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Abstract. One of the fundamental features, and one of the lesser un-
derstood phenomena, in biology is that of speciation. In order to better
understand the development and creation of species, and their role in
evolution, a method for tracking speciation in simulation is presented.
While there is much dispute in the field of biology as to the precise def-
inition of the term species, there is little debate that the natural world
is full of distinct subpopulations. A genetic framework which permits a
precise definition of a species is presented as it is implemented in the
Cyberis simulator. The framework uses the notion of the Levenshtein
distance as applied to the genomes of the agents to dynamically spec-
ify speciation during simulation. This allows for the study of artificial
evolution on a more accurate scale by investigating the performance and
longevity of the species, a more robust indicator of the genetics than a
single agent. The genetics also allow much freedom in the specification of
the agent and allows similar flexibility in experiments in neutrality and
genetic difference calculations.

1 Introduction

Evolutionary computing has gained widespread use throughout a broad spec-
trum of research fields from developing amplifier circuits [1] to robotics re-
search [2, 3]. Though there have been notable successes in these fields, the under-
lying processes at work in evolutionary systems are still being actively researched
and a variety of simulations have been developed. Some simulations attempt to
answer specific questions concerning populations or evolutionary dynamics ([4–
6]), while others are more directed towards the simulation of artificial life ([7,
8]).

Biological systems provide an excellent example of the power of evolution
as a developmental engine. The array of solutions to the problem of survival
in a complex, hazardous world tendered by natural systems is staggering. If
it is possible to understand the fundamental mechanisms at work, the potential
benefits are likewise impressive. In biology, the concept of speciation is of utmost
importance. Unfortunately, there is still little consensus on the precise definition
of a species. Hey [9] argues that this is due in large part to an almost innate
idea of species classification amongst humans which hinder the acceptance of



more precise definitions. Other research is ongoing which seeks to understand
the fact that classical phylogenetic trees do not seem to describe species ancestry
adequately in the natural world. A web or network may be a more appropriate
metaphor for phylogenies than a tree [10] and ongoing research indicates that
lineages may converge in previously unexpected ways [11].

While the argument could be made that the added complexity of tracking the
descendancy of a subpopulation is unnecessary, there are several reasons why it is
a very importance feature. First, there is little doubt that biological systems are
organised into distinct groups. The Cyberis simulator attempts to understand
how this process occurs in an artificial system. The benefits of robustness of the
genotype over individuals are also particularly useful. It is not enough merely to
understand which genome provides the most “successful” agent (particularly as
defining “successful” is, in general, a rather difficult task).

2 The Simulated World

The Cyberis simulator is a program which allows a number of autonomous agents
to live and react to their environment. On the initialisation of a simulation the
size and initial configuration of the environment, the initial configuration of
the population and the parameters for calculating genetic difference during the
simulation are configured.
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Fig. 1. Left The agents exist on the surface of a toroidal world. The population is com-
prised of a number of species each containing a subpopulation of agents. Right Phy-
logenetic tree generated by the Cyberis simulator showing all species that survived to
t = 5425000 and their ancestors (phylogenies which did not survive to t = 5425000 are
note shown).

The agents exist on the surface of a toroid as shown in Figure 1. While the
simulator does have the ability to restrict subpopulations to isolated regions and
thus investigate allopatric speciation, thus far all simulations for this work have
been sympatric.



As shown in Figure 1, the population is broken into a number of subpopula-
tions, or species. However, it should be noted that these distinctions are purely
clerical. The agents are free to act and interact throughout the world with no lim-
its. The only exception to this occurs when restrictions are placed on the agents’
reproductive radius, which determined based on the genetic disparity between
potential mates. The agents are able to sense and interact with the environment
through a number of sensors and actuators. The sensory capability for the agents
include such features as rudimentary vision and internal states sensors while the
action set includes movement, eating, attacking, and reproducing.

