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Abstract. Evolutionary relationships among species are usually (i) il-
lustrated by means of a phylogenetic tree and (ii) inferred by optimising
some measure of fitness, such as the total evolutionary distance between
species or the likelihood of the tree (given a model of the evolutionary
process and a data set). The combinatorial complexity of inferring the
topology of the best tree makes phylogenetic inference an ideal candi-
date for evolutionary algorithms. However, difficulties arise when differ-
ent data sets provide conflicting information about the inferred ‘best’
tree(s). We apply the techniques of multi-objective optimisation to phy-
logenetic inference. We present results for the simplest model of evolution
and an artificially constructed four species problem.

1 Introduction

Phylogenetic inference is the construction of trees that represent the genealog-
ical relationships between different species. It begins with a data set consisting
of characters for each species. In this paper we look at sequences of the nu-
cleotides, A, C, G and T , although the method is equally applicable to other
character systems (amino acid sequences, protein shapes, anatomical charac-
ters). Salemi and Vandamme’s [1] recent book on phylogenetic methods gives
theoretical details and case studies on many current phylogenetic algorithms.
There are various implementations of many these methods but almost all can
be regarded as optimising some measure of fitness of the trees. In this paper we
use a maximum likelihood approach. Maximum likelihood begins with a model
of evolution. Each competing hypothesis consists of three parts: the topology of
the tree, the evolutionary distance or time along the edges of the tree, and any
model parameters describing the evolutionary process. The likelihood of each hy-
pothesis is calculated with respect to the evolutionary model used (i.e. the model
of how nucleotide substitutions occur), and the most likely tree is inferred by
comparing the likelihood of different trees.



The search for the best tree topology has been shown to be an NP hard
problem [2] with the complexity scaling super-exponentially with the number of
species. Evolutionary algorithms (EA) with their population based search strate-
gies, fitness based selection, mutation and recombination operators is known to
work well in many combinatorially complex situations.

In Section 2 we discuss the issues surrounding the use of multiple (possibly
conflicting data sets in phylogenetic inference). In Section 3 we briefly review
existing phylogenetic algorithms that use EA. In Section 4 we define the simplest
possible phylogenetic inference problem and give the conventional solutions with
conflicting data sets. The four species problem is investigated in this paper for
two reasons: it is the simplest problem that exhibits alternate topologies; and the
optimisation of four species trees is the first step in the popular quartet-puzzling
algorithms [3]. In Section 5 we examine the richness of information obtained by
applying a multi-objective optimisation (MOO) technique. Results of applying
a simple evolutionary multi-objective optimisation algorithm (EMOOA) to the
same problem are then shown in Section 6.

2 Multiple Data Sets

There are two modern schools of thought about how to integrate information
from different data sets into a unified phylogenetic history: taxonomic congruence
and total evidence. Taxonomic congruence involves a search for a consensus
between results obtained by analysing different data sets independently. On the
other hand, the concept of total evidence advocates the use of all available data
in a single phylogenetic analysis.

Both schools have been criticised: the data should not be combined because
they may have evolved under different conditions; the hypothesis supported by
the largest amount of data is preferable to the consensus hypothesis that is
common to many smaller sets of data. The problems that arise are: how should
the data be combined or compared and how should less reliable data be weighted
or compared to more reliable data. The latter strategy is fraught with danger:
once we begin to manipulate the data, we can get almost any result. Farris [4]
has shown that it is possible, in principle, given enough sets of data, to invent
weighting schemes that yield any desired tree.

In their review [5] of the total evidence debate, de Queiroz et al. presented
a conceptual framework that emphasises not the conflict itself, but the reasons
that different data sets may give conflicting results. The precise nature of the
conflict (or areas of consensus) gives the expert practitioner useful knowledge of
the appropriate algorithms to use, where to look for more data and which model
assumptions need more attention. The methods discussed in [5] attempt to avoid
information loss whilst simultaneously coping with heterogeneity in data sets.

A common trend in many phylogenetic analyses is the desire to encapsulate
the phylogenetic result in a single optimal tree, or in the consensus of a small
set of equally optimal trees. Consensus, is a form of summarising that replaces
many trees by one tree. It is assumed that the information discarded is less



important than the information retained. In so doing, an extreme confidence
is being placed on the data, the phylogenetic algorithms, and the phylogenetic
results. This extreme level of confidence is often not justified because there are
many analyses that yield many near-optimal trees [6, 7].

