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Abstract 
 
 

A heuristic technique is presented that applies 
simulated annealing search to derive mathematical 
equations that model a pilot for an X-CELL 60 
helicopter. The technique uses a pre-defined alphabet 
of formulas and combines them to create a 
mathematical model of the system controller or pilot.  
 
The proposed technique provides a new tool that can 
be used to develop an accurate helicopter pilot 
algorithm that can follow a trajectory – The method 
proposed generates accurate pilot formulas that are 
relatively easy to create. The proposed technique 
requires data that describes the actions taken by a 
pilot flying the helicopter under different conditions. 
This data was collected from a test a Proportional 
Integral Derivative (PID) controller (Simulating 
actions of a pilot on a change in altitude) against 
which the generated pilot algorithm was compared. 
The PID implantation simulates a portion of the flight 
of a helicopter model. Test results in a simulated 
environment show that the pilot formulas created 
using this method performed within 1% of the PID 
controllers.  
 
The method proposed also addresses some 
shortcomings in controls development. It can be used 
to derive an accurate plant mode when none exist, 
this is especially useful if little is known about the 
internal function of the plant and second, the 
proposed method can be used to model the controller 

itself when the system is nonlinear and thus can not 
be modeled well with a PID. One such area where 
this method has great potential is in modeling the 
response of a human pilot flying a helicopter.  A 
human response to the environment cannot be 
duplicated within a mathematical function that is 
normally used with PIDs – this is due to the limited 
range of these functions.  
 

1 INTRODUCTION 
The field of Autonomous Vehicle research and robotics is 
very active – this is due to the ability of Autonomous 
Vehicles to carry out Dirty, Dull and Dangerous work [1].  
There are numerous applications where an automated 
vehicle is desirable. One such application is 
reconnaissance where automated pilot-less vehicles are 
desirable.  The use of these crafts eliminates human-error 
due to fatigue and results in longer, more efficient 
missions. Another advantage lies in the fact that an 
automated craft is replaceable, a live pilot is not. 

Automated vehicles rely on controllers to carry out tasks 
that the vehicle is asked to complete. For example a hover 
controller is tasked with keeping a helicopter in the same 
coordinates within an acceptable error margin (5 feet for 
example) – so long as the helicopter is within that 5-foot 
sphere radius then the module is working well. Many 
approaches can be used to construct a module and those 
include PID controllers, Neural Networks, Fuzzy Logic 
sets among others. Each of these controllers has their own 
specific limitations.  

The method proposed would offer an alternative to 
modeling a controller or a helicopter (plant) when other 



approaches fall short or when an alternate model is 
needed to compare experimental results against. This 
method provides a mathematical formula from which 
analysis can be conducted or a model can be built or 
simulated. In other words, the method presented can apply 
as a primary algorithm to model a system or as a research 
tool to come up with alternate models to the same system.  

2 BACKGROUND  
Compared to regular airplanes, helicopters have many 
drawbacks.  They are costly, slow, have a low payload 
capacity, and poor fuel efficiency. However, a helicopter 
offers two main advantages: first, the ability to land 
anywhere and; second, the ability to fly at a low altitudes 
very slowly (hover). Unlike airplanes, commercial 
autopilot technology for helicopters is limited to level 
flight for the most part; taking off and landing still pose a 
challenge. Currently, commercial helicopter autopilots 
can cost upwards of $250,000. There is no inexpensive 
commercial autopilot software that can be used for a 
small kit or pilot-less helicopters so research on 
automated helicopters may yield new and more 
sophisticated autopilot modules that can rival that of fixed 
wing aircraft.   

Pilot-less helicopters are in use today; however, they are 
usually flown using a remote interface. The pilot would 
operate the craft from afar. There are two types of pilot 
less control, remote control and teleoperation.  With 
remote control the plane is visible to the pilot.  This is 
usually the case with kit planes that are flown in a limited 
area and are always visible to the operator.  Teleoperation 
is where the plane is not visible to the pilot. In this case 
sensors on the plane (usually a camera) send information 
to the pilot (and crew) on the ground through an interface. 
This interface usually requires a team to run and also 
requires a large amount of bandwidth to relay data to the 
aircraft in a timely manner. A failure at the command 
center or anywhere in the communication chain can lead 
to loss of control and the aircraft.  

