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Abstract. This paper presents a parallel genetic simulated annealing (PGSA) 
algorithm that has been developed and applied to optimize continuous 
problems. In PGSA, the entire population is divided into subpopulations, and in 
each subpopulation the algorithm uses the local search ability of simulated 
annealing after crossover and mutation. The best individuals of each 
subpopulation are migrated to neighboring ones after certain number of epochs. 
An implementation of the algorithm is discussed and the performance 
evaluation is made against a standard set of test functions. PGSA shows some 
remarkable improvement in comparison with the conventional simulated 
annealing, parallel genetic algorithm. 

1 Introduction 

Genetic algorithm (GA) was developed by Holland [1] and is an adaptive global 
search method that mimics the metaphor of natural biological evolution. GA operates 
on a population of potential solutions by applying the principle of survival of the 
fittest to aim for approximations towards an optimal solution. Owing to their ability to 
achieve the global or near global optimal, this algorithm has been applied to a large 
number of combinatorial optimization problems.  

The successful application of GA depends on the population size or the diversity of 
individual solutions in the search space. If GA cannot hold its diversity well before 
the global optimum solution is reached, it may be difficult for GA to find it, and 
sometimes it even results in the premature convergence to the local optimum solution. 
Although maintaining diversity is the predominant concern of GA, it also reduces its 
performance. Many researchers tried to find a trade-off between the diversity and 
performance (exploration and exploitation) of GA. 

An alternative approach is to combine GA with other optimization techniques, such 
as simulated annealing (SA). SA is a general-purpose stochastic optimization method 
that has proven to be quite effective in finding the global optima for many different 
NP-hard combinatorial problems. In this paper, a new hybrid of GA and SA, referred 
to as genetic simulated annealing (GSA) is developed to avoid the premature 
convergence of GA by exploiting the local selection strategy of SA. Then, GSA is 
parallelized to improve its computation performance further. The principal purpose of 
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this paper is to demonstrate parallel GSA is a powerful optimization strategy that 
overcomes the inherent weaknesses of conventional GA and SA. 

2 Genetic Simulated Annealing 

GA and SA are both independently valid approaches toward problem solving with 
certain strengths and weaknesses. Although GA can begin with a population of 
solutions in parallel, it suffers from poor convergence properties. By contrast, SA has 
better convergence properties if the starting temperature is sufficiently high and the 
temperature cooling rate is low, but the higher temperature and the lower cooling rate 
reduce the performance of SA. In addition, parallelism cannot be easily exploited in 
SA. 
Recently many researchers tried to combine GA and SA to provide a more powerful 
optimization method that has both good convergence control and efficient 
parallelization. Chen and Flan [2] had shown that the hybrid of GA and SA can 
perform better for ten difficult optimization problems than either GA or SA 
independently. Sirag and Weisser [3] proposed a unified thermodynamic genetic 
operator to solve ordering problems. The unified operator is applied to the 
conventional GA operation of crossover and mutation to yield offspring. This 
operator can ensure greater population diversity at high temperature and less 
population diversity at low temperature. Mahfoud and Goldberg [4] also introduced a 
GA and SA hybrid. Their hybrid runs SA procedures in parallel, which uses mutation 
as the SA neighborhood operator and incorporates crossover to reconcile solutions 
across the processors. Varanelli and Cohoon [5] used a similar hybrid method of GA 
and SA. In addition, Chen, Flann and Watson [6] also proposed a hybrid method, 
which maintains one solution per Processing Element (PE). Each PE accepts a visiting 
solution from other PEs for crossover and mutation. For the selection process, the SA 
cooling schedule and system temperature are used to decide whether the new 
generated individual is to be accepted or not. In this method, they used the local 
selection of SA to replace the conventional selection process of GA. Furthermore, it 
needs large amount of PEs for more complicated optimization problem, but 
computers with large amount of PEs may not be available for most researchers. 

