogenetics approach uses a determinis-
tic hillclimbing methodology to �nd a phylogeny for a
given dataset, saving one or more \most parsimonious"
trees as the result of the process. The most parsi-
monious trees are the ones with a minimum number
of evolutionary changes connecting the species in the
tree. Multiple \bests" correspond to equally plausi-
ble evolutionary hypotheses, and �nding more of these
competing hypotheses is an important part of the task.
The tree-building approach adds each species into the
tree in sequence, searching for the best place to add
the new species. The search process is deterministic,
but multiple trees may be found in the process of the
search, and di�erent trees may be found by running
the algorithm with di�erent random \jumbles" of the
order of the species in the dataset.

This research is an investigation into the utility of us-
ing evolutionary algorithms on the problem of �nding
parsimonious phylogenies.

2 DESIGN DECISIONS

To hasten the development of our system, we used
parts of two existing software packages. Phylip [5]
is a phylogenetics system widely used by biologists.
In particular, this system contains code for evaluat-
ing the parsimony of the phylogenies (as well as some

helpful utilities for working with the trees). Using the
Phylip source code rather than writing our own tree-
evaluation modules also helps to ensure that our trees
are properly comparable to the Phylip trees. Genesis
[7] is a genetic algorithms (GA) package intended to
aid the development and experimentation with varia-
tions on the GA. In particular, the basic mechanisms
for managing populations of solutions and the modular
design of the code facilitate implementing a GA for a
speci�c problem. We named our new system Gaphyl, a
reection of the combination of GA and Phylip source
code.

The research described here was conducted using pub-
lished datasets available over the internet [4]. The
�rst dataset used is the families of the superorder of
Lamiiorae dataset [1], consisting of 23 species and
29 attributes. This dataset was chosen as being large
enough to be interesting, but small enough to be man-

ageable. A second dataset, the major clades of the
angiosperms [3], consisting of 49 species and 61 at-
tributes, was used for further experimentation. These
datasets were selected because the attributes are bi-
nary, which simpli�ed the development of the system.
As a preliminary step in evaluating the GA as a search
mechanism for phylogenetics, \unknown" values for
the attributes were replaced with 1's to make the data
fully binary. This minor alteration to the data does
impact the meaningfulness of the resulting phyloge-
nies as evolutionary hypotheses, but does not a�ect
the comparison of Gaphyl and Phylip as search mech-
anisms.

The typical GA approach to doing \crossover" with
two parent solutions with a tree representation is to
pick a subtree (an interior or root node) in both par-
ents at random and then swap the subtrees to form
the o�spring solution. The typical mutation operator
would select a point in the tree and mutate it to any
one of the possible legal values (here, any one of the
species). However, these approaches do not work with
the phylogenies because each species must be repre-
sented in the tree exactly once.

Operators designed speci�cally for this task are de-
scribed in the following sections and in more detail in
[2].

2.1 CROSSOVER OPERATOR

The needs for our crossover operator bear some simi-
larity to traveling salesperson problems (TSP's), where
each city is to be visited exactly once on a tour. There
are several approaches in the literature for working on
this type of problem with a GA, however, the TSP
naturally calls for a string representation, not a tree.
In designing our own operator, we studied TSP ap-

proaches for inspiration, but ultimately devised our
own. We wanted our operator to attempt to preserve
some of the species relationships from the parents. In
other words, a given tree contains species in a partic-
ular relationship to each other, and we would like to
retain a large degree of this structure via the crossover
process.

Our crossover operator proceeds as follows:

1. Choose a species at random from one of the par-
ent trees. Select a subtree at random that includes
this node, excluding the subtree that is only the
leaf node and the subtree that is the entire tree.
(The exclusions prevent crossovers where no in-
formation is gained from the operation.)

2. In the second parent tree, �nd the smallest sub-
tree containing all the species from the �rst par-
ent's subtree.
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Figure 2: Two example parent trees for a phylogenetics
problem with seven species. A subtree for crossover has
been identi�ed for each tree.
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Figure 3: At the left, the o�spring initially formed by
replacing the subtree from parent1 with the subtree from
parent2; on the right, the o�spring tree has been pruned
to remove the duplicate species F.

