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Evolution Strategies

Basics of Evolutionary Algorithms

Code and Initialize

Decode and Evaluate

Tesminate l
\ (Parent)

Ercods Recombine
O Mutate
Select
(Ofispring)
Evaluate Decode

« Evolution strategies:

» real-valued coding

» mutation as the primary variation operator
> deterministic selection

» self-adaptation

+ Genetic algorithms:

» binary / Gray coding

» crossover believed to be the primary
variation operator

» stochastic selection

Evolution Strategies — Main Operators

*+ Mutation: add a random number drawn from a Gaussian
distribution to the object parameter

» Recombination can also be used
» discrete (parent-centric)
> intermediate
» multi-parent recombination (population-centric)

+ Deterministic selection
> Elitism: (u + 1) selection
» Non-elitism: (u, ) selection

Evolution Strategies — Self-Adaptation

Principle of self-adaptation

= The variances o;? will evolved to adapt themselves

to the fitness landscape
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Different methods for adaptation of the search distribution:

* Generating set adaptation
* Rotation matrix adaptation

« Covariance matrix adaptation




Advantages of Evolutionary Design

« In comparison of engineering approaches:

less constraints on search space

>
» less constraints from engineering heuristics

« In comparison to traditional optimization

techniques

» no need of derivative information

» population-based search

< less sensitive to initialization

<« suited for parallelization

<+ suited for multi-objective optimization
> stochastic global search

> need large number of performance evaluations

Evolutionary Blade
Optimization

Design Optimization of Turbine Blade

Shape Representation

Parameterized representation

* Smaller number of parameters,
lower search space

« Lower flexibility, less room for performance
improvement

Non-uniform rational B-splines (NURBS)

« Larger number of parameters, higher
flexibility, more room for “creative”
design

« higher-dimensional search space




General Design Criteria

« Aerodynamic
> pressure loss
> outflow angle

Problem Coding

« Coordinates of the control points and knot points are coded in the first chromosome

« All strategy parameters, l.e., the standard deviation of the Gaussian distributions

are coded in the second chromosome

Individual

Control points Knot points
EAA)
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Strategy parameters

« Mechanical Integrity
> stresses
» eigen frequency

+ Geometrical constraints
» smoothness of the blade

Fitness Evaluations Computing Environments
fx) = nyfi(o) « PC clusters using Linux operation system of 152 knots
*+ 15 f5(x) * Parallelization supported by PVM and MPI
- f,(©): pressure loss
Fitness - .
(quality) utational Fluid Dynamics Simulation - fy(at,): deviation of the outflow
Master-slave architecture
- f4(x): mechanical constraints | Generation level
Phenotype \ | ‘gi/ g} Population level
&\l —k B ~ Individual level (CFD simulations)
Genotype
Control points Knot points « Stability of the system (computing time of 3-4 weeks) is critical
[T Dl T&[3] -~ [xlw « Maximal use of computing resource through grid computing techniques
[ [od
Strategy parameters




Minimization of Pressure Loss — A Demo

Change of the flow dynamics during the optimization

Performance Validation

« Validation through wind tunnel experiment
« No engineer will accept a design

that cannot be explained properly
« A creative design can lead to new

theoretical developments

2D Optimization Results
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(Schlieren photo taken in wind tunnel by DLR Géttingen)

Major Theoretic Issues in
Evolutionary Design
Optimization




Adaptive Representation (I)

Trade-off between flexibility and search efficiency exists in non-parameterized
representation:

* The larger the number of parameters, the higher the capability to represent
complex shapes

« A large number of free parameters results in a higher search space,
which makes it difficult for an optimizer to find a good solution

—

started with 3 control points started with 10 control points

Adaptive Representation (II)
« Solution:
Change (increase/decrease) number of parameters during optimization

« Implementation:
Mutation of the coding structure
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adaptive representation for design optimisation
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(initial) starting with 10 points (10 points)

Adaptive Representation (III)

« Problem: Mutation of representation result in strong change in the phenotype
and thus the fitness landscape, which is a typical dynamic optimization problems
» could cause problem for self-adaptation
« Solution: neutral mutation
» After insertion of new points, corresponding strategy parameters need to
be initialized and included in the second chromosome too

* Neutral mutation establishes a strong correlation between the current and new optima,
which makes the search more efficient

Adaptive Representation (IV)

Comparison of different evolution strategies
< ISA
« Generative set adaptation (GSA)
« Covariance matrix adaptation (CMA)
« Adaptive representation

Hierarchy of optimization

optimization of the
representation

parameter
optimization

pressure loss

generations




Use of Meta-models (I)

« Evolutionary algorithms need a large number of evaluations

« In aerodynamic design optimization, one singe evaluation using CFD simulation
takes minutes to hours

« Meta-models can assist evolutionary algorithms to achieve a good solution
in a shorter period of time

« Meta-models can also smoothen a rugged fitness landscape

» Generation-based model management

Use of Meta-models (II)

Frequency adaptation

» the meta-model is used together with the

» within a generation, only CFD simulation or

time-consuming CFD simulation

meta-model will be used

A 4 3
E (ind. 4| |E |[nd.q |E |[nd.q| &)
* Polynomials (response surface methods), neural networks, E |ind.2 |E |nd.2 | |nd.2
Gaussian processes (Kriging) etc can serve as efficient models for E |Ind.d| |E ||nd. E ) nd. 1)
approximating fitness landscape — ! L
t t+1 t+g t+c End of control cycle
a
« Estimation of model fidelity
+ Adaptation of control frequency
+ On- line model update
a
Use of Meta-models (I1I) Use of Meta-models (IV)
« Evolution strategy

Individual-based model management
» CFD simulations and met-models are used together within a generation
> Different strategies can be used to “control” the evolution
<« choose individuals randomly
« choose the best individuals according to the model
< choose the individuals with most uncertain fitness estimation (exploration)

* Neural network as meta-model
« Generation-based control with adaptive frequency
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Multi-Objectivity in Blade Design

« Blade optimization is a multi-objective problem. The objectives are weighted
aggregated in the previous designs

« The weights needs to be given beforehand and the objectives are could be
conflicting
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Search for Robust Solutions (I)

« Noise is unavoidable for many processes. In this case, noise must be
taken into account in optimization
> Robust to variations in design parameters (x)
» Robust to variations in environmental parameters (a)

Search for Robust Solutions (II)

Search for robust solutions based on expected fitness function
« Averaging based approach:
f(x) = X f(x+Ax;), Ax~ N(0,02)
» Need additional fitness evaluations
» Use of approximate models could alleviate
this difficulty
« Perturbation based approach:
f(x) = f(x+ Ax(t)), Ax(t) ~ N(0,52)
» Approximation can be proved under the

assumption of an infinite population size
» No additional fitness evaluations needed

Search for Robust Solutions (I1I)

« In averaging based Two parameters need to be chosen:
» number of averaging
» the variation of the introduced noise
« Comparison of averaging and perturbation based approaches on a test problem
by adding a uniformly distributed noise within a given variation width
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Search for Robust Solutions (V)

« In averaging.based approach, many additional fitness evaluation is needed.
To address alleviate this problem as much as possible, meta-model can be used
« Search for robust solutions turns out often a multi-objective problem
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Summary and Conclusion

« Evolutionary algorithms have shown to be very promising in aerodynamic design

« Evolutionary aerodynamic design not only produced “creative” designs, but also
helped to gain more understandings in flow dynamics

« Many interesting theoretic issues arise in evolutionary aerodynamic design, which
need further investigations

« Theoretic work in evolutionary computation should pay more attention to real-world
applications