The behaviour of the agents is controlled by a fully recurrent neural network.
The cells of the network, as well as performing the computation for the networks
also process the genome of the agent. The architecture of the network starts
out with a single cell on the creation of the agent. As this cell processes the
genome of the agent, it divides, modifies its connections and the corresponding
connection weights and produces the artificial proteins, can be thought of as
acting as “variables” for the cells and the agent as a whole. Each cell in the
network, produced through the reproduction of the original cell, has its activation
function specified by the genome.

3 Genomic Agent Description

In the Cyberis simulator, the genetics are best described as a variable length
program that governs the phenotype of the agent. The programming language
contains operations for jumping to different places in the program, conditional
clauses and a fixed number of both internal and external variables. External
variables are global in scope and are accessible by every program executing
entity in the agent. The program executing objects in the simulator are the cells
comprising the recurrent neural network of the agents. The scope of internal
variables are local to the executing cells. Another way to view the genetics is as
a Turing tape passing through a Turing machine, the cell.

Fig. 2. A sample genome represented graphically and in its raw form.



The genetic program (or genome) γ is a variable length string of n characters.
The alphabet for the genome has a length of 4. The characters are arranged in
groups of five, called codons. This is similar to the work of Gilber and Epp-
stein who used a biological inspiration for their genetic encoding [12] though the
format used in the Cyberis simulator is slightly different.

As in the biological systems, the genotype alphabet is comprised of four
letters, but instead of groupings of three to create codons, they are arranged in
strings of 5 letters. These codons then specify individual proteins. This process
slightly simplifies the chemical processes which encode the proteins, while still
permitting a great deal of flexibility in terms of genetic code. There are then
45 = 1024 different codons, each of which specifies a specific instruction which
is then read sequentially by the agent’s cells.

4 Genetic “String” Theory

The fundamental information storage engine in this research is the genome. In
evolutionary computing, genomes are represented all across a huge spectrum
of research in a number of different ways. In the early days of evolutionary
computing Holland used a simple fixed length binary string as an encoding of
the finished product [13]. John Koza in his “genetic programming” research [14,
1] uses a variable length Lisp tree as the genome. Lenski et al and Wilke et al used
program segments as a genome in the AVIDA simulation [4, 15]. In AVIDA, the
genome is also the phenotype1. In the Cyberis simulator, the genome is similar
to that used by the AVIDA simulation in that it is a segment of executable code.
However the AVIDA genomes are the programs themselves. In this research the
genome is an assembly code specifying the phenotype which then interacts with
the world2.

One of the most important features of this research is that this work defines
the concept of a “species” and then organises the simulated agents into the rele-
vant population subgroups, or species. In order to define the concept of a species
based on genetics, the first requirement is the definition of a distance metric with
which to compare the genomes of individuals. Three different methods were in-
vestigated for this purpose. The first, and a very popular method for calculating
genetic difference in evolutionary computing, is the Hamming Distance [16].
While the Hamming distance was originally only defined for strings of equal
length, this issue can be resolved. A more problematic feature is that it does not
provide information on the number of mutations required to convert genome γA

to γB or vice versa. In fact, without modification, a single insertion or deletion
in one string relative to the other early in the string will greatly over-exaggerate
the difference between the two. The Levenshtein (or Edit) Distance[17], pro-
vides just such detail. Unfortunately, the Levenshtein distance proved to be too
computationally intensive (particularly for genetic strings with lengths of over

1 In other words, the transformation from genotype to phenotype is identity
2 The transformation in this case from genome to phenotype is a non-unique many-

to-one mapping



one thousand codons as are commonly found in the Cyberis simulations) to be
conveniently used for simulation. To that end a third method, an Approximate
Levenshtein Distance (ALD) calculation was developed which closely tracks the
true Levenshtein distance closely (relative to the Hamming distance). While
the ALD requires more computational effort to calculate than the Hamming
distance, it is much faster that the Levenshtein distance. Figure 3 shows the
performance of the different metrics for a continuously mutating genome.
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Fig. 3. Left Distance calculations from Levenshtein distance, Hamming distance, and
an Approximate Levenshtein distance. Plot was generated by comparing a constantly
mutating genome with its original, non-mutated form. While the Hamming distance is
the fastest to compute, the Approximate Levenshtein distance tracks the true Leven-
shtein distance much more accurately. Right Genetic Drift history for Species 88544
and its ancestors. Each species’ genetic drift starts at zero then, as the population
collectively mutates away from the ancestral phenotype, the drift increases until the
extinction of the species.