3. To form an o�spring tree, replace the subtree from
the �rst parent with the subtree from the sec-
ond parent. The o�spring must then be pruned
(from the \older" branches) to remove any dupli-
cate species.

4. Repeat the process using the other parent as the
starting point, so that this process results in two
o�spring trees from two parent trees.

This process results in o�spring trees that retain some
of the species relationships from the two parents, and
combine them in new ways.

An example crossover is illustrated in Figures 2 and
3. (Note that in the phylogenies, swapping the left
and right children does not a�ect the meaning of the
phylogeny.)

2.2 CANONICAL FORM

Trees are put into a canonical form when saving the
best trees found in each generation, to ensure that
no equivalent trees are saved among the best ones.
Canonical form is illustrated in Figure 4.

2.3 MUTATION OPERATORS

One of our mutation operators selects two leaf nodes
(species) at random, and swaps their positions in the
tree. This operator allows the GA to investigate slight
variations on a parent tree.
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Figure 4: An illustration of putting a tree into canonical
form. The tree starts as in the top left; an alternate repre-
sentation of the tree as a \network" is shown at the bottom
left. First, the tree is rotated, so that the �rst species in
the dataset is an o�spring of the root. Second, subtrees
are rearranged so that smaller trees are on the left and
alphabetically lower species are on the left.

A second mutation operator picks a random subtree
and a random species within the subtree. The subtree
is rotated to have the species as the left child of the
root and reconnected to the parent. The idea behind
this operator is that within a subtree, the species might
be connected to each other in a promising manner, but
not well connected to the rest of the tree.

2.4 IMMIGRATION

The population is subdivided into a speci�ed number
of subpopulations which, in most generations, are dis-
tinct from each other (crossovers happen only within a
given subpopulation). After a number of generations
have passed, each population migrates a number of
its individuals into other populations; each emigrant
determines at random which population it will move
to and which tree within that population it will up-
root. The uprooted tree replaces the emigrant in the
emigrant's original population. The number of pop-
ulations, the number of generations to pass between
migrations, and the number of individuals from each
population to migrate at each migration event are de-
termined by parameters to the system. Immigration
was added due to problems with premature conver-
gence identi�ed in early stages of development.

3 EXPERIMENTAL RESULTS

Recall that both Gaphyl and Phylip have a stochastic
component, which means that evaluating each system
requires doing a number of runs. In Phylip, each dis-
tinct run �rst \jumbles" the species list into a di�erent
random order. In Gaphyl, there are many di�erent ef-



fects of random number generation: the construction
of the initial population, parent selection, and the se-
lection of crossover and mutation points. For both
systems, a number of di�erent runs must be done to
evaluate the approach.

3.1 COMPARISON OF GAPHYL AND

PHYLIP

1. With the Lamiiorae data set, the performance of
Gaphyl and Phylip is comparable. Phylip is more
expedient in �nding a single tree with the best
parsimony (72), but both Gaphyl and Phylip �nd
45 most parsimonious phylogenies in about twenty
minutes of run time.

2. With the angiosperm dataset, a similar pattern
emerges: Phylip is able to �nd one tree with
the best �tness (279) quite quickly, while Gaphyl
needs more run time to �rst discover a tree of �t-
ness 279. However, in a comparable amount of
runtime, Gaphyl is able to �nd 250 di�erent most
parsimonious trees of length 279 (approximately
24 hours of runtime). Phylip runs for compara-
ble periods of time have not found more than 75
distinct trees with a parsimony of 279, and runs
of nearly 3 days have not turned up more than
95 distinct trees. Furthermore, the trees found by
Phylip are a proper subset of the trees found by
Gaphyl.

In other words, Gaphyl is more successful than Phylip
in �nding more trees (more equally plausible evolu-
tionary hypotheses) in the same time period. This
represents a more complete solution to the problem.

