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   Abstract. We consider an extension to optimization problems [7, 13, 14] where 
the element costs are not fixed, but are time dependent.  We propose using multiple 
genomic redundant representations in a self-adapting genetic algorithm (GA) 
employing various codes with different locality properties. These encoding schemes 
insure feasibility after performing the operations of crossover and mutation and also 
ensure the feasibility of the initial randomly generated population (i.e., generation 
0).  The GAs solving this class of NP hard problems, where costs are not fixed but 
are time dependent, employ non-locality or locality representations when 
appropriate (i.e., the GA adapts to its current search needs) which makes the GAs 
more efficient.  A few applications with time dependent costs will also be 
presented. 

 
1 Introduction to Problem Applications 
 
1.1 Maximal Rooted Hamiltonian Directed Paths: 
 
          We wish to find a maximal rooted Hamiltonian directed path in a complete graph 
with nodes { 0, 1, 2. …, n-1, n } and root node 0 [10].  An (n+1) by n table of lists is 
given showing the values of a directed edge from node i to node j  at step t (where for 
fixed i, (i, j) is the same at t).  The problem is to find a maximal directed path through the 
graph that begins at node 0 by choosing a directed edge in the path at each step t. 
 
 
1.2 Minimal Node Base - A Directed Communications Network Application: 
 
          A communications network is a digraph D = (N,A) where N, the set of nodes, is 
thought of as a set of message transmitters and  A, the set of arcs, as the allowable 
directed connections between pairs of nodes.  A node base B in a communications 
network is a minimal subset of nodes with the property that if a message is placed at each 
node of B, then every node of D will receive the message. Suppose one wants to build a 
satellite communications receiving station at each node in a node base of a 
communications network D.  Since these receiving stations are built on a node base every 



node in D can receive all messages.  The cost of building such a station is different for 
each node D and is assumed to vary over time.  It is desired to construct these stations 
one per time period so that the cost of the completed network is minimized. 
 
 
1.3 Minimal Bidding (with Slack Time) Application: 
 
          A company is to construct a transportation network (graph) connecting a group of 
cities. Due to budget limitations only one link will be contracted for construction each 
month.  Different contractors having different price scales, which vary over time, bid on 
the construction of different links of the potential network.  The cities together with all 
the possible links can be modeled to form a multigraph H.  The goal is to construct the 
desired network (an underlying subgraph G with q edges of the multigraph H) such that 
the total cost over time of the entire construction is minimized.   We also assume that it 
takes one unit of time to construct a link and that the network must be completed in the  t 
= q + s  time periods available ( q periods for actual construction and s slack periods 
where no construction is performed).  Dummy (slack) links with zero cost for each period 
can be included.  In this problem, we are searching for an underlying graph G whose q  
edges are sequenced and whose total cost is minimum.  We also considered giving 
discounts from bidders that win more than one contract. 
 
 
          These problems are similar to each other. For example, the maximal rooted 
Hamiltonian directed path problem is equivalent to the minimal bidding problem where 
there is only one bidder for each edge, the costs are inverted, there are no discounts, and 
slack time is zero. Since the rooted Hamiltonian directed path problem is known to be NP 
hard, the other problems discussed above are also NP hard. 
 
 
2. Genetic Algorithm Methodology 
   
      A genetic algorithm (GA) is a biologically inspired, highly robust heuristic search 
procedure which can be used to find optimal (or near optimal) solutions to NP hard 
problems.  The GA paradigm uses an adaptive methodology based on the ideas of 
Darwinian natural selection and genetic inheritance on a population of potential solutions.  
It employs the techniques of crossover (or mating), mutation, and survival of the fittest to 
generate new, typically fitter members of a population over a number of generations [1, 
2, 3]. 
 
