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Abstract. This paper describes an optimized algorithm for learning
Bayesian Network structure by using adaptive population sized evolu-
tionary programming. Bayesian network (BN) is a popular knowledge
discovery model which can represent the causal relationship of different
events or attributes with uncertainty. Learning the structure solely by
dependency analysis or search-and-score approach is not effective. The
hybrid algorithm on evolutionary programming, HEP, has been shown
to be effective and efficient to solve this learning problem [8]. By in-
troducing the concept of adjusting the population size according to the
individuals’ dissimilarity, HEP is further optimized on the execution time
with comparable performance. The empirical results illustrate that the
optimized algorithm has reduced the running time by half.

1 Introduction

Bayesian network (BN) is a popular knowledge representation for machine learn-
ing and data mining. Owing to its ability of representing causality and uncer-
tainty, it is widely used in various domains. With the use of Bayesian networks,
many medical and operational diagnostic and prediction systems can be devel-
oped. Typically, a Bayesian network can be constructed by eliciting knowledge
from domain experts. To reduce imprecision due to subjective judgments, many
algorithms are developed for learning Bayesian networks from collected data and
past observations in the domain.

There are two major approaches to this network learning problem [1]. The
first one is the dependency analysis approach. Since a Bayesian network describes
conditional independence, we can make use of dependency results to construct a
Bayesian network that conforms to our findings. The drawback of this approach
is the exponential number of dependency tests required. The second approach
is the score-and-search approach [2][4][3][8][7]. A metric is used to evaluate dif-
ferent Bayesian networks, thus the learning problem becomes a search problem.



However, the algorithms applying this approach may stuck in a local optimum
[2].

In our previous work, a hybrid approach is used for learning Bayesian network
structures by evolutionary programming (HEP) [8]. HEP searches the network
structure with the help of the statistical dependency information. It is shown to
be effective and efficient in this learning problem. On the other hand, we have
designed the adaptive elitist-population search method (AEGA) that locates
all optima of multimodal problems [5]. In this paper, A-HEP is described that
extends HEP by adopting the dynamic population size concept of AEGA. Since
the running time of evolutionary algorithms depend on the population size, A-
HEP can increase and decrease the population size adaptively according to the
dissimilarity of individuals. Once the algorithm converges to a certain degree,
the population size decreases and computation is also reduced. Compared with
original HEP, A-HEP can reduce the execution time significantly.

This paper is organized as follows. In section 2, we present the background
of Bayesian networks, HEP and AEGA. In section 3, we describe our algorithm
in detail. In sections 4 and 5, we report our experimental findings and conclude
our work.

2 Background

In this section, the general idea of Bayesian networks and HEP are described.
Related work on AEGA are also introduced in the last part of this section.

2.1 Bayesian Networks

A Bayesian network, G, has a directed acyclic graph (DAG) structure. As shown
in Figure 1, each node in the graph corresponds to a discrete random variable
in the domain. An edge, X < Y, on the graph, describes a parent and child
relation in which X is the child and Y is the parent. All parents of X constitute
the parent set of X which is denoted by ITx. In addition to the graph, each
node has a conditional probability table (CPT) specifying the probability of
each possible state of the node given each possible combination of states of its
parents. If a node contains no parent, the table gives the marginal probabilities
of the node [6].

Since Bayesian networks are founded on the idea of conditional independence,
it is necessary to give a brief description here. Let U be the set of variables in
the domain and P be the joint probability distribution of U. Following Pearl’s
notation [6], a conditional independence (CI) relation is denoted by I(X, Z,Y)
where X, Y, and Z are disjoint subsets of variables in U. Such notation says that
X and Y are conditionally independent given the conditioning set, Z. Formally,
a CI relation is defined as [6]:

P(x|y,z) = P(x|2) whenever P(y,z)>0, (1)
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Fig. 1. A Bayesian network example.

where z, y, and z are any value assignments to the set of variables X, Y, and
Z respectively. A CI relation is characterized by its order, which is simply the
number of variables in the conditioning set Z.

