Real Evolutionary Scheduling: some observations and examples

Peter Ross P.Ross@napier.ac.uk

Lots of published academic papers on scheduling... ... but most of them are from another planet.

Some experiences from 'real' life whatever that is:

- what do the users *really* want?
- does the software *really* work?
- who is *really* going to use the software?
- what's the *real* problem?

What do users really want?

The problem:

- two east-coast factories
- chicken farms all over Scotland
- catching squads go from farm to farm
- lorries go from factory to farm & back
- varied weekly requirements

What do users really want?

Real problem (we thought):

One (skilled) man was solving the weekly problem - on a whiteboard

Bad news: holidays, looming retirement

Wanted: optimal results

Real problem (in fact): Wanted: solutions just like his! Outcome: two coupled GAs - one chunks the work - other schedules vehicles .. and solutions just like his

1

Chicken-catching

Successful thanks to spending a lot of time modelling what the human scheduler did.

His heuristics \Rightarrow penalties for various features in task decomposition and in lorry scheduling

Fortunately not too sensitive to penalty weights

Does the software really work?

EAs are stochastic – therefore, acceptance testing is tricky. Faulty implementation or faulty concept can still run smoothly and improve quality.

Example: exam timetabling:

- students take differing sets of subjects
- exams must not clash for any student
- exam hall capacities constrain choices
- many idiosyncratic constraints

Does it really work? continued

5

7

GATT: the representation used:

Exam	1	2	3	4	5	 n	
Slot	23	7	19	7	28	 3	

Used by lots of universities/departments

... but only works for lightly-constrained problems It seems most users were grateful for any answer!

Who will really use the software?

Tatties II (Paechter et al): timetabling all of Napier University

Eg: 2000+ events, 45 weekly timeslots, 183 rooms, 700+ staff, 1000+ student groups

Twelve objectives: interactively set/adjust targets/weights for each.

Representation: permutation of events, plus suggested slots for each No hard-constraint violations, but maybe unplaced events

Who will really use...?

valuatione: 4185	l act change	et 4138 Evaluations ne	r minute: 4227 Dienlawing: Bi	7 I I
valuations. 4105	Last change		Placing Events is a Special Print	iority
	Targets		Weights	
0)		Unplaced Events: 0	_ 	1
0 [Changes: 0		
10 —)		Five O'Clock Classes: 48	1 — ()————	
7 — —		Wed Afternoon Classes: 14		
890		Gaps in Student Day: 74		
140 -]		Lone Classes: 310		
330		Long Intensive: 0		
29 — —		Overloaded Lecturers: 0		
0		No Teaching Free Day: 50		
0 Ĵ	<u> </u>	Instant Site Changes: 0		1
0 Ú	<u> </u>	Site Changes: 14		
0 []		Location Changes: 31044		
0		Room Changes: 8196		

Who will really use ..?

Very successful: generated web timetables for all staff, students, rooms

However: running delegated to (changing) admin staff Frequent training sessions, but use is not fire-and-forget

Replaced in 2003 by a standard commercial package..

What's the real problem?

A 'blending'-type problem (commercial, but anonymous) The task: plan a sequence of combinations of ingredients Turned into a kind of optimisation problem for a single step

What's the real..?

The maths:

9

11

Looked like a straightforward MIP problem

What's the real..?

Non-EA methods could find very high-quality answers

The real problem:

thousands of variables non-EA methods: 1-2 hours good answers needed in *1-2 minutes*

The EA: an evolution strategy, plus analysis of matrix $\{a_{ij}\}$ to find tractable sub-problems

Other worries about EAs

- all those choices, parameters... needs skill
- no guarantees; when to stop?
- *black-box*: where did that answer come from?
- \bullet continuity: change the problem slightly \Rightarrow changes the solution a lot
- ongoing maintenance? consultancy?

Countering such worries

Rather than using an EA to solve <u>the</u> problem, use an EA to find an algorithm tailored for the family of problems:

- good worst-case behaviour
- familiar/trustworthy ingredients
- non-stochastic
- fast

Hyper-heuristics

- eg: applied to big class and exam timetabling
- generated algorithm finds good, feasible solutions
- ..without any search or backtracking

13

In conclusion...

EAs can work very well

Understanding the real nature of the problem is often the main hurdle

17

Textbooks and academic papers often *don't* tell it like it is