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Abstract. Graph chromosomes provide an elegant and flexible structure 
whereby genetic algorithms can encode applications not easily represented by 
the conventional vector, list, or tree chromosomes. While general-purpose mu-
tation operators for graph-encoded genetic algorithms are readily available, a 
graph-encoded GA also requires a general-purpose crossover operator that en-
ables the GA to efficiently explore the search space. This paper describes the 
existing graph crossover operators and proposes a new crossover operator, 
GraphX. By operating on the graph’s representation, rather than the graph’s 
structure, the GraphX operator avoids the unnecessary complexities and per-
formance penalties associated with the existing fragmentation/recombination 
operators. Experiments verify that the GraphX operator outperforms the tradi-
tional fragmentation/recombination operators, not only in terms of the fitness of 
the offspring, but also in terms of the amount of CPU time required to perform 
the crossover operation. 

1   Introduction 

In a given application domain, genetic algorithms use the principles of genetics and 
natural selection to evolve optimal solutions to specified problems, or to adapt exist-
ing solutions to changing environments [5]. With search spaces encoded as vector, 
list, and tree chromosomes, genetic algorithms have demonstrated success in a wide 
variety of applications [4], including digital circuit design, VLSI cell placement, trav-
eling salesman problems, artificial intelligence, and adaptive filtering. 

However, for many applications of interest, including the evolution of digital cir-
cuits and biological molecules, graph-encoded chromosomes provide the most ele-
gant, flexible, and intuitive structure whereby a genetic algorithm can encode the 
application’s search space. While graph mutation operators are readily available, the 
existing graph crossover operators simply do not perform well in more than a handful 
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of narrowly defined application domains. This paper describes the existing graph 
crossover operators, which tend to divide each parent into two disjoint fragments and 
then merge fragments from opposite parents to form offspring. After discussing the 
unnecessary complexities, restrictions, and performance penalties associated with 
these fragmentation/recombination operators, this paper presents a new crossover 
operator, GraphX. Modeled after the traditional 2-point crossover operator used on 
vector and list chromosomes, the GraphX operator avoids the pitfalls of fragmenta-
tion and recombination by operating on the graph’s representation rather than on the 
graph’s actual structure. Experiments verify that the GraphX operator outperforms the 
traditional fragmentation/recombination operators, not only in terms of the fitness of 
the offspring, but also in terms of the amount of CPU time required to perform the 
crossover operation. 

2 Related Work 

A graph can be represented directly as a linked data structure, or indirectly as an 
adjacency matrix or adjacency list [2]. If the graph’s nodes have types associated with 
them, then the indirect representations must also represent the node types; a vector is 
sufficient for this task. Thus, an arbitrary graph of any size and any structure can be 
completely represented by a two-dimensional adjacency matrix and a one-
dimensional types array. While effective crossover operators that manipulate two-
dimensional matrices do exist, such as the subsequence exchange crossover of [6] and 
the window crossover of [8], surprisingly little effort has been expended in adapting 
these operators to the problem of graph crossover. 

2.1   Fragmentation and Recombination Operators  

Much of the research related to crossover operators for graph chromosomes has fo-
cused on techniques that first divide each parent graph into disjoint fragments (where 
each fragment is a connected sub-graph), then merge fragments from different parents 
to produce offspring [1], [3]. While these operators have demonstrated success in 
certain applications, such as the evolution of self-organizing maps [1] and the evolu-
tion of biological molecules [3], an effective general-purpose crossover operator for 
graph chromosomes has not emerged. 