By definition, a Bayesian network encodes the joint probability distribution
of the domain variables, U = {Ny,..., N, }:

P(Ny,...,N,) =[] P(Ni | I,). (2)

2.2 Hybrid EP (HEP)

As mentioned before, researchers treat the network learning problem in two very
different ways. They are called the dependency analysis and the search-and-
scoring approaches respectively. Both approaches have their drawbacks. Hybrid
EP (HEP), an extension of MDLEP [7], was designed to incorporate the depen-
dency information into the searching process. The combination of the two ap-
proaches achieves better efficiency and improves the solution quality in a smaller
number of generations [8].

The evolutionary part of HEP is similar to MDLEP, except that HEP has an
additional CI test Phase just before the EP (Evolutionary Programming) Search
Phase. For every pair of nodes, the order-0 and order-1 CI tests are done to find
the p-value which indicates the dependency level between them. The search
space is refined in each generation by checking the alpha value, the dependency
threshold, against the p-value matrix.

Mutation operators used in HEP include simple mutation, reversion muta-
tion, move mutation and knowledge-guided mutation. The last operator is similar
to single mutation except that an edge is selected by comparing the correspond-
ing MDL score of the connecting nodes. Edges with larger MDL scores tend to
be removed while edges with smaller MDL scores tend to be added. In the HEP
framework, a new operator merge is also introduced for better evolution. Taking
a parent network G, and another network G} as input, the merge operator at-
tempts to produce a better network by modifying G, with Gy. If no modification
can be done, GG, is returned. The use of merge operator is shown to improve the
effectiveness and the efficiency of HEP. Algorithm 1 is the outline.



Algorithm 1 Algorithm of HEP
CI Test Phase
for each pair of nodes (X,Y) do
Perform order-0 and all order-1 CI tests;
Store the highest p-vale in the matrix P,;
end for

Evolutionary Programming Search Space
Set t, the generation count, to 0;
Initialize and evaluate the population with size m;
for each individual G; in the population Pop(t) do
Initialize the o value randomly;
Refine the search space by checking the a value against the P, matrix;
Create a DAG randomly in the reduced search space;
end for
FEach DAG in the population is evaluated using the MDL metric;
while ¢ is less than the maximum number of generations do
Randomly select m/2 individuals from Pop(t), the rest are marked NS;
for each of the selected ones do
Merge with a random pick from the dumped half in Pop’(t — 1);
If merge does not produce a new structure, mark the individual with NS;
Otherwise, regard the new structure as an offspring;
end for
for each individual marked NS do
Produce an offspring by cloning;
Alter the « value of the offspring by a possible increment or decrement of Agy;
Refine the search space by checking the a value against the P, matrix;
Change the structure by performing a number of mutation operations;
end for
The DAGs in Pop(t) and all new offspring are stored in the intermediate popula-
tion Pop’(t) with size 2 x m;
Conduct pairwise competitions over all DAGs in Pop’(t). For each G; in the popu-
lation, its fitness is compared against ¢ individuals. The score of G; is the number
of individuals (out of ¢) that are worse than Gj;
Store the m highest score individuals from Pop’(t) with ties broken randomly in
Pop(t +1);
Increment ¢ by 1;
end while
Return the final structure with the lowest MDL score in any generation of a run.

2.3 Adaptive Elitist-population Based Genetic Algorithm (AEGA)

AEGA is a new technique used to solve multimodal function maximization prob-
lems. Elitist individuals are defined as the best ones on different peaks. With the
help of elitist operators, the diversity and of population can be maintained and
even improved by adjusting the population size according to the dissimilarity
and directions of individuals in its population. Eventually, the population can
exploit all optima of multimodal problems in parallel based on elitism [5]. The
adaptive population size concept is adopted in A-HEP for optimization.



3 Proposed A-HEP Algorithm

The principle used for improving HEP is the adaptive population size concept
according to the dissimilarity of individuals. Similar to other evolutionary al-
gorithms, the population of HEP converges into one or several solutions with
best fitness at the end of evolution. In the later part of evolution, most indi-
viduals are similar or exactly the same. Computation time can be reduced if
these redundant individuals are removed from the population in the later gener-
ations. On the other hand, the diversity of the population are also important for
searching the optimal solution, especially at the early generations. Based on the
HEP algorithm, new routines for increasing and decreasing population size are
designed, in order to increase the diversity and remove redundancy respectively.
These routines work by comparing the dissimilarity of individuals in the pop-
ulation. We have also defined a structural dissimilarity comparison metric for
comparing different Bayesian network structures. In this section, the techniques
will be described in detail.

