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Outline of the Talk
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• Evolutionary Algorithms and  Evolution Strategies

• Blade Optimization Using Evolution Strategies
2D Shape representation
Problem coding
Quality criteria
Performance validation
Computing environments
Extension to 3D

• Major Theoretic Issues in Evolutionary Design Optimization
Adaptive representation and dynamic optimization
Use of meta-model for fast evaluations
Multi-objectivity in design optimization
Search for robust solutions
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Evolution Strategies

Basics of Evolutionary Algorithms

• Evolution strategies:
real-valued coding 
mutation as the primary variation operator
deterministic selection
self-adaptation

• Genetic algorithms: 
binary / Gray coding
crossover believed to be the primary 
variation operator
stochastic selection

Evolution Strategies – Main Operators

• Mutation: add a random number drawn from a Gaussian 
distribution to the object parameter

• Recombination can also be used
discrete (parent-centric)
intermediate
multi-parent recombination (population-centric)

• Deterministic selection
Elitism: (µ + λ) selection
Non-elitism: (µ , λ) selection

Evolution Strategies – Self-Adaptation
Principle of self-adaptation

Different methods for adaptation of the search distribution:
• Generating set adaptation
• Rotation matrix adaptation
• Covariance matrix adaptation

The variances σi
2 will evolved to adapt themselves

to the fitness landscape
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Advantages of Evolutionary Design
• In comparison of engineering approaches:

less constraints on search space
less constraints from engineering heuristics

• In comparison to traditional optimization 
techniques

no need of derivative information
population-based search

less sensitive to initialization
suited for parallelization
suited for multi-objective optimization

stochastic global search

need large number of performance evaluations

Evolutionary Blade 
Optimization 

Design Optimization of Turbine Blade Shape Representation
Parameterized representation

• Smaller number of parameters,
lower search space

• Lower flexibility, less room for performance 
improvement 

Non-uniform rational B-splines (NURBS)

• Larger number of parameters, higher
flexibility, more room for “creative”
design 

• higher-dimensional search space
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Problem Coding

x1 y1 xN yN... ...x1 y1
~ ~ xM yM

~ ~
Knot pointsControl points

...

Individual

Strategy parameters

σ1 σ2 σK

• Coordinates of the control points and knot points are coded in the first chromosome

• All strategy parameters, I.e., the standard deviation of the Gaussian distributions 
are coded in the second chromosome

General Design Criteria

• Aerodynamic
pressure loss
outflow angle

• Mechanical Integrity
stresses
eigen frequency

• Geometrical constraints
smoothness of the blade

x1 y1 xN yN
... ...x1 y1

~ ~ xM yM
~ ~

Knot pointsControl points

...
Strategy parameters

σ1 σ2 σK

Fitness Evaluations

Fitness
(quality)

Phenotype

f(x)   = η1 f1(ω)    +  η2 f2(α2)   

+ η3 f3(x)

- f1(ω): pressure loss

- f2(α2): deviation of the outflow   
angle 

- f3(x): mechanical constraints

Genotype

Computational Fluid Dynamics Simulation

Computing Environments
• PC clusters using Linux operation system of 152 knots 

• Parallelization supported by PVM and MPI 

...
Individual level (CFD simulations)

Population level

Generation level

• Stability of the system (computing time of 3-4 weeks) is critical

• Maximal use of computing resource through grid computing techniques

Master-slave architecture
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Minimization of Pressure Loss – A Demo

Change of the flow dynamics during the optimization

Performance Validation

• Validation through wind tunnel experiment 

• No engineer will accept a design

that cannot be explained properly

• A creative design can lead to new

theoretical developments

2D Optimization Results

Up to 20% 
reduction of pressure loss

OptimizedOriginal

(Schlieren photo taken in wind tunnel by DLR Göttingen)

Rotor blade

Major Theoretic Issues in 
Evolutionary Design 

Optimization
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Adaptive Representation (I)

Trade-off between flexibility and search efficiency exists in non-parameterized
representation:

• The larger the number of parameters, the higher the capability to represent
complex shapes

• A large number of free parameters results in a higher search space,
which makes it difficult for an optimizer to find a good solution 

started with 10 control pointsstarted with 3 control points

adaptive representation for design optimisation

3 control points
(initial)

3 control points
(initial)

3 control points
(adapted)4 control points6 control points

6 control points
(adapted)

final solution
(10 points)starting with 10 points

xi   i = 1,.., 6

xi   i = 1,.., 9

Adaptive Representation (II)
• Solution: 