In EA the concept of a fitness landscape is well known. In addition to iden-
tifying the global peak in the landscape, it is also useful to know the location
of nearby peaks and the ‘width’ of each peak. Thus, though it may be useful
and valid to summarise an entire ‘mountain’ by the location of its peak and by
a measure of variance around that peak; it is probably not valid to summarise
two distinct peaks by their average. Thus, we make the rather obvious assertion
that knowledge of the shape of the fitness landscape should precede any attempt
to summarise (or apply other processes that discards information).

In MOO, one first obtains a Pareto set, and then looks for both commonality
and systematic variations across the set. The patterns found are then correlated
with variations in the optimisation criteria: this approach helps to answer the
criticism made above against both taxonomic congruence and total evidence.
Thus, for large sets of species and multiple conflicting data sets, heuristic search
algorithms such as evolutionary algorithms combined with multi-objective opti-
misation techniques are ideal.

3 Current Evolutionary Algorithms

The first application of EA to phylogenetic inference appears to be by Matsuda in
1996 [8]. The method used was maximum likelihood with fixed model parameters.
The optimisation of the edge lengths was absorbed into the fitness calculation
for each tree topology. The algorithm explored tree-space by using mutations
and recombinations based on swapping sub-trees.

Lewis [9] developed a computationally more efficient version of this algorithm
by extracting the edge length optimisation from the fitness calculation, and using
the edge lengths as additional ‘genes’ that were mutated. This placed the edge
lengths on the same footing as the topology.

Moilanen [10] used an evolutionary optimisation combined with local search.
The method has a roulette selection with initially low but increasing selection
pressure to avoid premature convergence. No mutation is used.

More recently, Congdon [11] has developed an algorithm ‘GAPhyl’, build-
ing upon the well known phylogenetic program called Phylip[12]. Mutation was
performed by random swapping of species at the tips of the tree. The recombi-
nation operator was random swapping of sub-trees. The idea of sub-populations
and immigration is used to avoid premature convergence.

4 The Simplest Phylogenetic Problems

The simplest model of evolution used in phylogenetic analysis is the Jukes and
Cantor model of nucleotide substitutions [13]. This model assumes that muta-
tions in nucleotide sequences occur randomly, that all possible mutations are



equally likely and that mutations at different sites in the nucleotide sequence
occur independently and at the same rate. Thus there is only one free parameter
in the entire model: the rate of mutation. However, if we measure evolutionary
distances not in terms of time, but in terms of the average number of substitu-
tions, then this parameter fades into the background.

Consider first the nucleotide sequences corresponding to two species. We as-
sume the sequences are homologous (similar due to a common evolutionary his-
tory), that they have been aligned and that there are no gaps in either sequence.
For example, the sequences may look like

....GGGATTTCCGATGACAGTTC....

....GGGAATGCCCATAACAGGCC....

Although at each site (column) there are 16 = 4×4 possible nucleotide pairs that
might be observed, under the Jukes and Cantor model, the specific identity of
the nucleotides or the location of the mutations is irrelevant. Only the number
of similar and different sites is needed in the algorithm. Thus, one observes
differences at 25% of sites. However, because two mutations may have occurred
at the same site, the total number of mutations is always slightly larger then
the observed number of differences. The most probable number of mutations is
given by

d = −3
4

log(1− 4
3
p) (1)

where p is the observed fraction of sites with different nucleotides. The trees
given in this paper are labelled with the inferred evolutionary distance, d.

For three species, at each site there are 64 = 43 patterns of nucleotides,
but under the Jukes and Cantor model, they can be grouped into five different
patterns: all three nucleotides identical, all three nucleotides distinct, and three
different ways of having exactly two nucleotides the same. The expressions for
probabilities and inferred distances are not given here, but are available in many
analyses and can be calculated most efficiently by a recursive method [14].
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Fig. 1. Three different topologies for the phylogeny connecting four species P, Q, R
and S. In Newick format they are (a) ((P, Q), (R, S)), (b) ((P, R), (Q, S)), and (c)
((P, S), (Q, R)).

For four species, the 256 = 44 patterns of nucleotides group into 15 distinct
patterns, and an example of each is given in Table I. Thus, for a 4 species problem



with the simplest evolutionary model, the phylogenetic algorithm only requires
a set of 15 frequencies or percentages. Four species is the smallest number of
species for which the evolutionary tree can have a variety of topologies. If we
call the species P , Q, R and S then there are three alternative evolutionary rela-
tionships: examples of each occur in Fig. 1. These three different tree topologies
can also be indicated in the standard Newick [15] format as (a) ((P,Q), (R, S)),
(b) ((P,R), (Q, S)), and (c) ((P, S), (Q,R)).

