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Abstract. The developmental processes studied by biologists are emer-
gent self organised processes that are the result of natural evolution.
Developmental biology can be a good inspiration for anyone interested
in evolving self organised discrete systems like Cellular Automata: nature
has proved that evolving self organisation is possible.

In this paper, we will describe EmbryoCA, a model of 3D Cellular Auto-
mata for pattern generation. Developmental biology has been used as an
inspiration to design EmbryoCA and make the model more gradual in the
hope of having a more evolvable type of CA. Also, experiments compar-
ing the evolvability of different setups of EmbryoCA with a conventional
CA model are shown.

1 Introduction

The study of evolvable mechanisms capable of generating rich patterns is inter-
esting for researchers working in different scientific fields. As an example of this
interest, work has been carried out to use evolutionary computing to find spatial
three dimensional (3D) patterns since those patterns can be used to characterise
microstructures for its use by material scientists [1].

Evolving patterns using a linear representation in which every feature is
directly encoded into a gene, poses significant problems in terms of scalability
and seriously limits the complexity that can be handled by such systems [2].
Nature does not work this way. In nature, non-linear, self-organising processes
known colectively as embryogenesis or development, grow the phenotype from a
compact representation.

Cellular Automata (CA) can be used to model developmental processes since
their compact rule sets produce rich results - akin to a compact genotype devel-
oping into a complex phenotype. Unfortunately they tend to be very sensitive
to small changes to their rule sets: a small change is amplified time step after
time step and eventually, the results generated by two very similar CA ends up
being very different. It is due to that sensitivity that is difficult to evolve them to



perform computations [3] or do something like pattern generation [4]. Evolution
needs to be able to do smooth, gradual changes to be effective [5], in systems
that can disrupted by minor modifications, adaptative improvements by random
selection and mutation cannot occur [6].

In this paper we will describe a CA model for pattern generation whose
design has been inspired by developmental and cellular biology in order to be
more evolvable than conventional CA models. The next section will provide an
introduction to some concepts needed to understand the EmbryoCA model and
the experiments done using it. Next, the EmbryoCA model will be described and
after this, the experiments performed to compare the evolvability of EmbryoCA
with conventional CA will be shown. Finally the results will be discussed and
conclusions presented.

2 Background

This section will introduce a few notions about CA, developmental biology and
pattern characterisation functions that will be needed to understand the Em-
bryoCA model and the experiments performed.

2.1 Cellular Automata

Von Neumann and Ulam introduced CA in the 1940s for the study of self rep-
lication [7]. CA are dynamical systems made of a discrete number of elements
arranged into a lattice (normally one, two or three dimensional ones are used).
These elements, or automata, can be in a number of discrete states and change
according to a finite number of rules that determine the state of an automaton
given the state of the neighbours of that automaton. Time is also discrete and
is divided into time steps.

CA are interesting because being simple, they can show very complex be-
haviours and patterns. They have been used to model and solve all sorts of
problems. They have been used to study electro-static self-assembly processes
[8], density classification [9], pattern formation [10], they have been used in
materials science [11], testing digital circuits [12] and to model developmental
processes [13].

There are several models of CA. Differences between two different CA models
could be in the definition of neighbourhood, if the rules are applied synchronously
or asynchronously or the number and type of states in which an automaton could
be at any given time step.

2.2 Effector Automata

Effector Automata (EfA) is a model of CA designed and created by Lohn and
Reggia to evolve self replication [14]. In the EfA model, automata are autonom-
ous elements capable of moving, creating copies of themselves and dying, in an
otherwise empty lattice. The output of a rule in an EfA is the action to be



performed by the automaton when its internal state and its configuration of
neighbours are the ones specified in the rule.

2.3 Developmental biology

Nature has managed to create morphologies and patterns of extraordinary com-
plexity and sophistication [15] and most of them are the result of processes
studied in developmental biology. Development is the process of construction
and growth of organisms that emerges from the interactions between proteins
and genes and cells, with the environment [2]. Genes encode proteins and pro-
teins perform almost all the tasks needed for development such as catalysing the
synthesis of other cell components, regulating the expression of genes as well as
making inter cellular communication possible. As a consequence of the interplay
of these elements, structures emerge from a simple group of cells that divide,
grow and change shape [16]. It is, without doubt, thanks to developmental pro-
cesses that complex multicellular organisms are possible.

From a computer science or engineering perspective, development is about
construction and self organisation [2] and it can successfully be applied to solve
complex problems in other areas of science and engineering [17].

2.4 Two point correlation

Two point correlation functions are widely used in materials science to charac-
terise patterns [18] and in general they can be a useful characterisation of 2 or
3D lattices. One of the reasons that make them quite useful in a diverse number
of areas is that they are very general and hence, can be used to characterise any
pattern, from a cell to a painting. The two point correlation function is described
in the following equation:
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where d is the correlation distance, Ng is the total number of particles that
belong to a given phase in the matrix and ng is the number of particles of the
phase being characterised that are separated at distance d from particle i.