Change (increase/decrease) number of parameters during optimization

• Implementation:
Mutation of the coding structure

Adaptive Representation (III)
• Problem: Mutation of representation result in strong change in the phenotype
and thus the fitness landscape, which is a typical dynamic optimization problems

could cause problem for self-adaptation
• Solution: neutral mutation

After insertion of new points, corresponding strategy parameters need to
be initialized and included in the second chromosome too

• Neutral mutation establishes a strong correlation between the current and new optima, 
which makes  the search more efficient 

optimisation of the 
representation

parameter 
optimisation

generations

pr
es

su
re

 lo
ss

define parameter
Hierarchy of optimization

optimization of the
representation

parameter 
optimization

Adaptive Representation (IV)
Comparison of different evolution strategies

• ISA
• Generative set adaptation (GSA)
• Covariance matrix adaptation (CMA)
• Adaptive representation
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Use of Meta-models (I)

• Evolutionary algorithms need a large number of evaluations

• In aerodynamic design optimization, one singe evaluation using CFD simulation
takes minutes to hours 

• Meta-models can assist evolutionary algorithms to achieve a good solution
in a shorter period of time

• Meta-models can also smoothen a rugged fitness landscape 

• Polynomials (response surface methods), neural networks, 
Gaussian processes (Kriging) etc can serve as efficient models for
approximating fitness landscape

• Generation-based model management

the meta-model is used together with the 
time-consuming CFD simulation 
within a generation, only CFD simulation or
meta-model will be used 

Ind. 1 Ind. 1
Ind. 2
Ind. n

Ind. 2
Ind. n

Ind. 1
Ind. 2
Ind. n

Ind. 1
Ind. 2
Ind. n

t + ct + 1 t + ξ

Ind. 1
Ind. 2
Ind. n

Use of Meta-models (II)

t

Frequency adaptation

• Estimation of model fidelity
• Adaptation of control frequency
• On- line model update

End of control cycle

Ind. 1Ind. 1

Ind. 2

Ind. n

Ind. 2

Ind. n
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Ind. 2

Ind. n

Ind. 1

t t + 1 t + 2 t + m

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ind. 2Ind. 2

Ind. 1

Ind. n Ind. n

Use of Meta-models (III)
Individual-based model management

CFD simulations and met-models are used together within a generation
Different strategies can be used to “control” the evolution

choose individuals randomly
choose the best individuals according to the model
choose the individuals with most uncertain fitness estimation (exploration)  

CFD evaluations CFD + NN evaluations

• Evolution strategy
• Neural network as meta-model
• Generation-based control with adaptive frequency 

Pressure Loss

Pressure Loss

Use of Meta-models (IV)
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Multi-Objectivity in Blade Design
• Blade optimization is a multi-objective problem. The objectives are weighted 
aggregated in the previous designs

• The weights needs to be given beforehand and the objectives are could be 
conflicting

Search for Robust Solutions (I)
• Noise is unavoidable for many processes. In this case, noise must be 

taken into account in optimization 
Robust to variations in design parameters (x)
Robust to variations in environmental parameters (a)

x

f(x, a) f(x, a)

aa∗

A

B

A

B

• Averaging based approach:

f(x) = ∑i f(x+∆xi), ∆xi~ N(0,σ2)

Need additional fitness evaluations
Use of approximate models could alleviate
this difficulty

• Perturbation based approach: 

f(x) = f(x+ ∆x(t)), ∆x(t) ~ N(0,σ2)

Approximation can be proved under the 
assumption of an infinite population size
No additional fitness evaluations needed

X

∆Xi

f(X)

f(X+ ∆Xi)

f(X)

X

Search for Robust Solutions (II)
Search for robust solutions based on expected fitness function

Search for Robust Solutions (III)

• In averaging based  Two parameters need to be chosen:
number of averaging
the variation of the introduced noise

• Comparison of averaging and perturbation based approaches on a test problem
by adding a uniformly distributed noise within a given variation width
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Search for Robust Solutions (V)

• In averaging.based approach, many additional fitness evaluation is needed.
To address alleviate this problem as much as possible, meta-model can be used

• Search for robust solutions turns out often a multi-objective problem
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Summary and Conclusion

• Evolutionary algorithms have shown to be very promising in aerodynamic design

• Evolutionary aerodynamic design not only produced “creative” designs, but also
helped to gain more understandings in flow dynamics

• Many interesting theoretic issues arise in evolutionary aerodynamic design, which
need further investigations 

• Theoretic work in evolutionary computation should pay more attention to real-world 
applications


