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Abstract. Genetic Algorithms(GAs) have been applied in many differ-
ent fields and optimization problem domains. It is well known that it
is hard to solve the complex problems with a Simple Genetic Algorithm
(SGA). Many previous studies have shown that the hybrid of local search
and GAs is an effective approach for finding near optimum solutions to
the traveling salesman problem (TSP). In this paper, an approach based
on the Genetic Recombination is proposed and applied to the TSP. The
algorithm is composed of two SGAs which only consist of the basic ge-
netic operators such as selection, crossover and mutation. One of the
SGAs is named as the Global Genetic Algorithm (GGA) and carried out
in the main tours which are designed for searching the global optimal
solutions. Another one is named as the Local Genetic Algorithm (LGA)
and carried out in the sub tours which are designed for searching the local
optimal solutions. The LGA is combined to the GGA as an operator. The
local optimal solutions are recombined to the main tours for improving
the search quality. To investigate the features of the proposed algorithm,
it was applied to a small double circles TSP and some interesting results
were presented in our experiments.

1 Introduction

The TSP is one of the well-studied combinatorial optimization problems [6], [18].
Many researchers from various fields have devoted to developing new algorithms
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for solving it. In the TSP, each distance between two cities is given for a set of
n cities. The goal is to find the shortest tour. There are currently three general
classes of heuristics for the TSP: classical tour construction heuristics such as
the Nearest Neighbor method, the Greedy algorithm and local search algorithms
based on re-arranging segments of the tour[15]. Many progressive results have
been presented in the previous studies during the recent years even though there
are still improvable spaces with the search algorithms which have been applied to
the TSP, such as ant colonies [12], local search[5], neural networks [10], simulated
annealing [17], and tabu search[2], genetic algorithms[9]. It has been proved that
the hybrid of different algorithms is more effective than a single algorithm. For
example, the local search has been successful for improving GAs in the search
processes[1],[16], [19]. Most of the works on solving the TSP focused on the
efficiency on how to solving the larger TSP instances. Some of the works aimed
at expanding the theories of search algorithms, especially in the GAs domain.
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Fig. 1. Simple GA

In this paper, our attempt is to make a discussion on the GAs based on Ge-
netic Recombination. The algorithm is composed of two SGAs which only consist
of the basic genetic operators. One is the GGA which was applied to the main
tours for searching the global optimal solutions. Another is the LGA which was
applied to the sub tours for searching the local optimal solutions. The SGA was
developed by John Holland and his original algorithm is approximately the same
as shown in the Fig.1. [8]. In the early studies, the SGA played an important
role in the development of GAs and attracted the researchers’ attentions widely.
Goldberg made a detailed discussion on how the SGA works with some simple
optimal mathematical functions and other problems in his book[4]. Reeves dis-
cussed the differences and similarities between the SGA and the neighborhood
search [3]. Computer scientist Michael D. Vose provided an introduction to what
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is known about the theory of the SGA. He also made available algorithms for
the computation of mathematical objects related to the SGA[13]. All the studies
have shown that the SGA is still valuable in heuristic search algorithm.

The paper is organized as follows. Section 2 gives a general description of
the local search to the TSP. Section 3 presents the detailed operations of the
proposed algorithm. Section 4 gives the analyses on the experimental results.
Section 5 is the summary for this paper.

2 Local Search Algorithms in GAs

Every successful strategy to produce near-optimal solutions necessarily relies
upon the local search algorithm. All these algorithms differ with respect to their
neighborhood structures. Any such structure specifies a set of neighboring solu-
tions that are in some sense close to that solution. The associated local improve-
ment operator replaces a current solution by a neighboring solution of better
value if possible. The local search algorithm is repeated several times, retaining
the best local optimum found. Our works focus on the local search algorithms.
In the hybrid of the Local Search and the GAs, the design of the local operator
is very important. There are many local search heuristics which have been com-
bined to the GAs for the TSP. For example, the well-known 2-Opt heuristic has
been used to optimize the TSP tours in connection with the GAs [18]. The 2-Opt
removes two edges in a tour, and then one of the resultant segments is reversed
and the two segments are reconnected. If 2-Opt results in an improved tour, the
change is preserved. Otherwise, the tour is returned to the original form. The
2-Opt used a pair of edges which was formed from 4 cities in the tour. It is a
powerful local search operator in the GAs. Compared with the 2-Opt, K-Opt
(k=3,4. . . ) uses more edges to rearrange the tours.

