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Abstract. Real-world applications generally distinguish themselves from 
theoretical developments in that they are much more complex and varied.  As a 
consequence, better models require more details, new methods and, finally, 
more complexity. By confronting a benchmark evolutionary algorithm with an 
automotive gearbox with hundreds of parameters to optimize, we were able to 
observe new requirements which led us to an additional procedure. 
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1  Introduction 

Roughly two years ago we were working on the optimization of a complex system 
(the parameterization of an automotive gearbox). A large number of parameters 
(variables) had to be set which, for their part, affected several evaluation criteria 
(objective values). Using evolutionary algorithms (EA) proved to be an effective 
optimization procedure which also allowed multi-objective optimization. 

In the course of our work we examined the optimization runs more closely and 
were able to establish that in parts of the system good solutions had been abandoned 
by the optimization. As each individual optimization took many hours, even more 
preparation time and required the deployment of substantial resources on the engine 
test bench, we decided to look for the cause of the problem. 

An in-depth analysis showed that the good partial solutions were being covered by 
other not-so-good partial solutions in the overall picture – their effect was being sup-
pressed. 

In this paper we shall present our reflections on how to avoid this phenomenon as 
well as parallels from the area of biology/genetics which served as the starting point 
for further work, see section 2. 

Based on these reflections we looked for a use and implementation of these 
principles. The first domain which we identified as promising was the connection 



between the incomplete coupling of variables which were to be optimized and the 
system’s objective values. In section 4 we describe an implementation of the 
principles outlined in sections 2 and 3. We have called this extension complementary 
selection and variation. It became apparent that this extension can easily be 
incorporated into the established procedure without changes having to be made to the 
existing structure. 

The application of complementary selection and variation is shown in section 5 
using examples constructed from well-known benchmark functions. This should make 
the principles presented as well as their positive effects easy to understand. We shall 
also provide the results of our real-world application of the gearbox optimization. 
Unfortunately, we cannot give a full account of this as not all details have been 
approved for publication. 

Finally, in section 5, we show how the principle presented noticeably improves the 
scalability of evolutionary algorithms for these kinds of incompletely coupled 
systems, making it possible to solve more complex problems with the computing 
technology available today or rather to do so in less time or with less effort. In the 
example of gearbox optimization mentioned earlier, one can now, with the same 
amount of effort, simultaneously parameterize the gearbox for a greater number of 
working points than was possible at the beginning of our optimization work, thus 
achieving higher quality. This is quite apart from the fact that the use of evolutionary 
algorithms clearly facilitates a task which is monotonous and prone to error. 

2  Biological Concepts and Complexity 

If there is a growing number of variables and features as well as a lot of interactions 
between these, the complexity of the system under investigation rises considerably. 
One can try to simplify these complex systems by compartmentalizing them. In this 
way, the complex system can be seen as a number of simpler systems. These can, on 
the one hand, be analyzed more easily and then, on the other, be optimized more 
easily. It is quite possible for features to exist which have only been generated with 
the information from one gene. There are also features generated with the information 
from several genes which lie on one and the same chromosome. This is shown in a 
simplified diagram in figure 1. 
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Figure 1. No coupling between chromosomes/modules during feature generation 



This kind of compartmentalization can, however, only be carried out in the rarest of 
cases. Most features are formed with the information from several genes which are 
distributed over various chromosomes. The same genes can simultaneously contribute 
their information in order to generate several features. Figure 2 shows this coupling 
between the genes belonging to different chromosomes in order to generate features. 
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Figure 2. Partial coupling between chromosomes/modules during feature generation 

This constitutes a borderline situation: we cannot separate parts of the system into 
parts running strictly parallel to each other, nor are we able (or do we want) to mix all 
the parts with each other. In figure 3 we have tried to provide an idea of what 
coupling between different genes/chromosomes and their dependent features could 
look like. 
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Figure 3. Complex interaction between chromosomes/modules and features/sub features 