2.2   Globus Crossover 

The crossover operator devised by Globus, Atsatt, Lawton, and Wipke is representa-
tive of the best work in this area. While many graph crossover operators place sub-
stantial restrictions on the structure of the parent graphs [1], the Globus operator can 
operate on any connected graph, directed or undirected [4]. (In fact, the Globus op-
erator can also operate on graphs that are not connected; however, in that case, the 
operator really only operates on one connected fragment within the graph; all nodes 



and edges outside that fragment are simply discarded.)  
As described in [3] and [4], the Globus operator implements graph crossover ac-

cording to the following algorithm: 
 
To divide a graph into two fragments 
1. Choose an initial random edge 
2. Repeat until a cut set is found 

a. Find the shortest path between the initial edge’s vertices 
b. Remove a random edge in this path from the graph 
c. Save the removed edge in the cut set 

 
To merge two fragments into a graph 
Repeat until each broken edge has been processed 
1. Select a random broken edge in either fragment’s cut set 
2. If at least on broken edge exists in the other fragment’s cut set 

a. Choose one such edge at random 
b. Merge the broken edges 

3. Else flip a coin 
a. If heads, attach broken edge to random node in other fragment 
b. If tails, discard the broken edge 

 
As an example, consider Fig. 1-3, in which the Globus operator crosses an 8-node 

parent with a 6-node parent, yielding a 10-node child. 
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Fig. 1. The operator divides each parent into disjoint fragments. For the 8-node parent, the 
operator randomly selects edge 0-3 as the initial edge. The shortest path between nodes 0 and 3 
is the path {0-3}; therefore, the operator breaks edge 0-3. In the resulting graph, the shortest 
path between nodes 0 and 3 is the path {0-6, 6-3}; the operator randomly breaks edge 6-3. The 
shortest paths remaining between the terminal nodes are the paths {0-7, 7-5, 5-3} and {0-6, 6-
5, 5-3}. In successive iterations, the operator randomly breaks edges 0-7 and 0-6, yielding a 1-
node fragment and a 7-node fragment. Through the same algorithm, the operator breaks edges 
A-C, F-E, and D-B to divide the 6-node parent into two 3-node fragments 

 
 
 



 
 

7

1

2

6

4

5

3

AFD 
 
 
 
 

 
 
 
 

 
 

Fig. 2. The operator selects one fragment from each parent graph to be merged into a child 
graph 
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Fig. 3. The operator merges the fragments to form the offspring. The operator randomly selects 
a broken edge on node 6 and randomly merges it with the broken edge on node D. Successive 
iterations of the algorithm yield the merged edges 3-F and 6-A, leaving a lone broken edge on 
node 7. The operator randomly chooses to discard the last broken edge 

As the preceding example demonstrates, the Globus algorithm implements a 
straightforward, intuitive crossover operation on two graphs. However, a closer ex-
amination of the algorithm and the example reveals that the Globus operator induces 
several undesirable side effects into the genetic algorithm. First, as Fig. 1 shows, the 
Globus operator tends to divide a parent graph into two very unevenly sized frag-
ments. This phenomenon occurs because every path between the initial edge’s termi-
nal nodes must include edges that are incident on the terminal nodes. Therefore, over 
many iterations of the operator’s fragmentation algorithm, the edges that are incident 
to the path’s terminal nodes have a much greater probability of breaking than any 
other edges in the graph. Obviously, as the number of nodes and edges in the parent 
graph increases, the rate at which the Globus operator unevenly fragments the parent 
increases. Furthermore, as Fig. 1 shows, the Globus operator tends to break edges 
within the larger fragment of the parent graph – edges that ultimately did not need to 



be broken to divide the parent graph into the resulting fragments. Again, as the num-
ber of nodes and edges in the parent graph increases, the rate at which the Globus 
operator unnecessarily breaks edges within a fragment of the parent graph increases. 
Collectively, these two side effects of the Globus operator make it very difficult for 
the genetic algorithm to identify and preserve high-fitness building blocks during 
crossover. Upon observing the operator’s poor performance in evolving digital cir-
cuits, the authors noted in [4], “it may be that the crossover operator does not pre-
serve useful sub-graphs very often…the extremely destructive nature of the crossover 
operator…can be expected to generate many very unfit children from fit parents.” 

3   GraphX Crossover 

The GraphX operator avoided the unnecessary complexities and performance penal-
ties associated with fragmentation and recombination by operating on the graph’s 
representation, rather than on the graph’s structure. That is, GraphX simply per-
formed 2-point crossover on the adjacency matrices and on the matrices of node types 
(types matrices). 