Moreover, some crossover methods also emphasis on the local operations.
The crossover methods usually recombine two individuals to reproduce the new
individuals. But most of them seldom utilize the shorter edges while they are
applied to the tour. Some crossover methods aimed at the phenotype of the
edges in the tour. They use more cities or a set of cities according to the visiting
order in the tour. For example, YAMAMURA proposed the sub tour exchange
crossover (SXX) which mutually exchanges the parts which contain the same
continuous cities in two individuals. [14]. MAEGAWA proposed the edge ex-
change crossover (EXX) which utilizes the edges from different individuals [11].
Both of the methods are powerful for solving the TSP. More cities are used when
they are applied to re-arrange the tours. However, there is a problem with few
variations of the child individuals because the SXX is only available when the
parts which composed of the same cities in two various individuals are found.
The EXX puts emphasis on combining edges.

Our approach is to use a sub tour which contains a set of continuous cities
according to the visiting order. The basic idea is to find a better sub tour to
replace the original one. This operation acts like the Genetic Recombination in
the Genetic Engineering field. Genetic Recombination is the process by which the
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combination of genes in an organism’s offspring is different from the combination
of genes in that organism. This definition is commonly used in classical genetics,
evolutionary biology, and population genetics. Commonly, one gene or a set
of a few foreign genes is taken out of the DNA of one organism and inserted
into the DNA of another organism by an artificial manipulation of genes. The
manipulation disrupts the ordinary command code sequence in the DNA. This
disruption may make the individual better if it is applied judiciously. As we knew,
there are many good phenotypes of plants that have been created in biological
field with the Genetic Recombination. The technical problem is how to find
the better GENES to replace the original ones. In the TSP, it is the technique
related to the local search. To find the better cities in the tour, we chose a set of
continuous cities from the main tour to form a sub tour, and then applied the
LGA to the sub tour to find better solutions to feed into the main tour. This
operation acts as the cultivation for finding the better GENES biologically. The
detailed operations are described in the following section.

3 New Algorithm

The new algorithm is shown in Figure 2. The parts a and b in the figure are
separately a SGA before the part b is implemented to the part a. The part b is
the LGA in the algorithm. The two parts form the new algorithm–GGA. Part
b performs as a local search operator in the GGA. The GGA is applied to the
main tour for searching the global optimal solutions. To obtain the global optimal
solutions in the process of the TSP, the GGA may just need to improve the order
of a set of cities in the best tour with evolution of the process, especially in the
latter stages of the process. We chose a set of continuous cities to create the sub
tour in the experiment. The LGA was applied to the sub tour for finding the
local optimal solution to replace the original part chosen from the main tour.

There are two methods for initializing the sub tour: 1. Keep the original part
from the main tour as an individual in the population of the LGA, and then
randomly initialize the sub tour except for the start and end cities to the popu-
lation size of the LGA. 2. Only reproduce the original part from the main tour
to the population size of the LGA. It means the population is composed of same
individuals as the original part. The same operation in the both initialization
methods 1 and 2 is that the original parts from the main tours are preserved
in the population of the LGA. If the solution of the LGA is shorter than the
original part, the main tour will be improved when it is recombined. If no so-
lution is found shorter than the original part in the LGA, the original part will
be recombined back to the main tour. Both of the initialization methods are
available for a small sub tour in the LGA. But, the first method is not suggested
for a big sub tour as it takes long time to initialize.

In the LGA, the sub tour is an open tour. The length of the tour is calculated
from the start city to the end city, not including the distance between the end
city and the start city. Another important point is that all individuals in the
population of the LGA have the same start and end cities during the process-
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Fig. 2. New Algorithm

ing. This operation is for avoiding that the main tour becomes longer at the
connection points after the sub tour was recombined back into it.