The Lamiiorae task is considerably easier to solve
than the angiosperm task. Example parameter set-

tings are a single population of 500, 500 generations,
50% elitism (the 250 best trees are preserved into the
next generation), 100% crossover, 10% �rst mutation,
and 100% second mutation. Empirically, it appears
that 72 is the best possible parsimony for this dataset,
and that there are not more than 45 di�erent trees of
length 72.

The angiosperm task seems to bene�t from immigra-
tion in order for Gaphyl to �nd the best known trees
(�tness 279). Successful parameter settings are 5 pop-
ulations, population size of 500 (in each subpopula-
tion), 2000 generations, immigration of 5% (25 trees)
after every 500 generations, 50% elitism (the 250 best
trees are preserved into the next generation), 100%
crossover, 10% �rst mutation, and 100% second mu-
tation. (Immigration does not happen following the
�nal generation.) We have not yet done enough runs
with either Phylip or Gaphyl to estimate the maximum

number of trees at this �tness, nor a more concise es-
timate of how long Phylip would have to run to �nd
250 distinct trees, nor whether 279 is even the best
possible parsimony for this dataset.

3.2 BIG PICTURE: THE ROLE OF THE

GA IN THIS TASK

In constructing Gaphyl, we used the code from
Phylip's evaluation metric, but the search mechanisms
are those of the GA described in this section. In other
words, we are investigating the use of the GA as an
alternate search method for this already established
task. There is an immediate gain to our approach: Our
search for trees increases in complexity with the num-
ber of species in the dataset. The number of attributes,
however, does not a�ect the search. Conversely, the
complexity of the search in Phylip increases relative
to the number of attributes as well as the number of
species in the dataset. Biologists frequently run phy-
logeny software for weeks at a time, so a savings in
speed has a measurable impact.

Both systems are far from optimized, so strong con-
clusions cannot be drawn from runtime alone. How-
ever, the pattern that is emerging is that as the prob-
lems get more complex, Gaphyl is able to �nd a more
complete set of trees with less work than what Phylip
is able to �nd. The work done to date illustrates

that Gaphyl is a promising approach for phylogenet-
ics work, as Gaphyl �nds a wider variety of trees on
this problem than Phylip does. This further suggests
that Gaphyl may be able to �nd solutions better than
those Phylip is able to �nd on datasets with a larger
number of species and attributes, because it appears
to be searching more successful regions of the search
space.

While it is true that one cannot compare software
on runtime alone, recall that Gaphyl was constructed
from existing systems, neither one of which was opti-
mized for speed. In particular, Genesis was designed to
simplify GA experimentation and modi�cations (much
like the project here). It is possible to make some com-
parisons of operations done by the two systems in their
search, but these are apples and oranges, since the
work done to get from one tree to the next varies be-
tween the systems. In Phylip, each jumble corresponds
to a hillclimbing search, which (with the Angiosperms
dataset) investigates on the order of 10,000 trees for
each random ordering of the species list, and 40,000
jumbles in the 24 hours, or on the order of 400 mil-
lion trees. In Gaphyl, 10 experiments (using di�erent
seeds to the random number generator) with 2500 to-
tal trees and 2000 generations investigates on the order
of 50 million trees in 24 hours, although the number



should be halved due to the 50% elitism.

3.3 CONTRIBUTION OF OPERATORS

To evaluate the contributions of the GA operators
to the search, additional runs were done with the
�rst data set (and a single population). Empiri-
cally, crossover and the second mutation operator had
been found to be the largest contributors to successful
search, so attention was focused on the contributions
of these operators.

In the �rst set of experiments, the �rst mutation rate
was set to be 0%. First, the crossover rate was varied
from 0% to 100% at increments of 10% while the sec-
ond mutation rate was held constant at 100%. Second,
the second mutation rate was varied from 0% to 100%
at increments of 10% while the crossover rate was held
constant at 100%. 20 experiments were run at each
parameter setting; 500 generations were run.

