KLP Not Always Efficient
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Abstract. The size of the nondominated set of a vector set is greatly
dependent on the size of the original vector set N and the dimension of
the vector M. Theoretical analysis shows that when M = O(log N) the
original set has big nondominated set which may be the original set itself,
and in the case M = O(log N), a classical algorithm (KLP) for finding
nondominated set has complexity of KLP higher than N?. Experiment
verifies the analysis result as well. Therefore, we should avoid employing
KLP when M = O(log N).
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1 Introduction

To solve a multi-objective problem is to find the set of Pareto-optimal solutions,
mathematically, the nondominated set of the search space. Classical optimization
methods can at best find one solution in one simulation run, while evolutionary
algorithms (EAs) can find multiple optimal solutions in one single simulation
run due to their population approach. Thus EAs are ideal candidates for solving
multi-objective optimization problems. Representative evolutionary techniques
include vector evaluated genetic algorithm (VEGA)[Schaffer1985], Pareto-based
ranking procedure (FFGA) [FonsecaFleming1993], niched Pareto genetic algo-
rithm (NPGA) [Horn1994], Non-dominated Sorting Genetic Algorithm (NSGA)
[SrinivasDeb1994], strength Pareto evolutionary algorithm (SPEA) [Zitzler1999],
Generalised Regression GA (GRGA) [Tiwari2002]. Recently, there are some
new approaches or modified versions of proposed methods, for instance, NS-
GAII [Deb2001a], SPEA2 [Zitzler2001], rtMOGAxs [PurshouseFleming2001] ,
Pareto-Archived Evolution Strategy (PAES) [Knowles2000] and so on. All multi-
objective evolutionary algorithms (MOEA) can’t avoid searching a nondomi-
nated set, and the pitfall of MOEAS is in some way time consuming. Therefore,
it is important to take a fast procedure for finding the nondominated set. Deb
argues KLP algorithm [Kungl975] as an effective algorithm in his new book
[Deb2001b)], and it seems that KLP is a fast algorithm with computational com-
plexity lower than N2.



2 Sanyou Zeng et al.

In this paper, the dependence of the size of the nondominated set of a vector
set on the size of the original vector set N and the dimension of the vector M is
analyzed. Theoretical analysis shows that when M = O(log N) the original set
has big nondominated set which may be the original set itself, and in the case
M = O(log N), a classical algorithm (KLP) for finding nondominated set has
complexity of KLP higher than N2. Experiment verifies the analysis result as
well. Therefore, we should avoid employing KLP when M = O(log N).

In the remainder of the paper, we briefly mention nondominace, nondomi-
nated set and two existed algorithms for finding nondominated set in section 2.
Then in Section 3, the dependency of the size of the nondominated set for X on
N and M is analyzed. Thereafter, we give a remark on the computational com-
plexity of KLP in Section 4. The next section presents numerical experiments.
Finally, we summarize the conclusions of this paper.

2 Non-dominated Set

Let X be a vector set X = {x?]i = 1,2,..., N} where x() = (xgi),xg), ,x%})

is vector. X is regarded as N x M matrix X = [acg»i)]NxM. The size of the X

is N and the dimension of vector is M. Applied to multiobjective evolutionary
algorithm, X is population, where M is the number of objectives and N the
number of individuals x(* in the population.

Definition 1. For any two vectors x(1) x(2) € X,
x() = x02) = Vje1,2,...,M: xg-il) = x§i2)
x(1) < x(2) = Vje1,2,..,M:a;") <al®

. ) (i1) < x(i2)
x) < x
X {x(il) #£ x(i2) (1)
(i2)

- (i)
x(1) o x(i2) — Fjo, xjo < :qu
3. <ol

The relation ”<” on X is a partial order relation, and ”<” a strict partial order
relation. X with relation ”<” is a strict partial order set which we denote by
(X, <)

Definition 2. A member x’ € X is said to be a nondominated member of

(X, <) iff
AxeX:x<x (2)
and
M(X, <) = {x|x € X is a nondominated member} (3)

is called the nondominated set of (X, <).
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In the following, two existed algorithms for finding nondominated set are intro-
duced.

