Multiobjective Optimization with Genetic Algorithms is Now Considered Mainstream

David J. Powell, PhD dpowell2@elon.edu

Dave Powel

4/25/2004

4/25/2004

Dave Powell, Chair of Computing Sciences, Elon University 1

3

Evolutionary Computing in Industry Track

- As stated, track focus is on application of Genetic Algorithms to solve NLP and MINLP industrial problems.
- Many successful application reported in past GECCO proceedings.
- Focus of this talk is on a leading supplier of optimization tools to industry to reveal MOGA currently used and available for application by end users.
- Premise is that all suppliers offer or will soon offer similar MOGAs to remain competitive.

Dave Powell, Chair of Computing Sciences, Elon University 2

4

PIDO – Process Integration and Design Optimization

- In 2001, Daratech defined new class of IT based solutions, PIDO, to enhance benefits from digital simulation and prototyping.
- Estimated 2001 market size of \$24.4 million.
- Identified leading companies to be Engineous Software (51%), LMS International (10%), Phoenix Integration (9%), MAC Software (8%), Vanderplaats (6%), Synaps (3%), ...
- Forecasted strong growth to \$128 million by 2005.
 In 2003, Daratech estimated market at \$38.8 with 24% growth rate annually through 2007.
- In late 2003, identified Engineous Software as still owning over 50% of market.
- In early 2004, Engineous Software has made an *aggressive* move in introduction of MOGA.

Dave Powell, Chair of Computing Sciences, Elon University

Talk Structure

• What is PIDO?

4/25/2004

4/25/2004

- Overview of Engineous Software's iSIGHT product and its customers.
- Engineous strong support and endorsement for MOGA in its most recent release.
- Suggested improvements to MOGA for end users.

Dave Powell, Chair of Computing Sciences, Elon University

Who is Engineous?

- Since 1996, develops and sells PIDO software package called iSIGHT to Automotive, Aerospace, Industrial Manufacturing, Turbo Machinery and Electronics Industries.
- Daratech reports over 1000 licenses with 200 customers such as: Automotive: BMW, DaimlerChrysler, Ford, GM, Jaguar, Nissan, Saab, Toyota, Volvo.

 - Volvo. Aerospace: Boeing, Lockheed Martin, Goodrich Corporation. Industrial Manufacturing: Caterpillar, General Electric, Proctor & Gamble, United Technologies Research Center, Xerox Corporation. Turbo Machinery: Hitschi Pratt and Whitney, Rolls Royce, Siemens Westinghouse, York International. Electronics: Computer Science Corporation, Mitsubishi, Sony, Toshiba. ap negrepted many of his companying angliantians in ECU to the ACCCO
- Tong presented many of his companies applications in ECI track at GECCO 2003 conference.
- Tong/Staubach presenting Pratt Whitney applications in ECI track at GECCO 2004
- · In 2004, has released latest version of product that emphasizes MOGA

4/25/2004

Dave Powell, Chair of Computing Sciences, Elon University

6

iSIGHT Implementation of PIDO -Automation

- Automation:
 - Non intrusive coupling of simulation codes.
 - Support workflow including sequences, loops and conditional _ branches among simulation programs.
 - Supports task grouping and hierarchical nesting of tasks.
 - Supports distributed tasks and analysis code execution
 - Supports parallel task execution.
 - Supports most platforms and operating systems.

4/25/2004

Dave Powell, Chair of Computing Sciences, Elon University

7

iSIGHT Implementation of PIDO -Optimization • Optimization (Prior to 2002 with iSIGHT V1.0-6.0):

- Supported Optimization Techniques:
 - Direct Gradient Based: Sequential Linear Programming, Sequential Quadratic Programming, Generalized Reduced Gradient

 - Penalty Based: Hooke Jeeves, Exterior Penalty, Augmented Lagrangian, Directed Heuristic Search.
 Exploratory: Simulated Annealing, Genetic Algorithms
 - Interdigitation: Interleaving of Optimization Techniques.
- Parallel Evaluation
- Support for Traditional or Classical Multiple Objective Optimization
- Presented Tutorial on above at 2002 International iSIGHT User Conference July 15, 2002. GECCO 2002, July 9-12, had significant impact in direction of future versions of iSIGHT.
- 4/25/2004 8

