Aerodynamic Design Optimization with Evolutionary Algorithms

Bernhard Sendhoff, Yaochu Jin Markus Olhofer, Martina Hasenjäger Tatsya Okabe, Stefan Menzel

Honda Research Institute Europe GmbH D-63073 Offenbach/Main, Germany www.honda-ri.de

Evolution Strategies

Evolution Strategies - Main Operators

- Mutation: add a random number drawn from a Gaussian distribution to the object parameter
- · Recombination can also be used
 - > discrete (parent-centric)
 - > intermediate
 - multi-parent recombination (population-centric)
- · Deterministic selection
 - > Elitism: (μ + λ) selection
 > Non-elitism: (μ , λ) selection

Advantages of Evolutionary Design

In comparison of engineering approaches:

- > less constraints on search space
 > less constraints from engineering heuristics
- In comparison to traditional optimization techniques
 - no need of derivative information
 population-based search
 else sensitive to initialization
 suited for parallelization
 suited for multi-objective optimization
 stochastic global search

> need large number of performance evaluations

Evolutionary Blade Optimization

Performance Validation With the set of the

Major Theoretic Issues in Evolutionary Design Optimization

Adaptive Representation (I)

Trade-off between flexibility and search efficiency exists in non-parameterized representation:

- The larger the number of parameters, the higher the capability to represent complex shapes
- A large number of free parameters results in a higher search space, which makes it difficult for an optimizer to find a good solution

started with 3 control points

started with 10 control points

Use of Meta-models (I)

- · Evolutionary algorithms need a large number of evaluations
- In aerodynamic design optimization, one singe evaluation using CFD simulation takes minutes to hours
- Meta-models can assist evolutionary algorithms to achieve a good solution in a shorter period of time
- · Meta-models can also smoothen a rugged fitness landscape
- Polynomials (response surface methods), neural networks, Gaussian processes (Kriging) etc can serve as efficient models for approximating fitness landscape

Multi-Objectivity in Blade Design

- Blade optimization is a multi-objective problem. The objectives are weighted aggregated in the previous designs
- The weights needs to be given beforehand and the objectives are could be conflicting

Summary and Conclusion
Evolutionary algorithms have shown to be very promising in aerodynamic design
Evolutionary aerodynamic design not only produced "creative" designs, but also helped to gain more understandings in flow dynamics
Many interesting theoretic issues arise in evolutionary aerodynamic design, which need further investigations
Theoretic work in evolutionary computation should pay more attention to real-world applications