Remote controlled autonomous vehicles have had 
reasonable success, and many have autopilot as a backup 
system should they lose communication with ground 
control. Hence, a helicopter with a fully automated 
controller offers many advantages amongst them the 
ability to fly for long periods of time without human 
intervention, the requirement for a team to run the 
autonomous aircraft can be eliminated and should human 
intervention be required, the operator is free to focus on 
more important tasks such as analyzing data collected by 
a camera or other sensors [1][5].  

A completely autonomous helicopter may have been an 
ambitious project only a few years ago – current advances 
including GPS technology, advanced sensor suites and 
ultra fast and reliable hardware makes it possible to pack 
more power than ever before into a vehicle. Yet the 

challenge lies not in computing power, but more with 
information analysis.  Parsing information and selecting 
relevant data is still difficult [2]. 

2.1 DESIGN CHALLANGES 
One of the main difficulties in developing automated 
controllers for helicopters has to do with the complexity 
of the craft [8][9]. A helicopter model, unlike a 
conventional plane, has 6 degrees of freedom and a 
complex mechanical system to control its ascent and 
decent. More over, many of the formulas that govern the 
physical dynamics of a helicopter are interdependent and 
non-linear. Generally, there are 4 phases of helicopter 
flight that a viable controller design needs to consider: (1) 
Ascent – taking off and reaching a predetermined altitude. 
(2) Cruising – this is where the helicopter is on level 
flight covering a predetermined path. (3) Hovering – this 
is where the helicopter has to maintain a constant height 
with as little forward velocity as possible and finally, 
decent, this is where the helicopter must land at a 
controlled rate in order to prevent damage to the aircraft. 

2.2 BACKGROUND OF AUTOMATED 
HELICOPTERS 

Research into autonomous helicopter controllers started in 
the late 1980’s at the University of Tokyo – that controller 
model was based on fuzzy logic and was tested on a 
Yamaha R-50 agricultural-work helicopter. The goal of 
the project was to design a controller without having to 
worry about the modeling and dynamics of the helicopter. 
After several years of research, the helicopter was still 
limited in what it could do autonomously. In 1991, the 
Aeronautics Directorate of NASA Ames Research Center 
became involved in researching autonomous helicopters 
but used the "dynamical modeling and identification" 
approach. The Robotics Institute of Carnegie Mellon 
University (CMU) also started work on its own 
(independent) flight project using an R-50 helicopter.  

Later research at both Carnegie Mellon University and 
MIT began to focus on frequency responses modeling 
methods in order to develop a linearized mathematical 
model of the craft. In 2001 Gavrilets, et al, [9] published a 
paper introducing a partially linearized model of a X-Cell-
60-SE helicopter that had been developed by using 
frequency response methods in order to derive several of 
the plant parameters for hover and slow flight conditions.  
This mathematical model was built in Simulink and 
results derived from it were used in this paper. 

In 2003, Mettler published a book introducing a fully 
linearized model of both the Yamaha R-50 and the X-
Cell.  This model is linearized around three operating 
points, hover flight, slow flight and cruise flight.  
Frequency response methods were used in this 
development as well, but this time were implemented 
with CIFER, Comprehensive Identification from 

http://aeronautics.arc.nasa.gov/
http://www.arc.nasa.gov/
http://www.ri.cmu.edu/


Frequency Responses. CIFER was developed by NASA 
and is software that extracts a mathematical description of 
a vehicle from test data using frequency response 
modeled from actual flight data. CIFER works much like 
reverse-simulation. Simulation requires that assumptions 
be made ahead of time (a-priori) to allow for the 
derivation of equations related to the model, on the other 
hand, system identification starts with measured vehicle 
motion and measured responses in order to develop a 
model that reflects the measured data accurately. CIFER 
allows designers to skip modeling and get straight to a 
model that reflects the data collected from a real system. 
The result was a linearized helicopter model derived from 
an inherently nonlinear system.  A Matlab model of the 
information presented in [10] is presently being 
developed and will be used for future research. 