Each of the above approaches has its own strengths, because some good 
characteristics of GA and SA are maintained when combining GA and SA together. 
In this paper, a new GA and SA hybrid, GSA, is presented, which shows another 
tighter coupling of these two paradigms in the sense that SA controls a number of 
distinct GAs running in parallel. Although GSA is related to the hybrid method 
developed by Chen, Flann and Watson [6], there are some important differences 
between GSA in this paper and Chen’s GSA (C-GSA). In C-GSA, each PE maintains 
one solution, and each PE accepts a visiting solution from other PEs for crossover and 
mutation. In GSA, each process maintains its own subpopulation of solutions; and 
different processes exchange their best solutions after certain number of epochs. So 
the communication overhead between processors is smaller. In C-GSA, a normal SA-
type probabilistic selection procedure is used to retain the proof of convergence of 
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SA. In GSA, a Markov chain is used to realize the local selection of SA, which can 
improve the selection performance of SA. 

In GA, two chromosomes are replaced by a pair of their offspring after the 
crossover and mutation operators; while in GSA, after the crossover and mutation, 
there are four chromosomes: two parents and two offspring, from which two 
chromosomes are chosen to form the new population. The selection criterion is based 
on the fitness values of individuals. Strings with higher fitness value have a greater 
probability of surviving to the next generation. However, individuals, that have the 
fitness values less than the best obtained, are not necessarily discarded, and they are 
instead selected with a probability related to the current temperature (as in simulated 
annealing). In this selection process, a Markov chain is executed, which is composed 
of the two offspring. fbest and fworst are the best fitness value and the worst one of two 
parents respectively; f1 and f2 are the fitness values of two offspring. During the 
course of the Markov chain at temperature Tt, the fitness value fi (i =1, 2) of the trial 
chromosome is only compared with fworst. If min{1, exp(-(fi-fworst)/Tt)} is greater than r 
(a randomly generated number between 0 and 1), fi is accepted to replace the worst 
individual. Then the worst chromosome and the best one are updated before the 
course of the Markov chain finishes, as illustrated in Fig. 1, where P(t) is the 
population of individuals of generation t and α is the cool rate of SA. At initial stage, 
when manipulating the cooling schedule of SA properly, parents will be replaced by 
their offspring whether they are much fitter or not; thus this algorithm can maintain 
the diversity and alleviate the premature convergence problem. On the other hand, at 
later stage, the chances for the fitter parents to be replaced decrease greatly, because 
the temperature is lower. In this way, the current best individual always remains in the 
next generation. Therefore the adverse effects (destroy useful information of the last 
generation) of the mutation operation can be reduced. 

3 Parallel Genetic Simulated Annealing and its implementation 

GSA can eliminate the premature convergence of GA to some extent. However, the 
initial temperature should be set higher in order to get the global optimum for those 
complicated problems with millions of local optima. This reduces the performance of 
GSA. In addition, for problems with a large search space and costly fitness function 
evaluation, there is a great need for fast convergence to the optimal solution. Thus, a 
parallel version of GSA (PGSA) is presented to improve its efficiency.  

There are several ways to parallelize GA [7], and the parallel GA (PGA) has been 
developed and successfully applied to optimize practical problems by many 
researchers [8]. PGA can be classified into three categories: global single-population 
master-slave GA, coarse-grained and fine-grained PGA according to the ways in 
which parallelism is exploited in GA and the nature of the population structure and 
recombination mechanisms used [9]. In the master-slave GA, there is only a single 
population, but the evaluation of fitness function is distributed among several 
processors. The fine-grained parallel GA treats each individual as a separate breeding 
unit. Each individual may mate with those selected from a small local neighborhood. 
Since the neighborhoods overlap, fit individuals will migrate throughout the 
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population. The coarse-grained parallel GA is very popular and widely used. Studies 
of coarse-grained PGA are the mainstream in current studies about parallel distributed 
GA model. Thus in this paper this model has been used to parallelize GSA.  