Dave Powell, Chair of Computing Sciences, Elon University

IBea	m MOO	P Problem Formula	tion
	Minimize Minimize	Mass (Cross Section Area) Static Deflection	
	Subject to 10 <= x1 10 <= x2 0.9 <= x3 0.9 <= x4	Stress <= 16 (strength constrain <= 80 <= 50 <= 5 <= 5	t)
	Starting design Mass (Cross Sec Static Deflection Stress = 5.3069	$x_0 = [72, 45, 2, 2]$ tion Area) = 332 = 0.0144	
4/25/2004	D	ave Powell, Chair of Computing Sciences, Elon University	12

- The solution to the problem represented by Weighted Sum is Pareto optimal if the weight is positive for all objectives.
- If x* is a pareto-opimal solution of a convex multi-objective optimization problem then there exists a non-zero positive weight vector w such that x* is a solution to the problem.

14

Dave Powell, Chair of Computing Sciences, Elon University

4/25/2004

e-Constraint Approach

 $\min \{f_i(\mathbf{x})\}$ s.t. $f_j \le e_j$, $j \ne i$, j = 1...k $\mathbf{x} \in S$

Idea is to have a single objective and make the others constraints.

18

Dave Powell, Chair of Computing Sciences, Elon University

4/25/2004

Single Objective to Minimize Standard Deflection

Sľ	low Groups Show	Colum	ins	Sort By					Search	Scaling	Legend
	Parameter	Var	Obj	Туре	Lower Bound		Current Value		Upper Bound		
1	BeamHeight	Ø		REAL	10.0	≤	80.0	≤	80.0		
2	FlangeWidth	Ø		REAL	10.0	≤	45.0	≤	50.0		
3	WebThickness			REAL	0.9	≤	2.0	≤	5.0		
4	FlangeThickness			REAL	0.9	<	2.0	≤	5.0		
5	Mass			REAL			0.0	≤	850.0	1	
6	Deflection		₽	REAL			0.0			1	
7	Stress			REAL			0.0	≤	16.0		
8	Objective			REAL			0.0	1			
9	Feasibility			INTEGER			0				
10	TaskProcessStatus			REAL			-1.0	≤	0.0		

GECCO 2002 in NYC

4/25/2004

- Author had not attended conference since 1994.

 In 2002, MOGA had developed into a huge aspect of conference.

 Coello Tutorial

 Deb's book- Multiobjective Optimization using Evolutionary Algorithms.
 NSGA-II benchmarks on test cases against other approaches. Neighborhood Cultivation Genetic Algorithm

- reegnosmoot culturation tengineous to move in direction.
 Fall of 2002, coupled NSGA 2 to iSIGHT for proof of concept.
 Benchmarked NSGA-11 on set of Sandgren Test Cases and presented results at GECCO 2003 (Tong and Powel)
 Provided visualization of results with 3rd party, public domain, ggobi tool for visualization of pareto optimal set with scatterplot matrices and parallel coordinate plots.
 - Engineous engineers productized MOGA for iSIGHT V8.0 released in February 2004.

23

Dave Powell, Chair of Computing Sciences, Elon University

Genetic and Evolutionary Algorithms - New

- Citations per year (from Coello)
 - 1992 6
 - 1995 60
 - 1998 145
 - -2001 120

4/25/2004

• Many interesting 2nd generational approaches PAES, SPEA, NSGA -II, micro-GA

Dave Powell, Chair of Computing Sciences, Elon University

24

- Released February 2004
- Key Features in News Release
- MOGA (NSGA-II [real value] and NCGA [binary representation])

- MOGA (INSOLATI (real value) and NCGA (binary representation))
 Parallel evaluation supported
 Seeding supported
 Farallel Coordinates Display
 Seatter plot matrices
 Point identification linking
 All 200 customers have MOGA within a mouse click to their currently
 integrated codes ٠
 - integrated codes.
- May 26, 2004 Engineous holds first e-Course on MOGA.
 October 2004 Engineous announces MOGA tutorial as one of two tutorials at International iSIGHT User Conference.

4/25/2004

Dave Powell, Chair of Computing Sciences, Elon University

25