2.3 CURRENT RESEARCH METHODS 
Autonomous helicopters have been designed using many 
approaches – some of the more common methodology 
includes the following: Proportional Integral Derivative 
(PID) Controllers, Fuzzy Logic Controllers, Neural 
Networks and Genetic Algorithms. PID controllers are 
advantageous in the sense that they are relatively easy to 
implement and simulate in software and have simple 
tuning procedures where the parameters are tuned until 
the desired performance is obtained. PIDs also offer an 
advantage when it comes to computational time. This is 
an important consideration when a robot must make a 
move to adjust its flight pattern.  A slow response can 
make the difference between a machine that flies 
successfully and one that runs into the ground. The 
disadvantage of PIDs is that, without an accurate plant 
model, it takes trial and error to set the parameters 
correctly. In cases where a plant model is complex one 
then a model may be derived using step functions.  
However, if the plant cannot be modeled accurately the 
model will not perform well. In addition, if the control 
mechanism requires a nonlinear output then the PID 
controller will not control the plant. Hence PID 
controllers are a good fit to linear models or as 
stabilization controllers within other non-linear 
controllers. 
Neural Networks have also been used to develop 
autonomous controllers. Neural Networks, unlike PIDs, 
are very good at dealing with nonlinear data, once trained 
they usually perform well provided that the training set 
was well selected [6]. However, the disadvantage is that it 
is difficult to convert a Neural Network to an equation for 
study and analysis.  Also, if an equation is derived it is 
difficult to get it in a desired format [12]. This becomes 
necessary when modeling a plant where response time can 
be an issue and the programmer is never sure what 
features of the data the Neural Network has really learned. 
Hence, an algorithm might appear to have mastered the 
data only to fail later due to the Neural Network learning 
features that are relevant to the training set  (but not the 
test set). 

Fuzzy Logic based autonomous controllers have also been 
used, fuzzy logic offers advantages in that it can use 
linguistic variables, allows imprecision/contradiction in 
input data, conflicting objectives are reconciled, base rule 
(fuzzy sets) can be modified with ease and is easy to 
implement [4]. In addition fuzzy logic handles non-linear 
cases well and produces a smooth response. However, 
there are drawbacks such as difficulties in programming 
and difficulties in modeling with analytical methods; 
fuzzy sets have imprecise boundaries, results can be 
unexpected and hard to debug, they sometimes post 
additional computational load. There are reports of fuzzy 
logic based controllers (in industry) that did not work as 
well as a good PID controller. 
On the other hand, genetic algorithms and simulated 
annealing offer advantages such as robustness to noise 
and independence of discontinuities in the data. Also they 
are not susceptible to getting stuck in local maximas [7] 
[13].  
Also, the proposed method is easier and less expensive to 
implement than CIFER; where CIFER requires a 
proprietary software package and requires that 
information be recorded from several actual flights in 
order to collect enough data for the frequency response 
models to be constructed.  Once the frequency response 
models are collected, the linear model can then be 
calculated using the software.  Hence CIFER is costly and 
requires a large data set otherwise the system cannot be 
molded accurately. In addition, CIFER is complex and 
entails specific training to become familiar with the 
product and requires operator experience in order to be 
applied effectively. All of these facts indicate that CIFER 
can be an expensive and time intensive process.   