begin  

t = 0 

initialize P(t) and temperature Tt 

evaluate P(t);  

while (not termination-condition) do 

  begin 

    t = t + 1 

    select P(t) from P(t-1) 

    select individuals for reproduction from P(t) 

    do reproduction  

   select two unused individuals P1, P2 

   crossover & mutation; generate two children C1,C2 

   evaluate C1, C2 

   for i:= 1 to 2 do 

 if min{1, exp(-(fi-fworst)/Tt)}> random[0,1) 

 accept Ci & replace the corresponding parent 

 update the new best and worst points 

    until all selected parents finish reproduction 

    Tt+1 = Tt × α; 0 <α < 1 

  end 

end 

Fig. 1. Algorithm of Genetic Simulated Annealing 

In the coarse-grained PGSA, the whole population is divided into several equal 
subpopulations, each of which runs a sequential GSA independently within its own 
subpopulation on each process, as shown in Fig. 2 in the form of pseudo code, where 
P(t) is the population of individuals of generation t, myrank is the rank of the process, 
slnsmigrate, slnsrecv and slnsdelete are the migrant, received individuals and the individuals 
to be replaced. If the migration conditions are satisfied, each process, say source 
process, implements the function neighbor to find out the destination processes 
according to the migration topology. The migrant individuals, slnsmigrate, are selected 
and sent to the destination processes. After the migrant individuals, slnsrecv, are 
received on the destination process, the individuals to be deleted, slnsdelete, are 
determined and replaced by slnsrecv. The same program is executed on each processor, 
but on different data (their own population) until the global optimum is achieved. 
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begin 

  t = 0 

  initialize P(t) 

  evaluate P(t) 

  while (not termination-condition) do 

     reproduction process of GSA 

     if( migration-condition satifies ) then 

        dest = neighbor(myrank) 

        slnsmigrate = migrant_individual(P(t)) 

        send_string(dest, xmigrate) 

        slnsrecv = recv_string() 

        slnsdelete = delete_individual(P(t)) 

        replace_string (xdelete, xrecv, P(t)) 

     endif 

  end 

end 

Fig. 2. Pseudo code of the parallel genetic algorithm 

3.1 Representation 

PGSA uses a real-value coding scheme to represent the individual, that is to say, each 
chromosome vector is coded as a vector of real-value point numbers of the same 
length as the solution vector. Each point is initially selected within the desired 
domain, and reproduction operators of GA are carefully designed to preserve this 
constraint. 

3.2 Selection 

Based on evaluating the fitness of candidates, individuals are appropriately selected 
for recombination. This first step is fitness assignment by calculating the objective 
function. Sometimes the fitness value needs to be scaled for further use. Scaling is 
important to avoid early convergence caused by dominant effect of a few strong 
candidates in the beginning, and to differentiate relative fitness of candidates when 
they have very close fitness values near the end of run [10]. In GA, there are mainly 
three selection procedures: proportional selection, tournament selection and rank-
based selection [11]. Proportional approach is usually called “roulette wheel” 
selection. Fitness values of individuals represent the width of slots of the wheel, and 
selection is based on the slot widths of individuals [12]. Individuals with larger slot 
widths will have a higher probability to be selected. In tournament approach, at first a 
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sub-group is randomly selected from the population with or without replacement. 
Then, a “tournament” competition is taken place in this sub-group, and the winner is 
inserted into the next population. This process is repeated until the new population is 
formed [11]. For rank-based approach, the individuals are sorted based on their fitness 
values, and the rank N is assigned to the best individual and the rank 1 to the worst 
one. Then based on their ranks, the selection probability is assigned to the individuals. 
Rank-based selection behaves in a more robust manner than the proportional one. 
Therefore in this paper, rank-based fitness selection is chosen as the selection 
approach. 

3.3 Crossover and Mutation 

The basic operators for producing new individuals in GA are crossover and mutation. 
Crossover may produce better individuals that have some genetic material of both 
parents. In this paper, the traditional two-point crossover is applied to each couple of 
individuals. Mutation simply changes the value for a particular gene with a certain 
probability. It helps maintain the vast diversity of the population and also prevents the 
population from stagnating. However, at later stages, it increases the probability that 
good solutions will be destroyed. The probability that mutation will occur is set to a 
low value (e.g., 0.01) so that good chromosomes are not destroyed. The best mutation 
rate is application-dependent but for most applications is between 0.001 and 0.1. 

For the real-value coding scheme, there are different mutation operators that can be 
used, such as uniform mutation, Gaussian mutation, range mutation and non-uniform 
mutation. In Gaussian mutation, a random value from a Gaussian distribution to each 
element of an individual’s vector is added or subtracted to the old value to create a 
new offspring with a probability of 0.5.  Gaussian mutation is widely used, and so it is 
used in this study. 

