
An architecture for massive parallelization of the

compact genetic algorithm

Fernando G. Lobo, Cláudio F. Lima, and Hugo Mártires

ADEEC-FCT
Universidade do Algarve
Campus de Gambelas

8000-062 Faro, Portugal
{flobo,clima}@ualg.pt, hmartires@myrealbox.com

Abstract. This paper presents an architecture which is suitable for a
massive parallelization of the compact genetic algorithm. The resulting
scheme has three major advantages. First, it has low synchronization
costs. Second, it is fault tolerant, and third, it is scalable.
The paper argues that the benefits that can be obtained with the pro-
posed approach is potentially higher than those obtained with traditional
parallel genetic algorithms.

1 Introduction

There has been several efforts in the field of evolutionary computation towards
improving the genetic algorithm’s efficiency. One of the efficiency enhancement
techniques that has been investigated, both in theory and in practice, is the topic
of parallelization [1].

With a traditional parallel genetic algorithm (GA) implementation, popula-
tion members need to be sent over a computer network, and that imposes a limit
on how fast they can be. In this paper, we investigate the parallelization of the
compact genetic algorithm [2] [3], and take advantage of its compact represen-
tation of the population do develop a parallelization scheme which significantly
reduces the communication overhead.

The paper is organized as follows. The next section presents background
material on parallel GAs. Section 3 reviews the compact GA and shows the
motivation for parallelizing it. Section 4 presents an architecture that allows a
massive parallelization of the compact GA. In section 5 computer experiments
are conducted and its results are discussed. Finally, a number of extensions are
outlined, and we finish with a brief summary and the main conclusions of this
work.

2 Parallel GAs

An important efficiency question that people are faced with in problem solving is
the following: Given a fixed computational time, what is the best way to allocate
computer resources in order to have as good a solution as possible.



Under such a challenge, the idea of parallelization stands out naturally as a
way of improving the efficiency of the problem solving task. By using multiple
computers in parallel, there is an opportunity for delivering better solutions in
a shorter period of time.

Many computer algorithms are difficult to parallelize, but that is not the
case with GAs because GAs work with a population of solutions which can be
evaluated independently of one another. Moreover, in many problems most of
the time is spent on evaluating solutions rather than on the internal mechanisms
of the GA operators themselves. Indeed, the time spent on the GA operators is
usually negligible compared to the time spent on evaluating individual solutions.

Several researchers have investigated the topic of parallel GAs and the major
design issues are in choices such as using one or more populations, and in the
case of using multiple populations, decide when, with who, and how often do
individuals communicate with other individuals of other populations.

Although implementing parallel genetic algorithms is relatively simple, the
answers to the questions raised above are not straightforward and traditionally
have only been answered by means of empirical experimentation. One exception
to that has been the work of Cantú-Paz [1] who has built theoretical models
that lead to rational decisions for setting the different parameters involved in
parallelizing GAs. There are two major ways of implementing parallel GAs:

1. Using a single population.
2. Using multiple populations.

In single population parallel GAs, also called Master-Slave parallel GAs, one
computer (the master) executes the GA operations and distributes individuals to
be evaluated by other computers (the slaves). After evaluating the individuals,
the slaves return the results back to the master. There can be significant benefits
with such a scheme because the slaves can work in parallel, independently of one
another. On the other hand, there is an extra overhead in communication costs
that must be paid in order to communicate individuals and fitness values back
and forth.

In multiple population parallel GAs, what would be a whole population in
a regular non-parallel GA, becomes several smaller populations (usually called
demes), each of which is located in a different computer. Each computer executes
a regular GA and occasionally, individuals may be exchanged with individuals
from other populations. Multiple population parallel GAs are much harder to
design because there are more degrees of freedom to explore. Specifically, four
main things need to be chosen: (1) the size of each population, (2) the topology
of the connection between the populations, (3) the number of individuals that
are exchanged, and (4) how often do the individuals exchange.

Cantú-Paz investigated both approaches and concluded that for the case of
the Master-Slave architecture, the benefits of parallelization occur mainly on
problems with long function evaluation times because it needs constant commu-
nication. Multiple population parallel GAs have less communication costs but
do not avoid completely the communication scalability problem. In other words,



in either approach, communication costs impose a limit on how fast parallel GAs
can be. To overcome this limitation, Cantú-Paz proposed a combination of the
two approaches in what was called Hierarchical Parallel GAs, and verified that
when using such an approach it is possible to reduce the execution time more
than by using either approach alone. The interested reader is referred to the
original source for the mathematical formulation and for additional information
on the design of parallel GAs.

The next section gives an overview of the compact GA, and after that, its
parallelization is discussed.