3 PROBLEM DOMAIN  
The goal of this paper is to study the feasibility of using 
the Advanced Formula Prediction algorithm to model the 
actions of a pilot. This algorithm searches for a formula 
from a set of mathematical primitives using genetic 
algorithms and simulated annealing [3]. In modeling a 
plant or the pilot the resulting functions (models) should 
have the capability of accurately reproducing the plant or 
pilot when provided with a set of input and output data 
collected from said system. The benchmark used in this 
paper is a straightforward PID controller that simulates a 
pilot acting on a plant (a Yamaha X-CELL 60 remote 
controlled helicopter). This controller simulates the 
helicopter undergoing a change in height and then 
maintaining a hover. Cruise flight and landing controllers 
are currently being developed and are not ready to 
benchmark against at this time. The PID controller 
(simulating the actions of a pilot) was tuned using trial 
and error until the model underwent a change in height of 
10 meters and then stabilized. The PID was chosen 
because it offered a fast and efficient way to simulate a 
takeoff and the plant was modeled using semi-linear 
models.  Figure 1 demonstrates a block diagram of this 
system in which the PID is simulating the function of a 



pilot controlling the helicopter directly. This setup will 
simulate a change in height and hovering at a fixed 
altitude. 
While the PID controller is straightforward to implement, 
the goal of this paper is to test the application of a genetic 
search based algorithm to model a human pilot simulated 
by the PID. Once this is established, it is the intentions of 
the authors to further this research by deriving a controller 
for flight data collected directly from a human pilot 
following a trajectory that is much more complex than 
staking off and hovering. It is also important to mention, 
that this simulated helicopter model does not take into 
account ground affects on take-offs. That will be a part of 
future work. Also, we will further study the ability of the 
Simulated Annealing based search algorithm to model a 
plant that that is difficult to model using traditional 
approaches (such as step models). Mathematics behind 
the helicopter can be very complicated and nonlinear – 
hence the research done by Mettler using CIFER software 
to derive a linear model was a break-through. It allows 
researchers to derive new equations (linear for the most 
part) that can describe the helicopter model in a simpler 
fashion (mathematically). This linearization on frequency 
response formulas is the basis for the PID controller and 
much research in autonomous helicopters. 

 
Figure 1: A PID controlling a helicopter plant. 

3.1 DATA COLLECTION 
The data collected represents a set of input and output 
values from a simulated human pilot flying an X-CELL 
60 helicopter, as displayed in Figure 2. In this example, a 
pilot controlling an interface is shown to the left and the 
helicopter (plant) is shown to the right. Data is collected 
from the input and the output of the plant 

The PID used has already been tuned and returns accurate 
data that simulate the actions of a pilot implementing a 
change in height and then holding the helicopter there. 
When the model runs, data is collected that show the 
input to the plant (collective control and rudder control, 
height and coordinates) and the output from the plan 
being height and power to that helicopters’ main rotor.  
 
 

 
Figure 2: Collecting Data with a pilot. 

 
A PID works well as a controller but can prove 
cumbersome in determining an exact setting of the 
parameters. Another approach is to evolve a pilot to 
control the plant. This technique has advantages in that 
little knowledge or no knowledge is needed about the 
plant other that input and output data. The method collects 
the data by watching another controller (a live pilot for 
example) run the plant and then studying the data to 
determine if that control behavior can be reproduced 
using the mathematical primitives that it has at its 
disposal.  

By using flight data from a PID, a controller (representing 
the actions of a pilot) generates flight data from which a 
new mathematical model will be derived based solely on 
the data and not on the characteristics of the plant. It is 
assumed that the data collected represents a good 
representative sample. The resulting formula set will be 
compared to the PID to see how well the new function 
simulates a controller it knows nothing about other than 
what it has seen through observation. 

A team at the Department of Electrical Engineering at the 
University of South Florida developed the PID used in 
this paper (some members of the team are listed as co-
authors is this paper). This PID was developed and tuned 
to handle a pre-determined change in height and then to 
hold (hover) the helicopter once the desired height is 
achieved. It performs well in Matlab simulations and is 
currently being modified to undergo field testing. Neither 
model will consider path taken or obstacle avoidance at 
this time. Again, the algorithm presented is uses simulated 
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annealing and genetic search methods to generate 
formulas that fit the data set by searching for patterns 
inherent in the data itself. The newly generated hypothesis 
equation is then tested to see how well it fits the test data. 