If, for example, we try to consider the human genome with its 46 units, it soon 
becomes clear that this division is only an extremely rough approximation of its 
complexity. Consequently, other strategies and data structures must be employed in 
order to reflect the system’s complexity within the evolutionary process. The features 
that appear in figure 3 can be considered directly as objective (or fitness) values. We 
can also decompose the relations between genes and fitness values into two steps, 
firstly morphogenesis which leads to the constitution of structures characterizing 
individuals, and secondly evaluation (testing) which relates structures to fitness 
values, see figure 4. This whole process is called phenogenesis. A similar description 
of mapping between “evolved representations” (genes) and “representation that is 



evaluated by the fitness function”, as result of the morphogenetic process, is given by 
Angeline [2]. 
The complexity of the system can be divided into 
� the complexity of the data structure and 
� the complexity of the procedure. 

However, this division cannot be taken too strictly. On the one hand, a new procedure 
can necessitate the storing of additional information. On the other, complex data 
structuring can make new administrative functions necessary. 

In complementary selection and variation, which we would like to propose as a 
means of faster optimization, particular use is made of additional information. An 
evolutionary algorithm works with this information in a way which is not only purely 
stochastic but also knowledge-based. The aim is to use the available knowledge 
concerning phenogenesis in the evolution procedures. We are still working on 
extending this principle so that it can be applied to new procedures. 

3  Complementary Selection and Variation 

The basic idea behind complementary crossover is very simple. First, form parent 
couples which complement each other well in their respective strengths. Then take the 
best gene from each parent in order to create a new individual. 

We are not making a case for artificial gene selection (gene manipulation) or 
eugenism. Quite the opposite, we have attempted to find out how this selection could 
take place naturally. Each person has different character traits with different 
advantages which can complement each other well. This more constructive point of 
view can be seen as the counterpart to the competition and struggle for life or “for the 
possession of the other sex” pointed out by Darwin and Spencer, or as the 
transposition of social (or ecological) complementarity to the level of the genome. 
Meanwhile, we take Darwin’s definition for use on the level of organs or genes: “this 
preservation of favourable individual differences and variations, and the destruction 
of those which are injurious, I have called Natural Selection or the Survival of the 
Fittest” [3]. 

We have tried to challenge some earlier assertions. For example, Monod [11] 
claims that “the selection operates on the macroscopic scale, that of the organism”. 
We, in contrast, have selected on gene level. F. Jacob [6] assumes that “the program 
does not learn its lesson from experience”. However, we found that this would be an 
unnecessary restriction for efficient optimization. That is why we wanted to feed our 
algorithm with knowledge derived from experience. We reconsidered Mayr’s [10] 
words: “There is no link between a molecular event and its potential significance. It’s 
the same for the mix of chromosomes (crossing over) or their segregation, the 
selection of gametes or of sexual partners”. 

At the same time, these authors and scientific papers (such as Losos’ [9]) 
confirmed, to some extent, our idea that genes could be involved in a lot of intelligent 
processes of evolution. As Losos puts it: “Phenotic plasticity: an organism 
(“phenotype”) is not only formed by its genes (its “genotype”) but also by its 
environment. […] For a few years now, evolutionary scientists have increasingly been 



discussing the question of whether such a plasticity could possibly also be of 
importance to evolution”. If this biological analogy were transferred to evolutionary 
algorithms, for example, this might lead to the inclusion of gradient-based procedures 
in hybrid evolutionary algorithms.  

Even though neither the examples mentioned nor the textbooks (such as Lodish’s 
[8] or Reinhard’s [15]), or the specific literature in the field of EAs referred directly to 
complementary selection and variation, they have inspired us strongly. Schaffer 
(quoted by Zitzler [18]), for example, carries out selection for each objective 
separately. Complementary recombination with the use of dominance and diploidy 
has been studied frequently, see for example [7]. Learning from experience has been 
used in different forms, such as in Rasheed’s search control [14]. Note that the 
Lamarckian learning that we use is applied to the additional information 
“dominance”, which does not code directly (intergenic regions, introns or 
pseudogenes), see Angeline [2] and Singh [16]. Rules for the viability of mating are 
mentioned in Fonseca [4]. We gathered and adapted these ideas in the new procedure. 
Even if the procedure cannot be found in nature, this does not keep us from working 
with it and the evolutionary algorithms may well emancipate themselves from this 
paradigm. In any case, we agree with Zwirn [19] that biology will continue to be an 
important source of inspiration for work with complex systems. 