      We propose GAs for solving these optimal sequencing problems using novel 
multiple genomic redundant encoding schemes (described for each application later).  
Our GAs create and evolve an encoded population of potential solutions so as to facilitate 
the creation of new feasible members by standard mating and mutation operations. ( A 
feasible search space contains only members which satisfy the problem constraints, that 
is, a sequencing [7, 8, 13,14].)  When feasibility is not guaranteed, numerous methods for 
maintaining a feasible search space have been addressed in [11], but most are elaborate 
and complex.  They include the use of problem-dependent genetic operators and 
specialized data structures, repairing or penalizing infeasible solutions, and the use of 
heuristics.)  By making use of problem-specific encodings, each class of problem insures 



a feasible search space during the classical operations of crossover and mutation and, in 
addition, eliminates the need to screen during the generation of the initial population.   
 
        Given a cost matrix, fitness is calculated by summing the costs of the edges of the 
sequence (i.e., the fitness is the total cost = T = C(e1,1) + C(e2,2) + …+ C(en,n).  Note 
that a rough lower bound for the fitness is the sum of the minimum costs of each column 
of the cost matrix).  We adapted many of the standard GA techniques found in [1, 2, 3] to 
these specific problems.  A brief description of these techniques follows.  Selection of 
parents for mating involves randomly choosing one very fit member of the population 
and the other member randomly.  The reproductive process is a simple crossover 
operation whereby two randomly selected parents are cut into sections at some randomly 
chosen positions and then have the parts of their encodings swapped to create two 
offspring (children).  In our applications the crossover operation produces an encoding 
for the offspring that have element values that always satisfy the position bounds (i.e., 
range constraints). Mutation is performed by randomly choosing a member of the 
population, cloning it, and then changing values in its encoding at randomly chosen 
positions subject to the range constraints for that position. A grim reaper mechanism 
replaces low scoring members in the population with newly created more fit offspring 
and mutants.  The GA is terminated when, for example, either no improvement in the best 
fitness value is observed for a number of generations, a certain number of generations 
have been examined, and/or a satisficing solution is attained (i.e., the total cost T is not 
necessarily optimum, but is satisfactory). 
 
 
   The Generic Genetic Algorithm 
      We can now state the generic genetic algorithm we used for each application: 
1) Randomly initialize a population of multiple genomic redundantly encoded potential 

solutions. 
2) Map each population member to its equivalent phenome. 
3) Calculate the fitness of any population member not yet evaluated. 
4) Sort the members of the population in order of fitness. 
5) Randomly select parents for mating and generate offspring using crossover. 
6) Randomly select and clone members of the population to generate mutants. 
7) Sort all the members of the expanded population in order of fitness adjusting each of 

the multiple segments to reflect the phenome with best fit. 
8) Use the grim reaper to eliminate the population members with poor fitness. 
9) If (termination criteria is met)  then return best population member(s)  

                                                  else go to step 5. 
 
3. Encodings 
 
           Each of the applications we will discuss has multiple permutation encodings to 
identify the sequencing via different representations.  Here we define the permutation 
code, forward code, and backward code for a permutation. 
 
           The 5-permutation  41532 or P[1] = 4, P[2] = 1, P[3] = 5, P[4] = 3, and P[5] = 2 
can represent itself.  This is one of multiple representations of 41532.  We call this the 
permutation code and PC[1] = 4, PC[2] = 1, PC[3] = 5, PC[4] = 3, and  PC[5] = 2.  The 
permutation code typically has children that are less similar to their parents.  It has low 
locality.  