3 The Compact Genetic Algorithm

Consider a 5-bit problem with a population of 10 individuals as shown below:

1 0 0 0 0
1 1 0 0 1
0 1 1 1 1
1 1 0 0 0
0 1 1 0 1
0 1 1 1 0
1 1 0 0 0
1 0 0 0 0
0 1 1 0 1
1 0 0 1 1

Under the compact GA, the above population can be represented by the
following probability vector:

0.6 0.7 0.4 0.3 0.5

The probabilities are the relative frequency counts of the number of 1’s for
the different gene positions, and can be interpreted as a compact representation
of the population. In other words, the individuals of the population could have
been sampled from the probability vector.

Harik et al. [2] [3] noticed that it was possible to mimic the behavior of a
simple GA, without storing the population explicitly. Such observation came
from the fact that during the course of a regular GA run, alleles compete with
each other at every gene position. At the beginning, scanning the population
column-wise, we should expect to observe that roughly 50% of the alleles have
value 0 and 50% of the alleles have value 1. As the search progresses, for each
column, either the zeros take over the ones, or vice-versa. Harik et al. built an
algorithm that explicitly simulates the random walk that takes place on the allele
frequency makeup for every gene position. The resulting algorithm, the compact
GA, was shown to be operationally equivalent to a simple GA that does not
assume any linkage between genes.



The compact GA manipulates the population in an indirect way through
the update step of 1/N , where N denotes the population size of a regular GA.
Further details about the compact GA can be found in the original source [2]
[3].

3.1 Motivation for parallelizing the compact GA.

The main motivation for parallelizing the compact GA comes from the observa-
tion that the probability vector is a compact representation of the population,
and it is possible to communicate the vector rather than individuals themselves.
Communication costs can be reduced this way because the probability vector
needs significant less storage than the whole population.

Since communication costs can be drastically reduced, it makes sense to
clone the probability vector to several computers, and each computer could work
independently on solving a problem by running a separate compact GA. Then,
the different probability vectors would have to be consolidated (or mixed) once
in a while.

This observation has first been made by Harik [4] when the compact GA was
developed. The next section presents an architecture that implements Harik’s
idea.

4 An architecture for building a massively parallel

compact GA

This section presents an architecture which is suitable for a scalable paralleliza-
tion of the compact GA. Similar schemes can be done with other order-1 Probilis-
tic Model Building Genetic Algorithms (PMBGAs) [5]. However, the connection
that exists between the population size and the update step, makes the compact
GA more suitable when working with very large populations, a topic that is
revisited later.

The compact GA uses a probability vector as a model to represent the pop-
ulation. The vector can be stored with `× log

2
(N +1) bits (` is the chromosome

length, N is the population size), a different order of magnitude than the `×N
bits needed to represent a population in a regular GA.

The storage savings are especially important when using large populations.
For instance, let us suppose that we are interested in solving a 1000-bit problem
using a population of size 1 million. With a regular parallel GA, in order to com-
municate the whole population it would be necessary to transmit approximately
1 Giga bit over a network. Instead, with the compact GA, it would only be nec-
essary to transmit 20 thousand bits. The difference is large and suggests that
running multiple compact GAs in parallel with model exchanges once in a while
is something that deserves to be explored. We have devised an architecture, that
we call manager-worker, that implements this idea. Figure 1 shows a schematic
of the approach.



manager

worker #1 ...worker #2 worker #3 worker #n

model

m
od

el
 d

if
fe

re
nc

e

m
od

el

model difference

m
od

el
 d

iff
er

en
ce model

m
od

el

model 
diff

ere
nce

Fig. 1. Manager-worker architecture.

Although Figure 1 resembles a master-slave configuration, we decided to give
it a different name (manager-worker) to contrast with the usual master-slave
architecture of regular parallel GAs. There, the master executes and coordinates
the GA operations and the slaves just compute fitness function evaluations. In
the case of the parallel compact GA that we are suggesting, the manager also
coordinates the work of the workers, but each worker runs a compact GA on
its own. There can be an arbitrary number of workers and there is no direct
communication among them; the only communication that takes place occurs
between the manager and a worker.

4.1 Operational details

One could think of different ways of parallelizing the compact GA. The way
that we are about to propose is particularly attractive because once the manager
starts, there can be an arbitrary number of workers, each of which can start and
finish at any given point in time making the whole system fault tolerant. The
operational details consist of the following seven steps:

1. The manager initializes a probability vector of size ` with each variable set
to 0.5. Then it goes to sleep, and waits to be woken up by some worker
computer.

2. When a worker computer enters in action for the first time, it sends a signal
to the manager saying that it is ready to start working.

3. The manager wakes up, sends a copy of its probability vector to the worker,
and goes back to sleep.

4. Once the worker receives the probability vector, it explores m new individuals
with a compact GA. During this period, m fitness function evaluations are



performed and the worker’s local probability vector (which initially is just a
copy of the manager’s probability vector) is updated along the way.