3 EmbryoCA

EmbryoCA, is a model of 3D CA inspired by developmental biology and built
using the principles of the EfA model. The main aims of the EmbryoCA model
are to be able to grow binary 3D spatial patterns [19] and to be evolvable. In
this work, the evolvability of a CA model is considered as the capability of the
model of being effectively and efficiently modified by evolution through gradual
change.



3.1 EmbryoCA as a developmental biology model

The automata in the EmbryoCA model are cell-like effector automata. They
are autonomous entities capable of moving in a 3D space, creating copies of
themselves and dying. Fach automaton has an identical rule set or genome. The
genes are regulated by both the environment (that is, the other automata in the
neighbourhood) and the elements created by expressing the genes that, in this
model, will be called proteins. A protein may promote certain types of actions
(for instance, moving to another location) or may inhibit the expression of some
gene (for instance, inhibiting the expression of the gene that creates the protein
that promotes the automaton to move). As usual with CA models, both time and
space are discrete and each time step, the appropriate genes of each automaton
are expressed and the interplay of the different proteins will determine which
action, if any, will take place.

3.2 Description of EmbryoCA as a CA model
An EmbryoCA is specified with a list of rules that have the following format:

if (variable = number) then do consequence

where variable can be either the internal variable that keeps track of the number
of divisions that the automaton has gone through, or the number of neighbours
in one of the six directions of a semi totalistic Moore neighbourhood (north,
south, east, west, up and down) [20]. There are two types of consequences in a
rule: actions (move, divide and die) and antiactions (inhibiting the automaton
from either moving, dividing or dying). At a given time, an automaton may have
more than one applicable rule and a conflict resolution mechanism will decide
what action to follow.
For each timestep, every automaton follows this algorithm:

[E

. Get list of rules whose precondition is true.

2. for every applicable rule:

(a) if the consequence is an action, increase the counter associated
with the action.

(b) if the consequence is an antiaction, decrease the counter associated
with the action.

w

. Pick the action with the higher counter.
4. If selected action’s counter is higher than threshold, execute action.

The Initial Configuration (IC) of an EmbryoCA is always one single auto-
maton, or zygote, placed in the middle of a 3D lattice

Figure 1 shows one example of 3D binary pattern (transparent and blue)
grown by an EmbryoCA.



Fig. 1. Example of 3D binary spatially discontinous pattern grown by an EmbryoCA.

4 Experiments

The purpose of the experiments is to compare the evolvability of the EmbryoCA
model with conventional CA models. Due to the discrete nature of CA, change
is normally not gradual and the consequence is that they are not very evolvable.
The experiments will assess what impact changes in the rule set have on the
final 3D pattern generated.

The model of CA representing conventional CA is described in table 1. It is
a 3D CA in which every cell is occupied by an automaton. Rules determine in
which of the two possible states will the automaton be in the next time step.
At any given time and for any automaton, one and only one rule of the rule
set is applicable. What determines if a rule will be applied is the configuration
of neighbours of the automaton under consideration. The neighbourhood of an
automaton in this model is based on the Moore neighbourhood. In 3D that
means that 26 neighbours are considered when evaluating rules. The way the
neighbourhood is used to evaluate rules is semi totalistic: only the overall count
in one of the six possible directions (north, south, east, west, up and down) is
considered. This means that in each of the six directions, an automaton may
have any number between 0 and 9 neighbours. As a consequence of this type of
neighbourhood and given that every possible configuration of a neighbourhood
has to be included in the rule set, the rule set of a CA in this model is made
of 1 %108 rules. These types of rule sets are frequently used by researchers that
want to evolve CA like [21] and [14].

A random walk will be used to compare the gradualness of change in both
models of CA. A random walk can be described by the following algorithm :

1. Randomly create a rule set and in the conventional CA, an IC.
2. Grow a pattern with it iterating the rule set 100 time steps, call
it original pattern.



Feature Value
CA dimensions 20x20x20
Automata states 2 (B&W)
Neighbourhood type|  Moore neighbourhood
Neighbours count [Semi totalistic (6 directions)
Rule set size 1000000
Time steps 100
Table 1. Description of the conventional model of CA used in the experiments.

3. Make a number of random changes in the rule set: randomly pick the
rules to be replaced with randomly created new ones.

4. Grow a pattern with the modified rule set in a 100 time steps, call
it new pattern.

5. Characterise the new pattern with a 2 point correlation

6. Measure the difference between the characterisations obtained with
the 2 point correlation function of the original and the new pattern.
Record the difference.

7. Call the new pattern original pattern.

8. Repeat the process from step 3 for 1000 times.

Figure 2 shows how a two point correlation function is used to measure the
difference between any two 3D patterns. This function is used to characterise
with a distribution both, the CA before and after the change has been made on
the rule set. The bigger the difference between the two distributions, the less
similarity between the two patterns generated.