The essential reason for biologists’ rejection of Lamarckian evolution (heredity of 
learned characters) comes from molecular biology and is based on the absence of 
observation: there is no known molecular mechanism that can explain a feed back to 
the genes, the decoding of genetic information is a one-way process 
AND->ARN->Protein. Furthermore, real observations of the evolution process can be 
explained by Darwinian selection alone and attempts to prove the heredity of learned 
characters failed. A few recent discoveries seem to question this central dogma, e.g. 
repair mechanisms, regulation mechanisms, genetic conversion, transformation 
ARN->ADN in a virus. To the second argument, we can counter that a Lamarckian 
evolutionary process should be robust in the face of the hazards of life and work very 
slowly because it takes time to gather solid knowledge. Therefore, its effects will be 
difficult to recognize, especially in complex organisms. It would be interesting to 
accelerate this learning process in an artificial system, depending on environmental 
noise.  

During our work, we considered several ways to ascertain the information 
“dominance”. The first possibility is through slow mutation and selection in parts of 
the genome that carry this information. Or we could use a retarded Lamarckian 
mechanism by which, for example, the corresponding genes of two alleles are 
alternatively compared during individuals’ lives. We chose the third possibility, 
which would be quite incredible in the nature but is easy to realize in a program: 
direct Lamarckian learning. The genes of two parent individuals are directly 
compared assuming an information exchange on this level. Dominance would only be 
an advantage in a stable environment or if cyclical changes occur, in which “learning” 
makes sense. This is a common situation in industrial applications.  

Perhaps Lamarckian heredity is not necessary for the existence of complementary 
selection and variation in nature. However, we thought it necessary to point out its 
role because of its didactic effect on our work and its effective use in our algorithms.  



3.1  Procedure on the basis of a simple example 

In figure 4, we represent complementary selection and variation within the whole 
schema of iterative evolution. We then show the single steps which led us to the 
global procedure. 
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Figure 4. Complementary selection and variation as part of the whole iterative evolutionary 
process 

To illustrate the procedure, let us look at an example of five individuals which possess 
two genes each, whose expression is identifiable in two features. 

Gene A finds its expression in the f1 feature; Gene B finds its expression in the f2 
feature. 
 
   Gene A  Gene B  f1 f2 
 Ind 1  A1  B1  1 9 
 Ind 2  A2  B2  3 3 
 Ind 3  A3  B3  2 7 
 Ind 4  A4  B4  8 1 
 Ind 5  A5  B5  6 2 
 
A PARETO ranking which has f1 < 7 and f2 < 8 as its goals would exclude the 
individuals Ind 4 and Ind 1 from further optimization loops and thus give away 
valuable potential of the genes A1 and B4. Here we can see that in the case of genes 
(and features) being assigned absolutely separately, the best solution would combine 
Gene A1-Gene B4. 



How do we arrive at this solution? Firstly, all existing features are sorted by using 
a selective, or rather complementary, partner search. In the example we sort the 
solutions simultaneously according to f1 and f2: 
 
   Sorting according to:    f1  /   f2 
    f1-Ind1 - f2-Ind4 
    f1-Ind3 - f2-Ind5 
    f1-Ind2 - f2-Ind2 
    f1-Ind5 - f2-Ind3 
    f1-Ind4 - f2-Ind1 
 
In this way, pairs are created which contain a complementary potential in their genes. 
Actually, neither individuals nor pairs are sorted here, but rather features, since Ind 1-
Ind 4 can be seen as the best and worst result at the same time. 