Because both the GGA and the LGA are complete genetic algorithms, all
genetic operators for solving the TSP are probably applicable to them. In our
experiments, only three genetic operators were implemented: Crossover, Muta-
tion and Selection. The crossover is one point crossover method with two random
individuals. The mutation is randomly carried out to the individuals by chang-
ing the order of two cities chosen randomly in one tour. The selection is carried
out to replace the four longest individuals with the two shortest ones in the
population. In the LGA, the mutation and crossover keep the diversity of the
population, so the mutation rate is set higher than in the GGA. The terminative
conditions are set to the total number of generations in the GGA and the LGA.

Obviously, it is computationally expensive running a big LGA in every gener-
ation of the GGA. But, it is believed that the LGA could be set as an island for
improving the elite individuals of the main population in distributed or parallel
processing. (This will be discussed in our future works). A small LGA is effective
as an operator in the GGA. This has been confirmed in our experiments.

Local Operations: The tour which consists of n cities is expressed as c={c0,...,
ci,cj ,..., cn−1}. The distance d(ci,cj) is given for the pair of cities ci and cj . All
cities are coded using path representation.

1. Randomly chosen one main tour c={c0, ..., ci, ..., cj , ..., cn−1} from Popu-
lation of the GGA.

2. Randomly chosen one sub tour which contains Ns continuous cities in the
main tour c. The sub tour cs={ci, ..., cj}. The start city is ci and the end
city is cj . j-i≥4. This is the first individual of the LGA. The length of the
first individual was set as d0.
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3. Reproduced the first individual to the population size of the LGA. The start
city ci and the end city cj were kept unchanged. The population of the LGA
was created with Ps same individuals.

4. Run the LGA in every generation of the GGA. The start and end cities of
all individuals of the LGA were kept unchanged during the processing.

5. The best individual in the population of the LGA was obtained when the
LGA stopped. Its length was set as d1.

6. The best individual was recombined back to the main tour to replace the
original part.

Here we set the Ratio R=d0/d1.The range of R is R≥ 1. The R is discussed in
the next section. The population size Ps of the LGA ranges from 4 to n. The
minimum size of the sub tour is set to 4 cities due to the start and end cities
are fixed in the sub tour during the processing. The maximum size is set to n
because it is the largest improvable parts in the main tour. The LGA performs
as the reversion operator in the GGA when the sub tour only contains 4 cities,
the start and end cities were fixed.

4 Results and Discussions

The tour which contains n cities c = {c0, ..., ci, ..., cj , ..., cn−1} is given and the
distance between two cities ci,cj is d(ci, cj). Total distances of the main tour
and the sub tour are dm and ds respectively:

dm=
n∑

i=0

d(ci, ci+1) (1)

Where cn=c0 .

ds=
n−1∑

i=0

d(ci, ci+1) (2)

The dm and ds are defined as the Fitness of the individuals. The shorter the
distance is, the higher the Fitness is.

The parameters are shown in the table 1. Our source code is written in
the Java and run on a PC (CPU Pentium � 1.0GHz, 256 MB memory) with
Windows 2000 Operating System.

Table 1. Parameters in the GGA and the LGA

GGA(Main Tour) LGA(Sub Tour)
Population size: 100 80
Cities 24 4∼ 24
Generations 1000 0,10,20,30,40,50,60,70,80,90,100
Crossover Rate 75% 75%
Mutation Rate 2% 2.5%
Selection 2 shortest individuals 2 shortest individuals

replace the 4 longest ones replace the 4 longest ones
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a. C Type, Ri/Ro<0.58879 b. O Type, Ri/Ro>0.58879

Fig. 3. TSP instances

The TSP instance of the double concentric circle which contains only 24 cities
was used in the experiments(Fig.3.). The ratio of the inner radius(Ri) and the
outer radius(Ro) is r=Ri/Ro. If r <0.58879, the optimal tour is C type (Fig.3.a.).
If r≥0.58879, the optimal tour is O type(Fig.3.b.).