3.1 GraphX Crossover on Graphs of the Same Size 

In the simplest case, where the parent graphs contained the same number of nodes 
(N), the GraphX operator simply performed 2-point crossover on the parents’ adja-
cency matrices, selecting the crossover points randomly in the N-by-N matrices. The 
operator then performed 2-point crossover on the parents’ types matrices, with the 
crossover points again selected randomly. Each offspring then contained the same 
number of nodes as the parents, but contained edges and node types inherited from 
both parents. This property of the GraphX operator allowed the GA to efficiently 
explore the search space for graphs of a particular size. 

3.2   GraphX Crossover on Graphs of Different Sizes 

To perform crossover on a (smaller) graph of size S and a (larger) graph of size L, the 
GraphX operator first increased the size of the smaller graph to match the size of the 
larger graph. In increasing the size of the smaller graph, the operator simply added L-
S nodes to the graph; no edges were added to connect these nodes to the graph or to 
each other. In other words, the additional nodes were placeholders – empty rows and 
columns appended to the adjacency matrix (and empty nodes added to the types ma-
trix) to permit efficient 2-point crossover. Conceptually, this algorithm was consistent 
with the desired properties of a crossover operator. The two graphs not only ex-
changed information about high-fitness interconnections (edge placements and 
weights) between the S nodes that were shared by both graphs, but also exchanged 
information about the number of nodes that a highly fit graph should contain. The 
smaller graph’s placeholders encouraged the larger graph to disconnect its additional 



L-S nodes; the larger graph’s interconnections to its additional L-S nodes encouraged 
the smaller graph to increase its size. 

Following the 2-point crossover, the size of the offspring corresponding to the lar-
ger parent remained fixed at L nodes. However, the size of the offspring correspond-
ing to the smaller parent varied between S and L nodes, depending on the location of 
the second crossover point in the adjacency matrix. If the second crossover point was 
located in a row representing one of the graph’s original nodes, then the GraphX 
operator discarded all the placeholder nodes, trimming the offspring to its original 
size of S nodes. If the second crossover point was located in a row representing one 
of the offspring’s placeholder nodes, then the GraphX operator preserved that place-
holder node and all placeholder nodes preceding it, while discarding all subsequent 
placeholder nodes. Consider the following example: 
 
 1 2

3 6 1 1 5 2 9 3 6 1 0 1 5 2 9

0 1 1 0 1 0 0 0 1 1 0 0 1 0 0
1 0 1 0 0 1 1 1 0 1 0 0 0 1 1
1 0 1 1 0 0 0 1 0 1 0 1 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1

3 4
3 5 2 0 1 6 1 9 3 5 2 1 6 1 9

0 1 0 0 0 1 1 0 0 1 0 0 1 0 0
0 0 1 1 1 0 1 0 0 0 1 0 0 1 1
1 0 1 0 1 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0 1 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Performing GraphX Crossover on Graphs of Different Sizes. Each panel depicts the 
types matrix and the adjacency matrix of each graph. The first panel depicts two parent graphs 
of sizes 3 and 4 nodes, respectively. In the second panel, the GraphX operator increases the 
size of the smaller parent to 4 nodes by appending a placeholder node. The second panel also 
shows the location of the crossover points in both the adjacency matrices and the types matri-
ces; values between the crossover points appear in shaded cells. In the third panel, the operator 
performs the 2-point crossover by exchanging the shaded values, yielding two offspring that 
each contain 4 nodes. In the final panel, the operator trims the size of the first child to 3 nodes 
because the crossover point was in the third row of the adjacency matrix 

3.3   GraphX Crossover with Expansion 

While the normal mode of GraphX crossover permitted the GA to efficiently explore 
the search space of all graphs with sizes between the smallest and largest graph in the 
population, the normal mode did not contain a mechanism whereby the crossover 



operation could create a child graph containing more nodes than the larger parent 
graph. To enable GraphX crossover to generate a child graph containing more nodes 
than the larger parent (thereby enabling the GA to efficiently explore the search space 
of all graphs), we added an expansion mode to the GraphX operator. 