Three different systems have been compared in these experiments, one of
them is a conventional CA described before and the other two are different
versions of the EmbryoCA model, one with rule sets of size 100 and the other
with rule sets containing 1000 rules. Each system is tested with random walks
of a thousand steps each in which every CA is iterated for a 100 time steps.
The rate of change over the previous rule set is 1, 5, 10 and 20% of the rules.
A change of 10% means that 10 of every 100 rules are completely erased and
replaced by new randomly generated ones. For each percentage, the system is
tested with random walks 10 times.

5 Results and analysis

Figure 3 shows the main results of the experiments: the average change, as
measured using a 2-point correlation function, for each of the models used in
the experiments. Some of the results that can be appreciated in the figure were
expected. For instance that where higher rates of change between two consec-
utive rule sets in the random walk are used, the differences in the phenotype
grown with them are higher too. It can also be seen that the conventional CA



2-point correlation

Initial 3D
pattern

Difference between
. original and changed

Changed 3D 2-point correlation

pattern

Fig. 2. Example of how a two point correlation function is used to characterise and
compare two different rule sets.

used, whose rule set contains 1 * 10° rules, is less sensitive to changes than the
EmbryoCA with a hundred rules but more than the EmbryoCA with 500 rules.

Figure 4 shows a comparison between two of the random walks performed
for the experiments. Both of them represent the sequence of differences between
the patterns grown by CA before and after a change. In this case, the rate of
change was 1% of the rules. One of the series represents the conventional CA and
the other represents the EmbryoCA with 500 rules. It can be appreciated that,
compared to the EmbryoCA, changes in the rule set of a conventional CA are
more likely to either produce no effect whatsoever or represent a steep change
in the phenotype grown as measured by the two point correlation function. It is
precisely this type of behaviour that makes the evolvability of conventional CA
models comparatively poor.

Figure 5 shows another comparison between one of the random walks per-
formed with the conventional CA model and a random walk done with the
EmbryoCA with 500 rules model. In this case, the rate of change between con-
secutive CA is 20%. While it is true that some of the changes in the rules of the
EmbryoCA model can have a tremendous impact on the phenotype, for the vast
majority of the cases, the EmbryoCA model is less sensitive to random mutation.

It is important to note that the gradualness shown by the EmbryoCA model
is not an artifact of redundancy in the rule set (i.e., part of the rule set never
being used). Whereas in the conventional CA model most rules are never used
and therefore most changes in the rule set cannot have any effect on the patterns
generated, in the EmbryoCA virtually all changes in the rule set will affect rules
that will be used and therefore, will have an impact, albeit small, in the final
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Fig. 3. Average difference between two consecutive rulesets, after and before a change
has been made. For every CA used, rates of change equal to 1, 5, 10 and 20% of the rule
set are shown grouped together. The maximum difference between any two individuals
is 2.

pattern. To test that, the models were tested to see what percentage of the rule
set is actually used, resulting in data shown in figures 6 and 7.

Figure 6 shows the percentage of rules used for an EmbryoCA with 100 and
an EmbryoCA with 500 rules, in 100 different trials, each of them representing
a different rule set.

Figure 7 represents the same results when the trials were performed using
the conventional CA model. It is easy to see that every time one single rule is
changed in an EmbryoCA, that has to have some repercussion in the way the
pattern is grown. One reason that could explain why despite this, changes in
EmbryoCA tend to be gradual is that the function of rules in the model is not
to determine what an automaton should do in a specific situation, as it is the
case in conventional CA models. Their function is to help promote some specific
action. This means that the actions taken by an automaton are likely to be the
result of a number of rules promoting that action and not the responsibility of
a single rule. It is for this reason that changes in the rule set slowly modify the
phenotype instead of transforming it radically.

6 Conclusions

Developmental processes are key to evolve sophisticated and complex designs,
but without graduality, the dynamical non linear and mostly discrete systems
used to model development make evolution difficult if not impossible [2]. One
way to achieve graduality is to use non discrete systems to model development
[22], but nature is also discrete: genes are expressed or not, reactions do or do not
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Fig. 4. Example of 2 random walks, one with the conventional CA and another with
the EmbryoCA with 500 rules, with a rate of change of 1% of the rule set. Each time,
1% of the rules in the rule set are replaced by new ones and the difference between the
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Fig. 5. Example of 2 random walks, one with the conventional CA and another with
the EmbryoCA with 500 rules, with a rate of change of 20% of the rule set. Each time,
20% of the rules in the rule set are replaced by new ones and the difference between
the patterns, before and after the change, calculated and recorded.
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take place, cells do or do not divide, there is no middle ground. And despite the
discreteness of nature, development happens and this development gets shaped
by evolution.

This paper has described EmbryoCA, a CA model designed to grow pat-
terns, and has shown experiments that proof that it is a comparatively gradual
CA model. This graduality means that changes in the patterns generated are
proportional to the changes in the rule set. This behaviour contrasts with the
more drastic effect that changes have on conventional CA models where they are
more likely to either have no impact at all or change completely the resulting
pattern. We believe that this graduality has the potential to make CA models
that follow the principles of the EmbryoCA model more evolvable and better
suited to help use development with Evolutionary Algorithms.
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