3.1 Structural Dissimilarity Comparison

The objective of the A-HEP algorithm is to speed up the process of searching
good network structures with small MDL scores. Therefore, a representation for
network structures is defined. In A-HEP, a network structure is represented as a
two-dimensional matrix (shown as Fig. 2). The size of the matrix is n x n, where
n is the number of nodes.
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Fig. 2. Representation of a Bayesian network structure

The value of the matrix is define by:

1 if node j is the parent of node 4

StructureB;; = {O if node j is not the parent of node ¢

Since the individuals are represented in this data structure, we can define a
function to compare the distance between two individuals, i.e. the dissimilarity
of two Bayesian networks.



n
. where x;; =0 if B;; = B,
Distance(B, B) = inj {where xj =1if B'j' # B’»J»
irj ’ ’ K

For example, the distance between the two Bayesian networks in Fig. 3 is 2,
as one edge is added and one edge is deleted.

Fig. 3. Two different Bayesian network structures with distance = 2.

3.2 Dynamic Population Size

In the original HEP algorithm, the population size m is fixed. In each generation,
each individual either merges with another individual in the previous generation
or mutates itself by different operators to get its new offspring. New population
size is then increased to 2m. After that, a number of pairwise competitions are
carried out and the fittest m individuals are kept for the next generation.

In A-HEP, the population size changes adaptively according to the dissimi-
larity of individuals in the current population and newly evolved offspring. The
principles of this approach are:

1. If new offspring is quite different from the individuals of the current popula-
tion (i.e. the distance is large), it is worthy to keep it, although it has worse
fitness.

2. If some individuals are similar or exactly the same as other individuals (i.e.
the distance is small or zero), it is reasonable to remove them.

Undoubtedly, the above principles cannot be applied strictly throughout the
whole evolution process. Otherwise, search space for better solutions is limited
by the second principle, and the algorithm does not converge under the first
principle. Therefore, the stage of evolution must be considered as a factor of
population size expansion and contraction. In the early stage of evolution, we
can allow more degree of population size expansion and less degree of contrac-
tion. In the later stage of evolution, we can limit population size expansion and
allow removing more redundant individuals in the population. At the same time,
population size is maintained within a range of values.



A-HEP is developed based on the original HEP with several modifications.
The original CI Test Phase and different operators are still used in the new al-
gorithm. An increasing routine and a decreasing routine are introduced for pro-
cessing mutated individuals to change the population size adaptively. In A-HEP,
the pairwise competition is no longer used because new routines are employed
to decide which individuals should be kept.

Algorithm 2 outlines the operations of A-HEP. The following notations are
used to describe A-HEP throughout this paper:

pe is the current population size in this generation.

Prew 18 the new population size for next generation.

Pmaz 1S the maximum population size.

Pmin is the minimum population size.

Gen, is the current generation number.

Gengotar 1s the total generation number.

AvgDis; is average distance between the individual I; to all other individuals.
R1, R2, R3 are three random numbers between 0 and 1.

Algorithm 2 Algorithm of A-HEP

CI Test Phase
Evolutionary Programming Search Space
Set Gen. = 0;
Initialize and evaluate the population with size pinit;
while Gen. < Gentotqr do
Randomly select p./2 individuals for merge operator
Each unselected and unmerged individual produce one offspring by different mu-
tation operators
Increasing Routine (See Routine 1);
Decreasing Routine (See Routine 2);
Update population size, pc = Ppew
end while
Return the final structure with the lowest MDL score.

Increasing Routine: In order to increase the diversity at the early stage of
evolution, the population size is increased adaptively by examining the new mu-
tated offspring. If it is very different from the individuals in current population,
the parent and itself are kept, no matter what their fitness values are. This
technique can prevent premature convergence. However, the population size ex-
pansion must be controlled by considering the following factors:

1. Ratio of the current population size to the maximum population size
2. Ratio of the current generation number to the total generation number

In order to decide the fate of the new mutated offspring and its parent, calcula-
tion is done on the average distance between them and all the other individuals



in the current population by the dissimilarity metric defined in previous section.
If it is larger than a threshold, far-factor x no. of nodes, both of them are pre-
served for next generation. Since the size of matrix for representing a Bayesian
network structure depends on its number of attributes, the distance threshold
should also depend on the number of nodes.