We assume the pattern frequencies for two data sets have been analysed.
An artificially constructed example is given in Table I. The two data sets might
correspond to two different genes (a mitochondrial and a nuclear gene perhaps,
or even to two separate parts of the same gene).

Table 1. The percentage pattern frequencies for the 15 possible nucleotide patterns
occurring in two different data sets. The table is interpreted as follows. In the gene
sequence corresponding to Data Set 1, pattern of type #10 occur 7% of the time. That
is, in 7% of the nucleotides sites, Species P and R have the same nucleotide, and the
other two species have two other distinct nucleotides.

Pattern # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Species P A A A A C A A A A A A C C C A
Species Q A A A C A A C C A C C A A G C
Species R A A C A A C A C C A G A G A G
Species S A C A A A C C A G G A G A A T

Set 1 (%) 11 9 5 9 14 1 5 5 3 7 5 9 7 6 4

Set 2 (%) 9 7 10 8 7 7 4 4 9 5 7 5 6 8 4
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Fig. 2. Maximum likelihood trees obtained from (a) Data Set 1, (b) Data Set 2 and (c)
a naive concatenation of the two data sets. The evolutionary distances are calculated
with the Jukes and Cantor model.



4.1 Separate vs. Combined Analysis

If we perform a maximum likelihood analysis on Data Set 1 (ignoring Data Set
2) then the best tree is shown in Fig. 2(a). The data favours the evolutionary
relationship ((P,R), (Q,S)).

On the other hand, if we perform a maximum likelihood analysis on Data
Set 2 (ignoring Data Set 1) then the best tree is shown in Fig. 2(b). This data
favours the relationship ((P,Q), (R, S)).

The two trees A and B, give clearly conflicting signals about the evolutionary
relationship. If one naively assumes that larger data sets are intrinsically more
reliable than smaller sets, one might be tempted to simple concatenate the se-
quences from the two data sets. If the sequences were of equal length, then the
pattern frequencies for the combined set would be the averages of those in Table
I. The maximum likelihood tree for the combined data set is shown in Fig. 2(c).
The combined analysis does nothing to resolve the conflict between the two data
sets and in fact suggests the third possible topology ((P, S), (Q,R)). An addi-
tional problem is the extremely short internal edge length. Short internal edge
lengths are problematic for many reasons [6]. As one might expect, they are not
robust to perturbations in the data or in the underlying evolutionary model. In
fact the combined data set provides almost no useful knowledge at all!

5 Multi-objective Optimisation

The naive combined analysis is a special case where the weighting given to the
two data sets is equal. In multi-objective optimisation all possible weightings of
independent objectives are considered: this corresponds to all possible weightings
of the genetic data sets. This yields a family of trees instead of the single trees
obtained by separate or combined analysis. This family of trees is called the
Pareto set. The likelihood values corresponding to the Pareto set are shown on
the Pareto set curve in Fig. 3. We also show curves for what we refer to as
constrained Pareto Sets which are discussed later.

Table 2 summarises the topologies, edge lengths and likelihoods of the 12
special trees identified by the multi-objective analysis. Figure 3 summarises the
Pareto sets and the smooth curves that connect these special trees. This is
certainly a lot more information than either the separate or naive combined
analyses. However, these are the 12 trees that will help the experienced biological
practitioner interpret the conflict between the data sets and decide a plan of
action. We now discuss what is important about this subset of trees.

The three different tree topologies from Fig. 2 occur along the Pareto set,
although the edge lengths vary as one travels along the Pareto set. The edge
lengths vary smoothly as one travels along the Pareto set, except at points
where the topology changes. Thus, from A to E, the tree topology corresponds
to ((P, R), (Q,S)), the internal edge length decreases almost to zero, the length
of the edges to P and S decrease slightly, the edges to Q and R increase. At the
point E, a transition occurs: two different tree topologies give identical likelihoods
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Fig. 3. (a) The Pareto set corresponding to maximising the likelihood with respect to
both data sets. The vertical axis corresponds to data set 1, and the horizontal, to data
set 2. (b) A close up of part of the Pareto set. The Pareto set has three parts and
corresponds to the curves from A to E, E to F and F to B (abbreviated as AEFB).
The diagram also shows the constrained Pareto sets: if the topology is forced to be
((P, R), (Q, S)) then the Pareto set is the curve AEa; for the topology ((P, Q), (R, S)),
the Pareto set is the curve bFB; for the topology ((P, S), (Q, R)), the Pareto set is
CEFc. Finally, the dashed curve shows the Pareto set for the star topology with zero
internal edge length and this is the curve Dabcd. The dotted lines show the constrained
maximum likelihood values with respect to the two data sets.

with respect to both data sets. From E to F, the tree topology corresponds to
((P, S), (Q,R)) and the edge lengths do not vary substantially. At the point
F, another transition occurs between tree topologies. Finally, from F to B, the
tree topology corresponds to ((P,Q), (R, S)), the internal edge length increases
substantially, the length of the edge to R also increases, and the edge lengths to
P, Q and S decrease.