All three of these algorithms calculate the genetic distance between two
genomes:

d = L(γ1, γ2) (1)

and are true distance metrics in that they obey the following properties

L(γ1, γ2) = L(γ2, γ1) ≥ 0 (2)

L(γ1, γ1) = 0 (3)

L(γ1, γ2) + L(γ2, γ3) ≥ L(γ1, γ3) (4)

for any γ1, γ2, γ3 ∈ Γ , the set of all possible genomes. Where L is the dis-
tance metric, either the Levenshtein distance, the Hamming distance or, more
commonly, the ALD.

Genetic Levenshtein Distance The Levenshtein distance between two genomes
γ1 and γ2 (with lengths of n1 and n2, respectively) represents the length of the



minimum path to convert one genome into the other. This is computed by re-
cursively generating a (n1 × n2) matrix, D, and filling in the element values,
Di,j through

Di,1 = i (5)

D1,j = j (6)

Di,j = min(Di−1,j + 1, Di,j−1 + 1, Di−1,j−1 + fd(γ
i
1
, γ

j
2
)) (7)

for 1 ≤ i ≤ n1 and 1 ≤ j ≤ nj . The value in the bottom right element of the
matrix (Dn1,n2) is the Levenshtein distance between the genomes. The value fd

represents the equality between genetic elemets:

fd(γ
i
1
, γi

2
) =

{

1 if γi
1
6= γi

2

0 otherwise
(8)

The computational effort required to compute the Levenshtein distance is
O(n1 × n2). This algorithmic complexity can cause problems, particularly when
simulating large populations with long genomes. The distance is calculated:

1. When an agent is created
– At most, once per species to identify the appropriate species for the agent
– Once per agent in the appropriate species to re-calculate the Mean Agent

2. Every time an agent attempts to mate sexually
– To confirm the eligibility of the mating

3. When an agent dies
– Once per agent in the species to re-calculate the Mean Agent

As such, the added complexity of the Levenshtein distance quickly slows the sim-
ulator down to the point that it quickly becomes infeasible to use the Levenshtein
distance

Approximate Levenshtein Distance The ALD uses a unique feature of the
Cyberis genetics in order to calculate the distance value. This feature is the Index

of the codon being measured. The index initially represents the position of the
codon in the gene but as the gene is mutated this ordered indexing is lost. The
index still provides a useful landmark when tracking the difference in genomes.

In the calculation of the distance between γ1 and γ2, the ALD moves down
both, checking the codons as it traverse the genomes. If there is no discrepancy
between indices, it checks the elements of the codons and calculates the number
of mutations required to transform one to the other. If there is an index discrep-
ancy at position i, it traverses one genome then the other until it can resolve
this discrepancy at position j. This corresonds to the number of insertions or
deletions between γ1 and γ2 from positions i to j. If there are several mutations
in a given codon, it is considered a replacement as opposed to a codon with many
mutations.

The intrinsic value of each of these operations, Insertion, Deletion, Replace-
ment and Mutation can be adjusted, assigning a different distance “weight” to
each. However, in this work, the weight for each operation were set equal to 1.



5 Protein Generation and Description

The question of how to use an agent’s genotype to specify its phenotype now be-
comes the most pertinent. In this work, where the genome specifies only artificial
proteins, the mapping is performed through the protein chemistry of the agents.
As mentioned earlier, the possible sequences encoded by the codon permutations
(1024 = 45) are broken down into a number of functional groups. Table 1 shows
the breakdown of the proteins into their respective functional groups and the
codon sequences that code for those proteins.