3.2 ADVANTAGES OVER OTHER PATTERN 
MATCHING TECHNIUES 

There are methods available to search for patterns in data. 
Such as regression analysis, which can be used for both 
linear and nonlinear systems. There are some problem 
classes that have presented a challenge to statistical 
regression analysis. These include problems in which there 
is little or no information about the function that generated 
data. In these cases, researchers typically use neural 
networks to learn more about the domain space of the 
function. Once the domain is learned then regression 
techniques can be applied more effectively.  

The goal of a search algorithm is to learn something about 
the data set, detect patterns and then generalize what was 
learned into a set of rules that when applied can generate a 
function.  Hence, a good learning algorithm has the ability 
to predict future values from past experience. The better the 
learning algorithm the less the error in future predictions 
provided the data sample is well distributed. In order to 
successfully classify data the following should be 
considered: (1) Data: Is it relevant to base a solution on? Is 
it noisy? Is distributed well? Is it a representative sample – 
where a representative sample is the minimum amount of 
data needed to represent the function? (2) Assumptions: Are 
there domain specific assumptions that must be taken into 
account? (3) Output form: What is the most useful output 
format? Will this format allow for further analysis using 
tools not related to the algorithm that generated the output? 
(4) Evaluation: Is the algorithm accurate? What is the error 
tolerance or, what is an acceptable level of error? 

Learning based on past knowledge falls under the 
category of supervised learning. This type of learning 
assumes that observed data values and their 
corresponding output values are provided in the beginning 
of the search. The aim is to approximate the original 
function with a function that has an acceptable error level. 

4 WHY SIMULATED ANNEALING AND 
GENETIC SEARCH 

After considering the data collected and the goal of the 
experiment (to model a plant or controller) the choice of 
search strategy was narrowed down as follows: First 
classical programming techniques (if then else) where not 
a good fit for deriving a set of equations from data. This is 
due to the fact that no assumptions should be made as to 
the shape of the sample data, and if assumptions were 
made then the algorithm could be limited to considering 
solutions that were programmed for ahead of time. 
 

For example, it would be difficult to write a voice 
recognition program using a classical if-then-else 
approach, because the program must make assumptions 
ahead of time as to what patterns map to a given word. 
This is made even more complicated by the fact that 
different people have a different way of pronouncing a 
spoken word. 
A more effective approach for this type of problem would 
be with the use of a neural network that learns from the 
data directly. An effective neural net implementation 
should be able to generalize (given enough samples) the 
difference between two words that may sound very 
similar – for example: (her and here). Thus, in learning 
directly from data, some approaches tend to be a natural 
fit. Since the goal of this research is to learn directly from 
data, some of the methodologies that we considered 
include decision trees, genetic algorithms, regression 
splines and clustering.   
In order to effectively produce a readily configurable 
function and return an answer made up of pre-selected 
mathematical primitives, a more direct approach was 
needed. A neural network was not chosen because it does 
not offer a practical way to back-solve the solution that it 
returns into a function (with an alphabet of our choosing).  
Decision trees were also considered because of their 
relative speed (faster than version spaces) for a large 
concept space and disjunction easier to carry out; 
however, they were not considered flexible enough to 
produce the function formats required and would be too 
complex to adapt them for use in building formulas that 
fit a set of data. Also, a decision tree may not always 
expain its classification clearly. Another consideration 
was statistical (regression based approaches) – however, 
these do not do well when the final form of the function is 
not known and there is limited flexibility as to the 
mathematical primitives that can be used.  
On the other hand, Simulated Annealing and Genetic 
search techniques were a good fit for many reasons; first, 
the way they search is not mathematically based. The 
latter means that no direct calculations on the data would 
be performed. As such, data discontinuities, noise and 
data inconsistencies would have little effect on the search 
strategy. Second, they search for a solution independently 
of what the data looks like. Hence, there is no significant 
bias in relation to what the data looks like and the 
algorithm is free to look for any pattern hidden within the 
data. Granted, sometimes a search bias can have 
advantages. For example if a researcher knows that the 
function that generated the data contains a given set of 
primitives. The algorithm can then be biased, through the 
selection of the alphabet, to search in that solution space. 
Even if it’s a hunch that the function contained a certain 
mathematical operation, that hunch can be verified by 
applying the algorithm over and over using different sets 
of mathematical primitives. 
Simulated annealing and genetic search strategies are also 
resistant to getting stuck in local maxiams [11] – a big 
advantage when searching for patterns within a dataset. 