If we take the pair Ind 1-Ind 4, we have four possible descendants. Gene A1-
Gene B1, Gene A1-Gene B4, Gene A4-Gene B1 and Gene A4-Gene B4. 

How can the best solution Gene A1-Gene B4 prevail? In the course of the next 
generations after a new selection? This seems to be very inefficient. The use of 
dominance, which has been implemented in many EAs with di- or polyploidy, can be 
reemployed here. 

The traits which have received a better rank with the corresponding feature will be 
assigned greater prevalence (see Allchin [1]) which we transform into dominance 
using previous knowledge concerning the correlations between gene-traits. Prevalence 
is the fitness of traits considered separately and ranked with their respective 
equivalent in the population. It is related to the whole population and not limited to 
the comparison between two alleles (or more) in diploid (or polyploid) chromosomes. 
We have called any process (and corresponding information) that leads to a stronger 
or favored expression (all-or-none or intermediate) or more frequent apparition and 
heredity of a gene or phene ‘forcing’. While dominance tends to be attached to alleles 
and prevalence tends to refer to traits in a population, both contribute to forcing 
solutions which we suppose to be better; note that it could be interesting to introduce 
a third term matching the structure evaluated. Here, Gene A1 has the highest rank 
among all f1-rankings and Gene B4 ranks highest among all f2-rankings. Gene A1 
and Gene B4 become dominant. 

During crossover, or genetic conversion, or gene expression, only those genes are 
accepted which have the greatest dominance. “The set without any defects assumes 
leadership and hence is able to compensate the defects of the other set” [17]. 
Recessive genes should disappear gradually. Dominance will stay with the gene 
during the next generations and is increased or reduced with every new generation. 
Thus, a knowledge base is transferred from generation to generation and is possibly 
updated on an ongoing basis. 

With continuous values it is possible to realize the recombination in a “soft” way, 
as figure 5 shows. 
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Figure 5. Effect of complementary intermediate recombination (principle) compared to 
intermediate recombination (“soft” recombination of dominant / recessive genes) 

3.2  Extension of the procedure - knowledge-based or knowledge-building 

In our procedure, the connections between the gene and the feature are formed by 
polygenia (a feature is influenced by several genes) and pleiotropy (one gene is 
involved in the formation of several features). Figure 6 tries to give an impression of 
these connections. 

 

  gene A  gene B  gene C  gene D  f1 f2 f1+f2 
 
solution 1 A1  B1  C1  D1  1 9 10 
solution 2 A2  B2  C2  D2  3 3 6 
solution 3 A3  B3  C3  D3  2 7 9 
solution 4 A4  B4  C4  D4  8 1 9 
solution 5 A5  B5  C5  D5  6 2 8 

enzyme a 

enzyme b 

 
Figure 6. Polygenia and pleiotropy – the connection between gene and feature 

The allocation of gene to feature is complex. This allocation can be predefined if it is 
already known. In this case, a knowledge basis will be defined before optimization is 
started (our implementation). 

If the allocation between gene and feature is not known in advance, it can be 
decided for each generation, with the help of a correlation analysis for instance. In 
this second case, which we have not looked at more closely in our program realization 
yet, this knowledge builds up in the course of the optimization. Dominance is then a 
product between the correlation factor and the ranking value. When the rank is high 
(good), the ranking value is positive; when the rank is low, the ranking value is 
negative. This produces the following results: 
• high correlation * positive ranking value -> dominant, 
• high correlation * negative ranking value -> recessive, 
• low correlation -> neutral. 



The relation between gene and feature can be described with the help of a soft 
definition. The connection between country and language or language and culture is 
an example of this. In this case, we speak of “the sphere of influence”. Genetic 
interference (silencing) and differentiated gene expression (few genes find strong 
expression; most of the genes find weak expression or none at all) show that the 
allocation of gene to feature is not at all trivial. It is quite certain that new functional 
patterns may be found here. 