4.1 Distributions of Optimal Solutions

Fig.4. shows the numbers of the optimal solutions which were obtained in 20 runs.
A peak appeared around the half city numbers of main tour. The Fitness is shown
in Fig.5. The process stopped at the 1000th generation. The process converged
faster with the increase of city numbers in the sub tour at the beginning. This
happened because there are much more improvable spaces in a big sub tour in
the LGA. The stable convergences appeared when the city numbers of the sub
tour range around the half that of the main tour. The result is not satisfied when
the LGA performs as the reversion operator in the experiments.

4.2 Computation Time
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The GAs usually take a long time to run to reach a good result. Consequently
it increases the computation time greatly by combining the LGA to the GGA.
The computation time was examined by increasing the city numbers and the
generations in the LGA respectively. The results are shown in Fig.6. and Fig.7.
The computation time linearly became longer with the increase of the city num-
bers and the generations in the LGA. Less city numbers and generations in the
LGA took shorter time but it might not be sufficient for finding a better sub
tour to improve the main tour.

4.3 Time and Generations for obtaining the Optimal Solutions

Fig.8. is the figure of the computational time for obtaining the optimal solutions.
There are 3 points on every vertical line . The low, upper and central points
show the shortest, longest and mean time for obtaining the optimal solutions
respectively in 20 runs. The time became longer for finding the optimal solution
while the city numbers of the sub tour increased. In Fig.9., the three points on
the lines show the earliest, latest and mean generations for reaching the optimal
solutions respectively in 20 runs. The earliest generations appeared when the city
numbers in the sub tour ranged around the half city numbers of the main tour.
Some optimal solutions appeared early when the sub tours contained more cities.
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But, it took much longer computation time when the city numbers increased in
the sub tour as mentioned in 3.1 and 3.2..

4.4 Recombination Rates and Ratios

Fig.10. is the figure of the recombination rates. We suppose the number of the
individuals which were recombined with the LGA is Nr and the number of
the individuals which were searched by the LGA is Ns. The Recombination
Rate =Nr/Ns× 100. The Recombination Rates increased with the increase of
the generations and the city numbers in the sub tours. More generations are
advantageous for finding a better sub tour to carry out the recombination, but
it takes longer time to run the LGA. Same trend appeared with the changes of
the city numbers because there are more improvable spaces in the bigger sub
tour. The part chosen from the main tour is easier to improve. Fig.11. is the
Ratio figure. The Ratio R=d0/d1 and R ≥1. The peaks of the ratios appeared
when the city numbers in the sub tour ranged from 8 to 13. The higher Ratio
means a sub tour was found to be shorter in the LGA than the original part
from the main tour. The result is correlative with the distribution of the optimal
solutions in Fig.4.
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4.5 Dynamics of the LGA

Fig.12. and Fig.13. show the dynamics of the LGA. Fig.12. presents the Ratio
distributions of a single GGA in which the optimal solution was obtained at
the 252nd generation. Because the original part from the GGA was preserved
in the LGA and the Ratio R=d0/d1, the value of the R≥ 1. It indicates that
the LGA created a shorter sub tour and recombined it to the GGA when R >
1. The LGA worked efficiently and more Ratios are bigger than 1 before the
optimal solution was obtained at the 252nd generation. When the population
converged to the optimal solution, the LGA could not create a better sub tour
than the original part from the main tour and the Ratios became 1. Fig.13. shows
the Ratio distributions of another GGA in which the premature convergence
occurred at the 151st generation. There are many points distributed over 1 after
the premature convergence occurred. It indicates that the LGA still worked
efficiently even though the GGA reached the premature convergence.

5 Summary

A local search genetic algorithm based on the genetic recombination was dis-
cussed in this paper. The LGA acted as a local search operator in the GGA. A
good result was presented when the city numbers of the sub tour were set around
the half city numbers of the main tour. But, we think it would be reasonable
running a small LGA for a big TSP instance, because half city numbers of a big
TSP still forms a new big TSP instance. It may be more effective in distributed
and parallel processing running the LGA as an island to improve the main tour.
This will be discussed in our future works.
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