5.1 Constrained Pareto Sets

One can obtain additional insights by looking at constrained Pareto sets. The
three curves AE, EF and FB in Fig. 3 are each parts of larger curves. If we apply
a multi-objective optimisation analysis constrained only to trees with topologies
((P,R), (Q, S)), then we obtain the curve AEa. One end of this curve corresponds
to tree A, which we have already discussed. The other end, at tree a, corresponds
to a limiting situation where an internal edge length has gone to zero.

Similarly, constraining the topology to ((P, Q), (R,S)) yields the Pareto set
along the curve bFB. Likewise, constraining the topology to ((P, S), (Q,R))
yields the Pareto set along the curve CEFc. The tree at the other end of this
constrained Pareto curve, is the best tree with topology ((P, S), (Q,R)) when
only data set 1 is considered.

In addition to constraining the topology, one can go further and constrain one
or more internal edge lengths to be zero. This reveals the maximum likelihood
values of simpler topologies; and the difference between the likelihood values
of the simpler topologies and the more complex topologies gives a measure of
confidence in the result.



Table 2. Variation of topology and edge length along the Pareto set. The internal
edge-length is labelled i, the other edges are labelled by the species at the end. The
critical trees on the Pareto sets identified by multi-objective optimisation. An asterisk
next to the topology indicates that the tree is a limiting point of that topology as an
internal edge length approaches zero.

Tree Topology P Q R S i ln(L1) ln(L1)

A ((P, R), (Q, S)) 0.961 0.201 0.454 0.661 0.248 -260.9 -278.0
E ((P, R), (Q, S)) 0.805 0.636 0.561 0.618 0.012 -263.2 -270.0

((P, S), (Q, R)) 0.805 0.636 0.561 0.618 0.024 -263.2 -270.0
F ((P, S), (Q, R)) 0.783 0.650 0.603 0.612 0.007 -263.7 -269.6

((P, Q), (R, S)) 0.787 0.647 0.597 0.615 0.005 -263.7 -269.6
B ((P, Q), (R, S)) 0.496 0.616 0.808 0.450 0.370 -272.8 -266.8

C ((P, S), (Q, R)) 0.882 0.550 0.630 0.338 0.091 -261.6 -274.8
D (P, Q, R, S) 0.943 0.553 0.348 0.698 0 -261.7 -274.8

a ((P, R), (Q, S))* 0.799 0.644 0.583 0.619 0 -263.4 -269.8
b ((P, Q), (R, S))* 0.791 0.648 0.595 0.617 0 -263.6 -269.6
c ((P, S), (Q, R))* 0.776 0.656 0.614 0.618 0 -263.9 -269.4
d (P, Q, R, S) 0.582 0.668 0.927 0.668 0 -268.9 -268.2

In the four species problem, the only interesting choice of constraint is to
force the one and only internal edge to be zero. In more complicated situations,
the choice of which internal edge length(s) to constrain would be dictated by the
nature of the full Pareto set. In this rather simple situation, this only generates
one new constrained Pareto set curve, shown by the dashed curve Dabcd in
Fig. 3.

With respect to data set 1, the four trees A, C, D, b represent in order
the optimum tree for each possible topology. (Note that tree b is degenerate:
an internal edge length is zero. It is a co-incidence of the simple 4 species case
that b and D have the same apparent topology; in more complex situations it
would be different internal edges that went to zero.) The gaps between the log
likelihood values tell us what data set 1 has to say about how much confidence
to place in the best tree, or in the order of the competing topologies. For data set
2, the corresponding set of best trees for each competing topology is B, d, c, a.
The Pareto sets and the various curves in Fig. 3(a) and the close-up in (b) reveal
how this ordering changes as we move from trusting one data set exclusively to
trusting the other.

It is only at this point that it begins to be valuable to build in information
about variances around these special trees, and to replace entire subsets of trees
with single representative trees (or consensus trees) while maintaining the global
information about the Pareto sets and the fitness landscape.