4  Programming 

In technical practice a large number of dynamic systems exist which are evaluated by 
simulating the system for an extended time period and analyzing the system reaction, 
see figure 7. The system can be controlled via the input variables (variables for 
optimization). The problem-specific evaluation of the output signals usually results in 
several objective values rather than just one. Consequently, a multi-objective 
optimization of the system must be carried out. 
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Figure 7. Structure of control and evaluation of a dynamic system 

Real-world systems cannot be evaluated comprehensively if only one simulation is 
carried out but rather a greater number is necessary. In the case of a gearbox, several 
working points have to be investigated. Naturally, the number depends on the 
complexity of the system as well as the qualitative requirements on the result. 

Unfortunately, this increases the number of variables which have to be optimized, 
the number of objective values and also the total simulation time. In short, the 
complexity of the optimization problem which is to be solved becomes noticeably 
greater. 

However, the addition of further working points results in a situation in which not 
all the variables affect all the objective values. It is often the case that few objective 
values are dependent on a larger number of variables. Other objective values, in 
contrast, depend only on a small number of variables (for instance, parameters in a set 
of characteristic curves controlling a certain field of activity). It is often known in 
advance which of these variables contribute to which objective values. 

In our first implementation of the principles discussed in section 3 we took 
advantage of this knowledge available to the engineer/optimizer concerning the inner 
couplings between variables/parameters and objective values present in the system to 
be optimized. 

Here, we are working on the precept that the user knows which variables Var 
(termed genes in section 2) affect which objective values ObjV (termed features in 



section 2). In this way, it is possible to state exactly that Var1 affects ObjV1 and that 
ObjV2, Var2 affects ObjV2 and ObjV4, etc. 

In this procedure a variable can affect one or several objective values. In the same 
way, an objective value can be affected by several variables. As regards all real-world 
applications, we can assume that the user knows this allocation. 

By the way, this procedure also covers for the eventuality that all the variables 
affect all the objective values (the most ‘general special case’, the only one which has 
been taken into account in all MO applications so far). This really is a special case, 
however, which very seldom occurs in practice when optimizing complex technical 
systems. 

 

In order to define the assignment between variables and objective values we have 
employed a cell array. (As we carried out our work using Matlab we have used the 
Matlab notation here. The principles can, however, be transferred to any other kind of 
implementation.) The first column contains the indices of variables Var, each of 
which affect the same group of objective values ObjV. The second column contains 
these corresponding objective values. 
 
    % Assignment Var to ObjV 
    Var2ObjV = { [1],   [1 2]; 
                 [2],   [2 4]; 
                 [3 4], [3 5 6] 
               }; 
This information allows us to break open the normal process of ranking, selection, re-
combination and mutation which, up till now, had been carried out for all variables 
and objective values simultaneously. With the new procedure, a separate loop is run 
through for each row in Var2ObjV, see figure 8. This is always done for exactly each 
of those variables and objective values that belong together. In the beginning, the 
individuals are divided into separate variable groups. New sub-individuals are 
generated for these groups, which are joined together again at the end. As a variable 
can only ever occur in one variable group, the variables do not overlap. Nevertheless, 
it is possible for an objective value to appear in one or all variable groups. 
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Figure 8. Structure of the extended evolutionary algorithm employing complementary selection 
and variation 

By using this procedure we are able to make sure that one variable is influenced by 
only one or a few objective values. That means that during ranking (and the 
subsequent selection and production of offspring), only those objective values are 
used which influence this variable. This allows the locally good features/variables to 
assert themselves relatively easily, rather than being suppressed by other bad 
variables in the same individual. 

5  Application of Complementary Selection and Variation 

For all our experiments we used an extended evolutionary algorithm previously 
employed successfully in many of our other real-world applications (see for instance 
[12]). The structure and the main operators are shown in figure 8. We employed the 
following evolutionary parameters: 
• discrete recombination, recombination rate of 1, 
• real valued mutation with medium sized mutation steps (mutation range of 0.03, 

mutation precision of 20), 
• multi-objective ranking using PARETO ranking and goal attainment, sharing 

between individuals, selection pressure of 1.7, stochastic universal sampling and 
elitist selection by employing a generation gap of 0.9, an archive for good 
solutions found (currently without reinsertion into the population). 