Routine 1 For increasing population size
Prnew < Pec
1 «— 0
while pc < pmaz, and R1 > pe/pmaz, and Ra > Gen./Geniotal, and i < p. do
for each mutated offspring I; do
Calculate AvgDis;;
if AvgDis; > far-factor x no. of nodes then
Both its parent and itself are kept for next generation;
Pnew < Pnew + 1?
end if
end for
1 — 14+ 1;
end while

With the population size increasing routine, the diversity increases with the
search space in the early generations. Experimental results have shown that bet-
ter network structures can be obtained.

Decreasing Routine: The main objective of A-HEP is to reduce the running
time of the original HEP. This can be achieved by removing the redundant indi-
viduals in the population at the later part of evolution. Based on AEGA [5], a
routine is designed for decreasing the population size adaptively by considering
the dissimilarity between individuals.

Similar to the increasing routine, ratio of the current generation number
to the total generation number is used as a parameter to delay the time of
population size contraction. There are two cases when population size is going
to decrease:

1. When two mutated offsprings are fitter, more similar between themselves
than their parents be, and their distance is closer than the threshold, cutoff-
distance;

2. The pair of chosen individuals for next generation are exactly the same;

With the decreasing routine, redundant individuals are removed in the pop-
ulation at the later stage of evolution. As the population size decreases, the
computation effort required for each generation is also reduced. Consequently,
the time it takes to obtain the final structure is greatly reduced. This can be
proved by experiments in next section.



Routine 2 For decreasing population size

for each pair of mutated individuals I;,I; and their parents I?,T JI.’ do
Calculate di = Distance(I}, I});
Calculate d2 = Distance(l;, I;);
Compare the fitness of I; with I? and I; with Ij’.’, and take the fitter one in each
pair for next generation;
if Both children,I;, I;, are chosen then
if pc > Pmin and d2 < d1 and d1 < cutoff-distance then
Choose the fitter child and remove another one;
Pnew < Pnew — 1;
end if
end if
if Distance between chosen pair = 0, and pe > pmin, and Rz > 1 —Gen./Gentotal
then
Remove one of them:;
Prew <= Pnew — 1;
end if
end for

4 Evaluation on Proposed Algorithm

The performance of A-HEP was evaluated and compared to the original HEP
by the following set of experiments. An optimized algorithm should obtain a
Bayesian network with comparable or even better quality in shorter time. There-
fore, the following experiments are used to examine the performance of A-HEP
on running time and fitness of final network structure obtained.

4.1 Experimental Methodology

In our experiments, we used seven data sets generated from the well-known
benchmarks of Bayesian networks including the ALARM, the PRINTD, and the
ASIA networks. Alarm1000, alarm2000, alarm5000, alarm10000, and alarm-O
were created from the ALARM network. These data sets were obtained from
two different sources. One of them (alarm-O) containing 10,000 cases was ob-
tained from Bayesian Network PowerConstructor [1]. The others were used for
evaluating MDLEP [7]. The four data sets are of different sizes and contain 1,000,
2,000, 5,000, and 10,000 cases respectively.

The asial000 data set with 1,000 cases is generated from the ASIA network
and the last data set containing 5,000 cases is created from the PRINTD net-
work. Since both algorithm are stochastic in nature, we conducted 40 trials for
each experiment. The programs were executed on the same Nix dual Intel Xeon
2.2GHz Linux machine. For both algorithms, we set A, to be 0.02 and the initial
population size to 50. For A-HEP, the maximum and the minimum population
sizes were 100 and 3 respectively. The far-factor and cutoff-distance were set
to be 0.8 and 1. The maximum number of generations is 5000. The results are
summarized in Fig. 4 and Table 1.
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Table 1. Performance comparison between HEP nd A-HEP