5. After m fitness function evaluations have elapsed, the worker wakes up the
manager in order to report the results of those m function evaluations. The
results can be summarized by sending only the differences that occurred
between the vector that was sent from the master and the worker’s vector
state after the execution of the m fitness function evaluations.

6. When the manager receives the probability vector differences sent by the
worker, it updates its own probability vector by adding the differences to its
current vector.

7. Then it sends the newly updated probability vector back to the worker. The
manager goes back to sleep and the worker starts working for m more fitness
function evaluations (back to step 4).

There are a number of subtle points that are worth mentioning. First of
all, step number 7 is not a broadcast operation. The manager just sends its
newly updated probability vector to one particular worker. Notice however, that
the manager’s probability vector not only incorporates the results of the m
function evaluations performed by that particular worker, but it also incorporates
the results of the evaluations conducted by the other workers. That is, while a
particular worker is working, other workers might be updating the manager’s
probability vector. Thus, at a given point in time, workers are working with a
slightly outdated probability vector. Although this might seem a disadvantage
at first sight, the error that is committed by working with a slightly outdated
probability vector is likely to be negligible for the overall search because an
iteration of the compact GA represents only a small step in the action of the GA
(this is especially true for large population sizes). The proposed parallelization
scheme has several advantages, namely:

– Low synchronization costs.
– Fault tolerance.
– Scalability.

All the communication that takes place consist of short transactions. Workers
do their job independently and only interrupt the manager once in a while.
During the interruption period, the manager communicates with a single worker,
and the other workers can continue working non-stop.

The architecture is fault tolerant because workers can go up or down at any
given point in time. This makes it suitable for massively parallelization using
the Internet. It is scalable because potentially there is no limit on the number
of workers.

5 Computer simulations

This section presents computer simulations that were done to validate the pro-
posed approach. In order to simplify both the implementation and the interpre-
tation of the results, we decided to do a serial implementation of the parallel



compact GA architecture. Although it might seem strange (after all, we are de-
scribing a scheme for doing massive parallelization), doing a serial simulation of
the behavior of the algorithm has a number of advantages:

– we can analyze the algorithm’s behavior under careful controlled conditions.
– we can do scalability tests by simulating a parallel compact GA with a large

number of computers without having the hardware.

The serial implementation that we have developed simulates that there are a
number of P worker processors and 1 manager processor. The P worker proces-
sors start running at the same time and they all execute at the same speed. In
addition, it is assumed that the communication cost associated with a manager-
worker transaction takes a constant time which is proportional to the probability
vector’s size. Such a scheme can be implemented by having a collection of P regu-
lar compact GAs, each one with its own probability vector, and iterating through
all of them, doing a small step of the compact GA main loop, one at a time.
After a particular compact GA worker completes m fitness function evaluations,
the worker-manager communication is simulated as illustrated during section 4.

We present experiments on a single problem, a bounded deceptive func-
tion consisting of the concatenation of 10 copies of a 3-bit trap function with
deceptive-to-optimal ratio of 0.7 [6]. This same function has been used in the
original compact GA work. We simulate a selection rate of s = 8 and did tests
with a population size of N = 100000 individuals (each worker processor runs
a compact GA that simulates a 100000 population size). We chose this popula-
tion size because we wanted to use a size large enough to solve all the building
blocks correctly. We use s = 8 following the recommendation given by Harik et
al. in the original compact GA paper for this type of problem. Finally, we chose
this problem as a test function because, even though the compact GA is a poor
algorithm in solving the problem, we wanted to use a function that requires a
large population size because those are the situations where the benefits from
parallelization are more pronounced.

Having fixed both the population size and the selection rate, we decided
to systematically vary the number of worker processors P , as well as the m
parameter which has an effect on the rate of communication that occurs between
the manager and a worker. We did experiments for P in {1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024}, and for a particular P , we varied the parameter m in {8,
80, 800, 8000, 80000}. This totalled 55 different configurations, each of which
was run 30 independent times.

The m parameter is important because it is the one that affects communica-
tion costs. Smaller m values imply an increase in communication costs. On the
other hand, for very large m values, performance degrades because the compact
GA workers start sampling individuals from outdated probability vectors.