Normally, we use multiple subpopulations with migration, different strategies for 
each subpopulation and competition between subpopulations. However, the 
experiments for this paper involved a very small number of individuals (25-35 
individuals) and it would make no sense to use multiple subpopulations for such a 
small number of individuals. 



5.1  Example using extended benchmark functions 

We constructed an example function using a number of standard benchmark 
functions. Each of the multiple objective values is calculated by one well-known test 
function. The special characteristic is that only a few of the variables are used for the 
calculation of one objective value. In addition, some variables are used for the 
calculation of more than one objective value. 

In this example we employed the following two test functions: hypersphere 
function (DeJong’s function 1) and 'Moved axis parallel hyper-ellipsoid 1c' (the 
minimum of this function is located at Var = [5, 10, 15, 20, 25, 30, ...]). 
We used 10 variables calculating 2 objective values. ObjV1 is calculated from 
variables 1 to 5, ObjV2 from variables 4 to 10. This results in the following 
assignment between variables and objective values: 
 
   % Assignment Var      to      ObjV 
   Var2ObjV = {[1, 2, 3],        [1]   ... 
             ; [4, 5],           [1 2] ... 
             ; [6, 7, 8, 9, 10],   [2] }; 
 
Our optimization runs were terminated after 30 generations. This is quite early and 
the optimization has not really converged to the PARETO front. We are, however, 
looking for a quick return. Our real-world application cannot be run for a longer time 
(the current application must use less generation because of running time and 
available resources). Thus, it would not make sense to compare long running 
optimizations. 
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Figure 9. Comparison of PARETO front (formed from non-dominated individuals) of different 
optimization runs over 30 generations employing complementary selection and variation 
(labeled ‘with ComplSV’) or without complementary selection and variation (labeled ‘without 
ComplSV’) 

The results presented compare representative runs for two types of optimization, 
which are identical except that some used and others did not use our new principle: 
complementary selection and variation as presented in section 4. The runs with 



complementary selection and variation are labeled ‘with ComplSV’, the others are 
labeled ‘without ComplSV’. 

In figure 9, four different runs are presented for each type of optimization. We 
selected the non-dominated individual from each run and calculated the (limited) 
PARETO front formed by these individuals (in the solution space). These fronts are 
plotted on the same diagram. 

We used minimization for both objective values. Thus, solutions which are more to 
the left and lower down represent better solutions. 

When analyzing the diagram we can see that the runs using complementary 
selection and variation performed better than the runs which did not use this principle. 
Unfortunately, we do not have a statistical evaluation or performance assessment of 
these results at hand. This will be part of our further work. 

Our main goal with these (simple) experiments was to open up the discussion on 
the principle presented, using examples accessible for everyone. We see this as only 
the beginning of many more experiments using other (more complex) functions, 
gauging the influence of the many parameters and operators used in evolutionary 
algorithms and implementing performance assessment for a more rigorous 
comparison of the optimization results. 

5.2  Optimization of the automotive gearbox 

Depicting complexity is no easy matter and examples from industrial practice are 
particularly difficult to compare because they cannot be reproduced exactly. Hard 
facts (in a mathematical sense) cannot be shown. Many more tests will be necessary 
in order to be able to better quantify the advantage of the new procedure in technical 
applications. 

With regard to our long-term objective of optimizing several thousand parameters, 
we will have to make compromises and limit the scope. When carrying out 
experiments which require a day’s preparation on expensive equipment and in the 
case of calculations which take 10 to 20 seconds per individual, experience can only 
be gathered very slowly. 

After successfully completing first, basic tests with 12 variables two years ago, we 
became braver and today are able to observe a total of around a hundred values, 
distributed over 6 chromosomes with the aid of complementary selection and 
mutation (within the chromosomes). We also use many attributes to compare the 
results and fix the optimization targets. 