The first approach employs a good bookkeeping technique which continuously
updates check states of members. Let CU denote this approach.

Algorithm 1 Identifying the Non-dominated Set:CU
Let X’ store the nondominated set of X, |X'| be the cardinality of X'.

X' = {xM};
for(i=2;1 < Nyi++){
//Detemine if x currently nondominated.
bool i_nondominated = true;
for(t=1;t < |X'|;t ++){
if (x'® < xO){//x'" is the tth member in X'
i_nondominated = false; break;

if (x) < x'®)Delete x'® from X';
}

i f (i_nondominated == true)Insert x9) into X';

}

Output X’;

The algorithm requires O(N?) comparisons for nondominace and each compar-
ison needs an average of numerical comparisons about 3, and therefore, the
average computational complexity is O(N?). We should note that the most com-
putations required is O(M N?).

The second approach was proposed by Kung, H. T., Luccio, F. and Preparata,
F. P. [Kungl975], it is said to be an efficient one. Let us denote it by KLP.

Algorithm 2 Identifying the Non-dominated Set:KLP

1. Sort the set X according to the descending order of importance of the first
column component.

2. Nondominance(X): If |X| = 1, then return X as the output of Nondomi-
nance( X ).
Otherwise, T = Nondominance (X — X(qu)) and B = Nondominance
(X(I%“H)—X(‘XD), where XM X5 is the top half of X, X (5D _x (X))
the bottom half. For any member x9 € B, if x(9) is not dominated all mem-

bers in T, create a merged set M = T |J{x®}. Return M as the output of
the output of Nondominance(X).

The complexity of this approach is O(N (log N)™~2) for M > 4 and O(N (log N))
for M =2, 3.
For more relative information, see the literature [Deb2001b].
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3 Dependency of the Size of the Nondominated Set for X

on N, M
In X = {xM,x® . xM} = [xgi)]NxM, suppose :c;i) is a random variable
evenly distributed over real number set and any two such variables are indepen-
dent. We have
P[xg»z) < xl(k)] = %,P[xl(k) < a:;l)] =
where i # k, j # 1.

We know that the size of the nondominated set for X is greatly dependent on
both N and M. Given N, let M increase from 1, then the size of nondominated
set will increase bigger and bigger. There exists a threshold for M where X has a
big nondominated set which may be X itself. Before M arrives at the threshold,
the nondominated set is smaller and almost never the X itself. After M exceeds
the threshold, the nondominated set is almost the X itself. In other words, before
M arrives at the threshold, the probability of the event that the nondominated
set of X is X itself (denoted as Ey) is 0. After M exceeds the threshold, the
probability of the event Ey is X itself is 1. When M stays at the threshold, the
probability of the event Ey is between 0 and 1. For quantizing the threshold,
the probability of the event En should be calculated. We first consider the event
x( and x* are nondominated each other, that is, x) ~ x(¥) (cf. Definition
1), and denote it by E;; = {x® ~ x®} where x) = (2{? 2{? .. 2{)) and
x(*) = (xgk),x(zk), ...,xg\’f[)). It is easy to compute

PlB) = 1-2()" = 1- ()~ )

Plaf? =M= 0

Then we have the following theorem
Theorem 1. Denote event that X has itself as nondominated set Ep, its prob-
ability is
N(N-—1)
PlEN]=(1—(3)M-1) " > ()
Proof If N =2, the formula (5) is obviously true. We now assume the formula
(5) is true for N = n, that is,

n(n—1)

PlE,]=(1— (™)
and prove it is true when N replaced by n + 1. For N = n+ 1, and X =
{xM x@ . x() x(+D1 the following is true

En+1 — En ﬂ El,n+1 m E2,n+1 ﬂ m En,n+1

From the creation of X, we have that E,, Ey p41, E2 pt1, ..., By py1 are inde-
pendent with each other, then, it follows

P[En+1] = P[En] X P[El,n+1] X ... X P[En,n-&-l]

b
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This is the theorem with IV replaced by n+1, and the theorem holds by induction.
i