Figure 5 illustrates the e�ects of varying the crossover
rate (solid line) and second mutation rate (dashed line)
on the average number of generations taken to �nd at
least one tree of the known best �tness (72). Exper-
iments that did not discover a tree of �tness 72 are
averaged in as taking 500 generations. For example,
0% crossover was unable to �nd any trees of the best
�tness in all 20 experiments, and so its average is 500
generations. This �rst experiment illustrates that in
general, higher crossover rates are better. There is
not a clear preference, however, for high rates of the
second form of mutation. To look at this operator
more closely, the �nal populations of the 20 experi-
ments were looked at to determine how many of the
best trees were found in each run.

Figure 6 illustrates the e�ects of varying the crossover
rate (solid line) and second mutation rate (dashed line)
on the average number of best trees found. Experi-
ments that did not discover a tree of �tness 72 are av-
eraged in as �nding 0 trees. For example, 0% crossover
was unable to �nd any trees of the best �tness in all 20
experiments, and so its average is 0 of the best trees.
As Figure 6 illustrates, runs with a higher second mu-
tation rate tend to �nd more of the best trees than
runs with a lower second mutation rate.

The impact of the �rst mutation operator had seemed
to be low based on empirical evidence. So another set
of experiments was done to assess the contribution of
this operator. In both, the crossover rate was set at
100%; in one, the second mutation rate was set at 0%
and in the other, the second mutation rate was set
at 100%. The results of this experiment clearly indi-
cate that higher rates of this form of mutation are not
bene�cial. Furthermore, this operator is not clearly
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contributing to the search. The results are illustrated
in Figure 7.

In the �nal set of experiments, the �rst experiments of
varying crossover rate while holding second mutation
rate constant and vice versa were repeated, but this
time with a �rst mutation rate of 10%. The results
are illustrated in Figure 8.
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3.4 CONTRIBUTION OF OTHER

PARAMETERS

An additional set of experiments was designed to as-
sess tradeo�s in terms of putting a �xed number of
trees in one population or distributing them across a
number of populations and tradeo�s between having

Population sizes for each experiment
Gens Number of Populations

1 2 4 8 16

1600 1024 512 256 128 64

800 2048 1024 512 256 128

400 4096 2048 1024 512 256

Table 1: The population size for each experiment de-
scribed in Section 3.4. When there are multiple popula-
tions, the number shown refers to the number of trees in
each distinct population.

larger population sizes or doing more generations, for
a �xed number of evaluations in all cases. These ex-
periments were done using the angiosperms dataset.

The base case may be thought of as 1 population of
1024 individuals, and 1600 generations. Then, along
one dimension, the population is divided across 2,
4, 8, and 16 populations, a total of �ve variations.
Along the other dimension the number of generations
is halved as the population size is doubled, for a total
of three variations. This creates an array of 15 param-
eter settings, illustrated in Table 1. The horizontal
axis shows the number of populations, the vertical axis
shows the number of generations, and each interior cell
shows the population size.

Twenty experiments, with di�erent seeds to the ran-
dom number generator, were done for each setting.
When multiple populations are used, �ve percent of
the population immigrates after 25%, 50%, and 75%
of the generations have completed.

The results of these experiments, illustrated in Table 2,
show the best results with 2 populations of 1024 trees
run for 800 generations, with a total of 7 out of the
20 runs �nding trees of the best known �tness of 279.
In general, it appears that two populations are better
than one, but that there might not be great gains from
more than two populations. Further, it appears that
the system bene�ts from a balance between a large
population size and a large number of generations.

3.5 EXPLORATION OF HYBRID

POSSIBILITIES

We have noted that Phylip is relatively quick to �nd
at least one of the best solutions, but that over a span
of time, does not �nd as many of the best solutions
as Gaphyl does. Therefore, it seems that investigating
the possibility of a hybrid system would be bene�cial.
The hybrid variation explored here is to use Phylip
runs to seed the initial population of the GA run.