For a given pair of parent graphs, the GraphX operator performed expansion cross-
over with the user-specified probability expand_prob (typically 0.05 or smaller). In 
expansion mode, the GraphX operator first increased the size of the larger parent by 
one node, and then increased the size of the smaller parent to match the expanded size 
of the larger parent. Unlike the placeholder nodes in the non-expansion crossover, 
these expansion nodes were randomly connected to each other and to other nodes in 
the graph. Finally, as in the normal mode, the GraphX operator performed 2-point 
crossover on the parents, then trimmed the size of the offspring corresponding to the 
smaller parent, based on the position of the second crossover point. Consider the 
following example: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2
0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0
0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1
1 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0

0 1 0 1 0 1 0 0 1 0 1 0 1 1
1 0 0 1 0 0 1 0 0 1

3 4
0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0
0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1
0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1
1 0 0 1 0 0 1 0 0 1 0 1 0 0 1

Fig. 5. Performing GraphX Crossover in Expansion Mode. Each panel depicts the adjacency 
matrix of each graph; node type matrices are omitted for brevity. The first panel depicts two 
parent graphs of sizes 3 and 4 nodes, respectively. In the second panel, the GraphX operator 
increases the size of the each parent to 5 nodes by appending 2 expansion nodes to the smaller 
graph and 1 expansion node to the larger graph. The second panel also shows the locations of 
the crossover points in the adjacency matrices; edges between the crossover points appear in 
shaded cells. In the third panel, the operator performs the 2-point crossover by exchanging the 
shaded edges, yielding two offspring of size 5 nodes. Finally, the operator trims the size of the 
first offspring to 4 nodes because the crossover point was in the fourth row of the adjacency 
matrix. 

4 Mutation 

To augment the GraphX operator, we implemented a set of four general-purpose 
mutation operators, which mutated a graph by (1) adding an edge, (2) removing an 
edge, (3) adding a node, and (4) removing a node, respectively [1], [4]. After per-



forming crossover on the entire population, the GA selected an offspring for mutation 
with user-specified probability mutation_prob (typically 0.005). If a graph was se-
lected for mutation, the GA randomly carried out one of the aforementioned muta-
tions. 

To add an edge to a graph G of N nodes, the operator randomly selected an edge 
from the complete graph on N nodes that was not already present in the graph G and 
added that edge to graph G. The operator also assigned a random edge weight to the 
new edge. To remove an edge from a graph G, the operator randomly selected an 
existing edge in G and removed that edge from the graph. 

To add a node to a graph G, the operator appended a new row and column to the 
graph’s adjacency matrix, and appended a new entry to the graph’s matrix of node 
types. The operator then assigned a random type to the new node, and randomly 
added edges between the new node and the graph’s existing nodes. To remove a node 
from graph G, the operator deleted the last row and column from the graph’s adja-
cency matrix, and deleted the last entry from the graph’s matrix of node types. Thus, 
the operator removed the node and all edges incident on it. 

5   Data and Results 

To determine the effectiveness of the crossover and mutation operators, we designed 
a genetic algorithm that attempted to evolve a target graph. The target graph was 
completely and uniquely specified by its adjacency matrix and by the integer type 
assigned to each of its nodes. Each chromosome in the GA was a graph, represented 
internally by an adjacency matrix of edge weights and a types vector of node types. 
The GA permitted the user to select Globus crossover or GraphX crossover, and to 
enable or disable graph mutation. To determine the fitness of a graph, the GA com-
pared that graph to the target graph using the following algorithm, where T_ and C_ 
represent properties of the target graph and the chromosome graph, respectively: 