Figure 2 shows the results. In terms of fitness function evaluations per pro-
cessor, we observe a linear speedup for low m values. For instance, for m = 8
we observe a straight line on the log-log plot. Using the data directly, we calcu-
lated the slope of the line and obtained an approximate value of -0.3. In order



1 2 4 8 16 32 64 128 256 512 1024
10

3

10
4

10
5

10
6

10
7

number of processors

fu
nc

tio
n 

ev
al

ua
tio

ns
 p

er
 p

ro
ce

ss
or

m = 8
m = 80
m = 800
m = 8000
m = 80000

1 2 4 8 16 32 64 128 256 512 1024
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

number of processors

co
m

m
un

ic
at

io
n 

st
ep

s 
pe

r 
pr

oc
es

so
r

m = 8
m = 80
m = 800
m = 8000
m = 80000

Fig. 2. Both graphs depict a log-log plot. On the left, we see the average number
of function evaluations per processor. On the right, we see the average number of
communication steps per processor.

to take into account the different logarithm bases, we need to multiply it by
log

2
10 (y-axis is log

10
, x-axis is log

2
) yielding a slope of approximately -1. This

means that the number of function evaluation per processor decreases linearly
with a growing number of processors. That is, whenever we double the number
of processors, the average number of fitness function evaluations per processor
gets cut by a half.

Likewise, in terms of communication costs, as we raise the parameter m, the
average number of communication steps between manager and worker decreases
in the same proportion as expected. For instance, for m = 80, communication
costs are reduced 10 times when compared with m = 8. Notice that there is
a degradation in terms of speedup for the larger m values. For instance, for
m = 8000 and m = 80000 (which is about the same order of the population size),
the speedup obtained goes away from the idealized case. This can be explained by
the fact that in this case (and especially with a large number of processors), the
average number of communication steps per processor approaches zero. That
means that a large fraction of processors were actually doing some work but
never communicated their results back to the manager because the problem was
solved before they had a chance to do so.

6 Extensions

This work has a number of extensions worthwhile exploring. Below, we outline
some of them:

– Build theory for analyzing the effect of m, N , and P .
– Compare with traditional parallel GA schemes.
– Extend the approach to multivariate PMBGAs.
– Take advantage of the Internet and build something like SETI@home.



It would be interesting to study the mathematical analysis of the proposed
parallel compact GA. A number of questions come to mind. For instance, what
is the effect of the m parameter? What about the number of workers P ? Should
m be adjusted automatically as a function of P and N? Our experiments suggest
that there is an “optimal” m that depends on the number of compact GA workers
P , and most likely depends on the population size N as well.

Another extension that could be done is to compare the proposed paral-
lel architecture with those used more often in traditional parallel GAs, either
master-slave and multiple deme GAs. Again, our experiments suggest that the
parallel compact GA is likely to be on top of regular parallel GAs due to lower
communication costs.

The model structure of the compact GA never changes, every gene is always
treated independently. There are other PMBGAs that are able to learn a more
complex structure dynamically as the search progresses. One could think of using
some of the ideas presented here for parallelizing these more complex PMBGAs.

Finally, it would be interesting to have a parallel compact GA implementation
based on the Internet infrastructure, where computers around the world could
contribute with some processing power when they are idle. Similar schemes have
been done with other projects, one of the most well known is the SETI@home
project [7]. Our parallel GA architecture is suitable for a similar kind of project
because computers can go up or down at any given point in time.

7 Summary and conclusions

This paper reviewed the compact GA and presented an architecture that allows
its massive parallelization. The motivation for doing so has been discussed and
a serial implementation of the parallel architecture was simulated. Computer
experiments were done under idealized conditions and we have verified an almost
linear speedup with a growing number of processors.

The paper presented a novel way of parallelizing GAs. This was possible due
to the different operational mechanisms of the compact GA when compared with
a more traditional GA. By taking advantage of the compact representation of
the population, it becomes possible do distribute its representation to different
computers without the associated cost of sending it individual by individual.

Additional empirical and theoretical research needs to be done to confirm
our preliminary results. Nonetheless, the speedups observed in our experiments
suggest that a massive parallelization of the compact GA may constitute an
efficient and practical alternative for solving a variety of problems.

Acknowledgements This work was sponsored by FCT/MCES under grants
POSI/SRI/42065/2001 and POCTI/MGS/37970/2001.

References

1. Cantú-Paz, E.: Efficient and accurate parallel genetic algorithms. Kluwer Academic
Publishers, Boston, MA (2000)



2. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. In:
Proceedings of 1998 IEEE International Conference on Evolutionary Computation,
Piscataway, NJ, IEEE (1998) 523–528

3. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Transactions on Evolutionary Computation 3 (1999) 287–297

4. Harik, G.R.: Personal communication. (1997)
5. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and

using probabilistic models. Computational Optimization and Applications 21 (2002)
5–20 Also IlliGAL Report No. 99018.

6. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In Whitley, L.D.,
ed.: Foundations of Genetic Algorithms 2, San Mateo, CA, Morgan Kaufmann
(1993) 93–108

7. Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: SETI@home -
massively distributed computing for SETI. Computing in Science and Engineering
3 (2001) 79