 
           An n permutation of the integers { 1, 2, …, n } can also be encoded by an array of 
size n where the value of the kth position can range over the values  1, 2, …, n – k + 1.    
           An encoding of a permutation of the elements can also be represented as an array 
FC (forward coding) where 1 ≤ FC[k] ≤ n – k + 1 for 1 ≤ k ≤ n.  In order to decode a 
permutation code FC to obtain the permutation that it represents, begin with an empty 
array P of size n, then for 1 ≤ i ≤ n  fill in the FC[i]th empty position (from left to right 
starting at position 1) of P with the value i.  Consider an example, with n = 5 and  FC[1] 
= 2, FC[2] = 4, FC[3] = 3, FC[4] = 1, and FC[5] = 1 (or 24311) which represents the 
permutation  P[1] = 4, P[2] = 1, P[3] = 5, P[4] = 3, and P[5] = 2 (or 41532).   
           Given a permutation array P, the reverse process begins with an empty array FC of 
size n, then for 1 ≤ i ≤ n starting with i = 1 and ending with i = n fill in the ith position of 
FC (from left to right starting at position 1) with the value   k – (# of values ≤  i that occur 
before position i in P) where P[k] contains the value i. (Note that FC[n] will always be 1, 
so that, we can shorten FC to an n – 1 element array if we wish.) An ordering of a set of 5 
elements { e1, e2, e3, e4, e5 } based on the forward code (24311) would then be 5-tuple (e4, 
e1, e5, e3, e2).   
           An encoding of a permutation of the elements can also be represented as an array 
BC (backward coding) where 1 ≤ BC[k] ≤ n – k + 1 for 1 ≤ k ≤ n.  In order to decode a 
permutation code BC to obtain the permutation that it represents, begin with an empty 
array P of size n, then for 1 ≤ i ≤ n  fill in the BC[i]th empty position (from left to right 
starting at position 1) of P with the value n –  i + 1.  Consider an example, with n = 5 and  
BC[1] = 3, BC[2] = 1, BC[3] = 2, BC[4] = 2, and BC[5] = 1 (or 31221) which represents 
the permutation P[1] = 4, P[2] = 1, P[3] = 5, P[4] = 3, and P[5] = 2 (or 41532).   
           Given a permutation array P, the reverse process begins with an empty array BC of 
size n, then for 1 ≤ i ≤ n starting with i = 1 and ending with i = n fill in the ith position of 
BC (from left to right starting at position 1) with the value   k –  (# of values ≥ i that 
occur before position i in P) where P[k] contains the value n – i + 1. (Note that BC[n] 
will always be 1, thus, we can shorten BC to an n – 1 element array if we wish.) An 
ordering of a set of 5 elements { e1, e2, e3, e4, e5 } based on the backward code (31221) 
would then be 5-tuple (e4, e1, e5, e3, e2).  The forward and backward codes typically have 
children that are more similar to their parents.  They have high locality.  
 
           Next we consider a multiply redundant representation [12] that can be given by 
concatenating these lists.  Thus a multiply redundant representation of the permutation 
41532 would then be 243113122141532 with forward, backward, and permutation codes 
concatenated in that order.  It is easy to mate and mutate this multiple representation 
scheme [6, 7, 13, 14], however the resulting list may not reflect the same phenotype in 
each segment of the multiple genome. In this case we simply choose a best performing 
segment and repair the entire multiple genome to mirror the best phenome in all of the 
other redundant segments.   Suppose         243113122141532      is a multiple genome for  
41532  
                           and        322211431152134      is a multiple genome for  52134. 
Mating on positions        010110000110100     i.e.,swap positions 2,4,5,10,11,13 to get 
the child,                 223213122151432     after swapping in those positions.  
(Notice in the last segment we get 51432 since positions 11 and 13 now reflect 4 and 5 in 
the first genome 41532 in the same order as the second genome 52134.)                                    
Assuming the first segment 22321 represents the best phenome 51243, we repair the 
entire code and get 223211332151243 which is the multiple genome for   51243. 



 
4.  Problem Applications 
 
          A variety of sequencing applications constrained by time dependent costs will now 
be presented.  These include rooted Hamiltonian directed path, node base 
communications, and bidding with slack time applications. (In [4, 5] similar applications 
of less complexity were solved; specifically, if C is monotonic non-decreasing function, 
there is a sequencing such that the maximum cost element is minimum amongst all 
sequencings (this problem is called the Minmax Problem and is useful for maintaining 
low levels of cost outlays per period over time; the Minmax Problem generalizes to 
Maxmin, Minmin, and Maxmax versions each of which have an efficient algorithmic 
solution)).  
          For each application, we will present a mathematical model, a feasible multiple 
genomic redundant encoding, and a discussion of the evaluation of fitness. Each solution 
will employ the generic GA discussed previously.  These applications not only insure 
feasibility but also have fitnesses that are a function of a permutation.  In fact building 
genomes based on these codes actually makes the GAs in these time dependent cases 
more efficient [8]. 
 