Protein (℘) Number Function

0 - 20 Genetic Language Operators

20 - 120 Cellular Internal Proteins

120 - 220 Cellular Internal Anti-Proteins

220 - 320 Cellular External Proteins

320 - 420 Cellular External Anti-Proteins

420 - 1024 Non-Coding Junk, or Neutral, Codons
Table 1. Functional group of proteins synthesized by their respective codons.

In the case of non-operational codons, or proteins, there exist both proteins
and anti-proteins (as seen in Table 1. For each protein there exists a correspond-
ing anti-protein, which act as its inverse. One unit of anti-protein eliminates one
unit of protein. The levels most be greater than or equal to zero at all times.
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Fig. 4. Left Population graph for a simulation terminated by a population-wide ex-
tinction event and Right plant density plot for the same simulation, showing the cyclic
nature of the environmental dynamics.



5.1 The Genetic Program

In order to allow for general genetic programs, and in particular for arbitrary
neural network configurations (as specified by the genetics) it is critical for the
genetics to be as general as possible in terms of the possible output sequences.
To that end, the genetic programming language was designed.

Each cell in the agent, as it processes the genome, treats the first 20 codons in
the codon sequence as control codes. The codes and their functions are detailed
in Table 2. When a operator code is encountered by the cell in the processing
of the genome, the cell also reads ahead by m codons where m is the number of
operands for that operation. These values are then passed to the operator.

Op Code # of Operand
Number Operator Operands Type Function

0 NOP 0 None No Operation

1 IF 5 Scalars or Variables Conditional IF

2 ELSE 0 None Compliment to IF

3 JUMPUP 1 Scalar Move Back n steps

4 JUMPDOWN 1 Scalar Move Forward n steps

5 STOP 0 None Stop Executing Genome

6 SPLIT 6 Scalars Split cell

7 DIE 0 None Kill cell

8 STOPCELL 0 None Stop protein production

9 CONNECT 1 Scalar Modify network architecture

10 END 0 None End clause (IF, ELSE, CONNECT)

11 STARTGENE 0 None Start Gene Flag

12 ENDGENE 0 None Stop Gene Flag

Table 2. Table outlining functions of genetic operational codes in the genome.

The operator IF is unique in that it can use either scalars or variables for
arguments as well as use different equivalence functions (<, ≤, =, ≥, or >). The
particulars are specified by the five arguments. If the IF operation is to take
scalar arguments, the value of the operands are used. If variables are used, the
arguments specify particular proteins (either internal or external) and the levels
of these proteins are used as arguments. SPLIT also uses a number of function
arguments. For other operators, such as JUMPUP or CONNECT the argument
simply specifies the number of steps or connections to modify.

5.2 Reserved Proteins

In order to specify the agent’s physical phenotype, a number of external proteins
also code for particular attributes of the agents. The proteins in Table 3 are
external. This means that they are accessible by each cell in the agent and each
cell contributes to the protein levels in the agent.



Ext. Protein Attribute Specifies:

0 MASS The physical mass of the agent

1 SPEED The distance the agent can travel in one time step

2 REDCOL The intensity of the red pigment in the agent

3 GREENCOL The intensity of the green pigment in the agent

4 BLUECOL The intensity of the blue pigment in the agent

5 CARNIV Agent’s ability to metabolize plants or agents

6 STRENGTH The amount of damage inflicted when attacking

7 RANGE A Agent acuity in sensing distances

8 MASS A Agent acuity in sensing mass

9 COLOUR A Agent acuity in sensing colour

10 MOVE A Agent acuity in sensing movement

11 REP TYPE Agent’s reproductive type
Table 3. External proteins reserved for agent physical description.

5.3 The Protein Map

Every genome also contains a protein map. In fact, the protein map is typically
the same for every genome in the simulation. However, it is only necessary that
parents and offspring have the same mapping.

The map essentially provides a metaphor in the digital system for the protein
chemistries in biological systems, though as mentioned in section 3, this is a sim-
plification of the natural process. The sequence of codons is rearranged through
a mapping, maintained by each genome such that any ordering between adja-
cent codon types can be removed. This mapping will distribute the potential,
non-ordered, effects from a single point mutation on the genome.