 
1. maxFitness = 10*T_numNodes + sum(T_edgeWeights) + sum(T_nodeTypes) 
2. minNodes = min(T_numNodes, C_numNodes) 
3. nodePenalty = 10*abs(T_numNodes – C_numNodes) 
4. For row = 1:minNodes 

a. typePenalty += abs(T_nodeType – C_nodeType) 
b. For col = 1:minNodes 

edgePenalty += abs(T_edgeWeight – C_edgeWeight) 
5. If (T_numNodes > C_numNodes) 

a. For each extra node in target graph 
typePenalty += T_nodeType 

b. For each extra node pair in target graph 
edgePenalty += T_edgeWeight 

6. Else If (C_numNodes > T_numNodes) 
a. For each extra node in chromosome graph 

typePenalty += C_nodeType 
b. For each extra node pair in chromosome graph 

edgePenalty += C_edgeWeight 
7. fitness = maxFitness – nodePenalty – edgePenalty – typePenalty 

 
Note that the evaluation algorithm strongly encouraged the GA to evolve graphs 



containing the same number of nodes as the target graph, thereby minimizing the 
search space. Furthermore, the algorithm penalized every erroneous arc weight (and 
every erroneous node type) in the chromosome, and the penalty was always the dif-
ference between the chromosome’s edge weight (or node type) and the target graph’s 
edge weight (or node type). 

The foregoing experiments were conducted with the following set of GA parame-
ters. A distributed GA with 10 islands was used because the GraphX operator per-
formed better in a distributed GA, while the Globus operator performed as well in the 
distributed GA as it did in a serial GA. Each island contained a population of 100 
graphs, with the each graph in the initial population containing at most 5 nodes. 

 
islands  10  selection stochastic 
epoch  100  crossover 2-point or globus 
migrants  20  scaling  linear_fitness 
pop_size  100  crossover_prob .96 
replacement  elitism  expand_prob 0.05 
elites  1  mutation none or uniform 
graph_nodes  5  mutation_prob .005 
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Fig. 6. GraphX Crossover Versus Globus Crossover (Fitness).
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5.1   GraphX Crossover Versus Globus Crossover 
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abled. As the figure indicates, GraphX crossover outperformed Globus crossover by a 
significant margin. In 20 runs of 1000 generations, the GraphX operator evolved a 
graph with the maximum fitness 11 times, while the Globus operator never evolved a 
graph with fitness greater than 113. 

The poor performance of the Globus operator derived largely from the operator’s 
tendency to disrupt high-fitness building blocks. However, it should be noted that the 
GA did not attempt to account for isomorphism when evaluating the fitness of a 
graph. Because Globus crossover truly operated on the graph’s structure, rather than 
on the graph’s representation, it is possible that the operator tended to create graphs 
that were more nearly isomorphic to the target graph than Fig. 6 suggests. 

Nevertheless, the superior performance of the GraphX operator should not be dis-
counted. In addition to outperforming the Globus operator for the given application, 
the GraphX operator also performed crossover on an arbitrary pair of graphs much 
more quickly and efficiently than did the Globus operator. As Fig. 7 indicates, the 
time required for the GraphX operator to perform crossover on two graphs increased 
in proportion to the number of nodes in each graph. However, the amount of time 
required for the Globus operator to perform crossover on two graphs increased in 
proportion to the number of nodes and the number of edges in each graph. The unde-
sirable increase in the Globus operator’s execution time stems primarily from the 
operator’s frequent use of the expensive breadth-first search algorithm. 
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Fig. 7. GraphX Crossover Versus Globus Crossover (Execution Time). Depicts the time re-
quired for each operator to perform 1000 crossover operations on two graphs containing the 
specified number of nodes, with the specified probability of an edge existing between any two 
nodes in either graph. The authors obtained the data by iteratively crossing over two graphs 
with the specified properties and discarding the results 

 