As such, the algorithm was implemented with simulated 
annealing and genetic search to look for a set of 
mathematical primitives that when combined would result 
in a function that maps the input data to the output data 
with as little error as possible. 

4.1 THE SEARCH DOMAIN 
The proposed algorithm manipulates the data directly and 
derives a solution based on the data alone. As such the 
algorithm does not need to know how a pilot thinks or 
how a PID controller (simulating the pilot) works 
internally – what is of importance is collecting input and 
output data. Figure 3 shows a system where input and 
output data values are known, but little is known as to 
how these values are being generated. For sufficiently 
large number of variables this problem can be NP hard. 
 

 

Figure 3: Collecting data from a system. 

A search of the literature found no method that generates 
formulas the way proposed in this paper. There is one 
method, however, that has some parallels with the algorithm 
that we propose – that method is CIFER. However, CIFER 
works by measuring frequency response while the proposed 
method searches for combinations of mathematical 
primitives that model the data set. They both offer a way to 
derive a formula directly from data but they take a different 
path in generating the formulas. 

5 THE PROPOSED METHOD 
The technique described in this paper generates 
mathematical formulas from sets that hold mathematical 
primitives using genetic algorithms and simulated 
annealing. This method can be classified as a supervised 
regression learning approach that uses batch data. This 
paper investigates and quantifies the ability of genetic 
algorithms and simulated annealing to find formulas that 
describe the relationship among a set of observed data 
with little or no knowledge of the problem domain.  
Genetic search techniques were selected because they 
offer advantages such as not getting stuck in local 
maxima by searching in parallel from a number of 
different solutions and they are not hindered by 
discontinuities in solutions expressed by mathematical 
formulas since they directly manipulate a string 
representing those formulas [11][12]. Likewise, simulated 
annealing is a robust searching method with similar 

properties [13]. This is especially useful when searching 
large, complex domains: the type that we expect to 
encounter when searching for unknown functions.   
Thus, the proposed method would search for patterns in 
data and generate an estimator function. Performance is 
also important – both in terms of the time it takes to 
search and of the accuracy of the prediction. The way a 
search is conducted is also important because it has an 
impact on how quickly the search converges. The method 
proposed does not use statistical techniques – rather it 
uses genetic algorithms and simulated annealing because 
these methods may find patterns in the data that 
regression may miss due to bias built into the regression 
methodology itself.  
However, simulated annealing and genetic search are not 
perfect and there are disadvantages in using them; mainly, 
the lack of absolute precision. These search methods are 
also not very efficient – especially if the data is well 
defined and the model that generated the data is well 
understood – in these instances regression analysis would 
probably be a better tool. 

5.1 ADVANTAGES OF PROPOSED METHOD 
The proposed method uses genetic search and simulated 
annealing to assemble a formula out of an alphabet of 
primitives supplied by the programmer. Since data may be 
improperly fitted by any one search strategy, the use of two 
search strategies to generate functions provides a better 
overall data fit. The algorithm returns a unique combination 
each time it is ran. Naturally, that depends on the number of 
maximas in the data. The algorithm proposed provides a 
versatile and powerful tool that can be used in investigating, 
verifying and analyzing problems where the relationship 
between the independent and dependent variables is not well 
understood or known. The results of this algorithm may be 
used to derive a function for a PID controller to use. 
Another consideration was the calculation of error. The 
authors opted for a variation of MAPE to calculate error. 
While it is true that the method used to calculate error 
could bias the search one way or another – however, 
overall we felt that the error calculation method selected 
works well for the problem that we are solving. 