6 An EMOOA simulation

To complete this paper, we show how a very simple evolutionary algorithm
performs on the same problem.
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Fig. 4. The scattered dots show the likelihood values obtained from a random pop-
ulation of 100 trees. The encircled dots show the likelihood values for the trees in
the non-dominated set after running the genetic algorithm for 50 generations. This
non-dominated set is a good approximation to the exact Pareto set.

A very basic algorithm was used. The population size was 100. The genome
consisted of a discrete gene with three possible states corresponding to the three
distinct topologies, and 5 real-valued genes corresponding to the 5 edge lengths.
Pairs of parents were selected randomly (without recourse to fitness) and children
constructed by simple Mendelian segregation of the parental genes. A mutation
operator was then applied to the genes. A uniformly distributed random mu-
tation with range ±0.01 was used for the edge lengths. (Negative edge lengths
were avoided by taking the absolute value.) In this simple case, it was not found
necessary to adapt the mutation rate. The initial population of candidate trees
was generated with random topologies and random edge lengths. At each gen-
eration the non-dominated set was selected, and the entire non-dominated set
became the parents for the next generation — obviously, such a trivial EA would
not be suitable for a realistic problem and one should use NGSA-II [16] or an
equivalent.

The initial population and a reasonably converged Pareto set is shown in
Fig. 4. The evolution of the non-dominated set is shown for the first 4 generations
in Fig. 5. The algorithm quickly yields a reasonable approximation to the Pareto
set. However, Fig. 4 reveals that the trees are not uniformly distributed along
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Fig. 5. Evolution of the non-dominated set for the first 4 generations.

the Pareto set curve: trees are missing from the extremities. More sophisticated
EMOOA algorithms that incorporate niching would address this problem.

7 Discussion

We have used MOO to study the phylogenetic relationships between four species
based on two conflicting data sets. Although, the importance of generalising this
analysis to problems with many species is self-evident, it is also important to
note that the four species problem itself has special significance. As mentioned
in the introduction, Quartet-Puzzling [3] is an extremely popular phylogenetic
algorithm. For a problem with a large number of species, the method begins by
first looking at all possible quartets: subsets of four species. For each quartet,
the optimal four species tree is constructed. The full phylogeny is then pieced
together by combining information from all of these quartets. To our knowl-
edge, all current implementations of quartet puzzling work on one data set at
a time. Thus, one is either forced to make an a priori judgement about com-
bining the data in the total evidence approach, or constructing consensus trees
from many separate analyses. The MOO approach suggests a novel mode of
attack. For each quartet, the Pareto set is constructed. For a large number of
species, it may be that many quartets yield ’non-conflicted’ Pareto sets with a
common topology inferred from all data sets. The quartet analysis may reveal
that only some species are problematic in generating highly ‘conflicted’ Pareto
sets. Thus, it may be possible to work with a coherent or non-conflicting sub-



set of quartets, and puzzle-out a useful sub-phylogeny of the complete problem
that is harmonious with all data sets. Alternatively, one can concentrate on the
most ‘conflicted’ subsets of species and discover where to look for the underlying
(possibly biological) mechanism that is producing the conflicting signals in the
first place. Thus, techniques for rapid determination of the Pareto set for small
numbers of species (or at least the ‘special trees’ in it) may be important.

The intrinsic significance of studying the four-species problem has also been
pointed out in a recent paper that demonstrates that even with a single data
set, the supposedly trivial four species problem may not have a unique global
maximum [17].

Finally, we used the concept of a constrained Pareto set in this paper.
The constrained Pareto sets can be seen as a stepping stone towards the un-
constrained Pareto set. By working in a smaller dimensional space one can get
good approximations to the optimal solutions for the larger dimensional space.
Thus, one envisages an EA or EMOOA that starts with phylogenetic tress with
many (if not all) internal edge lengths constrained to zero. Then, as the con-
strained Pareto sets are constructed, one gradually releases the constraints until
the full problem is solved. This approach is analogous to a set of techniques
known in phylogenetic inference as star-decomposition (also similar to neighbour-
joining) [18].

In conclusion, the application of MOO techniques, and EMOOA in partic-
ular, to phylogenetic inference can resolve many of the issues concerned with
analysing multiple data sets that may give conflicting signals about evolution-
ary relationships. The construction of the Pareto set moves the point at which
human judgment and intervention is required: it moves from a priori decisions
about the relative importance of data to a posteriori analysis of how the con-
flicting signals interact.
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