3.4 Migration 

In the implementation of the coarse-grained PGSA in this study, there are some 
parameters to be concerned: the number of individuals to migrate, then how to select 
and how frequently to migrate them, and logical arrangement of the subpopulations. 
The most widely used migration scheme is the ring topology, where individuals are 
exchanged between directionally adjacent subpopulations. Two methods to choose the 
individual to migrate are often attempted: elitist strategy and probabilistic tournament 
selection. In the first method, the best individuals are sent to a neighboring 
subpopulation; and in the second one, the fitter individual is selected via a 
probabilistic binary tournament with a certain probability (i.e. the individual is 
randomly chosen with a chance p; when 0.5 < p < 1.0, the individual is selected to 
migrate.). Gordan and Whitley [7] compared these two methods and indicated that 
elitist strategy performed better than tournament selection. Thus we used elitist 
strategy to choose migration individuals and the top 1~5% (according to population 
size) of best individuals are migrated to replace the worst individuals of other 
subpopulations. 
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4 Numerical Results and Discussion 

A set of functions known from the literatures have been used as the test function to 
compare the performance of PGSA with other algorithms, which is shown in Table 1. 
De Jong’s suite functions F1~F5 [14] are extensively used in the GA community; 
functions F6-F10 are also widely used for testing the performance of the global search 
algorithms. The number of function evaluation and the running time are chosen as 
performance criteria. The running time is the elapsed time from the time the first 
process has started to the time that last process has executed the last command of the 
algorithm. When the minimal value of each function reaches at any process, it will 
send the termination signal to all other processes. Then just before every process stops 
running, it sends the number of function evaluation done so far on it to process 0 (i.e. 
the rank of process is 0); process 0 sums them up after receiving these numbers. In 
order to compare the efficiency of PGSA with that of other methods implemented on 
different machines, the standard unit of time should be used to normalize the 
computing time. The unit time is 1000 evaluations of Shekel’s function at the point 
(4, 4, 4, 4) as introduced by Dixon and SzegÖ [13]. In this paper, the SUN 
workstation network is used, and one unit of time is 0.0012 seconds on each 
processor. 

Table 1. A set of standard test function 
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4.1 Experiment Setup 

Both GA and SA have many internal control parameters, and their performance is 
very sensitive to such parameters [6]. Different parameters of GA or SA are used for 
different problems. The PGSA, parallel version of the hybrid of GA and SA, also has 
many control parameters. Thus in order to show the robustness of PGSA, there is no 
need to tune all these parameters to a specific function. The parameters, used in the 
test, are shown in Table 2. Function F8 is much more difficult to get the global 
minimal value, so the larger population size and mutation rate were used. 

Table 2. Control parallel setting 

Parameters F1~F5 F6 F7 F8 F9 

Number of subpopulations / processors 8 8 8 16 8 

Number of individuals of a subpopulation  20 20 20 50 20 

Migration interval (generations) 10 10 10 20 10 

Mutation probability 0.05 0.05 0.05 0.3 0.05 

Crossover probability 0.65 0.65 0.65 0.65 0.65 

Initial temperature 200 200 200 200 200 

Cooling rate 0.85 0.85 0.85 0.85 0.85 

Genome representation floating point vectors 

 
Furthermore in order to get the more representative results, the average values for 

the PGSA listed in the following tables were based on 30 runs across the test suite of 
functions. 

4.2 Results 

Functions F1~F5 are easy to be solved by PGSA. For the more complex functions 
F6~F8, Griewank’s function F8 is one of the most difficult test functions. The number 
of function evaluation and the final optimal values are given in Table 3. In all runs, 
less numbers of function evaluation are needed for PGSA to find the global minimum 
than that for PGA, and the computation time is also less with PGSA than that using 
PGA for all cases. In addition, the global minimum has been found to be accurate to 
at least four digits of accuracy in this study, whereas the global minimum in [15] only 
has been found to be accurate to at least three digits of accuracy. Therefore PGSA is 
found to obtain much better solutions with a higher convergence speed than PGA. 
The fast convergence of PGSA is due to the local selection decisions of SA after 
crossover and mutation, which can ensure that at the initial stage the subpopulations 
have great diversity and good candidates still exist in the next generation at the later 
stage. Thus PGSA can find the global optimum solution with less time. 
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Corana, Martini and Ridella [16] used the SA for the Rosenbrock functions F9 and 
F10 in two and four dimensions respectively. F9 and F10 were also tried in this paper 
using PGSA. The number of function evaluation is given in Table 4. In comparison 
with the calculation results of SA by Corana et al. [16], the number of function 
evaluation decreases remarkably using PGSA.  