4.1 Maximal Rooted Hamiltonian Directed Paths 

 
         We wish to find a maximal rooted Hamiltonian directed path in a complete graph 
with nodes { 0, 1, 2. …, n-1, n } and root node 0 [10].  An (n+1) by n table of lists is 
given showing the values of a directed edge from node i to node j   at step t where for 
fixed i, (i, j) is the same at t.  The problem is to find a maximal directed path through the 
graph that begins at node 0 by choosing a directed edge in the path at each step t. 
 
          Mathematical Model     Given a directed complete graph K = (V,F) with nodes { 0, 
1, 2. …, n-1, n } and root node 0 and an (n+1) by n table P of lists showing the values of 
a directed edge from node i to node j at step t where for fixed i, (i, j) is the same at t.  The 
problem is to find a maximal directed path through the graph that begins at node 0 by 
choosing a directed edge in the path at each step t. 
 
          Feasible Encodings     For each of the n! ordered sequences,  we can associate a 
unique code of  length   3•n.  
            
          Evaluation of Fitness     The fitness of a population member is evaluated by simply 
summing the costs of each of the ordered di-edges in sequence.  In this application, the 
fitness is related to the total value so that T = P(e1,1) + P(e2,2) +…+ P(en, n) and thus a  
population member with a  high value has a high fitness. 
 
4.2 Minimal Node Base - A Directed Communications Network Application 
 
           A communications network is a digraph D = (N,A) where N, the set of nodes, is 
thought of as a set of message transmitters and  A, the set of arcs, as the allowable 
directed connections between pairs of nodes.  A node base B in a communications 
network is a minimal subset of nodes with the property that if a message is placed at each 
node of B, then every node of D will receive the message. Suppose one wants to build a 
satellite communications receiving station at each node in a node base of a 
communications network D.  Since these receiving stations are built on a node base every 



node in D can receive all messages.  The cost of building such a station is different for 
each node D and is assumed to vary over time.  It is desired to construct these stations 
one per time period so that the maximum cost of the completed network is minimized. 
 
           Mathematical Model     A digraph is strongly connected if for every ordered pair 
of nodes the second can be reached from the first by a direct path.   A strong component 
of  D consists of a maximal strongly connected subgraph of D. The condensation of D is 
a digraph D* = (N*,A*) where N* is the set of strong components of D and an arc (u,v) is 
in A* if there exists an arc in D that joins a  node in u to a node in v.   The following is an 
important theorem for node base communication networks [8]. 
           Theorem.  The condensation D* of a digraph D has a unique node base B* and the 
node bases of D are those sets B consisting of one node from each of the s strong 
components of D which is in B*.  Let E be the union of the vertices contained in the 
strong components of  D* and β the set of node bases of D.  The cardinality(β) is the 
product of the orders of all the strong components of D. 
 
              Feasible Encodings     Let (mk) be the number of nodes in the kth strong             
Component of  D.   For each of the (m1)•(m2)•…(ms)•(s!)  ordered node            base 
sequences,  we can associate a unique code of length  (s) + 3•(s) = 4•(s). 
consisting of a prefix of length s in the form of a node base code (v1, v2, …,vs) 
where (m0 +m1 + m2 +…+ mi-1 + 1) ≤ vi ≤ (m1 + m2 +…+ mi) for each 1 ≤ i ≤  s  with m0 
= 0 for convenience, followed by a standard permutation multiple code of length 3•s.  
The first  s  positions represent the nodes to be used to build the base and the last 3•s  
positions represent the permutation (sequencing) of these nodes. 
 
            Evaluation of Fitness     The fitness of a population member is evaluated by 
simply summing the costs of each of the nodes in an ordered base.  Moreover, in this 
application, given an ordering (v1, v2, …,vs), the fitness is inversely related to the total 
cost  T = C(v1,1) + C(v2,2) +…+ C(vs,s),  that is, a population member with a low cost 
has a high fitness. 
 