5.2 Mutation 

Finally, the mutation operators were tested. With GraphX crossover selected, we 
attempted to evolve a directed graph containing 40 nodes, 159 edges, and maximum 
fitness 577. As a means of minimizing the search space, the target graph contained 
nodes of only two types (0 and 1), and the target graph’s edges were not weighted. 
Fig. 8 shows 5 typical runs of the GA with mutation enabled, and 5 typical runs of the 
GA with mutation disabled. As the figure indicates, the GA with mutation enabled 
outperformed the GA with mutation disabled. In particular, the effectiveness of the 
mutation operators increased as the number of generations increased. In the GA with 
mutation disabled, the maximum fitness leveled off around 460 after nearly 1500 
generations. In the GA with mutation enabled, the maximum fitness continued to 
steadily improve for the duration of each run. Considering that GraphX expansion 
crossover incorporated the behaviors of all the mutation operators, it seems reason-
able to infer that the mutation operators were most beneficial after the graphs in the 
population stabilized at the target size (and stopped expanding). 
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Fig. 8. Benefits of Mutation. Depicts the maximum fitness found by the GA for five runs with 
mutation enabled and five runs with mutation disabled. The GA with mutation enabled consis-
tently outperformed the GA with mutation disabled 

6   Summary 

The development of efficient, general-purpose graph crossover and graph mutation 
operators is absolutely essential if genetic algorithms are to make effective use of 
graph representations. While existing mutation operators are adequate, the traditional 



fragmentation/recombination crossover operators are extremely inefficient. These 
operators tend to disrupt the high-fitness building blocks that are crucial to the suc-
cess of any genetic algorithm. 

The GraphX crossover operator implements a new and promising approach to 
graph crossover. Because GraphX crossover does not operate directly on the graph’s 
structure, the operator avoids the unnecessary complexities and performance penalties 
associated with fragmentation/recombination operators. Modeled after existing vector 
crossover and matrix crossover techniques, GraphX crossover implements an effi-
cient algorithm that finds and preserves high-fitness building blocks in the search 
space. The GraphX operator can perform crossover on any graph structure, including 
directed or undirected graphs, graphs with or without arc weights, and graphs with or 
without node types. Furthermore, given an arbitrary population of graphs, a genetic 
algorithm using GraphX crossover can evolve any graph that is not smaller than the 
smallest graph in the initial population. Early experiments indicate the GraphX opera-
tor outperforms existing fragmentation/recombination operators by a significant mar-
gin. 

In the future, the GraphX operator must be tested against existing crossover opera-
tors in a traditional application domain, such as the evolution of digital circuits. It is 
probable that the GraphX operator would benefit from a contraction mode to com-
plement the existing expansion mode. It is also possible that the efficiency of the 
GraphX operator could be improved if the graph were represented by an adjacency 
list rather than by an adjacency matrix (particularly for large graphs that are not par-
ticularly full). However, it is clear that GraphX crossover already offers significant 
advantages over current graph crossover operators. 

References 

1. Chang, M., Heh, J. Implements an Evolutionary Self-Organizing Map Based Graph Evo-
lution. http://www.fuzzy.org.tw/5-2t.htm 

2. Dossey, J.A., Otto, A.D., Spence, L.E., Eynden, C.V. Discrete Mathematics. 3rd edn. 
Addison-Wesley, Illinois State University (1998) 101-160 

3. Globus, A., Lawton, J., Wipke, T. Automatic Molecular Design Using Evolutionary Tech-
niques. In: Nanotechnology, Vol. 10, No. 3 (1999) 290-299 

4. Globus, A., Atsatt, S., Lawton, J., Wipke, T. JavaGenes: Evolving Graphs with Crossover. 
NAS Technical Report NAS-00-018, October 2000 

5. Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning. Addi-
son-Wesley, University of Alabama (1989) 

6. Kobayashi, S., Ono, I., Yamamura, M. An Efficient Genetic Algorithm for Job Shop 
Scheduling Problems. In: Proceedings of ICGA (1995) 506-511 

7. Poli, R. Evolution of Graph-Like Programs with Parallel Distributed Genetic Program-
ming. In: Goodman, E. (ed.): Proceedings of Seventh International Conference on Genetic 
Algorithms. Morgan Kaufman, Michigan State University, East Lansing (1997) 346-353. 

8. Valenzuela, J., Smith, A. A Seeded Memetic Algorithm for Large Unit Commitment 
Problems. In: Journal of Heuristics, Vol. 8, No. 2 (2002) 173-195 

 

http://www.fuzzy.org.tw/5-2t.htm