Consider the effect of mutation on an artificial genome without a protein map.
If the mutation occurs in a less significant letter, it is very likely that the function
of the codon will not change. In other words, if the codon represented an internal
protein before the mutation, it will most likely represent an internal protein
after the mutation. Conversely, should the mutation affect a higher significance
element, the codon will be very likely to change type. While this may seem
insignificant to the operation of the simulation, it is important to remove, or at
least reduce, this artificial ordering. In natural systems, a small change in the
chemical composition of a protein can drastically alter its shape, and therefore
its function. For this reason, a uniformly random mapping from codon value
to protein type is used. In the previous tables (1,2,3) the value quoted for the
proteins or opcodes are the values after the mapping.

The importance of heredity of the protein map is now evident. Should a
parent pass a genome to its offspring, but with a different mapping, then the
inherited genome will be, in general, completely different from its progenitor. It
is for this reason, and to allow full reproductive freedom to the agents, that a
single protein map is typically used for the entire simulation.



6 Some Sample Results
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Fig. 5. Left New species creation plot showing duration of species existence. Exag-
gerated vertical drops in the plot correspond to extinction events. Right Simulation
ABiodiversity (Artificial Biodiversity). The abiodiversity refers to the number of dis-
tinct species operating in theworld at that time. See also Figure 6 for further evidence
of extinction events.

Figure 1:right shows a sample phylogeny from a simulation run. In recon-
structing this information from the simulator data, there are a number of impor-
tant points to bear in mind. Data files are periodically output from the simulator
engine and these files form the basis for the simulation analysis. The output data
essentially forms a “fossil record” of the species operating through time. While
the simulator can be set to output these files at arbitrary intervals, for practical
reasons the interval is usually set longer than several generations in the simula-
tions. The consequence of this is that it is possible for a species to not appear
in the fossil record if it is created and is extinguished within a data save inter-
val. These species are said to be “missing links” as they provide a direct path
between two known species but their existence can only be confirmed through
the ancestry information stored by their descendant species.

One of the most interesting features of the simulations thus far has been
extinctions. While a cyclic pattern of population and energy (food) availability
is expected, and can readily be seen in Figure 4, there are more extreme pat-
terns observable. Figures 5 and 4 show drastic drops in population. Usually the
environment can recover from such population fluctuations, but Figure 4 shows
an example where it does not and the population drop leads to a complete envi-
ronment extinction. Initial investigations show that for small environments it is
possible for genetic traits which drastically destabilise populations to propagate
through the entire population. This is particularly true if the initial (though as
of yet undeveloped trait) appears very early in the simulation in a species whose
descendants proliferate thoroughly. These traits typically affect architecture of
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Fig. 6. Population over time details for simulation run. Left Population information
for Species 88544 and its ancestors and Right Population information for all species.

the recursive neural network which controls the agents. This effect is made possi-
ble through the genome set used by the Cyberis simulator. The genetic language
used permits genetic defects to be maintained though not expressed. The evolu-
tionary process will eliminate this defect, though in simulations with small num-
bers of individuals, this elimination can have disastrous effects on the ecosystem
as a whole.

7 Conclusion

The Cyberis simulator is designed to address the questions about evolution, and
particularly speciation, that are currently being asked by a number of researchers
in the fields of evolutionary computing, artificial life, and natural life systems.
Fundamentally these types of questions address the rise of speciation and its
role in the evolutionary process. How does speciation develop? Does reproduc-
tive isolation lead to post-zygotic speciation in sympatric species or the is the
converse true? How does speciation aid in the propagation of highly fit traits
in an environment which harbours much risk for individual agents? Does the
propagation of a genome outweigh the importance of the individual in a species?

These types of questions are important and extremely relevant to our un-
derstanding of evolution, both as a natural process and in the artificial realm
where it is being used with increasing success to solve a great many cutting
edge research problems. The Cyberis simulator is a first step in answering these
questions and the data being generated, even at this early stage, are providing
a number of very interesting insights into our world at large.
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