In these experiments, the point of comparison is the



Number of runs that found a \best"
Gens Number of Populations

1 2 4 8 16 sum

1600 1 2 1 2 1 7

800 5 7 2 5 2 21

400 3 3 4 0 0 10

sum 9 12 7 7 3

Average �tness of �nal populations
Gens Number of Populations

1 2 4 8 16

1600 281.70 281.55 281.10 280.85 280.95

800 280.60 279.95 280.25 279.95 280.15

400 280.45 280.15 280.45 281.15 281.95

Table 2: The number of runs that found the best solution
and the average best solution found across 20 runs, varying
the number of populations and number of generations, with
a constant 1024 trees (split across the speci�ed number of
populations).

starting point for the system. Four variations were
explored, using the angiosperms dataset:

1. Starting with an entirely random initial popula-
tion.

2. Starting with an initial population comprised of
a random selection of trees found by running one
Phylip jumble.

3. Starting with an initial population comprised of
half Phylip trees from one jumble and half random
trees.

4. Starting with an initial population comprised of
20 Phylip trees, one of the best from each of 20 dif-
ferent jumbles, and the remainder random trees.

25 experiments were run for each variation. One pop-
ulation was used, so as not to confound the e�ects of
multiple populations. The population size was 2000
trees, run for 1000 generations. Other parameters are
as reported previously.

Of these runs, the 4th variation fared the best, �nding
at least one tree with the 279 �tness in 14 of the 25
runs. Secondly, the �rst variation found at least one
tree with 279 �tness in 5 of the 25 runs. The second
and third variations did not �nd any trees of 279 �tness
in the 25 runs. Trajectories of average �tnesses across
all runs are shown in Figure 9.

These experiments suggest that while seeding from
Phylip runs may help the progress of the GA, the ini-
tial seeds must be suÆciently diverse for this \jump
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Figure 9: Trajectories for the four experiments with seed-
ing the initial population. The second graph shows more
detail of the lower �tness values.

start" to be helpful. It appears that choosing the seed
trees from a single Phylip jumble is comparable to
starting the GA with a population that has already
converged. (Note: This experiment was repeated with
�ve distinct Phylip jumbles, always with similar re-
sults.)

4 CONCLUSIONS AND FUTURE

WORK

The GA search process as implemented in Gaphyl rep-
resents a gain for phylogenetics in its ability to �nd
more equally plausible trees than Phylip in the same
runtime. Furthermore, as the datasets get larger in



the number of species and attributes, the e�ectiveness
of Gaphyl over Phylip appears to increase. One pos-
sible facet of this success is that the Gaphyl search
process is independent of the number of attributes
(and attribute-values); the complexity of the search
varies with the number of species (which determines
the number of leaf nodes in the tree). Phylip uses
attribute information in its search process.

The �rst mutation operator is perhaps the \obvious"
form of mutation to implement for this problem, and
yet, its use (at high levels) appears to detract from the
success of the search. While multiple populations ap-
pear to help the system avoid premature convergence,
too many populations are not helpful.

The creation of a hybrid system that uses Phylip's
relatively fast but limited search strategy to seed the
initial population is a promising approach, as long as
care is taken that the seeds are diverse.

There is obviously a wealth of possible extensions to
the work reported here. First, more extensive evalu-
ations of the capabilities of the two systems must be
done on the angiosperms data set, including an esti-
mate of the maximum number of trees of �tness 279
(and, indeed, whether 279 is the most parsimonious
tree possible). This would entail more extensive runs
with both approaches.

Second, more work must be done with a wider range
of datasets to evaluate whether Gaphyl is consistently
able to �nd a broader variety of trees than Phylip, and
perhaps able to �nd trees better than Phylip is able to
�nd.

Third, Gaphyl should be extended to work with non-
binary attributes. This is particularly important in
that phylogenetic trees are increasingly used by biolo-
gists primarily with the A, C, G, T markers of genetic
data.

Finally, we need to compare the work reported here to
other projects that use GA approaches with di�erent
forms of phylogenetics, including [8] and [9]. Both of
these projects use maximum likelihood for construct-
ing and evaluating the phylogenies. The maximum
likelihood approach (which is known as a \distance-
based method") is not directly comparable to the Wag-
ner parsimony approach (which is known as a \maxi-
mum parsimony" approach).
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