Table 3. Performance comparison between PGA and PGSA 

Numbers of function evaluation Computation time 
Function 

PGA PGSA PGA PGSA 

F1 1526 1356 1.57 1.35 

F2 1671 1443 1.68 1.37 

F3 3634 1476 3.43 1.50 

F4 5243 4846 9.92 9.07 

F5 2076 1701 2.79 2.18 

F6 9900 9416 9.41 8.65 

F7 8699 8528 6.61 6.24 

F8 59520 57590 16.84 16.15 

Table 4. Performance comparison of SA, AEA and PGSA 

Numbers of function evaluation Final Function value 
Function 

SA PGSA SA PGSA 

F9 484001 96320 4.2E-08 1.0E-06 

F10 1264001 65750 5.9E-07 3.6E-06 

 
The functions F6 and F7 of higher dimensions were also tried. Mühlenbein [15] 

found the global minimum of F6 of dimension 400 and F7 of dimension 150 on a 64 
processor computer using PGA. For comparison in this paper, F6 and F7 with the 
same higher dimension have also been solved using PGSA. And F6 of dimension 500 
and F7 of dimension 200 have not been dealt with by Mühlenbein [15]. The testing 
parameters are listed in Table 5, and the results are shown in Table 6. In all runs the 
global minimum has been found to at least four digits of accuracy. 

From Table 6, it can be seen that it needs less numbers of function evaluation to 
reach the global minimum for PGSA than that for PGA. In addition, PGSA can still 
find the global minimum even with increasing complexity in problem dimension. It 
also means that PGSA has faster convergence than PGA. 
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Table 5. Control parallel setting 

 F6 F7 

Dimension of the function 50 100 200 400 500 50 100 150 200 

Number of subpopulations:  8 8 16 22 22 16 20 20 22 

Number of individuals of a subpopulation 40 40 40 100 150 40 100 200 200 

Migration interval (generations) 20 20 40 40 40 30 50 50 50 

Mutation probability 0.01 0.01 0.01 0.3 0.3 0.01 0.01 0.01 0.01 

Crossover probability 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

Initial temperature 200 500 1000 1500 2000 200 300 300 400 

Cooling rate 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

Genome representation floating point vectors 

Table 6. Performance comparison among PGA, AEA and PGSA 

Numbers of function evaluation Computation time 
Function 

PGA PGSA PGA PGSA 

n=50 42753 36826 57.40 49.45 

n=100 109072 82346 129.69 97.92 

n=200 390768 314635 404.26 304.45 

n=400 7964400 1514430 4849.458 1057.38 

F6 

n=500  2634236  1874.28 

n=50 119316 94695 34.96 28.76 

n=100 1262228 760604 213.93 143.48 

n=150 7041440 1543716 1635.56 279.56 
F7 

n=200  2607255  468.74 

5 Conclusions 

In this paper, a new GA and SA hybrid (GSA) is firstly presented, which inherits the 
strengths of GA and SA and overcomes their weaknesses. Then PGSA is described by 
implementing parallelized GSA. A set of standard test functions is attempted using 
this algorithm. The numerical results show that PGSA has faster convergence to 
global optimum solution than PGA and SA, so PGSA is superior to the conventional 
PGA and SA. In PGSA, the local selection of SA is involved after crossover and 
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mutation in each subpopulation, which can ensure that each subpopulation maintains 
greater diversity at the initial stage and good candidates still exist in the next 
generation at the later stage. Therefore by maintaining more diverse subpopulations at 
the initial stage, the PGSA mitigates the premature convergence of the standard GA. 
On the other hand, at the later stage, more and more good candidates exist in the next 
generation; it can narrow the search space so that the fast convergence can be 
achieved.  
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