4.3 Minimal Bidding (with Slack Time) Application 
 
         A company is to construct a transportation network connecting a group of cities. 
Due to budget limitations only one link will be contracted for construction each month.  
Different contractors having different price scales, which vary over time, bid on the 
construction of different links of the potential network.  The cities together with all the 
possible links can be modeled to form a multigraph H.  The goal is to construct the 
desired network (an underlying subgraph G of the multigraph H with q edges) such that 
the total cost over time of  the entire  
construction is minimized.   We also assume that it takes one unit of time to          
construct a link and that the network must be completed in the  t = q + s  time          
periods available ( q periods for actual construction and s slack periods where         no 
constuction is performed).  Dummy (slack) links with zero cost for each period can be 
included.   In this problem, we are searching for an underlying graph G whose q  edges 
are sequenced and whose total cost is minimum.   
 
          Mathematical Model     Given an undirected multigraph H = (V,F) with no loops  
whose underlying simple graph G = (V,E) has q edges,  F consists of (mi) multiple edges 
for each edge ei in G.  Each of (m1 + m2 +…+ mq) edges in H can be thought of as a bid 



to build edge ei in G.  Let E = all the edges in H  and let   { B ⊆ H  B = { b1, b2 …, bq } 
contains exactly one bid for each edge of G }.   Since the network must be completed in  t 
= q + s  time periods, s (s ≥ 0) dummy links with zero cost for each period of  t can be 
included to be used as slack periods where no construction is done (e.g., during winter 
when costs are prohibitively high).  Thus we can expand the definition to include these 
dummy contractor  bids.  Thus, we consider { B ⊆ H ∪ D where B = { b1, b2 …, bq+s } 
contains exactly one bid for each edge of  G and also includes dummy (slack) bids }.  We 
also considered giving discounts from bidders that win more than one contract. 
 
          Feasible Encodings     For each of the (m1)•(m2)•…(mq+s)•((q+s)!) ordered bid 
sequences,  we can associate a unique code of length  (q + s) + 3•(q + s) = 4•(q + s). 
consisting of a prefix of length q in the form of a bid code                (b1, b2, …,bq+s)  
where (m0 + m1 + m2 +…+ mi-1 + 1) ≤ bi ≤ (m1 + m2 +…+ mi) for each  1 ≤ i ≤ (q + s) 
with m0 = 0 for convenience, followed by a permutation code of length 3•(q + s).  The 
first (q + s) positions represent the bids to be used to build the edges of G and the last 
3•(q + s) positions represent the permutation or time sequencing of these bids. 
            
          Evaluation of Fitness     The fitness of a population member is evaluated by simply 
summing the costs of each of the bids in order. That is, in this application given (b1, b2, 
…,bq+s), the fitness is inversely  related to the total cost including any discounts  T = 
C(b1,1) + C(b2,2) +…+ C(bq+s,q+s) – D, so that a  population member with a  low cost 
has a high fitness. 
 
5. Results 
 
           The multiple genomic redundant representation using all three segments was 
most efficient.  We experimented with all seven possible combinations, that is, forward 
only, backward only, permutation only, forward&backward, forward&permutation 
backward&permutation and finally all three together forward&backward&permutation.  
The experiments using all three were consistently most efficient even though more 
overhead was generated. 
 
           The multiple genomic redundant representation using all three segments was also 
examined as to which representations dominated at various stages of the search.  The 
permutation code was used extensively in the earlier generations when the GA was 
searching more globally since this coding scheme does not have a good locality property.  
In the later stages the GA adapted its search using mostly the forward and 
backward codes which have a stronger locality property.  
 
7. Conclusions 
 
           We considered using multiple genomic redundant representations in a self-
adapting genetic algorithm to solve rooted Hamiltonian directed path, node base 
communications, and bidding optimization problems whereby the element costs are not 
fixed, but are time dependent.  First we showed that these problems are NP hard.  We 
then demonstrated that using multiple genomic redundant representations to create a self-
adapting genetic algorithm by employing various codes with different locality properties 
that the genetic algorithm’s efficiency was improved. The GAs solving this class of NP 



hard problems, where costs are not fixed but are time dependent, employ non-locality or 
locality representations when appropriate since the GA adapts to its current search needs 
making the GA more efficient.             
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