6 THE ALGORITHM 
The algorithm was designed to return a solution that use 
pre-provided mathematical primitives. The returned 
function must meet the minimum error required. This 
indicated by a fitness measure that shows how well the 
generated function approximates the observed data. The 
search is halted once the function maps the data within a 
predefined error level or when the allotted search time has 
expired. 

 



6.1 DATA FORMAT 
Given a system under observation, inputs to that system will 
be represented by the vector S and observed outputs of the 
system will be represented by the vector T. Figure 4 
demonstrates a system with an observed input vector Si, and 
an observed output vector Ti.  S and T cannot be empty. 
 

 

Figure 4: Inputs and outputs to a system 

 

Each input vector S must have a corresponding output 
vector T. When collecting data from a system, a collection 
of input vectors is entered and a collection of output vectors 
is observed. The algorithm would take the S and T vectors 
and produce some function F that relates all the input 
vectors (S1, S2 S3, … , SN) to their respective output 
vectors (T1, T2, T3, … , TN) such that: Tij = Fj(Si()) 
where: 1 <= j <= n. and n is the size of T.  
The average error rate e is calculated as shown in figure 5. 
 

 

Figure 5: Error Calculation 

 

Note that the error calculation is applied to one output value 
at a time. Since T holds all the output values for a system, 
the algorithm produces a separate formula for each element 
of T. The output under consideration (represented by i) is 
selected from each output vector T and considered.  

6.2 THE SOLUTION FORM 
The algorithm generates formulas using the format shown 
below. This format is flexible and allows for fine-tuning of 
the returned function. The algorithm returns a solution that 
contains the same number of variables as the size of the 
input vector S. FPEG takes the members of the input vector 
S and applies to each member the operation, multiplier and 
property operators. The property operators are variables that 
may hold any of a number of different mathematical 
primitives. The values for the operators are derived from 
sets that will be referred to as the alphabet sets. Once the 
first set of operators is applied, the resulting (modified) 
variables are combined using the combination operator. 
When all these calculations are completed, a delta value is 
added or subtracted to the resulting sum. The final result is 
referred to as the calculated value. This technique searches 
within all the possible combinations of the above operators 
to find the best combination, that when applied to the input 
values in S, will yield a calculated value that has as little 
error as possible when compared to the actual value. If the 
algorithm were to search every combination then the 
problem would be unmanageable for large alphabets and/or 
large input sets. Genetic and simulated annealing search 
methodologies excel in searching large problem domain for 
combinations that produce the best fit.   

6.3 OPERATOR DETAILS 
The algorithm is flexible because the formula can be 
adjusted and changed as needed. Also the alphabet sets 
can contain any mathematical primitive or function and, 
as such, the length of the sets themselves can be varied. In 
the next section we will discuss the alphabet values that 
were chosen for this paper 

6.4 CALCULATING THE FITNESS VALUE 
The application of these operators to the vector S of input 
variables transforms these variables into a resulting 
calculated value. This resulting value is compared with the 
original output value stored in the corresponding result set 
T.  As shown in figure 3 earlier, for some pair Si():Tij, the 
error value is calculated by comparing the calculated value 
with the actual value. The error value shows how close the 
function built by our algorithm comes to approximating the 
supplied data. The fitness value is defined as the average of 
all the error values for a given output. The resulting error 
value is a percentage that shows the output deviation of the 
generated function in relationship to where the output value 
should be (as provided by the data). The returned error value 
is referred to as the fitness of the function. The lower the 
value the better the overall fit of the generated function. 
Hence, fitness values have a range of 0.00 % error 
(indicating a perfect match) to large numbers (20,000 % for 
example) – the latter indicates a poor fit.  
 