The effort needed to check the optimization methods grows disproportionately. 
Currently we tend to use samples to assess the behavior of the optimization during an 
optimization run. The final results are used to check the overall quality of the runs. 

The illustration in figure 10 below shows that with procedures becoming 
increasingly complex, extended visualization methods must be employed. 



 

1st working point  
2nd working point 
3rd working point 

“Partly coupled optimizations” 

objective value 1 (of working point) 

ob
je

ct
iv

e 
va

lu
e 

2 
(o

f w
or

ki
ng

 p
oi

nt
) 

 
Figure 10. Depicting working points of the gearbox application looking for the goodness in 
each working point; each ‘dot’ represents a working point consisting of 2 objective values (x 
and y axis respectively), one individual consists of 3 working points/6 objective values (an 
allocation of the working points of each individual was not carried out in this diagram). The 
individual (triangle) outlined is dominated if we consider only one working point (2 obj. val.) 
but non-dominated if we take all of them into account. 

If we consider only two or very few objectives, an optimization along the Pareto 
front as proposed in many EA makes sense. When the number of objectives increases 
(see figure 11), the number of dominated individuals drops and individuals that were 
considered dominated become non-dominated. In other words, there is a high 
probability of finding all the individuals on the non-dominated Pareto front, which 
therefore loses its significance. There is no longer any possible differentiation; all 
individuals have the same rank. In this case, selection without pressure is equivalent 
to a random selection. For this reason it is important for complex real-world 
applications to have extended MO strategies.  
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Figure 11. By increasing the number of objective values, the Pareto front loses its selective 
significance 



6  Conclusion 

Scientists have repeatedly observed that natural adjustments to changed living 
conditions are made more quickly in nature than can be explained by known 
evolutionary procedures. These kinds of observation support creationism which 
radically questions Darwinian evolutionary theory [5]. One can also, however, ask 
oneself which additional intelligent optimization procedures and “random rules” 
(which is, of course, a contradiction in terms) are employed in nature, which could 
explain the discrepancy between theory and observation. 

This does not in any way resolve the conflict between those who see chance as life-
inducing and those who see a purpose behind every development from the beginning 
of time (was chance created by purpose?). In order to obtain useful results in practice, 
new patterns and rules will be looked for where it was assumed that chance was at 
work. Where fixed rules have been established, new deviations, sounds and other 
random phenomena will be searched for. The crossover which is considered random 
supplements the Mendelian laws, whilst complementary variation provides 
evolutionary chance with new deterministic rules. Simple models such as 
complementary selection are always particularly nice because the effort to gain ratio 
is right. Furthermore, it is easier to extend a basis which is simple. 

When optimizing complex, real-world systems the question of the scalability of the 
optimization procedures used arises time and time again. It is often the case that no 
concrete statements exist regarding their scalability. Even at the speed of today’s 
computers, time-consuming comparisons of these real-world systems cannot be made 
or are difficult to make due to extremely long computing times. 

In order to manage large systems, therefore, an attempt is made to decompose 
them. Unfortunately, this can only be done easily in very few cases since interactions 
existing between different areas prevent complete decomposition. However, in many 
real-world applications there is no complete coupling of all sub areas. Thus, partial 
decomposition is possible. 

We have presented an approach for this kind of partial decomposition. The utility 
of the method was demonstrated employing extended, standard benchmark functions. 
We have also presented an overview of our results from the parameter optimization of 
an automotive gearbox system. Given the limited resources available and the high 
cost of a full optimization, the application of complementary selection and variation 
produced notably better results than our (already very good) extended evolutionary 
algorithm [13]. In particular, the much improved scaling of the problem size 
regarding additional parameters and objective values (employing the simulation of 
additional working points) allowed us to derive better results in the very limited time 
available. 

The further development of complementary crossover will connect the following 
fields of knowledge: behavioral psychology, genetics and bioinformatics. The latter 
can help to check the efficiency of hypothetical procedures before time-consuming 
trials or observations in other areas are undertaken. 
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