Given N and let M vary. When M stays at the threshold, the probability of
event Fp is between 0 and 1. Given such a probability, we have the following
equation from equation (5),

M =1 +log, <1> (6)
1—pN(N-1)
Since
1
. 1-pzx . x 1 1 _ 1
lim 5= = lim % = lin —pp = ppe (7)
Therefore
1 1
i—_pz O(a:longl) (8)

Equation (8) with z replaced by N(+—U’ we have

1 _ N(N-1)
- (210gP*1)

2
1—PN(N-1)

By equation (9) and equation (6), it follows that

M =1+ O(log( X1
= O(log N) — O(loglog P~ 1) (10)

= O(log N)
That is, the threshold is M = O(log N). When M = O(log N), X has a big

nondominated set which may be X itself.

4 Remark on the Computation Complexity of KLP

4.1 Misunderstanding the Computational Complexity of KLP

Some people misunderstand that KLP has a computational complexity lower
than O(N?). The cause is that they regard M as constant while N as variable.
Therefore, it follows that

. N(log N)M—2 .. (log N)M—2
N - (11)
ke
= Jim (20N = =t G2 =0

that is, the computational complexity of KLP Sxzp = o(N?) when M is con-
stant. However, when N,M both variable. the above result can not follow.
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4.2 Disadvantage of KLP

When M stays at the threshold, that is M = O(log N), the computational
complexity of KLP will be higher than N2. In fact, for M = log N, it follows
that

2
lim —&~ __ _ — lim —2&

Nooo N(log N)M=2 N oo (log N)M=2 (12)
- . N o . elogN o

= ngrclx) (log N)les N—2 = ]\}Er(lxj clogN—2)loglog N — 0

In this case, KLP will be slower than CU. As a summary, the computational
complexity of KLP is lower than N2 for M being a constant, while for M >
O(log N), it is higher than N?2.

5 Numerical Experiments

Experiment was performed on a computer with Pentium 4/1.80GHz CPU and
256M memory. Table 1, 2, 3, 4 give the running time comparison of KLP with
CU for finding nondominated set, and the results show that when M is small(or
original set has small nondominated set), CU is slower than KLP, when M is
relatively larger(or original set has a larger nondominated set), CU is faster than
KLP.

Table 1. The time comparison of KLP with CU where N = 1000, M different. @ is
the size of nondominated set.

Running Time(Second)

N x M Q
CU KLP
1000 x 3 0.016 0.015 26
1000 x 5 0.032 0.032 172
1000 x 10 0.125 0.156 732
1000 x 20 0.171 0.180 999
1000 x 30 0.172 0.234 1000

6 Conclusion

The dependency of the size of the nondominated set of a vector set on the size
of the original vector set N and the dimension of the vector M is theoretically
analyzed. Theoretical and experimental results show that when M is small(or
original set has small nondominated set), CU is slower than KLP, when M is
relatively larger(or original set has a larger nondominated set), CU is faster than
KLP.
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Table 2. The time comparison of KLP with CU where N = 5000, M different. @ is

the size of nondominated set.

Running Time(Second)

N x M Q
(60) KLP

5000 x 3 0.078 0.078 45

5000 x 5 0.344 0.203 317

5000 x 10 2.859 2.797 2962

5000 x 20 5.968 5.718 4978

5000 x 30 6.009 6.641 5000

Table 3. The time comparison of KLP with CU where N = 10000, M different. @ is

the size of nondominated set.

Running Time(Second)

NxM Q
CU KLP
10000 x 3 0.140 0.172 49
10000 x 5 0.532 0.391 278
10000 x 10 10.062 10.781 5091
10000 x 20 23.750 28.521 9930

10000 x 30 25.927 30.985 10000

Table 4. The time comparison of KLP with CU where N = 20000, M different. @ is

the size of nondominated set.

Running Time(Second)

N x M Q
CU KLP

20000 x 3 1.2820 0.344 68

20000 x 5 2.4530 0.907 513

20000 x 10 34.8910 36.500 8321
20000 x 20 96.844 129.086 19756
20000 x 30 105.021 137.172 20000
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