Average Running Time(second)| Average MDL Score of final network
Data set | HEP |A-HEP Ratio HEP A-HEP Difference
(A-HEP/HEP) (A-HEP - HEP)
alarm1000 | 53.08 | 20.10 0.38 17862.48 | 17877.48 | 15.01 (0.08%)
+1.14 | £4.67 +19.68 | £28.31
alarm2000 | 56.05 | 23.70 0.42 33773.05 | 33787.45 | 14.39 (0.04%)
4+0.51 | £6.01 +3.14 +56.24
alarm5b000 | 63.38 | 47.68 0.75 81004.00 | 81015.22 | 11.22 (0.01%)
+0.9 |£11.07 +0.0 +68.18
alarm10000| 75.97 | 54.50 0.72 158517.54(158473.53| -44.01 (-0.28%)
+1.84 | £5.92 4+247.02 | £90.45
alarm-O [102.65| 54.33 0.53 138549.48(138564.95| 15.48 (~0%)
+25.25/£11.18 +385.83 | £405.60
asial000 | 8.18 | 3.40 0.42 3398.66 | 3398.60 | -0.06 (~0%)
+0.38 | £0.50 +0.16 +0.00
printd5000 | 38.33 | 14.30 0.37 106542.00{106542.00]  0.00 (0%)
+0.62 | £1.34 +0.00 +0.00
l Average [ - [ - [ 0.51 [ - - 1.72 ‘

4.2 Comparison on Running Time

In our experiments, the running time of A-HEP is 20-60% less than the original
HEP. This improvement is due to the adaptive population size concept. Once
the population converges to a certain degree of similarity, redundant individuals
are removed from the population. Therefore, the computation effort for later
generations are greatly reduced and the running time is shortened. Table 1 shows
the average running time for each data set. Average improvement of A-HEP is
around 1.89 times faster.

This speed-up is particular significant for small data sets, such as asial000
and alarm1000. At the later stage of evolution, the individuals in the population
are very similar or even exactly the same. The decreasing routine removes these
individuals from the population dynamically, and increases the efficiency of the
algorithm. By adjusting the far-factor and population size limits, the running
time can be further reduced.

4.3 Comparison on Fitness of Final Network

Although A-HEP can learn the Bayesian network structure in a shorter time, the
quality of the final networks are also important. Therefore, the average fitness
(MDL score) of the best network obtained by each algorithm are compared.
Table 1 shows the MDL score of final network obtained by both algorithms.
In real trials, both algorithms can obtain the individual with minimum MDL
score in most cases. The differences of MDL score on Table 1 is mainly due to
obtaining sub-optimal structures in particular trials. However, those MDL score
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Fig.4. Data set (a)alarm-1000, (b)alarm-2000, (c)alarm-5000, (d)alarm-10000,
(e)alarm-O (original), (f)asia-1000 and (g)printd-5000; Left: Comparison on average
running time in each data set; Right: Comparison on the average fitness (MDL score)
of final Bayesian network obtained

differences are insignificant. A-HEP can even obtain fitter Bayesian network in
more cases than HEP in alarm-10000 data set. We can conclude that A-HEP has
comparable BN structure learning performance as HEP. With shorter running
time and comparable quality of final network structure obtained, A-HEP is more
efficient than the state-of-art Bayesian network learning algorithm - HEP.

5 Conclusion and Future Work

In this paper, we have presented the adaptive population size evolutionary al-
gorithm, A-HEP, for learning Bayesian network structures. This is an optimized
version of HEP which is one of the state-of-art algorithms of this type. The
technique is based on the concept of adjusting population size adaptively ac-
cording to the dissimilarity of individuals in current population. With the use of
increasing and decreasing routines, the population expands in early generations
for increasing diversity, and contracts in later generations for reducing compu-
tation time. A-HEP has been experimentally tested with several data sets of
different sizes and numbers of variables. The performance of it is compared with
the original HEP on running time and quality of Bayesian network obtained.
All experiments have demonstrated that A-HEP consistently and significantly
reduces the running time with comparable performance on Bayesian network
learning. This speed-up is very important as A-HEP can be used efficiently for
learning Bayesian networks on many data mining problems.

In order to further optimize the learning performance of A-HEP, we are going
to design a new operator for crossover between two individuals. We also want to
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investigate the feasibility of applying dynamic population size concept in other
algorithms.
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