 
  



7 TESTING METHODOLOGY 

7.1 TEST GOALS 
The aim of this algorithm is to derive functions from a given 
set of data. We wanted to verify that the proposed method 
would be able to generate function that behaves much like a 
helicopter pilot (modeled by a PID controller) would. 

7.2 INPUT DATA 
The graph below represents the input parameters collected 
over 4000 time slices and normalized to fit within 100 
samples. They demonstrate that in order to achieve a height 
change the ‘Main Rotor Height Collective’ must be kept at a 
certain power setting and then reduced as the desired height 
is approached. The ‘Pedal Angle Spin Control’ oscillates to 
compensate for the plane’s tendency to spin left or right. 
This oscillation reflects the pilot’s efforts in keeping the 
plane stable. This data is shows in Graph 1. 
 

 
Graph 1: Input Data Plot showing Collective and Pedal 

Angle as time passes 
 
The next four graphs (Graphs 2-5) show one of the actual 
output values (height) of the plant (helicopter) plotted 
against the predicted value generated by the hypothesis 
function. It is important to note that the predicted value 
starts out with a large error and then as the annealing 
temperature approaches 0 the generated function gets better 
and better at approximating the output. The annealing 
temperature used in the run that generated the graphs was 
5000.      
Note that although the output looks relatively simple – after 
all it is a semi-linear line – the true difficulty was not in 
modeling the line but rather associating inputs that stay flat 
(no value change) for a significant period of time to the 
output shown. None the less, the algorithm was able to map 
things perfectly well. 

 
Graph 2: Actual vs. Function-Generated value – Annealing 

Temperature = 4500. 

 
Graph 3: Actual vs. Function-Generated value – Annealing 

Temperature = 3000. 
 

 
Graph 4: Actual vs. Function-Generated value – Annealing 

Temperature = 1500. 
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Graph 5: Actual vs. Function-Generated value – Annealing 

Temperature = 0. 
 
The table below shows data collected over 50 runs – each 
run set covers 10 runs – the run set is indicated and the 
starting temperature is noted. Also, the number of layers is 
shown – the higher the layer number the more complex the 
function – the latter means more expensive computational 
time but a more powerful function. The performance 
average for each set of 10 runs is shown in the rightmost 
columns – with a best average set performance of 0.45% 
and a worst performance of 3.25 %.  
 

Table 1: Test results for benchmarks 

Run Set Temperature Layers Performance 

1 3,000 2 3.25% 

2 4,000 2 3.02% 

3 5,000 3 0.55% 

4 6,000 3 0.86% 

5 10,000 4 0.45% 

 
 
 
 
 
 
 
 

8 CONCLUSIONS 
We have demonstrated a new tool based on genetic-search 
that can be used to construct mathematical formulas from 
datasets collected from a system under observation. The 
derived functions model the actions of a pilot (simulated 
by a well tuned PID) very well. The results obtained 
demonstrate that the algorithm is capable of generating 
results that archive an accuracy level of 97% to 99% or 
higher. This tool has more than one application. First, it 
can be used to model a pilot flying a helicopter; next, it 
can also be used to model the plant (for cases where 
models of the plan can not be easily obtained). The 
technique can also be used to derive equivalent alternate 
methods to a controller to contrast against an existing 
controller design. 
The method proposed generates accurate pilot formulas 
that are relatively easy to generate. The next step will be 
to model a more complex helicopter model.   There is also 
new data collected from a live pilot flying the Simulink 
model of the R-50 helicopter via a USB port and the 
model helicopter controller– this data is interesting in the 
sense that the pilot was asked to take off and follow a path 
without any other information.  It is the authors’ 
intentions to use this new test data to create a more 
versatile controller.  The authors also propose using 
recorded flight data from the helicopter itself to 
demonstrate that the methods in this paper have the ability 
to develop an accurate mathematical model of the 
helicopter with an easy to implement fashion.  
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